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PREFACE

Wave motion in estuaries and harbors has been a problem of practical
importance for many years. Commercial ship operators and private boat
owners, designers of marinas, as well as certain governmental agencies
have been concerned with the response of harbors and estuaries to various
types of wave forms.

In response to this interest, ocean engineers have traditionally used
small-scale hydraulic models for predicting wave motion in harbors and
other near-shore environments. More recently, however, high speed digital
computer models have been developed for the same purpose. In fact, during
the past few years, several Sea Grant institutions, including the Univer-
sity of Washington, have addressed the problem of developing computer
programs for the prediction of estuarine and harbor wave motion. As work
in this area progressed, it became apparent that an adequate treatment of
wave motion in semi-enclosed bodies of water required not only the appli-
cation of sophisticated mathematical techniques, but also a reconsidera-
tion of certain fundamental aspects of the problem formulation.

This report describes one such aspect: namely the proper matching
of far-field (open sea) solutions and near-shore environment solutions.
Admittedly, the discussion presented here is more technical than in most
Sea Grant reports. However, the subject matter is relevant to a problem
which concerns a number of Sea Grant researchers and, for that reason, we
felt that it would be appropriate to present this material to the scien-

tific community in the form of a Sea Grant report.



FAR-FIELD MATCHING FOR TIDAL CALCULATIONS IN NEAR-SHORE REGIONS

b, INTRODUCT ION AND ABSTRACT

Previous work {1] dealing with tidal current calculations in bays and
estuaries has shown that the solution is sensitive to the tidal boundary con-
dition imposed at the mouth of the bay. This sensitivity arises from the
fact that the instantaneous tida! height is affected by tidal wave reflection
from the local shoreline configuration, so that from the mathematical point
of view the boundary condition includes part of the problem solution. 1In
principle, the difficulty can be resolved by replacing the boundary condition
at the mouth of the bay by a matching requirement between far-field and near-
shore solutions; for tidal problems, such a procedure is complicated by the
importance of the Coriolis term as well as by bathymetric and topographic
complexities.

In this report, we describe a number of matching methods which can be
used. These methods are based on integral equations, finite elements, vari-
ational methods, transform methods, series solutions, or on a combination of
such methods. Since non-tidal harbor response problems are also of interest,
we include some discussion of methods which are Timited in their ability to
incorporate Coriolis effects. It appears that most of the approaches to be
discussed are computationally feasible; implementation for a particular
estuary region will be reported on separately. Here we restrict ourselves to
derivations and to such numerical experimentation as will help elucidate
specific properties of certain methods.

Except where stated, we will use shallow water theory, and a time factor
e"iw? throughout. We anticipate that non-linear effects will be important in
the near-shore region, and will be handled by an iterative technique of the
kinc¢ discussed in [1]. The far-field region will be assumed sufficiently
deep that a linearcalculation is adequate. The effect of the earth's curva-
ture is neglected, but could be inciuded at the cost of some complexity in
formulation.



2. REFLECTION OF PLANE WAVE

In the sequel, we will make use of the solution to the following problem.
Let a plane wave of angular frequency « be propagating shoreward in a region
of constant depth ho; the shoreline coincides with the x-axis as shown in

Fig. (1).
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Figure (1)

Near the shore, the depth becomes # = h(y), a function of y only. If u
and v are the velocities in the x- and y-directions, ¢ the water height,
and f the Coriolis parameter, linearized shallow water theory requires [2]

uy - fo = -gt,
v, + fu = -gg (1)

¥
(ku)x + (hv)y -z

h

t

where a subscript indicates a partial derivative. Here + is time and g4
the acceleration of gravity. For harmonic motion, we write u, v, ¢ as the
real parts of Ue'£Mt, Ve-imr, ge™TWt respectively, where o, V, Z are
complex functions of x and y. Equation (1) becomes

wi + fV = g;x
-tV + fU = -gZy (2)
(hU) _ + (W),

TwZ

It
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from which

UJ2 - f2
V= 79—2(—sz - fZ) (3)
W - f

if _if 2, _
[d(zx + zy;]w + [drzy - Zx)]y + K22 =0

where d = h/h, k2 = (0% - FP/(gh). If v s to vanish at y = 0, we
require
zmzy +fz, =0 at y=0 . (4)

An incident plane wave of unit amplitude can be written as {(cf. Fig. (1)}

-tk {x sin@ + y cos6 )
7= g o @ o (5)

I
and it is now desired to obtain a solution of the third of Egs. (3) subject
to conditions (4) and (5).

Since d = dfy), separation of variables is feasible. We write
—i(kOSingo)m
72 =e Yiy) (6)

(cf. Snell's law for ray propagation) and substitute into Egs. (3) and(4) to
obtain

(dP'} + [kz(l - d sin?e } - 4’ fEQ sing T = 0 (7)
o 0 w o= " =

with
fr,
V- s1n90)w =0 at y =20 (8)

where a prime means d/dy. (If d¢0} = 0, Eq. (8) must be replaced by a

finiteness condition at y = 0.} For certain choices of dry), Eq. (7) can
be solved analytically (e.g., in terms of hypergeometric functions if 4 is
lTinear); however, we will let d(y) be arbitrary and content ourselves with
a numerical solution. Take ¢(0) = 1; then the resulting numerical solution



can be obtained via standard methods, and since 4~ 1 for sufficiently
Targe y, it will be asymptotic ta a linear combination of

e—(ikocoseo)y , e(ikocoseu)y (9)
as y =+ o. Moreover (with ¢{0) = 1), ¢ will be real, so that the
coefficients of this linear combination must be complex conjugates of one
another. Thus we merely need divide our (0) =1 solution by the
coefficient of the first term in {9) to give the solution corresponding to
Eq. {5); the second term, then, represents an exiting wave of unit amplitude
and 50 of energy equal to that of ZI.

An alternative numerical approach--more cumbersome, but also more

picturesque--would be to approximate the depth profile by a sequence of
constant depth steps, as in Fig. (2).

>y surface

actual profile

approximate+ -------
profile

Figure (2)

Let the depth be B for i <Y< Yap Define k§ = (w? - fz)/(gkj), and
represent Z 1in this y-interval by

ik.(-x sin ., - y cosé.) ik .(-z sin6. + y cosé,)
Zj(x,y) =AJ. g Y J I Bj e J J

where Aj and Bj are complex constants, and where kj sin63 = ko 5'in-6:9
(Snell's Taw).

Continuity of Z and (hV) at the transition point . requires

. = Z. . for =y.
ZJ (x,y) ZJ_ }(m_ y) ¥y =Y



and

sz Efi_ az._l az.wz
hj[zw 5 + f T = hj_z[zw —ji;—-+ f -7%?—] for y = ¥

These equations, together with conditions (4) and (5), are adequate to de-
termine all 4. and Bj values. As a check, it must turn out that |Aj|

= 5., '
15|

3. REMARKS ON KELVIN WAVES

If d=1 for all y >0 in the problem of Sec. {2}, we find

b e—zkocoséoy

{10)

g _ if ei ,
w Ccose if s1neo ezkocoseoy
w €os8  + 1f SING

which is a combination of an incident and a refiected (with phase change)
plane wave. No Kelvin wave is generated. 1f the coastline has a pend in
it, or is irregular, then in general a Kelvin wave will be produced {see
for example [3] and [4]). It does not seem to have been pointed out in the
lTiterature that if the disturbance source is at a finite rather than an
infinite distance, then a Kelvin wave can be generated by reflection at
even a plane boundary.

Consider the half plane y > 0, with & constant, and let there be a
source

£ 1

NNy

Figure (3)



at ¢ as shown in Fig. (3). Using the notation of Sec. {2), the governing
equation is now

2+ 7 o+ k'Z
ot 4 Y

R8(x) 8y -y ) (11)

where 4 is the delta function, %% = (w” - F*)/(gh), and R is the source
strength factor. Were there no barrier at y = 0, the solution to Eq. (11)

i3
f

would be given by

. o IR 00 2 2
2=-S0" 1/t sy -y ) (12)

where the HMankel function of the first kind, Hé]), is required in order

“HWEY | Because

that waves be outgoing at « (the time factor is again e
of the barrier, the actual solution differs from this, and must satisfy
condition (4) at y = 0.

Denote the Fourier transform of 2 by 2Z, defined by

J Z2(z,y) ¢Mam . (13)

1
R

70yl =

Then a transform in =z of Eq. (11) yields

A G LSy A
vy ST

Sty - y,) . (14)

It follows that

Ae—\/lz—kzy

Z = for y > Y, (15)

Z =B cosh vA% - ¥* y+C sinh A% - k> y  for ¥ <y, (16)

where the branch cut and inversion contour in the A-plane are as shown in
Fig. (4).

(One way to see that the designated inversion path is appropriate is
to note that if dissipation terms are incorporated in Eqs. (2)--say (-cu)
and (-zuv) on the right hand sides of the first two equations, respectively,



A-plane

branch
cut
’4_‘\\ k
———————————— ” Siiaiaiaiainh Setndutalmnauiet
-k ey T TRTTTTTT
inversion
branch path
cut
Figure (4)

where > 0 s small--then %2 will have a small positive imaginary part,
so that the inversion path will pass above the replacement for (-k) and
below that for (+k); in the Timit, as the dissipation vanishes, the indenta-
tions become as shown. A second method is to observe that, as shown in the
sequel, this choice--and no other choice--satisfies the radiation condition
previously alluded to). In Egs. (15) and {16), we interpret 32 - k2
as positive real for i real with X > k; the choice of branch cuts removes
any ambiguity elsewhere.

A transform of Eq. (4) leads to

iwZy - 1A fZ2=0 for y =0
whence

cz——-ﬂ——uB . (17)
w VAZ - k2

At i =y_, the values of 2 on the two sides of y,» as given by Egs.
{15) and (16), must coincide; moreover, Eq. {14} requires the discontin-
uity in z_ across y  to equal R//Zm. Thus we are able to determine
all of 4, B, ¢, and it is easily found in particular that, for y < Y,



R
2/2T A2 < K2

Z=-

[ “AAZ - kP (y-y ) /AT~ K2 (yHy )1
o o
e + e

2F) AR - Ky )
- .,....................... a
w/A? - k% + FA

As a check on the calculation, we note that if f = 0, then(]) the
inverse of Eq. {18) yields

. -
Z = - ??’E{;l)[k/zcz + (y - yo)z] + Hglj[k/xz + (y + yo)z]_J (19)

which represents the effect of a source plus its image.

Even if f # 0, the first part of Eq. (18) leads again to Eq. (19) {with,
of course, k* = (w? - f2)/(gh)), S0 that, in part, we have a source wave plus
a specularly reflected wave. Inversion of the second part of Eq. (18) does
not Tead to a simple function; however, we are primarily interested in the

R A% - ko (1)
I = dr = mgg'? [k/d§ + x’)
A2 _ k2 Q

-

where the branch cuts and inversion path are as in Figure (4).
This identity can, of course, be deduced from the fact that the
field must be that given by a source plus its image, using Eq.
(12); alternatively, it is easy to show that oI, - xIy = O,
so that I 1is a function of (x? + a®); then set one of a or
x equal to zero, etc.



asymptotic behavior (large &) in any event, and this we can obtain
directly. In the A-plane, there is a pole at x = -k//1 - £2/w?, and

the inversion path passes above this pole. If x < 0, we deform the

path of integration so as to wrap around the cut through X} = k; if

xz > 0, we wrap it around the cut through * = -%, picking up in this
latter process the contribution from the pole. The branch cut integrals
are easily evaluated asymptotically, and the final result is (for s # 0)

(a) for <0 :
e—ikx + in/4

VAR (20)
vomk |z |

(b) for x> 10:

Z'b—}:%e

) f . .
T - (y+y0)c s Rezkx + in/4
We -

(21)

v Trk|:r:|

where ¢ = @EE. The first term in Eq. (21) represents a non-decaying
Kelvin wave traveling to the right. The other terms in Eqs. (20) and
(21) decay as x becomes large, as expected.

4. MATCHING

We consider now a matching technique applicable to the (fairly
general) situation depicted in Figure (5).

For y >y, let k= ho = constant. In the regions defined by
{y <y, x> 2x,} and {y <y, 2 <x;}, let & = h(y). In the remaining
region R, which includes the estuary and its entrance region, we will
have #&(x,y); there may also be islands.

We choose y,, |z |, and |z,| sufficiently large that along the lines
€y 5 £2 5 Cy3 5 Cys the value of 2z will be that obtained in Sec. (2),

i, z=2 = e—z(kos1n99)x

k; = (w? - fz)/c;. The possibility of such a choice is based on the
expectation that the effect of the estuary will diminish with distance

¥, (y), where we take 1, (y} as known, with

from it (more or less in proportion to inverse square root of distance,
in fact, if the estuary effect can be modelled by a superposition of



S
Ae—zko(xsmgo + ycosé )

Figure (5)

secondary sources}. Of course, the caiculation of Y, 1s carried out for
a geometry in which there is no estuary, and in which the hfy} function
is considered to be valid for all .

Along the line ¢4, 2 can differ significantly from Z,. In the region
5 defined by {y > y4,}, write 2 =12, +¢. Then ¢ satisfies the equation
{(in 3)

24 =
Oug * 9y * K2D = 0 (22)

& Y

Denote the (as yet unknown) value of ¢y on y, by plx); for z <z, or
for x> x,, we have pfaz) = 0, as a consequence of the above assumptions.
A Fourier transform in z of Eq. {22) leads to

10



A2k (y -y )
ox) = - =2 0 L (23)
Vi? - k;

where & and 7 are the transforms of ¢ and p respectively, and where
we contemplate the inversion path of Sec. (3). Using the footnoted inver-
sion integral of Sec. (3}, and the convolution theorem, Eq. (23) implies
that

2

. .’.'Cz
dle,y) = - x J p(c)HélJ (ko/(y - y1J2 + (x - T)*)de (24)
X,

where we use the fact that p(x) vanishes outside of (is%,) .

The composite values of Z and Zy on Cg are givenby 2 =2, + ¢,
and Zy = (Zl)y + p, respectively; note that if p 1is known on C,, so is
$, via Eq. (24). These values of Z and zy on C, must correspond to
those obtained from whatever solution process (e.g., finite elements) is
used in R. To achieve this correspondence, several methods are possible.
The simplest might be iterative--guess 2z on (g (close to an actual
tidal measurement, for the frequency of interest, for example) and deter-
mine the associated values of Z inside R; compute Zy on ¢, for this
"inside" solution and so calculate p on ¢, from p = zy - (zl)y; de-
termine ¢ from Eq. (24) and so a revised value of Z on Ces iterate to
convergence. (It may be feasible to neglect non-linearities inside =&
during most or all of this iteration.) Alternatively, since Eq. (24) is
linear, the ¢ values over a set of mesh points on (g are linear combi-
nations of the p values, so that correspondence between inside and out-
side solutions can be obtained by adding an extra set of linear equations
to those being used to solve for Z in ® by the method of ref. [1], say.

We note, incidentally, that Coriolis effects are fully included in the
procedure of this section.

5. MATCHING IN A NARROW CHANNEL

It sometimes occurs {as in Hood Canal, Washington State) that one is
interested in analyzing the tidal motion in a region in which the entrance

IR



to the portion of interest is along a relatively long and narrow channel
(Figure (6).

/

/
SV R R

+~— entrance

region of

interest )‘__,,f’7“;w7i7777r7777ﬁ

g

!/
),J/,/j/j /7

Pk
A A AV A
Figure (6)

Here the geometry is quite different from that of Sec. {4), and it
may be unduly laborious to include the seaward portion of the channel.
One approach to this kind of situation would be to say that the “"directed"
entrance implies a low velocity transverse to the channel axis, which pre-
disposes towards a Kelvin wave incidence. Analytical solutions are avail-
able for Kelvin wave reflection from the ends of channels of constant width
and depth, but with variable end geometries [5]. An important result is
that the net phase gradient across the entrance is not sensitive to the
details of the reflection geometry, but depends only on the gross features
of the basin; it follows that it is possible to estimate rather simply the
appropriate phase gradient at the entrance and so provide the desired
matching. For details, refer to [5].

6. CYLINDER SCATTERING VIA AN INTEGRAL EQUATION

There are situations in which an integral equation may be used to
solve all or part of a tidal problem, and it is useful to obtain some
experience concerning numerical methods and accuracies for such problems.
In doing this, it is desirable to choose prototype problems of simple
form, and, preferably, ones for which analytical solutions are available.

12



As a first problem of this kind, consider the scattering of a plane
wave by a circular island; the water depth is given the constant value
B Referring to Figure (7), using polar coordinates as shown,

t ¥

m ./ /‘,.,
A

N
¥
M

Qﬁ/ _ 1‘,?:' b=e

Figure (7)

and with &% = (w® - f?)/gh ~ (we use the notation of Sec. (2})), we write

Z = ZI + ¢(r,8) where

o +lo +Le_ + k=0 (25)
r'r  p2'06

rr

The boundary condition is that

-tkr €05

. _f _ . .
wh, 14¢9 {-wk c056 + ifk sing) e (26)
for »r = 7. The exact solution is expressible in series form as
ZY o ind _ind (1)
b =AB " (ke) + }%(Ane + Be JH (k) (27)

Insertion of the boundary conditions permits the coefficients 4. and Bj
to be determined; the process is straightforward, and the final result for
the scattered wave is

J (ki) o -TWkRJ ' (kR) + inf J_(KkR)
0 (1) n n
by Hy k) ) 1) (1) €

HO "(kR) n=1 | twkR Hn "kR) - inf Hn (kR)

ino

13



~{wkR J!(KR) - inf J (kR) RN L
. o~ n i I H}il)(kr) (28)
kR B 'KR) + dnf B (ki)

Here the derivatives of the various Bessel functions can be simplified by
use of the usual recursion formulas, if desired.

7o solve this same problem by an integral equation, we can proceed as
follows. In Fig. (8), let there be a source at ¢, and consider an obser-
vation point at P (there is no difficulty in permitting the istand to
be non-circular, and we do so; for the present, however, we do not permit
“corners" ).

P
(xp,yp) -ﬁmQ,yQ

T —

Figure (8)

Consider now the problem of finding a function Y satisfying
2 —_ - _—
b * cpyy + kY = 4 8(x :r:Q)G(y yQ) (29)
with
mn v+ f v, =0 on ¢ (30)

where the subscripts » and s refer to partial derivatives in the
normal and tangential directions, as indicated in Fig. (8). Define a
Green's function ¢ by

. _ i ()
G(m,y,:cp,yp) =- 378 (kr'GJ {31)

14



2 _ _ 2 - 2
where ro = (x xp) *+ {y yp) . Then

G +0C +kG=6(x-2)6(y - . 32
e * Gy (x w80y yp) (32)
If we multiply Eq. (29) by &, Eg. (32) by vy, subtract, and integrate over
the region exterior to the island, then use of the divergence theorem and
the radiation condition Teads readily to the resuit

Y(P) = 4 G(Q) + S(GY - UG )ds {33)

c n n
where Y(P) = w(mp,yp) and G(g) = GﬁxQ,yQ;xp,yp). Using Eq. (30) gives
W(P) = A G(Q) - J;riujf 0,6 + VG )ds (34)

Observe that the quantity A46(g) is equal to AG(mQ,yQ;xp,y )
= AG{xp,yp;xQ,yQ) and so is the value of the field ¢ if the island is
removed. It follows that if the field ¢ is produced by a number of
sources, or by a source at = (i.e., a plane wave), then a more general
version of Eq. (34) is

Y(P) = wo(P) - é(% wSG + an)ds (35)

where v, is the value of ¢ with no island.

Equation (35) will yield ¢(P) if ¢ 1is known on ¢. The value of
on ¢ must be obtained from the solution of an integral equation, which
in turn is obtained by allowing P to approach ¢ (Fig. (9)). Let »p
denote the local radius of curvature, and consider a point Eb near
as shown. Then

A . [a kr 1kr 2 i
GIB,P ) = - Z{?brkr) + 7 {F(Y +an ) (k) + (50 5+ .--}J (36)
where p = /rl + rj - 2rir, cosd, and <= = ” . It follows

2
that the only contribution from 93G/3n, near 8, = 0, in Eq. (34}, will

15



r, = distance to

f center of
radius p a ,/ curvature
\\ /
7,
Figure (9)
arise in the form
7 p-r, COsE . (37)
~ o | o2+ r? - pr| cose vds

If o #0, the first factor in the integrand - é%— as r, > p; however,

at ¢ = 0, this first factor - o as r, > p; we thus expect a S-function
behavior. Near 8, = 0, write cos9, = I - é-Gf, and set », = pf1 + ¢},
The first factor is then approximated by

1 £ T
= & _, T e
pnﬁ()

Consequently, the contribution from a ds interval centered on P, where

P is now a point on ¢, becomes
1 de
Thus the desired integral equation, in mesh-paint form {c.f., Fig. (10))

(xj-mm)n] + (yj—ym)nz

Iop . ds o f L ktds (1)
(5 + =g~ ) G (ws)j i A (krmji -

(39)

1A



§ s /
YRR
J=1 7 J§+1

-h__-""’*f-‘—"*
71117

Figure (10)

where », and »n, are the z- and y-components of the cutward unit normal
vector, and where the remainder of the notation is clear from the context.

Several numerical experiments were carried out for the case of plane-
wave scattering by a circular cylinder, with f=0. As a typical result,
let ok = 2mp/3 =1 (where X 1is wave length); this might be considered
intermediate wave length scattering. With 25 mesh points around the boundary,
the values of ¢ on the boundary obtained by solving Eq. (39} agreed to
within better than four significant figures with those obtained from Eq. (28);
using these boundary values of g, the values of ¢ outside ¢ (out to
about 30 island radii) also agreed with the exact results to about four
significant figures. If the term ds/(4npn) is omitted from £q. (39),
agreement to only two significant figures is obtained.

In general, adequate accuracy was obtained if the mesh point spacing is
small compared to both the incident wave-length and the length scale of the
island.

A perspective plot of wave configuration, at various values of time, was
obtained by use of the Los Alamos PICTURE program and the CALCOMP plotter;
Figs. (11a) through {11k) give the results (the time difference corresponded
to we intervals of 2n/10). Figure {12) depicts a magnified plot of the
wave pattern, near the island, for wt = 4.

7. WEDGE SCATTERING VIA AN INTEGRAL EQUATION

In some cases, it may be useful to consider an exterior region of wedge-
shape rather than of half-plane shape; consequently it is of interest to
consider both exact and integral equation solutions for such regions.

In terms of polar coordinates (r,6), let the region exterior to a
wedge be defined by Q < ¢ < 2m - @, as shown in Fig. {13). The total

17
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exterior angle is a = 27 - 20. Let there be a source of strength P~ at
(ro,eo), and let 2Z(r,8) satisfy the reduced wave equation

1 ' 2, _ P _ -
b 0¥ o7 Loy + KT = 3 §(r r )86 e (40)
with
Zg =0 for & =q, &1 - Q . (41)

(To permit a simple series solution, Coriolis effects are not included in
this example.) Write

1 o nn(g - Q)

z =3 Bo(r) + § Bn(r) cos ~Z == (42)

and it follows that
1 £ nin? 2 _ P A nm
B?ﬁf_r'Bn-WBn.*an_I_';G(r"Po) OLCOS—CT(QO-Q)
whence, for »r < o
- 4p ¥ nn - (1)
Bn = ~1iP o COS 5 (90 ) Hﬁﬂ/a(kpo) Jnn/a(kr) (43)

In combination with Eq. (42), Eq. (43) provides the field due to wedge
scattering for a concentrated source at a finite distance. If r is

permitted to approach «, with P set equal to 4£¢hkro/2 RAVE thro

the result will yield the solution for scattering due to a plane wave Zy
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where
~1kr COS(6 - 90)
7_=¢e _ (44)

A straightforward calculation gives MacDonald's solution (1902):

ik
"t g mm i
£, ¢ COSTI(QO - ) cos 7;—(9 - Q) Jﬁﬂ/a(kr) {45)

g =20
Q

O~ 8

where €, = I, Ej =2 for 7 # 0. A number of special solutions for
similar problems, with different boundary conditions, are given in Ch. 6
of [6].

For small »r,

2

il
2n 4 rk. /6 " %0 T i
2 St Ty (8 e cos - (9 - Q) cos = (6 - Q) (46)
and, in particular,
2(0,6) = & (47)

In Eq. (45), the Bessel functions may be expressed in terms of contour
integrals involving exponential functions. If the orders of integration
and summation aré interchanged, we obtain two useful formulas--one in terms
of the familiar Sommerfeld contours, and one based on Schafli's integral:

il m
Z {cot-ga (w-t-9+90)+cot-25(ﬂ—t—9-90+ Q) dt

7 J ikr COS ¢
= | &
4i0

C‘]+C'2
(48)
where ¢, and ¢, are shown in Fig. (14), and
(0+)
LM, |
) 7 ar- 2 + eb + 8 - ) 81 a(- 5 * 65 - 8)
4= 2%& 2+ M T, T * ™, T
= 1 =(-Z+86 +6- Q) — it —(-5+6 -86)
o v} 2 [] ol a 2 Fe)
- = t-e 1t -e
LT il . T k1] 1 1
ez _OL-(-E— GO-I-Q) 'La(—-z;—— 90- g + 28) eEkl”(‘f;— E)
* T ™ T * ne T T t dt (49}
.La_e'z. a(— —2' - 90 + &) ta-et a{’- O 90 - 8 + 252,1‘



where the contour is shown in Fig.

Figure (14)

for Eq. (48)

and C,

Contours ¢,

« + unit circle

Figure (15)

Contour for Eq.

(49)

24



The integrand in Eq. (49) has poles which 1ie on the unit circle shown
in Fig. (15}; moreover there are saddie points at ¢ = *7. If the contour
1s deformed so as to pass through these saddle points, the residues at the
poles provide reflected waves, and the saddle point contributions {only the
one at ¢ = ¢ 1s of importance, since the factor in square brackets
vanishes at ¢ = -1) provide diffracted waves. Calculation shows that the
diffracted field is of the form of a cylindrical wave emanating from the
corner; for kr >>
i (5 +kr) .

- /27 e i 7 1

“diff N Y i Ta SN o nZ*

il m e
cos &{9+90)-cos o cos-a(9+€0-2ﬂ)-cos e

(50)

The same result can be obtained by manipulation of the Sommerfeld contours
of Fig. (14) into those of Fig. {16). The inner contour is traversed twice
in opposite directions; the geometric optics field is obtained from the
residues arising from poles between ¢t =0 and ¢ = .

ﬁ& 2n 3w

Figure (16)
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For directions along the boundary of geometrical optics regions, poles
and saddle points may he close to one another or may even coalesce. It is
then necessary to revise the standard saddle point calculation appropriately
[7]; the details are rather technical, and we will here give only one par-
ticular result. Let Q = 7/4, 95 =mn/2, and take & = w, which corresponds
to the boundary of the geometric reflection region from the upper face.

Then a rather tedious calculation leads to

. ™
T(kr + Z)

= I Pl

A P
3/3  Vorkr

the L (51)

where it is of interest to note that the last term represents a standing
wave.

Turning now to an integral equation formulation, that of Sec. {(6) is
seen to be directly applicable, since no restriction is there placed on

the physical boundary. A value of a = g'" {i.e., & = f% T} was chosen
for computer experimentation, with & = %%‘ﬂ (so that the incoming plane

wave is perpendicular to one face of the wedge). The geometry is shown
in Fig. {17).

incident wave

Figure (17)

To solve the integral equation numerically, a number of equally spaced

mesh points were inserted along the boundary, half on either side of the
apex. (Outside of these mesh points, the value of 2 was taken as that
which would have existed in the absence of the other face of the wedge.)
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A number of linear algebraic equations resulted, which were solved by
elimination, and the results were compared with the exact solution (for
large =, an asymptotic representation, as previously explained, was used),
for values of ¢ corresponding to the two faces. To obtain good agreement,
it was necessary to use a large number of mesh points {note, by the way,
that the problem is essentially independent of wave length), and this raised
awkward problems of ltarge-matrix storage. Consequently, elimination as a
solution method was replaced by iteration {(no matrix storage is then neces-
sary), and adeguate accuracy was obtained with 200 mesh points on each side,
10 per wave length interval. For & = Q, typical results are:

r Z, exact Z, integral equation
10 2.0449 - 7 ,0449 2.0438 - 7 .03381
10.1 1.9120 + £ .5556 1.9170 + £ .565%4
10.2 1.5895 + < 1.1195 1.5993 + ¢ 1.7246
10.3 1.1198 + £ 1.5896 1.1308 + £ 1.5884
10.4 .h565 + 7 1.9118 .5650 + 7 1.9047
10.5 - .04382+4 2.0438 - .0407 + © 2.033
10.6 - .6277 + 7 1.9630 - L6311 + £ 1.9524
10.7 -1.1477 + 7 1.6727 -1.1565 + £ 1.666
10.8 -1.5636 + < 1.2033 -1.5747 + 1 1.2026
10.9 -1.8420 + £ .6085 -1.8517 + 7 .6140
11 -1.9572 - 7 .0428 -1.9621 - 7 .0328

Consider finally the possibility of matching, for a wedge-shaped outer
region, using a method analogous to that of Sec. (4). For analogous gener-
ality, we would want the depth to depend on &, and Coriolis effects should
be included. Unfortunately, the resulting problem is difficult to solve in
terms of reascnably simple analytical expressions (for reference, Egs. (3)
are replaced by

U=—5 (407 +-fZ)

T w? - f2 r r B
W
V= grt el 5 gy - £2,) (52)
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y . if d,, , if 1ol g if 2,
[dup + z@)]r + (2, 4 ze) + ;[d(r 29 m Zr)]a +kZ=0
and Eq. (4) is replaced by
W, + fZ_ =0 (53)
¥ e n

at 9 =0, an - @). Thus for practical purposes it appears that, if a
compact series representation is desired for matching purposes, it is
appropriate to restrict attention to the case in which A can be taken

as constant and fF neglected outside the region of interest. We are then
dealing with the series expansion (42), where matching with an inner solu-
tion across a constant-radius curve r = R is desired; the solution can
be expressed in terms of z, on this line and the method of Eq. (4)
applied directly.

8. INTEGRAL EQUATIONS AND NON-UNIFORM DEPTH

Let the region of interest be bounded by a material boundary ¢ and
a boundary ¢_ at «, and Tet there be a source at a point 2. A typical
sttuation is shown in Fig. (18):

)

IS Q' (x
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Figure (18)
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The governing equation is obtained by incorporating a source term in Eq. (3):
: E”:i _ .T_:.i I, R 1 -
[dcz_ + 4 Zy”x + [drzy " zm)]y £ kD2 = B8z~ xp)8(y vy (54)

where (x .,y ) are the coordinates of the source point, and B is a complex)
strength factor. As hefore, k; is based on the reference depth hos Vizs
;2

ko= (w” - fz)/(gho), and d = i/h . At =, we take d = 1. We alsc need
a Green's function, and as in Egs. {31) and 32) we require

. 2~ - _
G * ny + kG = Sz xp)é}(y yp) (55)

where (xp,yp) are the coordinates of the observation point P.
Multiply Eq. (54) by  and integrate over the region R contained
between ¢ and ¢ _, using the divergence theorem and Eq. (55) to obtain

[
m!

(s 82 3¢, , if
La(u " Zoggr) + oy GHd ) - dnl)

an' ] ds

J
("
+ [%2ZGFI - d} + i (6 d -Gd)+altcd +6d )]dA
e w xy ¥y Tx ¥y
E

+ d{(P) Z(P) = B GQ(§) {56)

where ds is the element of arc length and 44 the element of area. Here
n{s m, are the components of the unit outward normal vector from £, and
a/dn’ is the derivative in that outward normal direction. The radiation
condition and the fact that 4 ~ 7 together imply that the integral on
' vanishes.

It is usually more convenient to choose the positive normal derivative
J/on as outward from the solid boundary. If this is done, if the tangential
derivative direction 3/39s 1is taken as shown in Fig. (18), and if the no-

flow condition 3z/%n = -(if/w)dz/3s 1is used, Eq. (56) becomes

50



I - if _
d{P) Z(P) + J [FOZG(I d) + - Z(Gxdy Gyd&) + Z(Gxdm + Gydy) dA
H!

C anio) if 32,86 | if ., 8d
= BG(Q) J'[d[maas+zan+wczasds (57)
C

We have also replaced the region £ of integration by that sub-region of
R in which 4 # 1 (remember that d - 7 at =), since only in R' is
the area integral non-zero. If Z were known on ¢ and in R’, Eq. (57)
would permit its determination everywhere; to find Zz on ¢ and in &',
we have to solve an integral equation, using as unknowns the values of Z
on mesh points in 7' and on ¢ {on ¢, we need of course the limiting
form of Eq. (57), obtained as in Sec. (6)). As a special case, note that
d could be zero along part or all of ¢; if zero along all of ¢, no
Timiting form of Eq. {57) as P -+ ¢ need be considered.

A special case of what is essentially Eq. (57) has been solved by
Lautenbacher [8], who takes f =0, sets 4d=0 on ¢, and considers
plane wave scattering by circular or elliptical islands. The derivation
in [8] is somewhat different, in that Z 1is treated as the difference
between the plane wave input function and the actual solution; the effect
is to replace the right-hand side of Eq. (54) by the result of applying
the differential operator to the plane wave. We note however that it
would appear simpler to use the above formulation and permit @ » =, with
B increasing so as to yield the derived plane wave input (measured in
regions where 4 v 1).

The integral equation based on Eq. (57) could presumably be applied
directly to the case of present interest, in which ¢ is a coast-Tine of
indefinite extent, indented by an estuary (if there is river flow across
a portion of ¢, an appropriate minor change must be made in Eq. (57)).
Based on previous remarks, it appears that iteration rather than elimination
would be the solution method of choice in this integral equation. If a
portion of the region is shallow, non-linear terms could be important, and
this might require a modal analysis, with iteration, of the kind used in
the finite element approach of ref. [1].

b Tl



Although this direct integral equation approach appears quite feasible,
it is not clear that there would be advantages of either speed or accuracy
aover the finite element method of ref. [1]. However, the use of this method
for an outer region (where linearity is adequate), coupled with finite
elements for an inner region (much as in Sec. (4)), seems promising, particu-
Tarly if the (distant) coast-line differs importantly from a straight line.
The idea would be to use E£q. (56) rather than Eq. (57), and to obtain from
the integral equation a linear relationship between values of Z on the
matching boundary and values of 32Z/3» there; similar relationships obtained
for the finite element region would then permit matching (c¢f Sec. {6)). (As
a simplification, it might be possible to set 4 =0 on ¢; sufficiently
far from the estuary.)

9. VARIATIONAL APPROACH TO MATCHING

To illustrate the basic idea, consider the problem of the scattering of
an incident plane wave Z, by an island (cf Fig. {19)). MWe use the notation
of Sec. (2), and, as before, require d ~ 1 sufficiently far from the island
and in particular outside a large circle ¢ across which matching is re-
quired. Let the regions between the island (contour B) and ¢, and outside
> be denoted by #;, and R, .respectively. We write 2 = Z, + ¢ in Ry,
and z = ZI +¢, In H,. On B, we require d 3Z2/n =0, so drazr/an
+ o /om) = 0, where 3/3n denotes (here and in the sequel) the outward
normal derivative from &,. In this example, we neglect Coriolis effects,
and set £ = 0.

In 7,, we approximate ¢, by the first 2w+1 terms of the series
(27):

o AOHgl)(kor) + g (4 e

n@ ~in8, (1}
¢ +Be )i, (kor) (58)

2

B A, B, to be among the

]_J 13 L | N) N
unknowns. Note that whatever values are chosen for those coefficients,

and we consider the coefficients AO, A

¢, 1s a solution of the wave eguation outside ¢. In &, ¢, must satisfy
the equation (cf Eq. (3)).

1



2, _ - k%7 =
(d) ). * (d¢ly)y kg = - (di ) - (dzry) Koy = (59)

Y
say, where y s known. Construct now the variational integral
02
_ I 4l42 2 | _ 1 qu,2 L
I = J {2 d[%lx + ¢1;] 5 ko6t w¢1}dA + J d 5~ ¢,ds
R, - B
Then

87 = J [:{(d¢]x)x o+ (d¢ly)y + ké@l} + ¢] 6¢1 d4
R,

3, 9z, 30,
+ J 0‘.[—— + -‘g] (5¢1d'6 + J g GQJldS (50)

an
B ¢

where we have used the facts that d =7 on ¢, and that 3/3n = 3/3r
on ¢. Across o, we want 3¢,/9r = 3¢,/9r, and ¢, = ¢,. Define therefore

ad}z
J=J"§';¢11 ds

¢
so that -
35¢2 3¢2
8J = J 5 ¢1 + Sr 6¢1 ds (6])
C’_ -
and consider finally the requirement
]
8T - &J + J ¢, 5p 8¢, de =0 (62)

C

for all &¢,, and for all &p, obtainable by varying the Aj and Bj
coefficients in Eq. {58). It is clear that all requirements of the problem
will be satisfied, within the degree of approximation afforded by Eq. (58).
If finite elements are used inside ¢, then we will {for linear
elements, say) obtain one equation for each nodal unknown, and also one
equation for each of the Aj and Bj, so that the total number of equations
equals the number of unknowns. Both non-linearities and Coriolis effects
could be incorporated, at least by iteration. {For large systems, it may

~



well be more efficient in terms of storage and speed to solve the linear
equation set iteratively also.) For regions more general than that con-
sidered 1in this example, one needs an approximate analytical solution out-
side the finite element portion, and this may not be readily available in,
say, wedge-shaped regions with Coriolis effects included. Consequently

this approach, although effective when applicable, may be of limited use-
fulness.
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