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PREFACE

Wave motion in estuaries and harbors has been a problem of practical

importance for many years. Commercial ship operators and private boat

owners, designers of marinas, as wel 1 as certain governmental agencies

have been concerned with the response of harbors and estuaries to various

types of wave forms.

In response to this interest, ocean engineers have traditionally used

small-scale hydraulic models for predicting wave motion in harbors and

other near-shore environments. Nore recently, however, high speed digital

computer models have been developed for the same purpose. In fact, during

the past few years, several Sea Grant institutions, including the Univer-

sity of Washington, have addressed the problem of developing computer

programs for the prediction of estuarine and harbor wave motion. As work

in this area progressed, it became apparent that an adequate treatment of

wave motion in semi-enclosed bodies of water required not only the appli-

cation of sophisticated mathematical techniques, but also a reconsidera-

tion of certain fundamental aspects of the problem formulation.

This report describes one such aspect: namely the proper matching

of far-field  open sea! solutions and near-shore environment solutions.

Admittedly, the discussion presented here is more technical than in most

Sea Grant reports. However, the subject matter is relevant to a problem

which concerns a number of Sea Grant researchers and, for that reason, we

felt that it would be appropriate to present this material to the scien-

tific community in the form of a Sea Grant report.



FAR-FIELD MATCHING FOR TIDAL CALCULATIONS IN NEAR-SHORE REGIONS

INTRODUCTION AND ABSTRACT

Previous work fl] dealing wi th tidal current calculations in bays and
estuaries has shown that the solution is sensitive to the tidal boundary con-
ditionon imposed at the mouth of the bay. This sensi tivi ty ari ses from the
fact tha t the instantaneous ti da'. height is affected by tidal wave reflection

from the local shoreline configuration, so that from the mathematical point
of view the boundary condition includes part of the problem solution. In

principle, the difficulty can be resolved by replacing the boundary condition
at the mouth of the bay by a matching requirement between far-field and near-

shore solutions; for tidal problems, such a procedure is complicated by the
importance of the Coriolis term as well as by bathymetric and topographic
complexities.

In this report, we describe a number of matching methods which can be

used. These methods are based on integral equations, finite elements, vari-

ational methods, transform methods, series solutions, or on a combination of

such methods. Since non- tidal harbor response problems are also of interest,
we include some discussion of methods which are limited in their abi'lity to
incorporate Coriolis effects. It appears that most of the approaches to be
discussed are computationally feasible; implementation for a particular

estuary region will be reported on separately. Here we restrict ourselves to

derivations and to such numerical experimentation as will help elucidate

specific properties of certain methods.

Except where stated, we will use shallow water theory, and a time factor

e " throughout. We anticipate that non-linear effects will be important in
the near- shore region, and will be handled by an i terati ve technique of the
kind discussed in [lj. The far-field region will be assumed sufficiently
deep that a linear calculation is adequate. The effect of the earth's curva-

ture is neglected, but could be included at the cost of some complexity in
formulation.





from which

U=  &uZ + fZ !
X

�!V =   i~Z � fZ !
2 f2

[d Z +~Z !] + [3 Z - +Z!j + k'Z= 0
4! x p 0

where a = h/h, k =  u! � f !/ gh !. If V is to vanish at y = 0, we
0 0 0

require

�!iuZ + fZ =0 at y=0

An incident plane wave of unit amplitude can be written as  cf. Fig. �!!

-ik  ~ sin8 + p cos6 !
0 0 0

8

and it is now desired to obtain a solution of the third of Eqs. �! subject

to conditions �! and �!.

Since i = d ~!, separation af variables is feasible. Ne write

-  k sine !
Z=e g y!

 cf. Snell's law for ray propagation! and substitute into Eqs. �! and�! to

obtain

fk
 dg '! ' + [k'� - d sin'e ! � d' sin6 ]g = 0

0 0 0

with
fk

g'-   sine!/=0 at p=0
0

 8!

where a prime means d/dy.  If d�! = 0, Eq.  8! must be replaced by a
finiteness condition at p = 0.! For certain choices of d p!, Eq. �! can

be solved analytically  e.g., in terms of hypergeometric functions if d is

linear!; however, we will let d p! be arbitrary and content ourselves with

a numerical solution. Take g�! = 2; then the resulting numerical solution



can be obtained via standard methods, and since d ~ 1 for sufficiently

l«9e g it will be asymptotic to a linear combination of

�  ik co&9 !p  ik cosH !y
0 0 0

e e  9!

as y ~ . f/oreover  wi th g�! = 2!, g wil 1 be real, so that the

coefficients of this linear combination must be complex conjugates of one

another. Thus we merely need divide our g�! = 2 solution by the

coefficient of' the first term in  9! to give the solution corresponding to

Eq. �!; the second term, then, represents an exiting wave of unit amplitude

and so of energy equal to that of Z ~

An alternative numerical approach--more cumbersome, but also more

picturesque--would be to approximate the depth profile by a sequence of

constant depth steps, as in Fig. �!.

I
I

pI
sur face

tual profile

Figure �!

ik.  z sin . � p cos6.! ik. -z sin&. + p cos8.!
Z zy! =A. e j j j +B. e j j
j ' j j

where A. and B. are complex constants, and where k. sin6'. = k sin&
j j j j 0 0

 Snell's law!.

Continuity of Z and  hV! at the transition point y . requires

Let the depth be h . for y . < g < p . . Define k'. =  u> � f'!/ gh .!, and
j+ 2

repreSent Z in thiS g-interVal by



and

BZ BZ- BZ BZ

k,[i~ � ~+f~J=h. [6u~+f ~] for y=y.
Bp Bx J-2 Bp Bx

These equations, together with conditions �! and �!, are adequate to de-

termine all A. and 8. values. As a check, it must turn out that ~A.~
~7

3. REMARKS ON KELVIN WAVES

If d = 2 for all p > 0 in the problem of Sec. �!, we find

-ik cos& p ~ cos8 � i f sin& ik cos8 p
0 0 0 0 0 0

v cos8 + i f sl nH
0 0

�0!

which is a combi nation of an i ncident and a reflected  wi th phase change!

plane wave. No Kelvin wave is generated. If the coastline has a oend in

it, or is irregular, then in general a Kelvin wave will be produced  see

for example [3] and {4]!. It does not seem to have been pointed out in the

literature that if the disturbance source is at a finite rather than an

intinite distance, then a Kelvin wave can be generated by reflection at

even a plane boundary.

Consider the half plane p > 0, with h constant, and let there be a

source

Figure �!



at .~ as shown in Fig. �!. Using the notation of Sec. �!, the governing
equation is now

Z + Z + k'Z =- 8 A z! 5 y � y !
zz yy ' 0

where ! is the delta function, k' ==  ~- � ! '!/ gh!, and 8 is the source
strength factor. Mere there no barrier at y = 0, the solution to Eq.  ii !
would be given by

Z=- 8 kv z + y-y! i! �!
4 o o  l2!

where the Hankel function of the first kind, 8 , is required in order i!

that waves be outgoing at ~  the time factor is again e !. Because
of the barrier, the actual solution differs from this, and must satisfy

condition �! at y = 0.

Denote the Fourier transform of Z by Z, defined by

Z !,y! = Z x,y! e dz
v 2-.

Then a transform in z of Eq.  il! yieIds

Z �  A � k !Z =- h y � y !
Py v Zv

It foi wows that

Z=A e fol y
0

S = fS cosh ~l' � k' k+C':i oh 6' - k k for y < y �6!
o

where the branch cut and inversion contour iti the !-plane are as shown in

Fig.  e!.

 One way to see that the designated inversion path is appropriate is

to note that if dissipation terms are incorporated in Eqs. �!--say  -~u!

and  -=u! on the right hand sides of the first two equations, respectively,



ion
ath

Figure �!

i o Zp � iy fz = 0 for g =0

whence

C � � ~ B
 t! ~A

At ~ = !y , the va'lues of z on the two sides of  ! , as given by Eqs.' 0 0

�5! and �6!, must coincide; moreover, Eq. �4! requires the discontin-

uity in z across y to equal a/MP~. Thus we are able to determine
0

all of A, B, c', and it is easily found in particular that, for y   p
0

where I= ! 0 is small--then k will have a small positive imaginary part,

so that the inversion path will pass above the replacement for  -k! and

be Iow that for  +k!; in the limit, as the dissipation vanishes, the indenta-

tions become as shown. A second method is to observe that, as shown in the

sequel, this choice--and no other choice--satisfies the radiation condition

preuio ~ sly alluded to!. in Eqs. �6! and �6!, we interpret ~s- k

as positive real for x real with A ! k; the choice of branch cuts removes

any ambiguity elsewhere.

A transform of Eq. �! leads to



� !!,' � k' p y -! P! -' - !.' y+y !I
R

e + e
z/zw 8. - k'

�8!
- k  y +q !

� k'+ fX

As a check on the calculation, we note that if f = 0, then' ' the�!

inverse of Eq. �8! yields

z p   ! k P< 2 +  y p ! 2 + p   ! k/z 2 +  y + p ! 2   1 9 !

which represents the effect of a source plus its image.

Even i f f / 0, the first part of Eq. �8! leads again to Eq. �9!  wi th,
of course, k' =  ~' � f'! j gh!!, so that, in part, we have a source wave plus
a specularly reflected wave. Inversion of the second part of Eq. �8! does

not lead to a simple function; however, we are primarily interested in the

� k d! = zi!  kv'u + ~ !8  s!

0

~here the branch cuts and inversion path are as in Figure �!.
This identity can, of course, be deduced from the fact that the
field must be that given by a source plus its image, using Eq.
�2!; alternatively, it is easy to show that oI�- zoo = 0,
so that Z is a function of I'x' + c ~!; then set one of e or
z equal to zero, etc.



asymptotic behavior  large -! in any event, and this we can obtain

directly. In the X-plane, there is a pole at A = -k/v'1 � f'/~', and

the inversion path passes above this pole. If x < 0, we deform the

path of integration so as to wrap around the cut through h. = k; if

x > 0, we wrap it around the cut through X = -k, picking up in this

latter process the contribution from the po1e. The branch cut integrals

are easily evaluated asymptotically, and the final result is  for f g 0!

 a! for « 0 :

-iM + i~/4
Z~R �0!

 b! for ~ > 0 :

z- - y+y ! ikx + ix/4
c oc Be

Z~ ,e
ru -f �1!

where c. = /ah. The first term in Eq. �1! represents a non-decaying

Kelvin wave traveling to the right, The other terms in Eqs. �0! and

�1 ! decay as z become s 1 arge, as expected.

4. MATCHING

i.e., z = z, = e + "g,  y!, where we take g,  g! as known, with
k' =  ~" � f'!/e'. The possibility of such a choice is based on the

0 0

expectation that the effect of the estuary wil1 diminish with distance

from it  more or less in proportion to inverse square root of distance,

in fact, if the estuary effect can be modelled by a superposition of

We consider now a matching technique applicable to the  fairly

general! si tuation depi cted in Figure �!.

For p > p , let h = h = constant. In the regions defined by
0

< p�z > z,! and  y < y�x < ~!, let h = h p!. In the remaining

region B, which includes the estuary and its entrance region, we will

have h z,p!; there may also be islands.

We choose y,, ~~, ~, and ~z,   sufficiently large that along the lines
~1 ~2 ~g ~4 the value of z wi 11 be that obtained in Sec. �!,



xsinH + bcosQ !
0 0

C�

&=Pl

' r  Ii<'

Figure �!

secondary sources!. Of course, the calculation of Q, is carried out for
a geometry in which there is no estuary, and in which the h p! function
is considered to be valid for all x.

+y +k'y=0
xx yg o �2!

Denote the  as yet unknown! value of g on py by p ~!; for z   x, or
for x ! x�we have p ~! = 0, as a consequence of the above assumptions.

A Fourier transform in z of Eq. �2! leads to

10

Along the line C~, Z can differ significantly from Z,, In the region
S defined by  y ! yy! write Z = Z, + g, Then p satisfies the equation
 in S!



 ~! -v'!' � k'  p � p !
4'  !,! = � e

0

�3!

where 0 and 2' are the transforms of g and p respectively, and where

we contemplate the inversion path of Sec. �!. Using the footnoted inver-

sion integral of Sec. �!, and the convo1ution theorem, Eq. �3! implies
that

0 z,p! = � � p F.!8 '  k / y � p>!' +  z � ~!'!lr,
+l

�4!

5, MATCHING IN A NARROW CHANNEL

It sometimes occurs  as in Hood Canal, Washington State! that one is

interested in analyzing the tidal motion in a region in which the entrance

where we use the fact that p x! vanishes outside of  z�x2!.
The co~posite values of Z and Z on C, are given by Z = 7, + p,

and Z =  Z,! + p, respectively; note that if p is known on C�so is
J2

p, via Eq, �4!. These values of 2 and Z on C, must correspond to
those obtained from whatever solution process  e.g., finite elements! is

used in R. To achieve this correspondence, several methods are possible.

The simplest might be iterative--guess Z on C,  close to an actual

tidal measurement, for the frequency of interest, for example! and deter-

mine the associated values of Z inside R; compute Z on C, for this
"inside" solution and so calculate p on C from p = Z �  Z !; de-5 1

termine > from Eq. �4! and so a revised value of 2 on G',; iterate to
convergence.  It may be feasible to neglect non-linearities inside R

during most or all of this iteration.! Alternatively, since Eq. �4! is

linear, the g values over a set of mesh points on C, are linear combi-

nations of the p values, so that correspondence between inside and out-

side solutions can be obtained by adding an extra set of linear equations

to those being used to solve for 2 in 8 by the method of ref. [1], say.

We note, incidentally, that Coriolis effects are fully included in the

procedure of this section.



to the portion of interest is along a relatively long and narrow channel

 Figure �!.

entrance
region of
interest i

///

r
~ I

/////r/

Figure �!

Here the geometry is quite different from that of Sec. �!, and it

may be unduly laborious to include the seaward portion of the channel+

One approach to this kind of situation would be to say that the "directed"

entrance implies a 1ow velocity transverse to th h 1o e c anne axis, which pre-

disposes towards a Kelvin wave incidence. Analytical solutions are avail-

able for Kelvin wave reflection from the ends of channels of constant width

and depth, but with variab1e end geometries [5]. An important result is

that the net phase gradient across the entrance is not sensitive to the

detai1s of the ref le ict'on geometry, but depends only on the gross features

of the basin; it follows that it is possible to estimate rather simply the

appropriate phase gradient at the entrance and so provide the desired

matching. For details, refer to [5].

6. CYLINDER SCATTERING VIA AN INTEGRAL E UATION

There are situations in which an integral equation may be used to

solve all or part of a tidal problem, and it is useful to obtain some

experience concerning numerical methods and accuracies for such problems.

In doing this, it is desirable to choose prototype problems of simple

form, and, preferably, ones for which analytical solutions are available,

19



As a first problem of this kind, consider the scattering of a plane

wave by a circular island; the water depth is given the constant value

h . Referring to Figure �!, using polar coordinates as shown,
0

Figure �!

and with k' =  tu � f !/~<-h  we use the notation of Sec. �!!, we write
0

Z = Z + $ r,H! where

+-4 + � 4 +k0=0
2 2 2

rr r r r2 86

The boundary condition is that

=  -~k cosa + if' sine! e
-ikr co s

�6!

for ~ = H. The exact so'Iution is expressible in series form as

�7!

0' kR! ! -~kRJ' kH! + inf 8'  kR!0 H  ~ !  ~!   6 Pz E 729
H ' kH!

 i!, o ivkR H ' 'kR! � iaaf 8  kR!
0

n=
n

Insertion of the boundary conditions permits the coefficients A. and B.

to be determined; the process is straightforward, and the final result for

the scattered wave is



-~kR J' kR! - in/' J  kR!
n n

iekR 8 ' kR! + inf 8  k~! ~!,

Here the derivatives of the various Hessel functions can be simplified by
use of the usual recursion formulas, if desired.

To solve this same problem by an integral equation, we can proceed as
follows. In Fig.  8!, let there be a source at g, and consider an obser-
vation point at P  there is no difficulty in permitting the island to
be non-circular, and we do so; for the present, however, we do not permit
"corners"!.

Figure  8!

Consider now the problem of finding a function tI satisfying

+ $ + k g = A d x � z !d y � p !
ZZ Pgl

with

�0!+fg =0 on C
n S

where the subscripts n and s refer to partial derivatives in the
normal and tangential directions, as indicated in Fig.  8!. Define a
Green's function G by

14



where r' =  x- x!'+  y - y !'. Then
G p P

G + G + k G = 6 x � x � y � y !
xz yy p P

�2!

�3!g P! = A G Q! + !' Gg � QG !da
7t tZ

where g P! = g x,y ! and G Q! = G x y;x,y !. Using Eq. �0! gives
P P

> P! = A G q! � !' ~ y G + yG !d~ �4!

Observe that the quantity AG Q! is equal to AG x,y;x,y !O' O' P' P
= AG z,y;z y ! and so is the value of the field g if the island isp' p' O' Q
removed. It follows that if the field g is produced by a number of

sources, or by a source at  i.e., a plane wave!, then a more general

version of Eq. �4! is

Q P! = $  P! � ! ~ 4 G + 4G !ds
o � S

�5!

where y is the value of g with no island.
0

Equation �6! will yield g P! if g is known on G. The value of

on c must be obtained from the solution of an integral equation, which

in turn is obtained by allowing P to approach c  Fig.  9!!. Let p

denote the local radius of curvature, and consider a point p near G
0

as shown. Then

G P,P ! = � � J  kr! + i �  y + an � ! J  kr! + �   � ! + ... �6!2 kx' 2kz 2

o 4 o 1T 2 o Tr 2

cos&i
where r = J~', + r' ,� 2r,r, cos9�and 3I' ~

that the only contribution from BG/Bn, near 8, = 0, in Eq. �4!, wil'I

It fol iows

If we multiply Eq. �9! by G, Eq. �2! by g, subtract, and integrate over

the region exterior to the island, then use of the divergence theorem and

the radiation condition leads readily to the result



tance to
ter of'

va ture

Figure  9!

arise in the form

p � x'! cos 6

p + ~! � pr! co

If e, g 0, the first factor in the integrand 2
an ~ -> � as ~, ~ p; however,

at g = 0, this first factor ~ ~ as xas x, ~ p; we thus expect a h-function
behavior. Near 6, = 0, write cosQ = 2s , = � < ,, and set r, = p� + c!.
The first factor is then approximated by

2 2
6  !

Consequent1 the oy, c ntribution from a ds interval centered on 2', where
P is now a point on c, becomes

4 >! [y - ~jii'p

Thus the desired intetegral equation, in mesh-point form  c.f., Fig,  l0!!

 �,  i as,  ii ' m'"i ' '"' " '"~!
yiip m om [  i! mj s j 4TT1 Pl tTI j r Vl J

�9!



8-2 8 8+2

Figure  l0!

where n, and n2 are the x- and g-components of the outward unit normal
vector, and where the remainder of the notation is clear from the context.

Several numerical experiments were carried out for the case of plane-
wave scattering by a circular cylinder, with f = 0. As a typical result,
let 0< = Ziip/! = 2  where X is wave 1ength!; this might be considered
intermediate wave length scattering. With 25 mesh points around the boundary,
the values of g on the boundary obtained by solving Eq. �9! agreed to
within better than four significant figures with those obtained from Eq. �8!;
using these boundary values of $, the values of g outside C  out to
about 30 island radii! also agreed with the exact results to about four
significant figures. If the term 3a/ disap ! is omitted from Eq. �9!,

n
agreement to only two significant figures is obtained.

In general, adequate accuracy was obtained if the mesh point spacing is
small compared to both the incident wave-length and the length scale of the
is'land.

A perspective plot of wave configuration, at various values of time, was
obtained by use of the Los Alamos PICTURE program and the CALCOMP plotter;
Figs.  lla! through  ilk! give the results  the time difference corresponded
to ~t. intervals of ~ii/20!. Figure �2! depicts a magnified plot of the
wave pattern, near the island, for ~t = 4.

7. WEDGE SCATTERING VIA AN INTEGRAL E UATION

In some cases, it may be useful to consider an exterior region of wedge-
shape rather than of half-p1ane shape; consequently it is of interest to
consider both exact and integral equation so1utions for such regions.

In terms of polar coordinates  r,g!, let the region exterior to a
wedge be defined by Q < e < ad � H, as shown in Fig. �3!. The total

17



Figure  lie!

Figure �1b!

Figure �1-!



Figure  lid!

I'igure  lie!

Figure  llf!

Figure  J fg!



Fipure  llh!

Figure  lli!

Figure �1]!

Figure  ilk!
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Figure  l2!



. ' source

0

Figure �3!

exterior angle is o, = ~rr - 2Q. Let there be a source of strength P at
 r,e !, and let Z r,H! satisfy the reduced wave equationo o

Z + � Z + � qZ +k Z= � 6 r' � r �� � 6 !2 2 P
rr' r r v~ 68 1' o o

0
�'!

with

�1!Z =0 for 6'=0,2iT � Q

Z= �,6  r! +! 8 r! cos
2 o n 0 �2!

and it fol 1 ows tha t

2 P nirg" + � 0 - �,', l3 +k'g = � 6 r -r ! ~ � cos � � -0!
n x' n Qr n n 2" o 0, Q o

0

whence, for
o

8 =-~P � cos � � -0! 8  k ! 0  &!
n 9, m o niT/u o nii/a �3!

In combination with Eq. �2!, Eq. �3! provides the field due to wedge
scattering for a concentrated source at a fin~ te distance. If r is

0

permitted to approach ~, with P set equal to a~lnkv /5 e
the resul t will yield the solution for scattering due to a plane wave Z

99

 To permit a simple series solution, Coriolis effects are not included in
this example. ! Write



where

-iver cos e � e !
Z~= 8 �4!

A straightforward calculation gives MacDonald's solution �902!:

ITlTT
CO -t

27T ! c e cos �  e � 6! cos � '  e � G! J  kr!m~ NTT

Q /7l Q 0 Q mlr/Q
0

�S!

where c = 2, c . = 2 for j g 0. A number of special solutions for
o,7

simiIar problems, with different boundary conditions, are given in Ch. 6
of [6j.

For small

lr2

+
4 zk Tr/Q ~Q 7r

r  ~/Q!  ~! e co s �  e � Q! co s �  e � 0! �6 !
Q 0 Q

and, in particular,

Z� 8! =� 2'
P �7!

Z = <. e I.cat -2 �  Tr - t - e + e ! +COt ~  Tr - t - e - e + G!!dt4iQ 2Q 0 ~Q oG'T+I."2

�B!
where c, and c'2 are shown in Fig.  l4!, and

�+!
TT TT

i- - � +e +e- n! i �  - � + e � e!
Q 2 0 Q 2 0

2 + +
7

25Q lr ~ lr 7r
i �  - � + e +6- 0!

Q Q 2 0
t -e

7r ~ lr 7r
i �  - � + e � e!

Q Q 2 0
t -e

7r 7r
i �  - � � e + e!

Q 2 o
8

+

i �  - � � e � e + 2Q!
7r 7r

Q 2 0
e

7I' ~ 'Ir 'IT
i �  - � � 8 + e!

.,Q Q 2 0t -e
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In Eq. �5!, the Bessel functions may be expressed in terms of contour
integral s invol ving exponential functions. If the orders of integration
and summation are interchanged, we obtain two useful formulas--one in terms

of the familiar Sommerfeld contours, and one based on Schafli's integral;



where the contour is shown in Fig. �5!.

plane

Figure �4!

Contours c', and c, for Eq. �8!

Figure �5!

Contour for Eq. �9!
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The same result can be obtained by manipulation of the Sommerfeld contours

of Fig. �4 ! into those of Fig. �6!. The inner contour is traversed twice

in opposite directions; the geometric optics field is obtained from the

residues arising from poles between t = 0 and t =

Figure �6!

The integrand in Eq. �9' has poles which 11e on the unit c1rcie shown

in Fig. �5!; mOreOver there are Saddle pointS at t = +T'., If the COntOur

is deformed so as to pass through these saddle po1nts, the residues at the

poles provide reflected waves, and the saddle point contributions  only the
one at t = i is of importance, since the factor in square brackets

vanishes at t = -T,! provide diffracted waves. Calculation shows that the

diffrac ted field is of the form of a cylindrical wave emanating from the
corner; for



For directions along the boundary of geometrical optics regions, poles

-and saddle points may be close to one another or may even coalesce. It is

then necessary to revise the standard saddle point calculation appropriately

I 7]; the detaiIs are rather technical, and we will here give only one par-

ticular result. Let 0 = iT/4, 8 = m/2, and take 6' = m, which corresponds

to the boundary of the geometric reflection region from the upper face.

Then a rather tedious calculation leads to

2 2 zt'k +4! 2 .1
Z <� e + � e + 2

v'2nkz
2

 Sl!

where it is of' interest to note that the last term represents a standing

wave.

Turning now to an integral equation formulation, that of Sec. �! is

seen to be directly applicable, since no restriction is there placed on

the physical boundary. A value of n = � ~  i.e., 0 = � m! was chosen5 ~ 7
6 ' ' 22

for computer experimentation, with 6' = � 2 ~  so that the incoming plane22

wave is perpend~ cular to one face of the wedge! . The geometry i s shown

in Fig. �7!.

ili t I II II/ I/Illy>/jul/

I
22

Figure  I7!

To solve the integral equation numerically, a number of equally spaced

mesh points were inserted along the boundary, half on either side of the

apex.  Outside of these mesh points, the value of Z was taken as that

which would have existed in the absence of the other face of the wedge.!



A number of linear algebraic equations resul ted, which were solved by

elimination, and the results were compared with the exact solution  for

large , an asymptotic representation, as previously explained, was used!,

for values of 9 corresponding to the two faces. To obtain good agreement,

it, was necessary to use a large number of mesh points  note, by the way,

that the problem is essential]y independent of wave length!, and this raised

awkward problems of large-matrix storage. Consequently, elimination as a

solution method was replaced by iteration {no matrix storage is then neces-

sary!, and adequate accuracy was obtained with 200 mesh points on each side,

10 per wave length interval. For 6 = 8, typical results are:

tion

Consider finally the possibility of matching, for a wedge-shaped outer

region, using a method analogous to that of Sec. �!. For analogous gener-

ality, we would want the depth to depend on 6, and Coriolis effects should

be included. Unfortunately, the resulting problem is difficult to solve in

terms of reasonably simple analytical expressions  for reference, Lqs. �!

are replaced by

U = ~  iz Z k ~ -Z
� f x' r' 8

�2!

10
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The governing equation is obtained by incorporating a source term in Eq. {3!:

iC iC
[L z + ~ z !] + [a z � ~ z !] + k' z = Bb z � z � y � p ! {54!

Z b! 7~ C3 Q

+ I" + k. C = d z � z !h y � y !
ZX gg 0 2> P

�5!

where  ~,y ! are the coordinates of the observation point P.
l-' P

multiply Eq. �4! by ." and integrate over the region 8 contained

between C and . , using the divergence theorem and Eq. �5! to obtain

~a c, � z,! + ~  .Z d n' � d n'! c&
az ac

8n' 3n' u! z

 '+ .'

+ k z I7 � 4! + + z I; d � G c' ! + z  ; d + 6' d ! dA
0  d Z g P Z P l/

{56!+ d p! z p! = B G Q!

where d0 is the element of arc length and Jet the element of area. Here

are the components of the unit outward normal vector from R, and

3/d ~' is the derivative in that outward normal direction. The radiation

condition and the fact that a ~ 7 together imply that the integral on

va ni s hes.

It is usually more convenient to choose the positive normal derivative

a/dn. as outward from the solid boundary. I f thi s is done, i f the tangential

derivative direction 3/he is taken as shown in Fig. {18!, and if the no-

flow condition Bz/'dn = - if/u!BZ/aa is used, Eq. �6! becomes

where  x,gi ! are the coordinates of the source point, and B is a  complex!
Yy

strength factor. As before, k' is based on the reference depth h, viz;
0 0

k' =  ~' � f'!/ gh !, and d = h/h . At, we take d = 7. We also need
0 0 0

a Green's function, and as in Eqs. �l! and 32! we require



d P! Z P! + k ZG� � d! +~Z Gd � Gd! + Z Gd +Gd! ci'A
0 4J Z U Z

= RG Q! � d ~ G > + Z � + ~ GZ � ds �7!

We have also rep1aced the region 8 of integration by that sub-region of
e in which d g 2  remember that d ~ 2 at !, since only in R ' is
the area integral non-zero. If Z were known on G and in A'', Eq. �7!
would permit its determination everywhere; to find z on c and in

we have to solve an integral equation, using as unknowns the values of z

on mesh points in P' and on C  on C, we need of course the limiting

form of Eq. �7!, obtained as in Sec. �!!. As a specia1 case, note that

d cou1d be zero along part or all of C', if zero along all of G, no

limiting form of Eq. �7! as P ~ G need be considered.

A special case of what is essentially Eq. �7! has been solved by

Lautenbacher [8], who takes f' = 0, sets d = 0 on C, and considers

plane wave scattering by circular or e1liptical islands. The derivation

in j8j is somewhat different, in that Z is treated as the difference

between the plane wave input function and the actual solution; the effect

is to replace the right-hand side of Eq. �4! by the result of applying
the differential operator to the plane wave. We note however that it

would appear simpler to use the above formulation and permit Q ~ , wi th

increasing so as to yield the derived plane wave input  measured in
regions where d ~ 2 !.

The integral equation based on Eq. �7! could presumably be applied

directly to the case of present interest, in which C is a coast-line of

indefinite extent, indented by an estuary  if there is river flow across

a portion of c, an appropriate minor change must be made in Eq. �7!!.

Based on previous remarks, it appears that iteration rather than elimination

would be the solution method of choice in this integral equation. If a

portion of the region is shallow, non-linear terms could be important, and

this might require a moda1 analysis, with iteration, of the kind used in

the finite element approach of ref. Ll].



Although this direct integral equation approach appears quite feasible,

it is not, clear that there would be advantages of either speed or accuracy

aver the finite element method of ref. [1]. However, the use of this method

for an outer region  where linearity is adequate!, coupled with finite

elements for an inner region  much as in Sec. �!!, seems promising, particu-

larly if the  distant! coast-line differs importantly from a straight line.

The idea would be to use Eq. �6! rather than Eq. �7!, and to obtain from

the integral equation a linear relationship between values of Z on the

matchinq boundary and values of 3Z/3n there; similar relationships obtained

for the finite element region would then permit matching  cf Sec. �!!.  As

implificatian, it might be possible to set d = 0 on c'; sufficiently

far f roiii the estuary. !

9. VARIAT!ONAL APPROACH TO MATCHING

N

A 8  kz'!+$  A e +Be ! P,  kr!
0 0 0

2
n yl o

�8!

and we consider the coeffic~ents A, A�B, ..., A, 8 to be among the
unknowns. Note that whatever values are chosen for those coefficients,

is a solution of the wave equation outside C.

the equation  cf Eq, �!!,

In Ji',, g must satisfy

To illustrate the basic idea, consider the problem of the scattering of

an incident plane wave Z by an island  cf Fig, �9!!. We use the notation

of Sec, �!, and, as before, require d ~ 2 sufficiently far from the island

arid in particular outside a large circle 4 across which matching is re-

quired. Let the regions between the island  contour 8! and c', and outs~de

be denoted by A, and R2 respectively. We write Z = Z + ~I in h',,
and z = Z + g, in R,. On 8, we require d 3Z/3n = 0, so d�Z+3n
+ 3p,/<>i.! = 0, where 3/3n denotes  here and in the sequel ! the outward

normal derivative from 8,. In this example, we neglect Coriolis effects,
and set f' = 0.

In,~,, we approximate $, by the first le+2 terms of the series



 dpi ! +  d4, ! +k <=-  UZI � �Z ! � k ZI

say, where y is known. Construct now the variational integral

I= � d4, +$ � � kg +Qg dA+ d > $ds

Then

6z = �  dy, ! +  dy ! + k'q + y
R,

aZ ay
+ cx + > 6g,ds + > 6!,ds �0!

ay.�
J= $ ds

Br

so that

36/
6J > Q +

C�

and consider finally the requirement

6I- 6J+ $ � 6] de = 0cl

1 3p 2

C

for all 6g,, and for all 6g, obtainable by varying the A, and 8,
J

coefficients in Eq. �8!. It is clear that all requirements of the problem
wil'I be satisfied, within the degree of approximation afforded by Eq. �8!.

If finite elements are used inside c', then we will  for linear

elements, say! obtain one equation for each nodal unknown, and also one
equation for each of the A.. and a., so that the total number of equations
equals the number of unknowns. Both non-linearities and Coriolis effects

could be incorporated, at least by iteration.  For large systems, it may

where we have used the facts that d = 2 on c', and that 3/Bn = 3/3~

on <.'. Across c, we want Bg,/Br = Bg,/Br, and g, = g,, Define therefore



wel I be more efficient in terms of storage and speed to solve the linear

equation set iteratively also.! For regions more general than that con-

sidered in this example, one needs an approx~mate analytical solution out-

side the finite element portion, and this may not be readily available in,

say, wedge-shaped regions with Coriowis effects included. Consequently
this approach, although effective when applicable, may be of limited use-
fulness.
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