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Ecosystem transformation can be defined as the emergence of a self-organizing, self-sustaining, ecological or social–ecological 
system that deviates from prior ecosystem structure and function. These transformations are occurring across the globe; con-
sequently, a static view of ecosystem processes is likely no longer sufficient for managing fish, wildlife, and other species. We 
present a framework that encompasses three strategies for fish and wildlife managers dealing with ecosystems vulnerable to 
transformation. Specifically, managers can resist change and strive to maintain existing ecosystem composition, structure, and 
function; accept transformation when it is not feasible to resist change or when changes are deemed socially acceptable; or direct 
change to a future ecosystem configuration that would yield desirable outcomes. Choice of a particular option likely hinges on 
anticipating future change, while also acknowledging that temporal and spatial scales, recent history and current state of the 
system, and magnitude of change can factor into the decision. This suite of management strategies can be implemented using a 
structured approach of learning and adapting as ecosystems change.

INTRODUCTION
Changes in ecosystem composition, structure, and func-

tion are increasing in frequency across the globe (Pörtner et 
al. 2014; Settele et al. 2014; Whitmee et al. 2015; Nolan et al. 
2018). Here, we refer to a subset of these changes as ecosystem 
transformations, which we define as emergence of a new eco-
system (i.e., a self-organizing, self-sustaining, social–ecologi-
cal system) that deviates from prior ecosystem composition, 
structure, and function. The rate, magnitude, and areal extent 
of ecosystem changes now occurring, as well as high uncer-
tainty about future system trajectories, pose critical challenges 
for fisheries and wildlife management. In a rapidly changing 
environment, a static view of ecosystem structure and func-
tion is insufficient. Instead, a dynamic approach is needed that 
explicitly considers the emerging reality that ecosystems may 
stray, gradually or suddenly, from historical conditions.

Ecosystem change has long been a primary focus of ecology 
(Odum 1953). Various conceptual models to describe ecosys-
tem dynamics have emerged that are useful for understanding 
and managing ecosystem changes. Classical theory and empir-
ical studies of succession are typically described as predictable 
and directional changes in community composition occurring 
over timescales ranging from decades to centuries that eventu-
ally lead to a “climax” or stable state (Cowles 1901; Shelford 
1911; Clements 1936; Pickett et al. 2009). This view has been 
challenged by paleo-ecological studies that reveal how modern 
ecosystem states are only stationary over short timescales (e.g., 
years to decades; Davis 1981; Webb 1981; Jackson et al. 2009; 
Jackson and Blois 2015). In addition, ecologists now recognize 
the possibility of alternative stable states (Lewontin 1969) in 
which ecosystems may exhibit multiple stable configurations, 
despite similar environmental conditions because of histori-
cal, possibly idiosyncratic, states (i.e., hysteresis; Scheffer et al. 
2001; Beisner et al. 2003). When environmental conditions ex-
ceed threshold values, a current stable state may undergo drastic, 
persistent, and nonlinear state-shifts (i.e., critical transitions) in 
ecosystem configuration (Holling 1973; May 1977; Scheffer et 
al. 2001; Beisner et al. 2003; Keeley et al. 2019). Other, recent 
definitions of ecosystem change that describe critical transitions 
in system dynamics include phase shifts and regime shifts (Folke 
et al. 2004; Petraitis and Dudgeon 2004; Vert-pre et al. 2013) or 
ecosystem collapse (Keith et al. 2013). Finally, many models that 
describe causes of ecosystem change exist (e.g., trophic cascades; 
Carpenter et al. 1985). Here, we view ecosystem transformation 
as a general dynamic encompassing gradual or rapid changes 
from a current state to an alternative persistent state. Such trans-
formative change can sometimes result in novel system configu-
rations that lack historical analogs at the current place (Williams 
and Jackson 2007; Hobbs et al. 2009, 2014). Although multiple 
transitions may occur as a result of certain drivers, they may not 
always bring about a new stable state (e.g., Hobbs et al. 2012).

Ecosystem transformation may be an inevitable outcome 
of the combined impacts of multiple drivers, including ex-
panding human activities and rapid contemporary climate 
change. Climate is the most fundamental determinant of 
ecosystem state and function (Whittaker 1975; Peters et al. 
2008; Pettorelli 2012; Biggs et al. 2018). The range of climatic 
variables at daily, seasonal, and interannual scales are strong 
predictors of many biomes, individual species, community 
structure, and ecosystem processes at coarse spatial resolu-
tions. A number of human activities, including pollution, nat-
ural resource extraction, land use, species translocations, and 
food and energy consumption impose stresses on ecological 
systems, often leading to drastic changes (Díaz et al. 2019).

Ecosystem transformation is not a new phenomenon when 
ecosystems are viewed through a paleontological perspec-
tive. Climate change has driven transformations for millions 
of years, and few contemporary terrestrial ecosystems are 
more than a few thousand years old (Jackson 2012; Nolan et 
al. 2018). Ecosystems have been altered by human activities 
at least since human use of fire, and those alterations have 
continued with development of agricultural and industrial 
societies; both marine and terrestrial ecosystem states have 
transformed dramatically over centuries to millennia (Jackson 
et al. 2001, 2011; Dearing 2008; Dearing et al. 2008; Ellis et al. 
2013; Díaz et al. 2019). However, as human population growth 
and industrial technologies have accelerated in the past two 
centuries, anthropogenic impacts on the biosphere have led to 
unprecedented levels and rates of sustained change (Vitousek 
1994). These anthropogenic stressors can interact synergisti-
cally with climate change to affect core ecological processes, 
including nutrient cycling, species phenology, population mi-
gration, and individual-level demography. For example, spe-
cies or populations that have been reduced by habitat loss or 
overharvest might be pushed over demographic thresholds by 
climate shocks such as droughts or warming events (Pershing 
et al. 2015; Newbold 2018; Northrup et al. 2019).

A key challenge for ecosystem management is the contin-
ued expansion and layering of multiple anthropogenic stress-
ors exacerbating ecological system change (Figure 1; Díaz et al. 
2019). Collectively, these drivers can create novel ecosystems 
(Seastedt et al. 2008). For example, novel stream communities 
are increasingly common in the southwestern United States, 
where shifts to more drought-tolerant vegetation in riparian 
areas and introduced virile crayfish Orconectes virilis, which 
feed on organic matter and macroinvertebrates, are working 
together to reduce diversity of litter-dwelling communities in 
desert streams (Moody and Sabo 2013). Adaptation to ecosys-
tem change is challenging, particularly given shifting baselines 
and increased unpredictability of system responses (Williams 
and Jackson 2007). As a result, future conditions will be much 
different than in the past, and as such, traditional management 
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focused on the range of historical variability may have limited 
utility for conservation and management planning of future 
ecosystem states.

Climate change in the 21st century under even the most-ag-
gressive greenhouse-gas reductions will drive widespread eco-
system change, and worst-case emissions scenarios may lead 
to ecosystem transformations of global extent (Nolan et al. 
2018). New frameworks are needed for management in a 
world where transformations are more rapid, dynamic, and 
comprehensive than at any previous point in human history 
(Folke et al. 2002). We outline three alternative strategies for 
fish and wildlife managers to consider in addressing ecosystem 
transformation. We provide context for choosing among these 
strategies, including considerations of temporal and spatial 
scales, as well as magnitude of change. We also briefly describe 
sources of uncertainty associated with ecosystem transfor-
mation and provide guidance on how the three management 
strategies can be incorporated into a general planning process 
applicable to specific situations. Finally, we highlight key expe-
rience and knowledge gaps facing management for ecosystem 
transformation.

A MANAGEMENT FRAMEWORK FOR  
ECOSYSTEM TRANSFORMATION

A variety of management frameworks exist for responding 
to ecosystem change (e.g., Millar et al. 2007; Hobbs et al. 2009; 
Jackson and Hobbs 2009; Aplet and Cole 2010; Stephenson 
and Millar 2012; Stein et al. 2014; Truitt et al. 2015; Fisichelli 
et al. 2016a; Fortini and Schubert 2017). Some prior response 
frameworks, for example, have focused on managing states, 
characteristics, or attributes of a system, such as resilience 

(e.g., National Fish Wildlife and Plants Climate Adaptation 
Partnership 2012). That term, however, has become increas-
ingly ambiguous; it is interpreted differently among manage-
ment sectors (Fisichelli et al. 2016a) and, in practice, may be 
confusing to managers attempting to select options to respond 
to change. We instead suggest a holistic, active framework that 
describes management responses appropriate under ecosys-
tem transformation. Specifically, this active approach square-
ly assigns the adaptation response to a managerial decision: 
resist, accept, or direct the change (also see Aplet and Cole 
2010; Stein and Shaw 2013; Fisichelli et al. 2016b; Aplet and 
McKinley 2017).

Depending on the rate and direction of change, we suggest 
that either:
•	 Ecosystem transformations can be resisted, because manag-

ers choose to promote the persistence of current or histori-
cal ecosystem composition, structure, and processes;

•	 Ecosystem transformations can be accepted, perhaps be-
cause they cannot feasibly be stopped, they are not suffi-
ciently impactful to warrant a response, they are considered 
acceptable (perhaps even desirable) by stakeholders or so-
ciety, or there is a lack of will or impetus to resist change 
despite sufficient knowledge and resources; or

•	 Ecosystem transformation can be directed towards a spe-
cific alternative ecosystem configuration, because resisting 
change appears to be impossible and feasible opportunities 
exist to steward change towards a more-desirable outcome 
than that anticipated from accepting the default trajectory 
of change.
These decisions (Figure 2) capture the range of responses 

by humans to address ecosystem change. Synonymous with 

Figure 1. Conceptual illustration of combined effects of drivers of ecosystem state (and therefore factors that contribute to 
changing state) and how those have changed historically.
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how Magness et al. (2011) defined retrospective and prospec-
tive adaptation, resisting works against climate change by 
attempting to maintain historical conditions, and directed 
change works with climate change trajectories by stewarding 
towards some altered future state. Accepting change should 
not be considered a passive choice. For example, a manage-
ment decision to cease building an artificial dune system at 
Assateague Island National Seashore and allow for beach 
overwash is explicit acceptance of the ecological and eco-
nomic impacts of rising seas and increasing storm frequency 
and intensity. Although the decision allows for barrier island 
migration, it does so with the added expense of rebuilding 
beachside visitor facilities further inland by the National Park 
Service and the loss of diked waterfowl impoundments that 
had been maintained for a half  a century by the Chincoteague 
National Wildlife Refuge (USFWS 2015a).

Each of these three management options is meant to 
promote a desirable, or at least acceptable, outcome that is 
self-sustaining and self-organizing and does not require con-
tinuous intervention. Moreover, the three options are all-en-
compassing (i.e., nothing is left outside the decision space), 
and they can be applied either sequentially or concurrently 
for different components of the ecosystem. Having contrast-
ing options allows for comparison among potential outcomes 
that may or may not correspond with a historical state. The 
three actions also collectively allow for management strategies 
to be diversified so that overall risk can be reduced (i.e., bet 
hedging). This framework can be applied by either focusing 
on outcomes (i.e., strategically) or on the means to achieve the 
outcome (i.e., tactically), and is easily incorporated into oth-
er planning processes, such as Climate-Smart Conservation 
(Stein et al. 2014).

Although resisting change is a common action used by 
natural resource managers, accepting and directing change are 
not considered traditional management strategies. Therefore, 
to demonstrate these options under ecosystem transforma-
tion, we provide case studies (Boxes 1–4) to show how natural 
resource managers are incorporating resisting, accepting, and 
directing complex ecological changes driven by warming cli-
mates in coral reefs of Florida, coldwater lakes in Minnesota, 
East Coast marshes, and ecosystems of southcentral Alaska.

CHOOSING AMONG STRATEGIES
Choosing among resist, accept, or direct strategies to ad-

dress ecosystem transformation relies on the ability to recog-
nize that systems are changing, and to identify the key drivers 
of change. Decisions can be complicated because changes 
to species or functional groups may not occur in synchro-
ny. Managers may have to implement multiple options con-
currently to reach a desired outcome. Being explicit about 
a decision to resist, accept, or direct ecosystem change is an 
important first step in managing ecosystem transformation. 
Such deliberate choice can help prioritize research, moni-
toring, and action agendas tailored to implement a selected 
transformation strategy or prepare for future ability to switch 
strategies. Temporal and spatial scales, as well as magnitude 
of changes, are important considerations in deciding among 
the three strategies.

Time
Decision timelines and the speed of system change com-

bine to influence the choice to resist, accept, or direct trajec-
tories of change. Resisting ecosystem transformation may be 
only a temporary, short-term solution, unless the drivers of 

Figure 2. Management strategies and contexts for when one might resist, accept, or direct ecosystem transformation to promote 
a desirable outcome that is self-sustaining and self-organizing. These strategies are all-encompassing (i.e., nothing is left out-
side the decision space) and can be implemented simultaneously on different components of an ecosystem.
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change are addressed. For example, attempts to eradicate in-
vasive species may only delay their eventual establishment, un-
less propagule pressure is halted (Mack and Lonsdale 2002). 

Conversely, we may need to reconsider conventional inva-
sive species management in a “post-native” world (Hill and 
Hadly 2018). Directed ecosystem change requires managers to 

Box 1.  A multipronged approach to coral restoration in the Florida Reef Tract.

The Florida Reef Tract (FRT), the only tropical coral reef system in the continental USA, is undergoing transformation. The FRT is inhabited by over 
500 fish and thousands of invertebrate species (Shinn et al. 1989; Lirman et al. 2019) and FRT ecosystem services (e.g., coastal protection, sand 
supply for beaches and fisheries) are crucial to the economy of south Florida, where coastal tourism and fishing generate US$6 billion per year (Ault 
et al. 2014). Two species of branching corals, Acropora palmata and A. cerviconis, and a massive genus, Orbicella (formally known as Montastrea) have 
historically been the predominant reef-building corals of the FRT (Precht and Miller 2007). Sufficient coverage of reef-building corals is essential 
for reef biodiversity and ecosystem services (Moberg and Folke 1999), but their coverage has decreased dramatically over the last 30–40 years 
in the FRT (Alevizon and Porter 2015). Acropora and Orbicella taxa mortality has largely driven coral cover losses, but overall coral richness has 
also decreased (Porter et al. 2002; Lirman et al. 2019). Coral losses are attributed to increasing ocean temperatures (Kuffner et al. 2015), nutrient 
pollution (Vega Thurber et al. 2014), sedimentation (Miller et al. 2016) and overfishing, but the synergistic effects of extreme temperature-induced 
coral bleaching and diseases may be the major cause of coral declines, globally (Aronson and Precht 2006). As scleractinian corals decline, FRT 
reefs have shifted to an octocoral (i.e., soft corals, sea fans), and sponge-dominated community structure (Ruzicka et al. 2013; Alevizon and Porter 
2015). Some site-specific increases of algal cover have occurred but algal phase shifts are less prevalent in the Florida Keys than many Caribbean 
locations (Bruno et al. 2009).

Resisting transformation is the central management response to the loss of reef-building corals within this ecosystem, and a wide variety of 
efforts with this aim have been pursued in the FRT. These include nutrient pollution and fisheries regulations, and restoration via coral propaga-
tion and outplanting. The Comprehensive Everglades Restoration Plan and U.S. EPA’s collaborative efforts with the Florida Keys National Marine 
Sanctuary are attempts to decrease sewage and agricultural nutrient inputs that favor algal growth (Causey 2002; Precht and Miller 2007). Fishing 
regulations and preferences have maintained high herbivorous fish biomass in the Florida Keys, relative to the rest of the Caribbean, and grazing 
control is hypothesized to partially explain the relatively low macroalgal cover in the Florida Keys (Aronson and Precht 2006; Bruno et al. 2009). 
The collaborative coral propagation and restoration programs at Mote Marine Laboratory, the Coral Restoration Foundation, NOVA Southeastern 
University, the University of Miami, the Florida Fish and Wildlife Conservation Commission, and The Nature Conservancy all aim to restore previ-
ously dominant reef-building corals and resist ongoing coral cover loss (Lirman et al. 2019). Initial work focused on asexual propagation of clonal 
fragments of fast growing A. cervicornis, but new techniques have been developed to asexually propagate slower-growing massive stony corals 
(Page et al. 2018). Outplanting corals with known ecological resilience to anticipated conditions such as heat-stress, acidification, and disease is 
the “next frontier” for resistance via coral propagation. In the future, assays and habitat indicators may be used to select resilient wild stock for 
nurseries (Morikawa and Palumbi 2019). A collaboration between researchers in Australia and Hawaii is exploring selective breeding, trans-gener-
ational and intergenerational acclimatization, symbiont modification, and interspecific hybridization to initiate “human assisted evolution” in corals 
(coralassistedevolution.com; van Oppen et al. 2015). Additionally, there is recognition that coral restoration programs that previously focused on a 
few genera of fast growing coral species that cover large areas quickly, but also had high susceptibility to thermal stress, should utilize corals that 
will be robust to future anticipated conditions (Rinkevich 2015).

While resistance is the focus of efforts to reduce change in the FRT, some climate-related mass mortality events and associated shifts in com-
munity composition may have to be accepted if global sea surface temperatures are allowed to fluctuate outside of historical ranges. Two back-
to-back mass bleaching events during summertime warm temperature anomalies in 1997–1998, and 2014–2015, and a cold-water event in 2010 
have caused recent mass mortality (Ruzicka et al. 2013; Kuffner et al. 2015). Octocorals, while susceptible to many of the same stressors as the 
historically abundant hard coral species, are less prone to bleaching in warm temperatures and appear to recover more quickly so their relative 
abundance may increase following major bleaching events (Ruzicka et al. 2013). Directed transformation to an alternate benthic community is not 
a current management strategy or goal in the FRT and, to our knowledge, has rarely been considered as a management option for coral reef eco-
systems. However, directed transformation of an adjacent temperate community that is warming to facilitate coral establishment is a theoretical 
option. Given the “tropicalization” of marine coastlines and the widespread decline of corals in many parts of their current distribution, choices will 
likely be made about whether to facilitate the poleward spread of corals into temperate systems (Vergés et al. 2019).
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consider an ecosystem’s position on its trajectory of change, 
what preferred state to aim for, how long it will take to achieve, 
and by what means it could be accomplished. The latter may 
include identification of key points for intervention to alter or 
maintain the trajectory.

An “active” strategy will be required that guides the course 
of transformation by establishing core ecosystem functions so 
that ecosystem dynamics stabilize in a desirable configuration. 
Directing change may be deemed unfeasible if  the ecosystem 
has already changed enough that diversion to another path 

Box 2.  Changing fish communities in the Great Lakes basin.

Environmental conditions in the Laurentian Great Lakes and associated Great Lakes basin are likely to shift considerably because of warming 
temperatures, introduced species, and changes in nutrient runoff (Rahel and Olden 2008; Michalak et al. 2013). These changes can negatively affect 
forage fish communities that support top lake predators, including Walleye Sander vitreus, Northern Pike Esox lucius, Muskellunge E. masquinongy, 
and Lake Trout Salvelinus namaycush, as well as having implications for a popular sportfishing industry. Cisco Coregonus artedi, for example, is a 
stenothermic salmonid distributed in Canada and the northern United States and is important prey for many top predators, including Walleye, a 
popular game fish in the region. Cisco rely on the cold, oxygenated hypolimnetic water of lakes, particularly during summer periods when surface 
waters warm and stratify. Cisco populations in Minnesota, at the southern region of its geographic range, are declining, most likely as a result of 
warming water temperatures (Jacobson et al. 2012). Further Cisco population losses are imminent as warming continues (Fang et al. 2012).

In recent years, Minnesota Department of Natural Resources (MN DNR) developed a habitat model to identify 171 refuge lakes where the 
deep-water layer is projected to remain sufficiently cold and oxygenated in late-summer, even during the longer duration of stratification projected 
with climate change (Jacobson et al. 2013). Managers can resist climate-induced loss of Cisco in these deep, clear refugium lakes as long as their 
water quality remains high. To this end, managers are actively pursuing conservation easements and other land protection mechanisms to protect 
the watersheds of these lakes from development. Land conversion of these contributing watersheds would likely increase their nutrient and sedi-
ment loads, jeopardizing the deep oxygenated hypolimnetic layer that cisco depend on. It is MN DNR’s goal to maintain >75% of the watershed of 
these refugium lakes in a forested state.

To prioritize protection efforts and engage in strategic resistance, Jacobson et al. (2013) sorted refugium lakes supporting healthy Cisco pop-
ulations based on threat (i.e., likelihood of land use change, existing levels of protection) and investment efficiency (i.e., total surface area of lake 
per dollar invested). Based on their analysis the forested ecoregion of northcentral Minnesota was identified to contain high return-on-investment 
cisco lakes. An overall estimated US$156 million would be needed to achieve watershed protection goals for all MN DNRs refuge lakes that are not 
yet protected (Jacobson et al. 2013). Although securing adequate funding to achieve these protections initially seemed unlikely, Minnesota passed 
a law in 2008 to allocate one-eighth of 1% of sales tax revenue to conservation efforts, representing $190 million per year, greatly enhancing the 
prospect of achieving success in this work (Jacobson et al. 2013). As of 2018, $11.7 million has been allocated to conservation easements to protect 
priority lakes from change. In Minnesota’s southernmost lakes, agricultural land use likely exacerbates climate warming, while also introducing sig-
nificant nutrient loads into those systems (Jacobson et al. 2013). Managers acknowledge the decline of Cisco (and associated consequences to the 
food web and sportfishing) in many of these lakes and may choose to accept changes, given the higher cost of conservation efforts in these areas. 
In turn, this acceptance acknowledges that warmwater species, such as Largemouth Bass Micropterus salmoides and Smallmouth Bass M. dolomieu, 
are increasing. Bass can better compete for existing food resources in warmer waters and have the potential to support a popular sportfishing 
industry that has historically been focused on other species (https://bit.ly/2CH5ywy).

https://bit.ly/2CH5ywy
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would be difficult, the timeframe for reaching the desired state 
is very long, or the time goal is unrealistically short. Being 
explicit about the temporal trajectory will promote creativity 
(e.g., consideration of a range of options and potential con-
trols) and bet hedging when managers recognize competing 
options for management responses with varying uncertainty. 
Finally, the choice to accept change applies across all time 

scales and is, in fact, the default strategy in the absence of ei-
ther deliberate management for ecosystem transformation or 
active resistance to change. Ecosystem management timelines 
can also combine approaches. For example, resisting change 
can be used to buy time for planning subsequent directed 
change, preparing for inevitable ecosystem transformation, or 
gathering more information to guide decisions.

Box 3.  Facilitating upslope marsh migration on Blackwater NWR.

The 11,300-ha Blackwater National Wildlife Refuge in rural southern Dorchester County, Maryland, is part of the Chesapeake Bay National 
Wildlife Refuge Complex. The refuge is connected to saltwater by the tidal Blackwater and Transquaking rivers that flow into Fishing Bay on the 
eastern shore of Chesapeake Bay. Colonists drained much of the surrounding lands in the 17th and 18th century for agriculture and forestry, both 
of which are still mainstays in this area. Blackwater Refuge was established in 1933 under the Migratory Bird Conservation Act “for use as an invio-
late sanctuary, or for any other management purpose, for migratory birds.” Because adjacent lands have since been added to the refuge, the leg-
islative mandates have also expanded to include broader threatened and endangered species conservation, as well as other wildlife conservation.

Blackwater Refuge has very low and flat topography, with elevations ranging from below mean sea level to 2.5  m above mean sea level. 
Consequently, sea-level rise (3.44 mm/year) is almost twice the global average (1.8 mm/year) and has had catastrophic effects on tidal saltmarsh. 
Between 1938 and 2006, Blackwater Refuge lost 2,030 ha of wetlands to open water at a rate of 30 ha/year (Scott et al. 2009). That loss occurred ini-
tially in three-square bulrush Schoenoplectus americanus tidal marsh at the confluence of Little Blackwater and Blackwater rivers, and subsequently 
progressed both upstream and downstream. Land subsidence, post-glacial rebound, saltwater intrusion, and severely modified hydrology played 
a role in wetland losses, which were exacerbated by excessive herbivory from introduced nutria Myocastor coypus and mute swans Cygnus olor, 
and resident Canada geese Branta canadensis (USFWS 2006). During the same period, Blackwater Refuge gained 1,090 ha of new marsh along the 
upland edge, presumably through upslope migration of tidal marsh as seas rose (Scott et al. 2009; Lerner et al. 2013).

Working closely with partners, including The Conservation Fund and Audubon Maryland–DC, Blackwater Refuge staff responded with different 
approaches based on recent sea-level rise modeling. In Blackwater 2100: A Strategy for Salt Marsh Persistence in an Era of Climate Change (Lerner et al. 
2013), a portfolio of resisting and directing change options were recommended including sediment enhancement, shallow drainage of waterlogged 
areas, invasive species control, and promoting marsh creation through upland slope migration (Lerner et al. 2013). As a resistance response to 
actual and modeled future loss of brackish marsh near Shorter’s Wharf, the partnership recently completed a 16-ha project where dredged mate-
rial was sprayed in a thin-layer over the surface of the marsh, building elevation and enhancing plant vigor and productivity (USFWS 2015b). Also, 
through an intensive trapping program by USDA Wildlife Services, nutria have nearly been eradicated from the Delmarva Peninsula (https://bit.
ly/3eBo1HX). Eliminating this additional stressor has allowed for increases in native vegetation, including three-square bulrush, and thus assisted 
with marsh recovery and expansion.

The refuge has acquired almost 300 ha of adjacent private lands to allow for marsh migration. Outside the refuge, on Farm Creek Marsh, 
which is owned and managed by the Chesapeake Audubon Society, a US$475,000 demonstration project directs change, accelerating tidal marsh 
migration into low-lying farm lands using a low ground-pressure excavator to extend the head of a nearby tidal creek 400 m, which will reduce 
inundation, introduce tidal exchange and reinvigorate marsh vegetation (https://bit.ly/2ZEafAf).

https://bit.ly/3eBo1HX
https://bit.ly/3eBo1HX
https://bit.ly/2ZEafAf
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Although ecosystems encompass social and ecological dy-
namics, these processes often occur at different time scales 
(Cumming et al. 2006; Beever et al. 2019). Rapidly changing 
social dynamics often force longer-term ecological transfor-
mation. For example, by the 1980s, fisheries managers had 

established nonnative Pacific salmon Oncorhynchus spp. in the 
Great Lakes to control Alewife Alosa pseudoharengus, an inva-
sive forage fish. This led to rapid development of a Pacific salm-
on sportfish economy, entrenching social values for nonnative 
fish and transforming the socioecological system (Tanner and 

Box 4.  A land management portfolio in response to multiple climate stressors on the Kenai Peninsula, Alaska.

Encompassing both boreal and coastal rainforest biomes, three icefields, and an elevational range from sea level to> 1,600 m, the 24,300-
km2 Kenai Peninsula juts into the Gulf of Alaska, connected to mainland Alaska by a 16-km wide mountainous isthmus. The peninsula is home to 
the celebrated Kenai River, the Kenai National Wildlife Refuge, Kenai Fjords National Park, and Chugach National Forest. As climate warming has 
accelerated over the past half century, available water has declined 55% (Berg et al. 2009), trees and shrubs have encroached into alpine tundra 
1.0–2.8 m per year (Dial et al. 2007, 2016), wetlands have decreased 6 − 11% per decade in surface area (Klein et al. 2005; Berg et al. 2009), and 
the Harding Icefield has lost 5% in surface area and 21 m in average elevation (Adalgeirsdóttir et al. 1998). The historical regime of forest fires in 
summer now includes grassland fires in spring, prompting Alaska’s official fire season to be declared a month earlier (Morton et al. 2006). Water 
temperatures in some nonglacial streams already exceed physiological thresholds for salmonids during July (Mauger et al. 2017) and fry abun-
dance, size, and overwinter survival in glacial lakes declined as a result of increasing glacial silt, decreasing euphotic zone, and decreasing copepod 
biomass (Edmundson et al. 2003). American marten Martes americana recently colonized the Kenai Lowlands, responding to warmer winter nights, 
despite poor subnivean conditions (Baltensperger et al. 2017), and at least 27 new bird species have been detected since 2012 (ebird.org/home).

Climate envelope modeling portrays a future landscape by 2100 that is very different from what now occurs on the peninsula. Alpine tundra 
may be replaced by encroaching forests, with forecasts for lower elevations ranging from more hardwood species to catastrophic deforestation 
(Magness and Morton 2018), exacerbated by a spruce bark beetle Dendroctonus rufipennis epidemic and sustained by consecutive summers of 
above-average temperatures (Berg et al. 2009). Natural resource agencies and organizations on the Kenai Peninsula have responded inconsistently 
to climate change (Hansen 2014; Magness and Morton 2017). Most of the aforementioned changes have been accepted by natural resource manag-
ers (albeit implicitly), either because they are infeasible to manage (e.g., changes in bird migration, glacial ablation) or they are not impactful enough 
to warrant a management response (e.g., afforestation, American marten establishment).

Some changes have been resisted. In the aftermath of beetle-induced tree mortality, the Kenai Peninsula Borough and Ninilchik Native 
Association reforested> 1,000 ha in plantations with both native (e.g., white spruce Picea glauca) and nonnative species (e.g., Pinus contorta); P. 
contorta was introduced after the Swanson River fire approximately 50 years ago (Morton 2017). In response to the fuel created by grass replac-
ing beetle-killed spruce along the wildland-urban interface, an interagency fire management working group is developing control treatments for 
Calamagrostis canadensis (Wahrenbrock 2009). Warming waters in the Anchor River have triggered the Kachemak Heritage Land Trust, partnered 
with Cook Inletkeeper, to acquire riparian parcels that harbor cold-water refugia for salmon, which were detected from aerial thermal-infrared 
imagery (https://bit.ly/32wzFl0). Finally, four species of invasive plants are targeted for eradication (Elodea spp., Melilotus alba, Viccia cracca) or con-
tainment (Phalaris arundinacea) after rapid introduction onto this Alaskan landscape, even as more than 100 species are already accepted as too 
widely distributed for peninsula-wide management goals (e.g., Taraxacum officinale; Slemmons 2007).

Elsewhere on the Kenai Peninsula, others, including the lay public, are directing change. Sitka black-tailed deer Odocoileus hemionus sitkensis are 
likely to colonize the peninsula in the near future as snow cover decreases at low elevations (Morton and Huettmann 2017). In response to rapidly 
increasing growing days, local communities, rural landowners, and farmers have planted more than 61 exotic tree species for landscaping (e.g., 
Quercus spp., Fraxinus spp., Acer spp., Pinus spp., Larix spp., Metasequoia glyptostrobides, Thuja spp.) and fruit production (e.g., Pyearus ussuriensis, 
Prunus spp., Malus spp.) in an Alaskan ecosystem that supports 14 native tree species (Morton 2017). Extensive deforestation on the southern pen-
insula caused by spruce bark beetles, coupled with wildfire, has prompted the Kenai National Wildlife Refuge to consider introducing foundation 
species (Record et al. 2018) to promote higher biodiversity via niche, structural, and compositional diversification in this developing novel (albeit 
depauperate) grassland ecosystem (Bowser et al. 2017). This approach could be manifested as the use of prescribed fire and the introduction of a 
nonnative grazer such as wood bison Bison bison athabascae to steward the system towards a richer grassland, or the planting of nonnative trees 
that are resistant to spruce bark beetle (e.g., P. contorta) to promote a more resilient forest ecosystem.

www.ebird.org/home
https://bit.ly/32wzFl0
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Lynch 2014). Presently, managers are pressured to maintain this 
precarious balance between Alewife and Pacific salmon, ham-
pering options to restore suppressed native fish communities 
that may be more ecologically resilient to ongoing ecosystem 
changes in the Great Lakes (e.g., changing climate; Dettmers 
et al. 2012). Consequently, the fastest-occurring changes may 
most strongly impact management under ecosystem transfor-
mation, because it is difficult to implement actions in a short 
time period.

Space
The tractability of the management objective (e.g., resourc-

es needed to assess, design, implement, and monitor manage-
ment actions) is driven by the spatial scale and complexity of 
ecosystems under management. Small spatial extents are con-
ducive to single, intensive efforts with limited budgets, staff  
time, or equipment, but can be impacted by spillover from 
neighboring regions that may be managed differently (i.e., 
edge effects; Liu et al. 2018).

Operating at large spatial extents can be daunting when 
considering the costs and logistics of management. An of-
ten-greater diversity of physical, chemical, and biological 
attributes within a large region can mean that small-scale 
pilot projects used to test responses to management actions 
may not adequately represent the variety of conditions and 
broader-scale suite of responses when scaled up. Managing 
ecosystem transformation at larger spatial scales may also be 
more prone to constraints imposed by laws or jurisdictional 
boundaries and require governance changes to accommodate 
management interventions (Beever et al. 2014; Pinsky et al. 
2018). This may also require engaging a greater number of 
stakeholders with potentially disparate ecological and socio-
cultural priorities (Allen and Gunderson 2011).

Management at spatially extensive scales may also have 
benefits for responding to ecosystem transformation. Control 
over a larger area can align the spatial scale of management 
interventions with the scale of ecosystem transformation, re-
ducing the challenges of disparate management regimes with-
in the same transforming system. Large spatial extents may 
also allow for combining approaches through time, such as 
using resistive actions to maintain species refugia and ecosys-
tem-services reserves, while planning for future transformative 
change. Further, although leading- and trailing-edge popula-
tions are both important for species persistence under climate 
change (Rehm et al. 2015), managers often have to prioritize 
one edge population over the other or over the center of the 
distribution. Working at greater spatial extents can reduce the 
probability of only working with a limited portion of the geo-
graphical distribution (Beever et al. 2014).

Magnitude
In addition to the variability in spatio-temporal scales, 

there are varying degrees of magnitude of ecological transfor-
mations. Ecosystems can be conceptualized in terms of nested 
levels of biological organization along three axes: ecological 
structure, composition, and function (Noss 1990). Along each 
axis, the levels of ecosystem actors include genes, populations 
and species, communities and ecosystems, and sea-, river-, 
or landscapes. Some ecosystem transformations may involve 
changes in only a single keystone or foundational species, cas-
cading to broader changes in ecological function and structure 
(Pureswaran et al. 2015; Colloff  et al. 2016).

When multiple species within a guild or numerous func-
tional groups in a community are involved, ecosystem trans-
formation is greater in magnitude. As with single-species 
transitions, changes to guilds or functional groups that in-
clude dominant plant species or form the base of the food 
web (e.g., copepods; Friedland et al. 2013) can initiate cas-
cades that affect other ecological functions and species (e.g., 
Martínez-Vilalta and Lloret 2016). In the most comprehensive 
transitions (e.g., from forest to savanna; Silva 2014), many of 
the species typical of the former community or ecosystem are 
no longer present in the new system. Such whole-community 
transformations can be rapid, occurring when: (a) contempo-
rary climate change shifts a landscape into a new biome (Lugo 
et al. 1999; Williams and Jackson 2007; Nolan et al. 2018), (b) 
invasive species, biogeochemical alterations, or severe distur-
bances (natural or anthropogenic) transform the ecosystem to 
a novel state (Scheffer et al. 1993; Hobbs et al. 2009, 2014), or 
(c) when successional trajectories following disturbances are 
redirected by environmental changes to new, self-sustaining 
states (Johnstone et al. 2016; Guiterman et al. 2018; Davis et 
al. 2019).

UNCERTAINTY ASSOCIATED WITH  
ECOSYSTEM TRANSFORMATION

Management amidst ecosystem transformation occurs 
within a matrix of high uncertainty, encompassing gaps in 
fundamental understanding of ecosystems and uncertain out-
comes of alternative management actions. System uncertainty 
derives in part from the high variability and complex dynam-
ics typically found in ecosystems, particularly when driven by 
multiple and probably interacting anthropogenic or climatic 
stressors that vary spatially and temporally (e.g., Anderson 
et al. 2008; Jackson et al. 2009; Dobrowski et al. 2013). 
Ecosystems are complex, and they often have multiple possi-
ble trajectories and endpoints (Chapin et al. 2010). Coupled 
with the difficulty and expense in observing these complex 
systems, our collective ability to characterize and predict eco-
system dynamics is often poor, leading to considerable model 
uncertainty and statistical imprecision (e.g., Hilborn 1987). 
For example, validating models of future ecosystem dynamics 
with empirical data is complicated by the lack of locally cur-
rent analogs (Williams et al. 2007). However, others have used 
heuristic approaches to address uncertainty (e.g., Magness 
and Morton 2018). Given available knowledge, outcomes of 
management actions are also often uncertain, such that they 
may be difficult to observe or can play out in unexpected ways 
(Hiers et al. 2016). Finally, unexpected and sudden system 
transformations can and do occur, potentially rendering ex-
isting system knowledge and management experience insuffi-
cient under novel system structure and function (Beever et al. 
2013; Fernández-Llamazares et al. 2015).

GUIDANCE FOR IMPLEMENTING RESIST, ACCEPT,  
AND DIRECT STRATEGIES

Natural resource management typically focuses on achiev-
ing a “fixed” goal and an associated set of objectives, implic-
itly assuming stationary variation around a mean ecosystem 
state (Jackson 2012). Effective management will need to amal-
gamate processes for structured, objective decision making 
with processes for adaptive learning as ecosystems change and 
knowledge improves (Holling 1978; Walters 1986; Nichols et 
al. 2011). This will require engagement of key stakeholders 
who strive to reach agreement on measurable and achievable 
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objectives and relevant management actions across jurisdic-
tional boundaries and through time. The use of support tools 
(e.g., scenario planning; Runyon et al. 2020) will be useful for 
promoting stakeholder dialog and clarifying management 
priorities. Because management resources are always limited, 
long-term datasets designed to detect system shifts and in-
creases in variability, as well as data flows supporting mech-
anistic understanding of system dynamics (i.e., how and why 
systems are changing), may be high priority for provisioning 
managers with the information they need to both address 
transformations and select adaptation actions. However, in-
formation may perpetually lag changes in the system under 
ecosystem transformation. Consequently, course corrections 
or experimental approaches in management may be needed, 
particularly in light of rapid environmental or system changes 
already underway. Finally, responses to ecosystem transfor-
mation may differ greatly in their feasibility. Potential decision 
pathways related to implementation are explored by Lynch et 
al. (submitted).

A PATH FORWARD
Key knowledge needs to support effective management of 

ecosystem transformation include:
•	 Stakeholder engagement. Ecosystem transformation in-

creases the difficulty of defining and updating management 
goals. Improved techniques to coordinate among stake-
holders and structure efficient decision making will be criti-
cal for both enabling deliberate management under ecosys-
tem transformation and avoiding paralysis.

•	 Assessing the ecosystem. Identifying indicators and setting 
management targets and thresholds will be important for 
assessment of ecosystem changes (Beever 2006; Levin et al. 
2009; Samhouri et al. 2010).

•	 Monitoring. Monitoring will continue to be essential for 
tracking ecosystem trajectories and detecting when sys-
tems reach a new state, pass a known social or ecological 
threshold, or otherwise require a management course cor-
rection. However, monitoring is costly and resources may 
be stretched thin. Development of cost- and time-efficient 
monitoring technologies is urgently needed. For example, 
next-generation sequencing allows rapid and inexpensive 
assessment of changes in species assemblages (Bowser et al. 
2017; Sikes et al. 2017). Though there are no “silver bullet” 
indicators that provide information on all the complexity 
of ecological systems (Landres 1992), monitoring of mul-
tiple keystone, umbrella, and foundation species can col-
lectively indicate important changes in ecosystem function. 
Additionally, the timely collection of high-resolution and 
multispectral remote-sensing data may be necessary for 
monitoring large-scale changes (e.g., Elmendorf et al. 2012; 
Pettorelli et al. 2016).

•	 Mechanistic understanding of system drivers. Although em-
pirical data can be used in many cases for making manage-
ment decisions, increasing mechanistic understanding of 
system drivers (e.g., through experimentation) can be use-
ful to project change and to design management (e.g., cli-
mate-adaptation) actions to resist or direct transformation, 
or to inform the implications of accepting it.

•	 Flexibility or responsive management. In many ecosystems, 
poor forecasting performance, increasing system uncertain-
ty, and lack of options to control change over the near- or 
mid-term will prevail. Thus, development of flexible and 
responsive management strategies to cope with high uncer-

tainty will be important for buffering against inevitable or 
unexpected ecosystem transformation.

•	 Directing change. Resisting change is likely not a long-term 
solution in many ecosystems and accepting eventual trans-
formation may not always be desirable. Continued experi-
ence with directed change will be critical for enabling this 
“active” management approach and may require the cour-
age to implement management experiments, potentially at 
stepped levels to allow for course corrections.
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