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1- INTRODUCTION

Accidental damage to offshore installations can have potentially devastating
consequences in terms of human life as well as environmental impact. Collision between
vessels and platforms is now recognized as the largest single cause of offshore accidents.
The problem is intensifying as offshore development proceeds at an accelerated pace
throughout the world.

Existing design codes (Reports 1 and 2; Furnes and Amdahl 1980; Fjeld 1979)
address the treatment of accidental loads, such as those resulting from collision, rather
briefly. Furthermore, no guidance is provided for evaluating the structure's resistance
against damage and collapse.

One very important factor which must be accounted for in the design of offshore
platforms is the magnitude of the hydrodynamic force exerted on the striking ship during
collision (Ellinas and Valsgard 1985). This force, usually referred to as the added-mass
effect, is due to the motion of the water around the keel of the ship and varies from the
initial moment of impact to later times (Motora et al. 1971, Petersen 1982). When the ship

is in contact with the platform, this time-varying force is indirectly exerted on the platform.
| Yet, the estimate of this force is very crude, usually taken as a time invariant quantity equal
- to a fraction of the displacement of the ship, which in some circumstances may gready fail

to accurately predict the design load (Report 3; Petersen 1982; Ellinas and Valsgard 1985).

A better understanding of the hydrodynamic phenomena involved in the collision
process can yield some useful information on the time-varying design loads to be used in
the analysis of the resistance of an offshore platform.

In this review, we will outline the traditional methods used in the study of the
motion of bodies piercing the free surface under simplifying assumptions of linearization.
The eduivalence, in this context, between the problems of small oscillations and transient
motion of floating bodies will be shown. An application of linear theory to the transient
motion of ships will be presented, with a special emphasis on the problem of collision
involving ships.



Whereas linear system theory is a well developed body of knowledge, the
application of which is reladvely straightforward, the severe limitations of linear models are
now recognized in many situations involving ocean structures and freely floating bodies.
Several important aspects of the collision problem, not accounted for by linear theory, wili
be examined. Some mathematical techniques available to predict nonlinear effects due to the
presence of a free surface and their applications for the study of collision will be reviewed.

The general features of numerical methods available to solve the linear as well as the
complete nonlinear problem and the difficulties associated with their implementation will be
presented.



2-THE LINEARIZED MOTION OF FLOATING BODIES

2-1 INTRODUCTION

Floating bodies without any means of propelling themselves and non-maneuvering
ships are considered. In the case of a collision problem, this will correspond to a drifting,
freely floating ship which doesn't disturb the surrounding water until after impact. By a
change of referential, this will correspond to a still ship in still water, before impact.

2-2 THE EQUATIONS OF MOTION
2.2-1 Linearizati

For a complete derivation of the equations of motion, we refer to John (1950),
Wehausen (1971), Yeung (1982), Newman (1977,1983), or Huang (1987). Part of
Wehausen (1971), as well as the derivation of the equations of motion are reproduced in
appendix Al.

The floating body is modeled with six degrees of freedom, representing the three
displacements of the center of gravity and the three rotations about fixed axes.

We will define the unknowns as (X;,X7,X3,X4,X5,Xg) = (X{) i=1,6

Usual assumptions are that the surrounding fluid is inviscid and incompressible,
surface tension is negligible, and the flow is initially irrotadonall. The problem is then

formulated in terms of two unknown functions, the velocity potential ¢(x,y,z,t) and the :

equation of the free surface. At every instant t, the position of the free surface is given by

F(x,y,z,t) = 0. (2-2-1)
The resulting boundary value problem can be written in the form: '
A¢ = 0 in the fluid domain (2-2-2)
G+ gy + FVOVG =0 (2-2-3a)
Ft+ Vo.VF =0 (2-2-3b)

(2-2-3 a&b) are taken on the free surface F(x,y,z2,t} = 0;
Suitable boundary condition on the bottom or at infinity (for infinite depth) are:

¢, (x,-h,z,)=0 for a finite depth h

or
lirn =0 for infinite th
y =‘°"¢" dep (2-2-4)

IThe flow may not be irrotational in regions behind the body where a thin vortex sheet may exist because
of the generation of Lifi. In this case, an appropriate cut in the fluid domain must be chosen to render the
velocity potential single-valued. The extent of this problem is beyond the scope of this review.



Also, the normal velocity on the body is equal to the normal derivative of the
potential since, on the surface of the body, fluid particles cannot cross the solid boundary! :

0u! Spoay = V-1 (2-2-5a)

6
with V.n= z Xi nj (2-2-5b)

i=1

Although this is 2 well posed problem, it is unlikely to be solved in an analytical
fashion when written in this manner. Some major difficulties arise from the nonlinear terms
in equation (2-2-3). Also, the free surface is an unknown, as well as the position of the
surface of the body on which (2-2-5) is expressed.

The linearized equations of motion (se¢ for example Lamb 1932) can be obtained by
writing the exact equations of motion and assuming the unknowns in the form:

G(x,y,z,0=01(X,y,Z,0+E202 (X,y,2,0H+ ...

F(x,y,z,0) = -y +{mix.z,+5n2 (x,2,0+ ... (2-2-6)

By assuming that the gradients of the potential are small and that only higher order
terms can be neglected?, the equations are modified and yield (we drop the index 1 for the
first order term which becomes our new unknown potential $):

du(x,0,2,)+gdy(x,0,2,t) = 0 (2-2-7)
taken on the undisturbed water surface y=0.
The equation of the free surface becomes y=n(x,2,1) and

n(x,z,t) = --é-cbc(x,O,z,t) | (2-2-8)

The validity of such assumptions will be discussed later. A consequence of these
. assumptions is that the free surface is now given by y=0 and that the quadratic term has
" disappeared in (2-2-3).1t is interesting to note that with this description, y is defined
unequivocally. This doesn't allow for example for jets or plungers. Also, equation (2-2-5)
is expressed on the undisturbed (or initial) position, Sg, of the floating body :

¢aiSo= Vn (2-2-9)

The hydrodynamic forces and moments about G can be written in the form:

IThe expression of the normal vector n under linear assumpdons is listed in appendix Al.

2The significance of £ and { will be outlined when considering perturbation techniques to solve the
nonlinear problem. In the case of the linearized problem of a floating body, ¢( =0) measures the "smallness”
of the amplitude of oscillation.



FH=J-p.ndS
So

KH=jp(r—rG)xndS

Y
¢ (2-2-10)

The reaction of the fluid is expressed through the pressure acting on the surface of
the body. The integrals are taken over the undisturbed position. This is a feature of the linea
approximation and is a consequence of the assumed small motions. If large motions are
considered, one must consider the complete equations of motion and both referentials (see
Huang 1987).

The value of the pressure on the surface of the body can be derived by using
Euler's equation:

1
P+ +pgy+5plVel2=0
(2-2-11)
ifp=0aty=0.
The linearization assumption suppresses the quadratic term so that :

=- P9, - pgY 2212

The contribution to the hydrodynamic forces are of two kind. The second term of the RHS
of (2-2-12) is a purely hydrostatic term while the other is a dynamic term.
Using this expression for the pressure, one can write the equations of motion in the form:

my; Xj = - ¢jj X - thb;nids + (Fext ) (2-2-13)
0

The coefficients, following notations introduced by Ogilvie (1964), and specified in
Wehausen (1971), can be found in appendix Al.

[t is interesting to note that the terms cjj x; correspond to a hydrostatic contribution,
therefore, the ¢jj coefficients only depend on the static equilibrium of the body in calm
water.

Again, it needs to be specified that the relations are valid for small angular
displacements, provided the form of the hull underwater doesn't change appreciably



(Saint-Denis 1974). The hydrostatic terms are restoring terms. Saint-Denis gives an
example of how in extreme conditions, when the position of the hull is not close to being
constant, the values of these coefficients are off. As a consequence, since most hulls are
designed using these coefficients, the operations of the platform should be limited, to be
safe, to operations in moderate seas.

-2-2 ion i i
It is useful at this point to separate the potential into three potentials:
ARRACR (2-2-14)
¢; defines a wave tram in the absence of a hull. ¢p describes how the presence of
the hull disturbs the incident wave train. The other effect of these potentials is that they will
set the body into motion thus generating additional waves, coming out in all directions and
corresponding to the potential ¢ or forcing potential. John (1950), points out that the
decomposition of the velocity potential into three potentials is unique and comes naturally
when applying Green's theorem to ¢ and to a suitable surface. The boundary coaditions on
the body become with this notation:

(dp+9), lsfo and O, lsc,‘_“vn
(2-2-15)

In addition, ¢p and ¢f must satisfy a radiation condition guaranteeing that the waves
are outgoing and have proper amplitude and behavior at infinity. The mathematical
equivalent of this physical condition is to find adequate behavior at infinity for the problem
to have a unique solution. The form of this condition depends both on the formulation of
the problem and on the nature of the body. This result was first pointed })ut by
Sommerfeld.

1) For an initial value problem, it is sufficient to say that ¢,dt,and V¢ be bounded.

2) For motions generated by an incident monochromatic wave! in which transients
have died out, the appropriate radiation is not known for all cases. Two important cases are
as follow:

1The importance of periodic excitation and response will become apparent later when ansient motion and
periodic motion are related by using the impulse response function. Again it is useful to keep in mind that
this feature comes from the principte of superposition which is a consequence of the linear equations for the
boundary value problem.



6, is a monochromatic wave with w? = gk tan kh
and

6, O, O are of the form ¢ = Re p(x,y,2) ¢ @
(2-2-16)

a) If the fluid has a constant depth h and the body is bounded then ¢p and ¢p
must satsfy
L3
. 2 .
im R™[¢q,-ikg]=0
R—pes

where R = x2 + z2 2-2-17)

b) a consequence of the previous relation is the expression for problems in
two dimensions:
lim (@ % ikg)=0

X (2-2-18)

Radiation conditions are not known for every geometric configuration. If a problem
is solved in which the radiation condition is not known, by formulating it as an initial value
problem and then finding the asymptotic form of the solution as t —es, the correct solution
will be found. However this method will not yield the correct radiation condition for the

steady-state problem. This approach is used when numerical methods depend on what the

behavior at infinity is. The free surface condition can be used to advance the solution in
time. It should be noted that in the case of nonlinear problems, this approach may yield the
" wrong results since the solution to these problems are dependent on the initial conditions.

2-2-3 Uni i Exi f 2 Soluti he Li Probl

For initial value problems, uniqueness proofs have been given by Volterra (1934),
John (1949), Finkelstein (1957), Wehausen (1967), Garipov (1967), and Beale (1977) .

For the steady state time harmonic problem of a freely floating body, John (1950)
proved that the solution is unique provided the frequency is sufficiently large and a vertical
line intersects the submerged surface of the body only once. If the body moves with the
frequency of the jncident wave, the restriction of large frequency is not necessary. Other
uniqueness theorems are given by Kreiset (1949) for the diffraction due to floating bodics,
Ursell (1947) and more recently Lenoir and Martin (1981).



Beale (1977), gave a proof of existence of a solution 1o the initial value problem for
finite depth using a semigroup theory. Garipov (1967 for finite depth and Jami (1981) for
mfinite depth used another approach to derive their proofs.

For the steady-state time harmonic problem, John (1950) proves the existence of a
solution if the body intersects the free surface perpendicularly. Kreisel (1949) established
existence theorems for two dimensional bodies. Ursell (1949a, 1953) in his derivation of a
half-submerged cylinder showed existence for this particular case. A more general existence
proof was given by Lenoir and Martin (1981).

-2-4
When neglecting the time dependent term ¢, in the linearized equations of motion,
only the hydrostatic forces exerted on a body are computed and a set of differential
equations for a floating body in calm water are obtained.

-2- -Krylov F

Taking ¢ = ¢y and neglecting ¢p and ¢r in the equation of motion yields what is
coined the Froude-Krylov theory by naval architects. This approach is used when
dimensions of the structure are small compared to the incident wave length and when inertia
terms are predominant. It is assumed that the structure does not affect the wave field. The
force exerted on the structure is obtained by integrating the pressure in the field, computed
at points occupied by the structure. Of course, this is an approximation since ¢p and ¢g do
not exactly equal zero.In some cases, a correction to the force computed in this manner can
be made in the form of a force coefficient and this method provides a simple way of
computing the hydrodynamic forces. For further reading one can refer to Chakrabarti
- (1987).



The added mass and damping coefficient come as natural definitions when one
considers the response of a floating body to a menochromatic wave excitation ¢;. When
transient motion dies out, it 1s legitimate to assume that the motion of the body can be
written in the form:

10K
X, = Rca.kc @31
where the a; are unknown in the case of a monochromatic wave or prescribed in the case of
forced oscillation.

A solution for the potential §p can then be sought in the form:

O = posot+Q, sin @t 23.2)
This decomposition is of course not unique. Wehausen (1971) looks for an equivalent
solution with a term in phase with the velocity and a term in phase with the displacement :

[
¢ = le (D) O1c(xy,2) + @Ox(DP (X,Y,2)

(2-3-3)
or
6 -
. ~Hd v
O =2 Re - i0z,¢,¢ and @, =@ +19,,
k=1
(2-3-4)
¢ Then the ¢y must satisfy the following equations:
Apy=0

(2-3-5)

cpk(x,(),z) - cpky(x,O,z) =0
? (2-3-6)

Ouols =0y @, s =0
Ikn ' 5, Dy 2.0 S (2-3-7)

If the @y exist, then ¢ satisfies all the conditions imposed upon it.

With these notations, the hydrodynamic force Xyr can be written:



10

Xgpi = - menids
0
6
= [ [ X £P‘P1kmd5+ WXy prpzknidS] +
kx1 0 0
+

S[p(tbn . épon; dS ] (2-3-8)
0

The following quantities can be defined:

= J po,nS = [po,0, cs
% S,
(2-3-9)
Apy=0 j PPy mdS = “’J PP 9y 045
% % (2-3-10)

These constants depend on the geometry of the body and on the frequency w. The
first term on the right hand side of the expression giving the hydrodynamic reaction will
yield a force a 180 degrees out of phase with the body acceleration and the second term will
yield a force a 180 degrees out of phase with the body velocity. It can be noted at this point
that there exist many "literal” definitions of the added mass and damping term. This comes
from the many possibilities to take a sum of the two independent functions coswt and sinwt
in (2-3-3)1. Different expressions will yield different results and definitions for the added
mass and damping. Whatever the choice, the hydrodynamic force comprises two terms,
- one which is related to the acceleration multiplied by a coefficient with dimensions of a
| mass, and another which is related to the velocity multiplied by a coefficient with
" dimensions of a damping term. It should be pointed out that different authors get different
expressions for the added mass and damping and subsequently derive expressions which
are consistent with their definitions but different in form (Kotik and Mangulis 1962;
Greenhow 1986; Chakrabarti 1987). The added mass and damping forcing terms are
usually non dimensionalized by the amplitude of the acceleration of the body multiplied by
the volume of displaced water.

1Saint-Denis (1974} takes the expression ¢ = Re {(yy ei““) which leads to a damping term in quadrature with
the velocity, and a different expression of the added mass and damping coefficient. The @y and vy can of
course be easily related.
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Because the flux of energy outward through any control volume must be positive,
the matrix formed with the coefficients A is definite positive. The same cannot be said for

the matrix formed with the y coefficients. Ogilvie (1963) gives an example of negative
coefficients. If e is sufficiently small, then the matrix of p coefficients is definite positive.!

It is interesting that the Ay are sensitive to the asymptotic behavior of the ¢k while
the p; reflect the local behavior of the @y and the details of the body geometry. Kotik and
Mangulis (1962) and then Kotik and Lurye (1964) derived a relation between the
coefficients for heaving cylinders. This was generalized by Ogilvie (1964). An equivalent
relation existed in the field of acoustics and these relations are known as the Kramer-
Kronig relations?:

2 T 14 4
(@) — () =;P.v.jxij(a) —
0 (2-3-11)
. do
My@=Ea? PV [ (e - )] 5
0 (2-3-12)

The P.V. denotes principle value integrals (see for example Dettman pp.109-112, or a step
by step derivation in Frank 1967).
Kotik and Lurye derived a relationship for the |4 :

0

(2-3-13)
' Further use of the Kramers-Kronig relations was made by Athanassoulis and Kaklis (1987)
. and some relations are given in Athanassoulis, Kaklis and Politis (1988).

I'The coefficients defined in the previous equations are defined with respect 10 G. They can easily be defined
with respect o O, If they are defined with respect to O, the only differences are:
TR TUNES Mgy = Mgy + Y _
a Mo~ Yol ok = Mo ¥ YoHix where the prime
refer to the quantities when they are defined with respect to O. Similar relations hold for the A 's.
2These relations take different expressions, depending on the choice of the definition for the added mass and

damping in equations 2-3-3 and consequently 2-3-9, 2-3-10. See (Kotik and Mangulis 1962, Greenhow
1986)
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These terms are given by the integral depending on the time derivative of ¢p and o
in expression (2-3-8). Note that to determine the  and A, one can simply consider forced
periodic motion of the body, in which case the hydrodynamic exciting force and moments
are null. Haskind (1957) pointed out that if only the body motion is of interest and oF has
been determined, it is not useful to solve for ép. One can consider the region limited by the
body surface So, a large vertical cylinder 2 of radius R, and the bottom surface B and free
surface F enclosed within Eg. Within this region, ¢p and @y are harmonic. Therefore
applying Green's equality we get:

| (909xa- 6Ds01) dS = 0 (2-3-14)
Sp+B+F+EIp

Due to the boundary conditions on B, F and the radiation condition on ZR, the only
non zero integral is that on the surface So:

£¢D ny dS = iqmn Pk dS (2-3-15)
0 0
- - £¢1n PrdS (2-3-16)
0

from the boundary condition. (2-2-15) on Sg

The components of the hydrodynamic exciting force and moment (due to 91 and ¢p) Xy
can then be evaluated:

Xy = - £P (1049p: ) N d S (2-3-17)
0
Xme = -Re-iae [ (41.40) ncdS (23-18)
y]

Xmx = Re ine-iot ! P ($1Pxn- $1aPr) dS (2-3-19)
0

Xmi = Re -iweix | p (010ka. 120k dS (2-3-20)
Ip

The form (2-3-20) also follows from Green's theorem. Its advantage is that an asymptotic
expression of @y can be used. This relation was used by Haskind (1957), Newman

(1962), Kim (1969a) and Vugts (1968a) and has been implemented in numeral codes to
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avoid computing the force due to the diffraction potential. Asymptotic relations can be
derived which can simplify the computation of it and A.

Other relations make use of the asymptotic representations of functions like ¢p or
P These have been investigated in two and three dimensions by Kochin and Haskind, and
in three dimensions by John (1950; see also Newman 1962; Kochin et al. 1964: Wehausen
1971;).

There exist several ways to compute the coefficients.

1} The most efficient way is to find an analytical solution to the boundary value
problem. The resuits are limited to bodies of simple shapes, most often in an infinite fluid
(see references in Saint-Denis 1974; Sarpkaya and Isaacson 1981). Explicit solutions when
a free surface is present are known only for the case of a swaying or rolling vertical plate
(Kotik 1963). Most often, only a few of the 36 coefficients are given.

2) A second method is to represent each of the functions @y as the sum of 2 source
function and multipoles, placed at the origin. This idea was originated by Havelock (1928)
in an infinite fluid. The potentials for the singularities are first adjusted by adding to the
fundamental singularity an infinite series of wave-free potentials, so that the resulting
function satisfies the free surface condition, the bottom condition and the radiation
condition. The strength of the singularities are then adjusted to satisfy the boundary

conditions on the body. For two dimensional motion, Ursell (1950) proved that this

expansion is possible. For 3 dimensions, the weak point of this method is that the

condition on the surface of the body will hardly be satisfied since the singularities can only

represent but a limited number of hull shapes. Approximate hull shapes are substituted to
- real ship shapes when this method is used. Determination of the coefficients in the multiple
- series requires solving an infinite set of linear equations which must be approximated. After
Wehausen and Laitone (1960, p. 479), some typical functions in two dimensional
problems are log (r) cos (®t), r™ cos (n8) cos(wt), r? sin(nB) cos (t) (for n=1,2,... and
X =r ¢0s, y=r sinB; see also Thorne 1953). The use of a series of multipoles to represent
the potential for forced motion with a free surface was initiated by Ursell (1949 a and b)
who considered the heaving motion of a cylinder, half-submersed in infinitely deep water.
The method Was further developed by he and extended to other shapes, and to water of
finite depth by others. The shapes are primarily those that can be obtained from conformal
mapping of a circle, using Joukovski-type mappings of the form:
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z=§ + %1-+ -23—3+ ... the bj being real numbers (2-3-21)

They are called Lewis shapes. The most extensive use of this procedure for calculating i, A
and the relative wave amplitude at infinity has been made by Tasai (1961) and
VYugts(1968a) for infinite depth. In this manner Landweber and Macagno (1957, 1959) for
the heaving and swaying motion and, Landweber (1979) and Hsu and Landweber (1979)
for the rolling motion derived the added mass coefficients. Porter (1960,1966) computed
these quantities for heave in finite and infinite water. For finite depth, Yu and Ursell (1961)
computed the heaving motion of a circular cylinder. C.H. Kim (1969) has extended this to
all three modes of motion in finite depth and to the sections of ship like shapes.

Another assumption can be added to the initial smail motion assumption; if the hull
is assumed to be slender, the problem can be simplified by using the results derived in two
dimensions. The so-called strip theory is used, assuming that the flow is everywhere in
planes normal to the axis of slenderness. The hydrodynamic parameters for the three
dimensional case are obtained by simple integration along the axis of slenderness of the
results derived from the two dimensional flow, around a continuous sequence of colinear
cylinders of arbitrary but siowly varying shape. The hydrodynamic inertia and wave
damping coefficients at each section are obtained by the suitable conformal mapping of the
flow around a simple body. Some results have been discussed by Newman (1970) and
Saint-Denis (1974) This method will not reflect the characteristics of a three dimensional
flow.

For hull sections with sharp comers, a more convenient transformation is the
Schwartz-Christoffel transformation. A list of the hydrodynamic coefficients derived with
this method can be found in Saint-Denis (1974).

Grim (1960) related both methods to circumvent the limitations of the singularity
: distribution methods and the strip theory methods. The singularities are first designed to
. reproduce faithfully the two dimensional flow at the hull's section. They are then modified
to reflect the three dimensional character of the flow. This step is taken to satisfy to a high
degree, the relationship that must exist between the shape of the hull, the frequency of
oscillation and the distribution of singularities.

Havelock (1955), calculated the wave motion resulting from heaving oscillations of
a half submerged sphere in infinite water extended the method of multipoles to three
dimensions.Wang (1966), studied this motion in finite depth. Hulme (1982) simplified and
generalized Havelock's method. Evans and Mc Iver (1984) used this approach to study the
heaving of a sphere with an opening. Again it is reminded that this method is limited to
shapes, such as spheres, obtained from these distributions.
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3) Another procedure derives from the integral equation satisfied by the ¢y, This
equation can be obtained by using a suitable Green function. If G(x,y,z,E,n,0) is a
function which 1s harmonic in the lower half-plane (half-space) and such that G satisfies the
free surface, bottom, and radiation conditions, then applying Green's theorem on a surface

defined previously with points P and Q on the surface Sg of the body, it can be shown that
the @y satisfy equation:

27 gy(P)+ i ?K(Q) Gy (P.Q) dSq = gnk Q) G(P.Q)dSq  (23-22)
0 0

in 3 dimension (in 2-D 2% becomes n).!
The values of the Green functions can be taken to suit the particular problem considered.
Examples are given in Wehausen and Laitone ( 1960, pp.477-483). This technique serves
as the basis of the numerical methods known as boundary integral methods. The integral
equation is then discretized according to one of several procedures. Approximate values of
the @y at a finite sct of points on Sy are found. Approximate values of the A and p are then
computed. Frank (1967) for example makes use of the integral equation method to
successfully compute the A's and the p's for a number of ship like sections. The hult
contours are approximated by a variable number of segments. Wang and Wahab (1971) use
this method to analyze the hcaviné oscillations of twin cylinders.

4) Other methods exist: Some rely on variational techniques and will lead to the

finite element techniques; Results can also be derived when damping coefficients are -
known, by using equation (2-3-19) (see Wehausen 1971 for further reading). These =

methods along with the practical use of the Green Function will be described in the chapter
- on numerical methods.

-3-4 vi
Once these coefficients have been determined, the equations of motion can be
written in the form:

(Mics pny) X + Akt i Xg = Xipx (2-3-23)
Assuming that x, = a; e-it
then we get:

[-02 (my + Uix) - iR+ cix] ag = Xox (2-3-24)

1Gy = [m(Q)a% . nz(Q)% R nstq%l G

onA
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This can be solved for x; k =1,6 and therefore, the behavior of a floating body in a

monochromatic wave is known,

135 C con with Expers

Comparisons of these theoretical predictions with experiments can be made in three
different manners. The experiments measure pressure and force on the bodies as well as
wave amplitudes. They have been carried out by several researchers, some of whom are
mentoned here (see Wehausen 1971 for further references):

1) Forced waves in calm water: Porter (1960) for a heaving circular cylinder and later
Paulling and Porter (1962) for cylinders of ship-like sections; Yu and Ursell (1961) for the
amplitude waves generated by a heaving circular cylinder; Vugts (1968a) for circular,
triangular and rectangular cylinders computed the four, two dimensional coefficients. Van
Qortmesen (1974) considered a swaying ship-shape section.

2) Fixed bodies in incident waves: Vugts (1968a); Dean and Ursell (1959) considered a
plane wave on a half submerged cylinder.

3) Freely floating body in incident wave: Vugts (1968b) considered 2 rolling and swaying
cylinder of rectangular section.

These results compare well with linear theory in the limitations of the assumptions made.
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2-4  INITIAL VALUE PROBLEMS
4-1In i

Assuming that the motion of the body is known at an instant which can be set as
t=0, one wishes to find what the subsequent motion of the floating body is. The equations
of motion in their linearized form are still valid but initial conditions need to be specified,
Le. Or(x.y,2,0), Ordx,y,2.0), ¢p(x,y,2,0), Ppu(x,y.2,0), xx(0), %¢(0) are known. ¢y is
still a known function. There are two equivalent ways to approach this problem:

The first is to work in the physical time-space frame, making use of a time
dependent Green function.

The other is to take a Fourier transform with respect to time t, of all the equations
and boundary conditions. The variable becomes . This results in having to solve the
steady state time-harmonic problem which was addressed in the previous paragraph. The
interconnectivity of these approaches in ship hydrodynamics is emphasized by Cummins .
(1962) and later by Bishop, Burcher and Price (1973). Both methods are equivalent, since
when solving with Green's functions, one will usuatly resort to a Laplace or a Fourier
transform to solve the final set of integro-differential equations.

The approach using Green's function has been used by Volterra (1934), Finkelstein
(1957), Cummins (1962), Wehausen (1967), Chung (1982), Yeung (1982b), Beck and
Liapis (1987). The other approach has been used by Ursell (1964) for vertical motion of 2
cylinder, extended with numerical work by Maskell and Ursell (1970). Kotik and Lurye
(1964) and Motora et al. (1971) considered the swaying motion of ¢ylindrical sections. )
Kotk and Lurye (1968) analyzed the heaving motion of a sphere in the frequency domain.

For the first method, the first step is to derive a time dependent Green function and

an integral equation for the potential ¢. This also serves as a basis for numerical workl.
" Examples of such functions suitable for specific problems are given in Laitone and
. Wehausen (1960, pp.490-95), Finkelstein (1957), Chung (1962), Daoud (1975) and
Huang (1987). Wehausen (1967) and Yeung (1982b) derive the equations of motion in this
manner, 2

-4 ivati
Cummins derived these equations in a somewhat different manner (1962) which is
an elegant way of using physical considerations and the principle of superposition. The
potential © corresponding to a unit impulse displacement at time t is decomposed into two
potentials:

1See section on boundary integral in numerical methods
2This work is reproduced in appendix 2
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&®.1) =y @) + xx(P.1) (24-1
The physical interpretation of these two potentials is as follows:
Vi (P) is the initial reaction to the impulse at t=0 of the fluid. This potental,
corresponding to an impulse satisfies the boundary condition y (P) =0 on the surface y=0,
and goes 10 zero at infinity. It also satisfies the body boundary condition :

Me_p, (24-2)

signifying that the body is moving with a unit velocity in the k direction (see Batchelor p-
471 or Sedov p. 165 for the formalism and definition of an impulsive flow).

This impulsive flow causes an elevation of the free surface.

Xx(P.t) represents the motion of the fluid subsequent to the impulsive phase. It is
useful to note that xx(P,0) = 0. Waves have had time to form and will dissipate but the
body is no longer moving. The boundary conditions are therefore:

%lg= 0 on the body and Xy u+ g )iy = 0 on the free surface y = 0 (24—3)

Superimposing impulsive flows for successive times, of magnitude such that the velocity at
time t is the actual velocity, the solution to the boundary value problem is:

t

¢r (P;t) =__[

1
% (T) OL(Pit-1) dt = J %(t) ©p(P:t-T) d1 since %,=0 for t < Ol

(2-4-4)
Cummins obtains the exerted force, which is the expression which is traditionally
used.

t
Xpi= J-por (Piomas = JoaS oGl [ wew O @n ee]
0 0

(2-4-5)

4
= - Hiy () mt)-d[ Z(OR(t-T)dT  since xy(P,0)=0

(2-4-6)

and Yy (=) = S[IZ'\IIJ: (P)nidS and Ry(t) = SJ Pk (Pit)nidS (2-4-7)
0 0

!Petersen (1982), gives a slightly different expression, with = Xpfort <0
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In the most general case, the equation of motion can be written:

t

(Mg + Pig(e) ¥y + of (DR (1)dT + e % = Xpp+-Xexc (2-4-8)

where Xy, and X, correspond to the forces and moments respectively associated with,
¢1 + ¢p, and the exterior exciting force.

We notice that Ry (t) does not depend on the motion velocity or acceleration. If the
motion of the structure is sinusoidal, the above equation should turn into a frequency
domain equation.

Assuming that

~Rea e’
e (24-9)

and that the motion is started for t = -e<, 50 that the initial condition effect has disappeared,
one gets :

ot

t -
XFi = - i (=) Xe(©) - [ RWRg(t-0d1 = - py (o) rkm-df 2e(t-DR (1)d

(2-4-10)

Xri = - Hig (o) - i— sin(@oRa()dY) Xult) - [J cos(@Ra(1)dT] Ke(t)

-

(2-4-11)

- So we get the simple relationships by comparing with equation 2-3-23:
i (@) = iy (o) - i Jsin@oratoee (24-12)
Aix (@) = @ Jcos(m)Rﬁ(‘t)d‘r (2-4-13)

Therefore, ! (U () - fix (=) and Ag (@) are the sine and cosine transforms
of Ri(t). Inversely, knowing the values of & (Lix (@) - fix (==)) and Ay (w), it is
possible to determine Ry (t).This is the method used in van QOortmessen (1974) or Petersen
(1982). From this relationship, the Kramers-Kronig relations can be derived as was
pointed out by Ogilvie (1964). Haskind-type relations can also be derived to avoid
computing ¢p if the @y are known (Wehausen 1967). The inverse Fourier tranforms are
given by:



20

Ri (t) = gd[ cos{Wt)Ay(w)dw (2-4-14)
.3

Ry (0) = -f;d[[uik(«») - ()] osin(et)do (2-4-15)

These relationships are widely used as we will see in the following chapters. It
should be noted that different authors use different approaches which are somewhat better

suited for their problems. Beck and Liapis (1987) start out with a different expression for
the potental in (2-4-1):

L

oF (P;t) = d[ %, (t~1) By (P;1) dt (2-4-16)

This expression and that of Cummins are equivalent in their formulation provided that
x¢(0) =0 as a simple change of variable shows. Beck and Liapis apply Green's theorem to
¢ and not ¢;. This is not as general as the case presented by Cummins or Wehausen. With
this assumption they get:

t
Xri = - Pix (=) %y(0) 6[ Ri(t1) Ta(t)dr (2-4-17)
Mig (o) = S[P‘Fk (P)ndS and Ty(t) = s[pxk (P;t)nid$S (2-4-18)
0 1]

The equivalence between the Cummins and the Beck and Liapis derivation (i.e. a
relationship between Ty (t) and R;(t)) is found by integrating by parts but again using the
. factthat %,(0) = 0.
' Petersen (1982) uses the same approach as Cummins and derives the equations of
‘ monon in the case where the ship has a steady non zero velocity for t < 0.

It is interesting to note that piy (=) is a constant which depends only on the shape of
the body. Rix(t) (or Tix(t), or Lig(t)!) contains the memory of the fluid response. It is a
function of time and of the system geometry but it is independent of the past history of
motion.

This extensive paragraph was developed to show that the impulse potential can be
derived in different manners. The resulting equations, giving the frequency dependent
added mass or damping coefficients, and the impulse response functions will therefore be

1L (t) is the impulse response function derived in Appendix 2.
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linked to the choice of the expression of the hydrodynamic force exerted on the floating
body. This staring hypothesis is not always clearly specified in the literature and some care
should be used when integrating the linearized equations of motion of a floating body.

2.43C ison with Exoeri

Experiments are scarce for the study of transient motion. Ito (1977) computed the
transient heaving motion of different cylindrical shapes. Bayley, Griffiths and Maskel
(1976), and Beck and Liapis (1987) considered the heaving of a sphere. Most often,
frequency-dependent coefficients are computed as presented in the previous section. The
impulse response function is computed using this experimental data and then compared to
experiments. This will be described in the following chapter. Also, time-stepping numerical
schemes are usually used to model transient motion and compared to experiments. This
topic will be addressed in the section on numerical methods. Some experiments have been
carried out to validate second order approaches and arc presented in the section on
nonlinear effects.

2-5 THE ZERO AND INFINITE FREQUENCY COEFFICIENTS
When o is null or infinite, the form of the linearized boundary value problem to

solve for ¢f is modified. The free surface boundary condition becomes:

Opy=0 for =0 (2-5-12)

=0 for t=oo (2-5-1b) |
The first case corresponds to a body moving in an infinite fluid or a steady state motion and -
the second case to a body impulsively started from rest (Batchelor p.273). Looking for a

solution in the form:

' 6

br= kzl Ur®'re and @'pr= @1+ i9'2x (2:5-2)
where the Uy are the given velocities; the potential for the limiting cases =0 and =< are
solutions of 2-3-5, 2-5-1a (resp. 2-5-1b), 2-2-4! and V@'g bounded at infinity. This last
condition is somewhat different from the radiation problem since no energy is radiated
outwards in this case. From this radiation condition and (2-5-1) one gets:

@2 =0 _ (2-5-3)
A consequence is that the damping coefficients are null for the limiting cases. An added
mass coefficient can be defined, which is related to the kinetic energy in the fluid (see

IThe prime myst be added where it applies to account for a sign difference in the definition of $F in 2-3-3
and 2-5-2.



22

Batchelor pp.404-407 for a steady motion and p.472 for an impulsive motion) and with
some assumptions to the force exerted on the body. Define the limiting added mass which
only depends on the shape of the body:

Uik (@] guoe =+ Sj po'1x (P)nid$S (2-5-4)t
0

As we have seen, these coefficients play an important role for transient motion and have
been researched extensively. The zero frequency added mass coefficient is related to infinite
fluid flows (see Saint Denis 1974, Sarpkaya and Isaacson 1981). Flagg and Newman
{1971) and Chung (1982) considered a double limiting process to obtain the zero frequency
of cylinders in very shallow water.For two dimensional infinite frequency added masses
see Saint-Denis, Sarpkaya and Isaacson and Sedov (1965) who derived the uncoupled
coefficients for a semicircle. Landweber and Macagno (1957) and Landweber (1979) also
computed the infinite frequency of swaying and rolling motion of Lewis Forms. Simon
(1985) obtained asymptotic values for the heave and sway of a cylinder. Bai (1977)
considered bodies in a canal. The most complete theoretical and numerical work in two
dimensions is by Athanassoulis, Kaklis, Politis (1988). They present a general work which
enables the computation of both coupied and uncoupled coefficients. Off diagonal terms as
well as added moment of inertia fo nonsymmetric bodies are given for the first time. In
three dimensions, others have investigated the infinite added mass for swaying spheroids
(Landweber and Macagno 1960) or a heaving and surging sphere (Hulme 1982, Simon
1985).

The usefulness of the Kramers-Kronig relations was pointed out previously. Kaklis
and Athanassoulis (1987) derived other asymptotic expressions. Greenhow (1985) uses the
Kramers-Kronig relations to extend Hulme's work and later generalizes this study (1986).

Relation (2-4-12) was also experimentally verified by van Oortmessen (1974).

2-6 CONCLUSION

The equations of motion to be solved when considering periodic excitation or
transient motion of a floating body under linear assumptions have been derived. Solutions
to these problems are related as shown when using 2 Fourier transform. The key to finding
these solutions is to derive the so called added mass and damping terms or impulse
response functions. Source and multipole expansions, conformal mapping, appropriate
Green functions to derive a boundary value problem, and numerical methods can be used
when no analytical methods exist, to yield results for these unknowns.

lfor qmes then by comparison with 2-4-18, it is clear that @'y = -¥y,
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Green functions to derive a boundary value problem, and numerical methods can be used
when no analytical methods exist, to yield results for these unknowns.

The linearization technique may fail to predict some important phenomena. We will
now review some of the techniques which can be used to predict these phenomena and the
current work on nonlinear effects when considering the motion of freely floating bodies.
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3 NONLINEAR PROBLEMS

3-1 INTRODUCTION

The following assumptions have led to a simplified analysis for the motion of a
floating body:

The free surface conditions are expressed on the initial position of the surface y=0 .

The body boundary conditions are expressed on the initial position of the body.

The velocity squared terms (V¢)? are neglected in the expression of the boundary
conditions on the free surface and in the expression of the pressure on the body.

Due to these assumptions, some observabie effects are not apparent in the resuits of
the linear (or first order) problem.

A number of techniques are available to predict some of these nonlinear effects and
will be presented here.

3-2 NONLINEAR EFFECTS PREDICTED BY FIRST ORDER DERIVATION
Observations show that bodies freely floating in waves drift slowly in the direction
of propagation. Elongated bodies turn broadside to the waves. This cannot be predicted if a
solution is sought in the form (2-3-1). These time-dependent force and moment can
nevertheless be derived from general momentum theorems and from first order results.
This was pointed out by Haskind who computed the force and moment acting on a vertical
plane barrier and later extended his work to floating bodies (see Wehausen 1971 and
Newman 1967). Independently, Mario (1960) derived the drift force in two and three
dimensions and Newman (1967) extended this analysis to compute the moment. These
effects are of importance in the analysis of the dynamics of moored vessels. Ogilvie (1963)
. analyzed these effects for a submerged cylinder. Soding (1976) used a Green approach to
_ derive second order force on an oscillating cylinder. Kim (1967) iterated from a zero-
frequency solution to study the forced heaving tniangular cylinders. Grim (1977} derived
approximate solutions based on low frequency assumptions for large amplitude roll.

3-3 OTHER NONLINEAR EFFECTS

The linearized equations of the boundary value problem were obtained by writing
the potential and the free surface in the form (2-2-6) and by solving the first order problem.
This is the first step in applying a technique which will be described here



The general feature of perturbation methods is to substitute an infinite number of
linear systems to a a nonlinear problem. An expansion of the unknown quantities is sought
in terms of a "small” parameter associated with the magnitude of the nonlinearities. The
difficulties related to the nonlinear features of the system temporarily disappear. By
matching terms of like order, simplified linear problems are substituted. The difficulty in
solving for each term usually increases as the order increases. (see Van Dyke 1964; Nayfeh
1973; Kevorkian and Cole 1980 for further reading).

The convergence of the series as well as the number of terms needed to depict
accurately the nonlinear effect may vary. The nonlinearities must remain weak in order to
insure both convergence and an accurate prediction of the solution with a limited number of
terms.

Dimensional analysis conducted before carrying out the computations is a good way
to predict what the limitations of the perturbation techniques for a given problem are and
what results are to be expected (Cointe and Armand 1987; Cointe, Molin and Nays 1988).
Situations where perturbation techniques yield the linearized problem to first order (See
appendix 1) are usually referred to as weakly nonlinear regimes (Cointe, Molin and Nays
1988) and correspond in reality to moderate wave heights and moderate wave amplitedes
(Papanikolaou and Nowacki 1980)..The nonlinear effects mentioned above can be taken
into account in a perturbation sense where the free sarface and the true position of the
wetted body are written to second order, using respectively a perturbation expansion and a
Taylor expansion about the initial positions.

A policat i bl |

Cointe et al consider the forced motion of a wavemnaker in a tank (Cointe, Molin and
" Nays 1988). They show that the linearized first order free surface equations (2-2-7, 2-2-8)
- are valid if the acceleration of the body is much smaller than gravity . A consequence of this

is e={ in (2-2-6). Their analysis is valid for oscillations of a body on the free surface. The
small parameter in these cases is a ratio of these accelerations (Potash 1970). Second order
investigations have been made. Lee (1966,1968) using multiple expansion and conformal
mapping, and Parissis (1966) considered vertical oscillations of a cylinder, of ship like-
sections and semicircle respectively. Potash (1970) analyzed sway, heave and roll for ship-
like sections using a close-fit technique. Papanikolaou and Nowacki (1980) extended this
work to cylinders of arbitrary crosssections. Kyozuka (1980) considered incoming waves
in infinitc depth and compared second order theory with extensive experimental data. Mc
Camy (1961 and 1964) considered the motion of a heaving cylinder at shallow draft.
Related to the study of the flow in the vicinity of free-surface piercing bodies, the problem

"
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of the wavemaker using perturbation techniques has received considerable attention since
the work of Havelock (1928) who derived the first order solution. This was later
approched in more detail by Lin (1984). Second order solutions exist for the weakly
nonlinear regimes of an oscillating wavemaker in a tank (Cointe, Molin and Nays 1988).
Some results derived in these studies may find applications when considering the motion of
oscillating swaying bodies.
A policat . bl

The difficulty for these problems, as opposed to oscillatory ones, is that
displacement and time are not simply related. This affects the choice of the smallness
parameter which in turn affects the form of the probiem to solve (Roberts 1987). The
magnitude of the acceleration of the body with respect to that of gravity is also an important
problem in order to determine which terms to retain in the free surface boundary condition
and whether the regime is weakly nonlinear or riot (Cointe, Molin and Jami 1987). The
application of perturbation techniques has been widely used to model the interaction of
bodies and free surface flows. Cointe and Armand (1987) studied the impact of a cylinder
on the free surface completely including second order effects. Second order solutions exist
for the weakly nonlinear regirnes of the transient motion of a wavemaker (corresponding to
a swaying motion) but not for impulsive problems! (Roberts 1987; Cointe, Molin and
Nays 1988). Some of the results derived in these papers, especially concerning the problem
of the intersection between the free surface and body can be generalized to study the
transient motion of a swaying cylinder. These will be presented in chapter 5. The second
order expansion to model wave-body interaction is reviewed by Ogilvie (1983).

: Solutions derived in some manner (such as perturbation techniques, separation of
 variables or other) even for linear probiem, may not be valid in the whole field. They may
* break down at some point where the flow is singular. Also, to simplify the problem, some
physical feature on the body may be overlooked to get a solution which is valid away from
the body, in an "outer domain”. The flow is then examined locally by stretching the
coordinates or in some other manner to obtain a solution in an "inner domain”. Both
solutions are matched in the limit when the domains overlap {see mentioned texts on
perturbation techniques). These methods have been widely used. Lin (1984), Cointe and
Armand (1987), Roberts (1987), and Cointe et al (1988) use this technique to analyze the
behavior of the flow at the intersection of the body and the free surface. Simon (1983)

1The free surface condition becomes ¢=0 on y=0 and corresponds o the infinite frequency problem in this
case.
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derived asymptotic expressions for the amplitude of waves radiating due to the high
frequency oscillation of floating bodies. Yeung (1981) approached the problem of a
heaving vertical cylinder in this fashion. Newman, Sortland and Vinje (1984) analyze in
this manner the damping of rectangular bodies close to the free surface. This work is
extended by Marthinsen and Vinje (1985) to study the swaying of side by side ships with a
special emphasis on the gap between both ships. Based on this study, Vinje (1987) hopes
to expand this approach to compute some nonlinear forces on a berthing ship.

- Qi "

A flow is self-similar if "it is identical from one instant to another or from one part
of the flow field to another with the exception of a change in scale”. This argument may be
usefui to reduce the number of independent variable thus simplifying the equations. Using

self-similarity arguments, nonlinear free-surface flow problems may be approached -

(Johnstone and Mackie 1973) and in some cases solved successfully (Cointe and Armand .

1987) or for the classical problem of wedge entry. Greenhow (1987) analyzes entry related
problems. Cointe, Molin and Jami (1987) show how using this techniques may simplify
nonlinear impulsive problems.

3-4 EXPERIMENTS

Some experiments are geared to the study of second order effects: Vugts (1968 a
and b) mentioned previously, Tasai and Koterayama (1976) and Yamashita (1977) for
heaving cylinders. Also, Kyozuka (1980) compares analytical work to experiments for the
motion of a cylinder in waves.

' 3.5 CONCLUSION

Stk

The drift force on floating bodies can be obtained from the solution of the linearized

problem. Some techniques to solve flow problems have been outlined. By combining these
techniques, nonlinear effects can be exhibited and higher order solutions found. These will
be applied to analyze the transient motion of floating cylinders. The fully nonlinear problem
can also be considered and soived using available numerical techniques. Numerical
methods are usually the last step in most of the methods mentioned previously (one
exception is Cointe and Armand, 1987). For perturbation theory for example, the boundary
value problem that needs to be solved at every order can only be done in a numerical
manner in most cases. The research on numerical methods suited for flow probiems has
therefore become a large part of the study of free surface flows. Features of available
methods will be presented.
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4 NUMERICAL METHODS IN FREE SURFACE FLOWS

4-1 INTRODUCTION

Though simple in their formulation, free surface boundary value problems are very
difficult in most cases to solve analytically. To obtain answers for general problems,
numerical methods have been developed which can be used to solve the linearized or the
fully nonlinear problem. Three types of methods are usually distinguished according to
what procedure is used to tackle the field equation; finite differences, finite elements and
boundary-integral methods. Some hybrid methods incorporate features of the different
primary methods in different subregions of the field or known analytical results, retaining
the advantages and discarding the disadvantages of each method if this procedure is done in
a consistent way. Some reviews cover these aspects in a great amount of detail and only the
major concepts will be highlighted here (see Euvrard 1981, Yeung 1982). The initial
boundary value problem is defined as (2-2-2 to 2-2-5). A Lagrangian approach can also be
used (see Fritts and Bories 1977 ) but the generalities presented here apply in both cases.!

4-2 FINITE DIFFERENCES METHODS

This extensively used technique is particularly suited for problems dealing with a
linearized free surface boundary condition and for straight body geometries. A mesh,
usually rectangular, is placed on the field and by discretization of the equations of motion,
the flow is computed at grid points. For nonlinear problems, the free surface boundary will
not usually intersect the mesh system at grid points chosen in the still configuration and
curved bodies will have to be approximated by segments. The influence of the boundary
condition on the solution being strong, it is important to properly discretize these
boundaries. Therefore, in the vicinity of the body and surface, the mesh needs to be refined
* in order for the computations to yield the same accuracy on the boundary as in the field.
This will increase computation and is difficult to implement. Von Kerczek and Salvesen
(1974) analyzed effect of a disturbance on a nonlinear surface and compared their results to
second order theory. These agree well if the nature of the disturbance is small.
Choice of di I~ l

Different forms exist to discretize the equations. Implicit schemes are the simplest to
implement (values of the potential and free surface elevation at time step t+At are given in

terms of values at previous time-steps) but other possibilities exist Stability analyses can

IIn the Lagrangian formulation of the flow problem, the boundaries are known but the field equations are
nonlinear. See for example Lamb p 13 or Johnstone and Mackie 1973.
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be performed to determine the minimum time step and grid space that need be chosen for
the scheme to be stable and converge.
. : :

if the boundaries are difficult to discretize using segments, or call for a complicated
gnid, the flow field can be mapped onto a domain where the boundaries become rectilinear.
The disadvantage arises because the field equations become more complicated in the
mapping process. Using this approach, Haussling and Coleman (1979) consider the
motion of a cylinder under a nonlinear free surface.
conditi infini

The problem addressed in this section is general to ail methods. The domain's
extent must, in the case of discretization, be limited. The question arises to what is a

"good" numerical value for infinite and what is the proper radiation condition to consider =

there. If the domain is truncated to a control surface Xy , this surface should also propagate E
as the disturbance does. This problem has not been solved and is especially arduous for ~
steady state flows. Some researchers chose to discretize the transient motion and let t go to
infinite. Assuming that the scheme does not break down in the mean time, this method is
not applicable to nonlinear steady state motions since the steady state solution depends on
the initial condition. Some artifices are given in Yeung (1982) but the question is still open.

4-3 FINITE ELEMENT METHODS

. The finite element technique, as the finite difference technique, directly discretizes =

the equations in the whole field. The field where the flow is considered is subdivided into a s
mesh of finite sub-regions or elements where the potential is approximated by trial °
functions, usually polynomial, written in terms of unknown parameters (see for example *
. Bai 1977).

The weak formulation of the finite element method is obtained by substituting the
trial functions into.the ficld equations. The integrated residual based on a weighing function
is then required to be null. Boundary conditions are incorporated by integration by parts.
The choice of the trial function will lead to different types of elements and the choice of the
weighing function will lead to different methods.! Different elements wiil be more
particularly suited to different shapes of boundaries. Another possibility is to use a
variational method where a functional is made stationary. This strong formulation can be
related to the weak forrnulaton.

11f the weighing function is the same as the trial function, this is the Galerkin method.
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Super-elements which mask local troublesome effects or conditions at infinite can
be implemented in finite element discretization schemes in a convenient manner.

4-4 BOUNDARY-INTEGRAL EQUATION METHODS
4-4-1 General Description

The treatment of problems in potential theory by integral equations is classical (see
Kellog 1929). The main feature is to reduce the space dimension of the problem by one.
The problem is formulated in terms of an integral equation, the integrals being taken on the
boundary of the domain. The boundary conditions are therefore introduced directly in the
problem and since the knowledge of the value of the potential in the flow field is of little
interest, there is no waste of computed information.

The source of the difficulties in the boundary value problem come from the
unknown position of the body and from the unknown description of the free surface.
Chapman (1979) proposed a scheme of calculation in which the free surface condition is
assumed linear while the other boundary condition is taken on the real position of the body.
This inconsistent method, which retains only one source of nonlinearity is applicable for
design purposes of floating structures. Since these have low frequencies of oscillation,
even with large amplitudes, the velocity of the induced flow will be small, justifying the
linearizing assumption on the free surface. Problems with a linearized free surface will be
addressed first. The so-called Euler-Lagrange scheme, introduced in the much praised
work of Longuet-Higgins and Cokelet (1976), and the method of inverse formulation will
be presented. They provide a possibility to account for the nonlinearity on the Surfac.c.

t 442 A Linearized Free Surface
I' John (1950) and Stoker (1957) addressed the boundary value problem of floating
bodies with a boundary-integral formulation but few problems were solved in this manner.
As computers appeared, Hess and Smith (1967) in the field of aeronautics, were the first to
discretize and then solve the problem for more complicated shapes in infinite fluids (see
also Deruntz and Geers 1978). Adapting these methods to free surface flows took some
time, due to the difficulty in the discretization with reliable accuracy of the Green functions
associated with free surface conditions.

With the boundary of the fluid domain Q being 8Q = So+F+B+Zp defined
previously, a Green's function is defined as harmonic in the lower half plane.
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Let Gxy.z,EnLn = GEP.QY
={r-1 + HP,Q,t) in 3D (5-4-1)
G(x,y.En,t) = (logr + H(P,Q,t)) in 2D (5-4-2)
where H is harmonic for for y < 0 and n s 0 and satisfies equation (in the variables

&mn.on

AH=0 (5-4-3)
we will also assume in this section that G satisfies the linearized boundary condition.
a)Time harmonic problem
Suppress tin G and let:

-02G(P.E,0,0) +g Gy (P.£,0.0) =0 (5-4-4)

Then one gets in two dimensions!

PP+ | $(Q) Gv P.Qdsg= [ov(QGE.Q dsq (54-5)
3 Q 3 Q
where,8(P) is the angle between two tangents at the boundary at P ( equal to &t fora
smooth curve) and s is a curvilinear abscissa along 8Q2. If the flow is oscillatory , and if
the Green function satisfies the bottom boundary condition, radiation condition (G=O(R'2),
Ggr = O(R?) as R—»e) then the integration is only performed on Sg and (5-3-5) becomes
(2-3-22) in the fully linearized problem.
b)Transient problem
Letting T be a variable such that T =o represents the moment when G appears, then if G —
satisfies: H
Gr(P.E,0,5,1) +8 G (P05, =0 (5-4-6)
and G(PE,0,0)=G.(P5,0,0)=0 5-47)
- one gets an integral equation which includes a memory effect by applying Green's theorem
to G and ¢ (P,T) and integrating for T=0 to t=t (Wehausen 1971, or Yeung 1982b)
A list of references for Green's functions was given in 2-4 (Amongst these,
Wehausen and Laitone 1960; and Finkelstein 1957).
There exist a number of variations to the form of the integral equations obtained.
These are related to the choice of the continuation of the potential in the body. Calling ¢' the
potential inside the body, and considering a ime harmonic radiation problem then :

1A factor 2 will be the difference for the problem in three dimensions
2Then dS is an element of surface and the boundary itself is a surface.
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¢'=0 and ¢,'=0 is called the Green's mixed distribution and leads to a Fredholm
integral equation of the second kind.

¢'= ¢ corresponds to a source distribution of strength 0=0,-0,

o,'= ¢, corresponds to a dipole distribution of strength a=(-¢’

Dirichlet conditions are imposed on the border when a source or mixed
representation is used whereas, Neumnann conditions are imposed when using a dipole
distribution.

Among some of the works mentioned for the computation of added mass, Frank (1967)
discretized an integral equation with a source distribution (Frank and Salvesen 1970).
Potash (1971) used a mixed distribution for oscillating cylinders.

| ' lat § .

When the body is surface piercing, solving the integral equations by discretization
is hindered by irregular frequencies which correspond to eigenvalues of the discrete
system. They correspond to the resonant frequencies of the water enclosed "inside” the
body (see for example, Adachi and Ohmatsu 1979 and 1980). Some methods exist to
circumvent these difficulties, such as putting a lid on the free surface inside the body or by
modifying G by adding concentrated singularities on 80 (see Yeung 1982 for references).
Simol ; lat

This techmique simply takes the wave function H=0 in (5-4-1 or 5-4-2). One
interesting feature in two dimensions is the use of Cauchy theorem. Letting w{(z)=0+iy
and z=x-+1y then

Riw(z)=P.V. f ‘1’2—(.521 dz’ with z and z' on 5Q (5-4-8)
50

. Yeung (1975) developed a hybrid method for linearized free surfaces which uses this
. relationship and is not affected by irregular frequency problems.

" The simple source formulation was adopted by Chapman (1979) for large amplitude motion
(retaining the lincarized free surface).

4-4-3 Nonhnear Free surface

Perturbation schemes may lead to having to solve several boundary value problems.
For instance, solutions to the second order radiation and diffraction problem predicting
slow drift forces can be handled in a manner similar to that described in the previous
section. This approach is costly and delicate. For this type of problems, Sclavounos (1987)
derived a second order Green's function.

Other methods offer the possibility to handle the fully nonlinear problem.
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Enler-Lagrange Scheme

This method was first presented by Longuet-Higgins and Cokelet (1976) who
studied the deformation of steep surface waves. It was later adapted to study other
problems (see Lin 1984; Peregrine 1987; Cointe et al 1988 for further discussion and
references).
The procedure follows particles which are attached to the free surface in a Lagrangian
description. The nonlinear free surface equations (2-2-3) become:

% = -gy-l%— V¢rvo (5-4-9a)
%= x and % = Oy (5-4-9b)

G is taken as a simple source distribution. {(5-4-5) is discretized and the value of the
potential and of the position of these particles is advanced in time using standard time
stepping procedures. Computations using this method are very good. Analytical solutions
can be incorporated to facilitate the computation around the water line but further work
needs to be done ( Cointe et 21 1988). This method can be extended to 3 dimensions but is
very costly.
Inverse formulation

The inverse formulation takes advantage of the fact that the free surface is a stream
surface. Letting «(x,y) become the unknowns and (¢,y ) the variables, the free surface
condition is nonlinear but taken on a known boundary, y = . Because stagnation points
become singularities in this formulation, conformal mappings are generally used to
transform boundaries to lines of constant y. Due to this requirement for the mapping to

absorb the singularity, the number of geometries that can be handled in this manner is
limited (see Yeung 1982 for further reading).

- 4-5 HYBRID METHODS

As mentioned, some methods implement different schemes in different subregions.
Local analytic solutions can also be incorporated in one part of the field and matched onto a
general numerical scheme in the rest of the field in a manner similar to the method of
matched asymptotic expansions {See for instance Cointe , Molin and Nays 1988). A more
extensive review can be found in Euvrard (1981), Jami (1981) and Yeung (1982).

4-6 CONCLUSION ON NUMERICAL METHODS N
With the advent of large computers, numerical methods have proved a powerful
tool in the study of linearized and nonlinear fluid problems. There is no sure way to go
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about doing numerical work. Depending on the problem considered, some methods will be
better suited than others.

Though it was mentioned for finite difference only, the problem of the behavior at
infinite is still an open one when the fluid domain is unbounded. Infinite finite elements is a
promising approach.

The problem of nonlinear free surface seems to be better suited for a method using
a boundary integral approach though other methods are efficient in some cases. In two
dimensions, this approach is the most economical (Yeung 1982). The problem of irregular
frequencies is a disadvantage of this method.

Another very difficult and unsolved problem is that of a reliable model for the
behavior of the flow at the intersection of the body and the free surface. Hybrid methods
using local analytical solutions will increase the accuracy of the computation (Cointe, Molin
and Nays 1988).

Since there are few possibilities to check the accuracy of nonlinear codes apart from
energy considerations, they should be validated by experimental results.

We will now review how these methods may be used to compute the force exerted
on a ship in collision.
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5-APPLICATION TO THE TRANSIENT MOTION OF COLLIDING OR
BERTHING SHIPS.

3-1 INTRODUCTION

The design of piers and more recently of offshore platforms is a field of engineering
which has evolved over the iast century to reach its present state. A wealth of data and
“"hands-on" empirical rules exist which on the whole prove to be satisfactory for designs of
structures under normal working conditions. But designers must also keep in mind the
possibility of unusual events which can lead to potentially dangerous situations and costly
repairs.

Because of such considerations, extensive programs were undertaken to estimate
the impact forces on piers of berthing ships.! The magnitude of the impact forces being of
the same order or larger than the forces due to waves and currents.

It is common practice to assume that a ship comes to a full stop when berthing, or
when colliding with a platform. The kinetic energy lost in this process has to be dissipated
in the form of deformation of fendering systems as well as crushing and elastic/plastic
deformation of the structures involved in the collision. The energy to be absorbed is written
in the form:

Ec =%M V2Cpy Cp (5-1-1)

where, M is the mass of the ship, V the velocity prior to impact, Cy a coefficient which
accounts for the energy of the entrained water around the ship, and Cg measures the
eccentricity of impact with respect to the center of gravity (Blok, and Dekker 1979). In the
- design process, Cy has traditionally been taken to be a constant. Depending on some of the
factors retained in the approach to estimate this value, it could take different values ranging
" from 1.3 to 2 for a small underkeel clearance (Blok, and Dekker 1979 and references
herein). In the special case of ship collisions with larger keel clearance, it is taken to be 1.4
for sideways collision (Minorsky 1959). This corresponds to the added mass for vibration
atinfinite frequency of a ship approximated as a beam (see references in Minorsky 1959 or
Ellinas and Valsgard 1985).

These values, have been contested as being too small (Blok, and Dekker 1979;
Ellinas and Valsgard 1985) and have prompted experimental work in parallel with
numerical calculations. Progress has been made and agreement is good when linearizing

IThe problem of collision can easily be related to this.
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assumptions are legitimate, that is for small amplitudes of oscillation (van Qortmessen
1974) and small times (Motora et al. 1971). These studies will be presented here.

5-2 APPLICATION OF LINEAR THEORY TO THE TRANSIENT MOTION OF SHIPS
-2- 1 W

A vast program was undertaken at the Netherlands Ship Model Basin to estimate the
influence on the coefficient Cy of different factors such as vessel size, draught, underkeel
clearance, fender characteristics, berthing modes and initial berthing velocity (van
Oortmessen 1974; Blok and Dekker 1979; Blok, Brozius and Dekker 1983). Very
extensive experimental work was performed to realistically model the forces exerted on
fenders in different configurations of berthing. The reported work encompasses mainly
sideways impact, amidships with 20% kecl clearance and fenders with linear or nonlinear
restoring forces (1979) and eccentric collision (1983).

Motora et al (1971) point out with a different theoretical approach, that it is
necessary to define equivalent added mass coefficients;
Equivalent acceleration added mass Cpy o, such that :

MCh acet) = o (5-2-1)

t
In the case where at time t,v(t) = Ja(‘r)d'r is non zero, one can define the equivalent

velocity added mass Cp vei, obtained from a momentum equation such that:

t
If (t)dt

Mcumm=:%§“ (5-2-2)

Equivalent energy added mass Cp eqer, Obtained from a conservation of energy principle,
such that:

t
ffawma

M'CM m(t) = L.—

: (5-2-3)
V(1)
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These equivalent added mass coefficients CM ace(t), Cu vel(t), and Cpy eper(t) are
different for a same time t. This is verified in experiments for a step or ramp excitation
force f(t) (Motora et al 1971) or for linear or nonlinear restoring spring forces (Blok et al
1979, 1983). In the latter studies, t may be the time t; when the ships velocity is zero (end
of compression phase), or t; when the spring displacement is zero (end of recoil stage).
Expressions (3-1-2 to 4) take a slightly different form since for t < to beginning of impact
v(t) = V. Experimental data also shows that the energy and momentum coefficients defined
in this manner are different (Blok and Dekker 1979) which can be explained when
comparing the momentum and the energy in the fluid (Blok, Brozius, and Dekker 1983).

The results of these studies show that traditional values taken for Cum underestimate
the measured or computed values. This is also true for large depths of water (Motora et al
1971). With a direct application to berthing, the study emphasizes the influence of different
types of restoring forces. It shows that Cy is different when measured by considering

momentum equations over a deceleration phase (compression of the spring) and repulsion

(recoil of the spring) phase. The coefficient being larger in the second case, due to the
motion "upstream” of the body. The fender design is linked to the first phase, but results
are also presented on the second, or hydrodynamic phase.

The dependence of Cy on the spring rate is shown. Yet, when the berthing
velocity is low, Cy is unaffected by the spring rate (Blok and Dekker 1981). For larger
velocities, the energy absorbed diminishes as the spring rate increases.

An interesting feature is that for a linear spring, the compression time depends little

on the initial velocity. However, this has not been studied in any more detail {Blok and
Dekker 1979). Also, within the range of velocities studied, the maximum fender force
seems to be linearly proportional to the velocity of approach for linear springs. This is

[T ITNT N

‘stated in van Oortmesen (1974) and, can be deduced from fig 30. in Blok and Dekker

(1979). Finally, it appears that for a linear spring, the integral from beginning of impact to
end of compression is proportional to the initial velocity or that the added mass coefficient
defined by the momentum equation is independent of the initial velocity. Written in

equation form this becomes, taking tg= 0:
11
J -kx(t) dt = MCpy ver %o

t; doesn't depend on %o (5-2-4)
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A solution to (5-2-4) proposed by Blok et al (1983) is! -

x"i{)‘\j‘l}‘d‘%’ﬂ T[Tl Mvel (5-2-5)

Sm(‘\/miv—cll) andt1=2 K
It agrees fairly well with the experimental results with some discrepancy which is also
present when comparing with numerical calculations (Blok et al. 1983).

Kim (1983) uses another simple model based on these experimental observations,
making use of the zero-frequency sway-added-mass and shows that for collision
amidships:

, 11 (0)
M+—2—-
Frnax =k Xmax = _""""k_""'iD ‘ (5-2-6)

#11(0) can then be computed, by making use of the two dimensional theory of sway added
mass (Kim 1975), Sedov's (1965) definition of a blockage coefficient and a slender body
theory which describes the flow near the hull (Newman 1969). This method provides in the
case of small velocities a relatively efficient way of predicting the maximum deflection of
the fender and agrees well with experimental data (Blok, and Dekker 1979) and numerical
calculations (van Oortmesen 1974).

Experimental results have been compared to numerical calculations performed by
using the equations of motion derived in the previous chapter.
t

(mig + Hi(=) X + J (Rx(t-7) - Ax0)Ra(D)AT + Cixc Xi = Xexe . (5-2-7)

where it is assumed that for t < 0, Xx(t) =Xyo. Xex: being the exciting force takes different
values when considering a step or ramp input (Motora, Fujino, Sugiura, and Sugita 1971),
a linear spring restoring force proportional to the displacement (van Oortmessen 1974;
Petersen 1982) or a nonlinear restoring or plastic reaction force (Petersen 1982; Petersen
and Pedersen 1981). These computations compare well with the experiments and simple
models presented in the previous paragraph. They imply the knowledge of the impulse
response function or, of either the damping coefficient or the added-mass and infinite
added-mass coefficients which represents the core of the numerical work if these are

Un this particular case of swaying the only degree of freedom is x.
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unknown. The equations of motion can easily be solved on a "desktop computer” (Petersen
1982). Motora et al. solve for the displacement by transforming the problem in the Fourier
domain and obtaining the solution by an inverse transform (see appendix 3). They show
that the values of Cy vary, depending on the length of the collision, and that Cyq =1.4 (for
sideways collision in deep water) is too small and only valid at the inception of collision.
This is clear when letting t go to 0 in 3-3-1 since pyx(o<) is of the order of 0.4 m,, for
sideways collision of a cylindrical section.

Petersen (1982) uses strip theory and these equations to analyze ship collision. In
the special case of sideways impact or a constant excitation force, his computations agree
well with the mentioned experiments and theoretical works. Different excitation forces are
considered and the local nonlinear behavior is implemented. This is coupled with the
dynamic motion of a platform in Petersen and Pedersen (1981). The localized deformation

of the platform is modeled as a nonlinear spring force, used as an externally applied force -

on the ship.

The transient motion of a floating body was approached using an impulse response
function technique. Generally, this method uses the frequency-dependent added mass or
damping coefficients to compute. the values of the response function. Some authors have
tackled the problem by solving for the impulse function potential directly, using a ime
stepping approach. The method, based on work by Finkelstein (1957), was extended by
Wehausen (1967) and others. 1t leads to an integral equation of the problem which must
then be discretized. Most of the literature reviewed deals with heave or roll motion. A
complete derivation of the transient motion of a heaving cylinder is given by Yeung

. P L )
L A

{1982b) and compared with experiments performed by Ito (1977). Some of the problems -

encountered in the numerical work addressed in chapter 4 are described. One interesting
feature of this work is that the velocity of the body is computed at each time step and is a
function of the hydrodynamic force at each time step. Similar numerical and experimental
work was performed by Beck and Liapis (1987) in three dimensions.

As previously discussed, Chapman(1979) devised a novel so-called inconsistent
method where the boundary condition is expressed on the actual position of the body.
Again, his method is compared to theoretical predictions for the vertical motion of bodies.

-2-4
Within the assumptions of linear theory, the prediction of the energy to be
dissipated in collision or absorbed by the fenders in berthing is a fairly straightforward
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task. It can be performed by using the impulse response function computed directly or
indirectly, and the transient equations of motion or by solving the problem in the frequency
domain. Both approaches are equivalent when the linear problem is considered. In both
cases, knowledge of the frequency dependent added mass and/or damping coefficients or
of the impulse potential is essential and represents the bulk of the numerical work or of
scaled experiments to be performed (see chapter 2). Due to the amount of work that has
been performed in the field of freely floating bodies, a great deal of information in the form
of computed two or three dimensional frequency-dependent coefficients is available. The
results for some known shapes can also be extrapolated for similar shapes (Petersen 1982)
and the equations of motion can readily be computed. When strip-theory assumptions are
made, two-dimensional coefficients can be used.

This approach is valid when the body undergoes small displacements. It is also
casier for heaving and rolling bodies than for swaying bodies, which unfortunately,
describes more accurately the case of a berthing or sideways colliding ship. Some of the
problems encountered will be presented next.

5-3 OTHER ASPECTS OF THE TRANSIENT MOTION OF A SWAYING BODY
For small motions, the transient swaying motion of a floating body can be
described using the impulse response function as computed from the frequency dependent
damping coefficients (see appendix 4). Two dimensional motion will be presented here
with a special emphasis on the behavior of the flow at the intersection point. A distinction
will be made between weakly nonlinear problems, where to first order, the linearized
equations of motion yield satisfactory solutions and other problems.

for the study of swaying surface-piercing bodies. Both weakly nonlinear regimes (for
which the acceleration of the wavemaker is much smaller than gravity ) and impuisive
accelerations are considered (Lin 1984; Robests 1987; Cointe, Molin and Nays 1988). The
former case will correspond to slowly berthing ships, whereas the latter case will
correspond to the limiting model of a drifting ship stopped suddenly when hitting a
structure. Results are presented only when the intersection of the body is at straight angles
with the surface of the water. At this point, a singularity appears due to the two different
boundary conditions which must be satisfied (the body boundary condition and the free
surface boundary condition). In the case of the weakly nonlinear regime, this singularity is
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exhibited by Cointe et al (1988) using a technigue similar to that of Kravtchenko (1954) in
the periodic case. Their work agrees with the results derived by Roberts (1987} who uses 3
matched asymptotic expansion method to study the transient case. In the case of a fully
impuisive motion, the behavior of the flow near the intersection of the wavemaker and the
free surface is still an unknown (Roberts 1987; Cointe et al. 1988). A simplification, in this
case, may be obtained by secking a self-similar solution in an inner domain (Cointe, Jami
and Molin 1987). Though this yiclds a possibility for the aft side of the body, it appears
that further linearization in the inner domain will lead to a dead end for the front side of the
body (Cointe et al. 1987, 1988).

The importance of the behavior at the intersection point is crucial for the well-
conditioned behavior of numerical codes used to solve fully nonlinear transient flows
(Cointe et al. 1988). The results derived for wavemakers are very important and applicable )
to the theoretical and numerical analyses of the transient motion of the swaying water

piercing bodies. Generalizations need to be made for more complicated shapes and non
vertical sides.

3-3-3 Other Studies
Marthinsen and Vinje (1985) modeled the swaying of side by side ships, with a
special emphasis:on the gap between both ships where nonlinear and viscous.effects are
considered. Vinje (1987) in 2 preliminary study presented a technique to crudely model the
berthing of a ship by a flat plate approaching a wall. _
A nonlinear numerical study for two dimensional motion of ships using the Euler-
Lagrange scheme is presented in Vinje,Maogang and Brevig (1982) and outlines some of ;

the shortcomings mentioned in Cointe et al. (1988). The problem at the intersection -

between the flow and the free surface is also addressed using a matching technique.
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6-CONCLUSION

The value of the hydrodynamic load exerted on floating bodies in the context of
linear theory can be estimated from the amount of existing literature and simplified, yet
accurate analytical methods. Second-order effects can be predicted in some cases using
simple mathematical techniques.

Need for further siudies

The transient study of swaying bodies piercing the free surface needs to be
investigated when large motion and large free surface amplitudes are considered.

For sideways collision of ships, the impact velocity is larger than that of a berthing
ship due to the uncontrolled nature of the event. The transient analysis of the fully nonlinear
problem should therefore be addressed, as well as the limiting case of the fully impulsive
problem. |

Experiments are much needed to validate results for the theoretical weakly nonlinear
problems, as well as numerical calculations.

The behavior at the intersection between the free surface and the body is an
important question which still needs to be solved in the case of a horizontal impulsive
motion . Attention should also be given to configurations where the intersection between
the side of the ship and the free surface is not horizontal.

Further research on these topics should improve the overall assessment of the
design load to consider when a ship strikes another ship or a platform.
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Al THE EQUATIONS OF MOTION

Al-1 The Coordinate Systems

(O,x,y,z) is a referential, fixed in space, with y pointing upwards; (O x,z) is the
undisturbed plane of water. This referential is particularly suited to describe the motion of
the water around the body.

Consider a referential fixed with the body, with origin at the center of gravity of the
body: (G,X,Y.,Z). At time t=0, G(0,y5.0) in (O,x,y,z), and for later times,
G(x1,yg+x2,x3).

If O and G coincide, (G,X,Y,Z) is obtained from (0,x,y,z) by:

rotating Ox by the roll angle x4 around Ox;

rotating Oy by the yaw angle x5 around Qy;

rotating Oz by the pitch angle xgaround Oz.

A point P has coordinates (x,y,z) in Oxyz and (X,Y,Z) in GXYZ.

Assuming the angles are small, we get by linearizing (taking the cosines of the angles equal
to 1 and the sines of the angles equal to the angles in radians):

X=X}+X-xg Y +X5Z

y=X2+YG+X6X+Y-x4Z (Al-1-1)

Z=X3-X5X+X4Y+Z

The unknowns are (x,x2,X3,%X4,X5,Xg) = (X;) i=1,6

. i -V
The fluid is inviscid and incompressible and the flow is initially irrotational. The
problem can be formulated in terms of the velocity potential ¢(x,y,z,t) and a function
- parametrizing the free surface F(x,y,z,t). At every instant t, the position of the free surface
is given by F(x,y,z) = 0. The resulting boundary value problem can be written in the form:

At =0 in the fluid domain (Al1-2-1)
O+ gy + %—V¢‘V¢ =0 (Al-2-2a)
Ft+ Vo.VF=0 (A1-2-2b)

taken on the free surface F(x,y,z,t) = 0;
A boundary condition on the bottom or at infinity (for infinite depth)



tpy(x,-h,z,t)z() for a finite depth h

or
lim ¢y=0 for infinite depth

y--ﬂ

(A1-2-3)
A body condition on the boundary.
®al Spody = V-0 (A1-2-4)
. ; -V
The lineanzed boundary value problem can be written in the form:
AP = 0 in the flvid domain (Al1-3-1)
Ou(x,0,2,0)+8¢y(x,0,2,1) = 0 (A1-3-2)
y=N(x.2.) andn(x,2,) = - £ 6x,0,2.) (A133)
A boundary condition on the bottom or at infinity (for infinite depth)
¢y(x,—h,z,t)=0 for a finite depth h
or
lim ¢ =0 for infinite depth
y—=y %P (A1-3-4)
A body condition on the boundary.
| Sg= Vn (A1-3-5)
6 .
with V=Y %n; | (A1-3-6)
im]
nj, M2, n3, are the components of the ontward normal and
ng={-yg)n-zn
ns=2zn)-xnj
ng=xn2-{y-yg)ni (A1-3-7)

\1-4 The Li Hydrod ic F 1 M
The hydrodynamic forces and moments about G can be written in the form:
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FH=Ip.ndS
SO

KH=Jp(r-rG)xndS

S
¢ (A1-4-1)

The value of the pressure on the surface of the body can be derived by using the
linearized form of Euler's equation:
P=- P90 - PBY
(A1-4-2)
Using this expression for the pressure, one can write the equations of motion in the
form:

mij*ffij"j'l”f ¢, n; dS+(Fex1) §
Sy

(Al-5-1)
Where the coefficients are given as:

mij=m8ij and m, .. .= fori,j=1,2,3
m,=mg=-1,
M=mg=-1;
mg=mg=-L;
m, = 0 forother valuesof iand j

4 (Al1-5-2)

Where m is the mass of the floating body, &;j is the Kronecker 9, Ij and I are the
moments and products of tnertia.
Also define
W = waterplane area in equilibrium position.
V = displaced volume of water in equilibrium position



The metacentric heigths must be Positive for hydrostatic stability.
The ¢;; coefficients only depend on the static equilibriym of the body in calm water:

Co = pgW
°24=°42='ng7'¢

©26=Cgy= PgWx_

c44=pg(V'HB+ch)

c45=°64='93113 c66=pg(VHl+ch) anch=0 for other j j

i

(Al-54)
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A2 DERIVATION OF THE EQUATIONS FOR TRANSIENT MOTION USING A
GREEN'S FUNCTION.

A2-1Wehausen Approach

The transient equation of motion is derived in a different manner using a Green's
function (see Finkelstein 1957; Wehausen 1967; Yeung 1982b). In the domain defined
previously (consisting of Sg, B, F and ZR), one applies Green's identity to the functions ¢,
(P.Q,tv) and G(P,Q,t-t), where G is a "suitable” functon. The integral over the surface B
vanishes identically and that over g converges to 0 as R—eo. An easy manipulation with
respect to the integral taken on the free surface F puts it into the form of a derivative with
respect to 1. Integrating from O (o t one gets:

3{¢} = 2n4(P;0) + SJ¢(Q;0> Gy(P:Q:t) dSq + Jdt SJ S(Q:T) G(P;Qit-1) dSq
0 0

- Fﬁn. (€.5,00G(P;5,0,5;0) + n(&.5;0) G(P;£,0,5:1)] dEdL (A2-1-1)

where 3 is the linear operator:

t
3{6} = 2rOP;t) + SI (Q:t) Gu(P;Q;0) dSq + Jdr SI $(Q:7) Gw(P;Q;t-1) dSq
0 0

(A2-1-2)
Where one replaces 2 by 4 in 3D and where 2x becomes &t when P is a point on the surface
(in 2D). The integral equation is satisfied separately by ¢f and ow = ¢y + ¢p where one
takes $vy = 0 for ¢w We have assumed that we know the quantities when t = 0.
Defining ¢° = ¢ - ¢p, then ¢pc represents the motion which would take place if
- the motion of the body started in otherwise calm water.
Solution for body started in still water. Define @y as the solution of

3{W&}= S’ n(Q)GE®;Q;t) dS (A2-1-3)
0

k=1,2,...6 This will correspond to a motion in which starting from rest, the body makes a
Jump of unit magnitude in the kth mode of motion. This is a2 mathematical tool and one may

t
show that; Orc (P:t) = J ¥, (1) D (Pi1-1) dt

(A2-1-4)

This is the analog for time harmonic motions of the decomposition:
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6
. it .
Pr =; Re - i0a, ¢ € ' and @, = @, + iy

(A2-1-5)
With that expression, we get
t
5J-p¢m (P:0midS = JndS -p %{J %4(%) De(Pit-1) dt ] (A2-1-6)
0 1]
t
= - pik (=) xk(t)-df Re(OLa(t-)t (A2-1-7)
= XrGi (A2-1-8)
and i (=) = g[p¢x (P:0+)n;dS and Lix(t) = Sjptbn (P:t)nidS (A2-1-9)
0 1]

It may be shown that @y (P;0+) = 0, L(0+) = 0 and Hix (=) = Hyi (=)
These quantities are related to the values pix and Aj defined in the steady harmonic

problem in the following manner:

Mix (@) = Wi (o) + JCOS(M)Lﬂ:(‘C)d‘E (A2-1-10)

Ay (@) = © cr[ sin(@T)Li(1)d (A2-1-11)
.' In the most general case, the equation of motion can be written:

t
{mi + PpdXx + 0'[ ¥ (t-T)Lig (AT + e X = X+ X+ Xext (A2-1-12)

where Xg° Xy, and X,.x,correspond to the force and moments respectively associated
with, 0g°, &1 + dp, and the exterior exciting force. When there are no incoming waves and
the water is initially at rest, then Xg°+Xg = 0. The Laplace transform reduces this system
of integro-differential equations to a set of linear algebraic equations.
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2.2 Eauiv {th Cummins 2 ]

t

Integrating J Ky(t-T)Li (1)1 by parts yields

t t

d[ Xp(-T)Li(T)dT = & (0)Lix i(t) - Ri(t)Lisc(0) + J X(t-T)(Lix (1))t

(A2-2-1)

Assuming that %,(0) = 0, one will get a form equivalent to Cummins if Ly (0) = O which
needs to be proven.
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A3 A FREQUENCY DOMAIN ANALYSIS OF A SWAYING TANKER USING STRIP
THEORY

Motora, Fujino, Sugiura, and Sugita (1971) consider the motion of a ship
undergoing sideways motion. The equation of motion with the conventions defined in the
preceeding chapters are:

(Max + Hxx (@) X()+ Agx() (1) = f(1) (A3-1)

We will simplify the notations by writing (mx+ Hxx(®0)) = m, and we will drop the
indices so that m = (myy + Pxx(®)) and A = A(@). Using a Fourier transform one can
apply it to equation {A3-1) and get:

A(®) = H@)F(w) (A3-2)
with '
F(®) = J'f(t) e-iwt (A3-3)
A= | F@en (A3-4)
H(m):-.—-i-"’— (A3-5)
iom+oA

and a(t) can be obtained by the inverse Fourier transform.
1 .
a=— | A(w)eiv (A3-6)
27 oo

Motora et al. take a step function exciting force. We have

0ift <0
) =11 ift >0 (A3-7)
then
F(@) = T 5(@) + — (A3-8)
1w

By substitution we get.

o0 L)

a(t) = Z J. 1 m{@)o?0(t) coswt do+ g—J Ma) cosot dw

7 m2{W)w2+A2(w) 7§ m2(@)2+A{w)

Y

(A3-9)
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Neglecting higher order terms (Tasai 1961), this can be rewritten:

12 Aw)
a(t) = W* . d[ ()2 (@) coswt dw (A3-10}

The integral in equation (A3-10) can be computed by making use of a strip theory for the
striking ship. Results can be obtained for 2 dimensionnal ship shape forms for the damping
% and added-mass m(®) = (myz+jt(w)) enabling the computation of a(t). The acceleration
can therefore be computed theoretically and one can obtain an equivalent time-dependent
added masses such that:

Equivalent acceleration added mass [ac, such that:

(Meace(0) = (A3-11)

t
In the case where at time t ,v(t) = Ia(‘r)d‘: is non zero,one can define the equivalent

- O

velocity added mass jiye, such that:

t
If(‘t)d‘l:

-

M+yei(D)) = =0 (A3-12)

Equivalent energy added mass Leger , Such that:

t
[ecevinac
(M+Hleer(t)) = ——— (A3-13)

(1)
These equivalent added masses Hace(t), Hvei(t), and Wepe(t) are different for a same time t.
As t goes to zero, Motora shows that, for the cases where f(1) is a step or input function,
the equivalent added masses all converge towards ji(e°). In conclusion of this study, the
energy to be dissipated by the crushing of the colliding structures can be realistically taken
as a constant only if the impact has a very short duration. The Fourier analysis or the time
domain integration are equivalent and lead to the same results as shows a comparison
between these two methods (Petersen 1982).
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Ad A TDME STEPPING COMPUTATION FOR THE SWAYING OF A SEMICIRCLE

A practical application for the swaying motion of a semicircle is presented here,
using the existing results for the damping and added mass coefficients in two dimensions
(Tasai 1961; Frank 1967, Vugts 1968a). These coefficients vary slightly from one
reference to another when they are nondimensionalized and an average between the three
results was taken.

The equation to solve, since only the swaying motion is considered, is:
t
T I (A1)

LetD = %px R2 be the displacement where R is the radius of the cylinder. This

assumes that at rest, the cylinder floats exactly with half of its surface under the free
surface, therefore myy = D . We also have jlyx(e) = -4—2D according to Sedov (p. 17 Dl
T

(Myx+ Kxx{=)) =1 4

Calling M = D + -7;—2- (A4-2)
we have
1
MEX| + f (ki (t-1) - xo)P—"‘-"ﬁ(l)dr =3(5—’“ (A4-3)
)

and h(t)= B—’-“])(—T)-= J?«.,,(m) -\/ Ecos(cm:)dm {Ad-4)
0

in nondimensional form. The values of the damping coefficients are given in the
forementionned papers and the computation of the impulse response function can therefore
be performed.

The impulse response function is obtained from the damping terms (eq. 2-4-14)
rather than from the added mass (eq. 2-4-15) because, although asymptotic expansions of
the high frequency coefficients are given in both cases, the damping coefficient converges

Ht is interesting 10 note, as Sedov does, that the value of the potential derived in the case of the infinite
frequency of a swaying cylinder yields a verucal velocity which is infinite in magnitude at both
intersections between the cylinder and the free swrface. The potential derived in this manner does not
correspond to a physically realistic solution . Sedov finds a solution for the flow behind the cylinder by
assuming that there is a cavity behind the body, this assumption leading to a realistic value of the velocity.
In front of the cylinder, the problem is similar to the problem of the impulsively started wavemaker or flat
plate and the results presented by Simon (1985) would need to be fusther investigated in view of the
findings of Roberts (1987) and Cointe et al (1987,1988).
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more rapidly to zero than p(m)-Hxx(ee} (See Greenhow 1986 who uses asymptotic values
derived by Simon 1985). According to these denivations,

4
Axx(©) A }-R 3 (Lt nBey+in2-2)) (A4-5)
g no} na?
where vy is the Euler constant { See Abramovitz and Steigun) and o= ~ ’—g- .
taking simply Axx{®) ~ f i -8—3, an estimate of the error is given when the integral (A4-
o

4) is truncated for a given value of .

The curve yielding the expression for the damping coefficients obtained from Frank

(1967) was therefore faired smoothly into the curve % as o increased.
RO

To obtain results with order of magnitude similar to those of Motora et al. (1971),
similar numerical values were taken:
The displacement D is 53 kg. A consequence of this choice is that R=0.18m. Several
exciting forces were considered, constant, linear spring and nonlinear spring as well as

different initial velocities. We present here the case where the constant force is taken to be a

falling weight of 1 kg : Xet 0,185 and the initial velocity is null,
D

The problem is discretized on a MacIntosh™ 512K using Lightspeed Pascal™ . The
discretization is performed as in Petersen (1982); to compute the unknown AX with?:

X (t+AL) = X(t) + AX (A4-6)
X(t+At) = X(t) + At X(1) +%-Asz (A4-T)
. at? At?
x(t+4t) = X(1) + At k(1) +—5—X(t) +—g— A% (A4-8)
' and
t+At t

J h(t)[X(t+At-T) -koldT = d[ h(O)[X(t-T) -ko]dT + ...
t At 2 t
L+ AL J h(V)X(t-0)dt +— OKO) + Oj' h()%(t-1)dT] + ...

(A4-9)
For the first time step At, we have :

2The index | caracterizing the displacement in the horizontal direction s dropped.
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X
X(At) = ﬁi (A4-10)
For the computation of the impuise response function, the maximum value of the
. . o . . .
nondimensional fn:qucncyﬁ was taken as 7 . This corresponds to an error inferior to 0.01

for the impulse response function. the damping coefficient is evaluated at 500 frequencies
using polynomial interpolation of data obtained from Tasai (1961), Frank (1967), and
Vugts (1968). The impulse function is computed using Simpson's rule for 1000 discrete

values of the nondimensional time t % with 2 maximum value of 10, corresponding with

the numbers given above to 1.35 seconds for dimensional time. The displacements are
evaluated every 0.01 unit of nondimensional time.

Plots of the damping coefficients, impulse response function and of the
displacement, velocity and acceleration are given in figure 1-S. They give results
qualitativily in agreement with Motora's (see Petersen 1982).

This technique is easy to implement. The impulse response function computation
need only be done once. This is easily generalized to more degrees of freedom and different
exciting forces.
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