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In recent Years, there has been discusaton sbout catch per unit
effort, CPUE, of the form CPUE = ANP whers N 1s shundance and p < 1.
In this paper, it is first shown that, if one ignores stoca depletion,
then CPUE can be independent of abumdance, proportiomal to abundanc.
or of the spproximate form AN? wieh p < 1l. The same iz trus whem
depletion of the stock is considered. A method for determining the
regime (CPUE independant of abundance, proporticaal to ibundaﬁee. o

of the form ANP) based on search time data is presented,
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_Tatroduction

The relationship between fishing effort, stock abundance, and catch
-rates is of extreme importance to the management of commercial fisheriss.
A commonly used heuristic is a linear assumption between catch or harvest

rate H, effort E and abundance N, That 1:;
H = qEN _ (1)

vhere q is the catchability coefficient, If the relationship (1) 1s

valid, theo catch per unit effort, CPUE, defined by CPUE = R/E i{s propor-

tionsl to N. Consequantly, by tracking the time behavior of CPUE, one

has & proxy for the behavior of the abundance of the population, The

- theoretical underpimnings of (1) will not be discussed here at this point,

They have received considerable attention, dating at least té work of

- Ricker (1940), De Lury (1947, 51), ¥eymsn (1949), Paloheimo and Dickie

~ (1964), Paloheimo (1971), Rothschild (1977), and Clark and Mengel (1979).
There is mounting empirical evidence, however, that (1) is not alwvays valid

Some examples are discussed by MacCall (1976), Murphy (1977), Beddington

(1978), Ulltang (1980), and Cooke (1985a). The evidence poiuts to a

relationship of the form
H = ANP (¢

where A 1s a constant, possibly directly proportional to effort but
possibly not, and p is & fixed constant with 0 < p <1, If (2) is valid
then catch per unit effort CPUE = ANP/E 1s no ouger proportional to stock
abundance, but to a fractional power of abundance. If (2) is indeed the
valid harvest-abundance relationship, it has many implications such as:

1) If a time serfes of CPUE shows a decline, the true population

has declined aven more.



11) 1If a time scries of CPUE oscillates, then the amplitude of the
oscillations of the true population 1is even grester.
| 411) Xf (2) ie valid, but one acsumes a relationship of the form (1),
-then the catchability coefficient 4 1s & function of abundgnce N, Im

particular one finds that
A op-1
q= E N
which can be rewritten, for constant effort, and b= 1 - p as
q= w-b.

These equations (the latter equation being empirically verified by

Ulltang (1980. PR 490)) show that an increase in "eatchability coefficient"

- 4 occurs as population abundance decrsases. Eapirical cﬁM. for

_cgli,fornia sardine Q(MacCall, 1976) for example, shows b w» .6, |
The natural question then arises: under vhat operational circumstances

would one obtain a rvelationship of the form (2)? Previous work on this

subject fncludes Ricker (1940), De Lury (1947, 51), Neyman (1949),

Paloheimo and Dickie (1964), Rothschild (1977), Beddington (1979), Clark

and Mangel (1979), Zahl (1982, 83), and Cooke (1985a,b). A mumber of these

authors demonstrated a relationship of the form

- AN
CPUE o+ B (3)

vhere q, o and B are constants., Cooke (1985a,b) has provided one model that,
over a wide range of operational paramaters, -luds to a catch-abundance ,
relationship similar to (2), His model is baged on catch that is locally
Poisson with parameter proportional to 9, a fixzed harvest time per catch,
and & log-normal distribution on ¢. (An alternate derivation of Cooka's
®odel is presented in the next section, so further details are delayed

until than.)



'-in order to uae' @ model such as (3), one needs to have an axplicit
oparational interpretation of o and . Mangel (1982, 1985) provides
. such an explicit model’ in which search and barvest for identical schools
of fish are the only components of the fishing procesas. By using renswal
‘tl;-cry sud ignoring stock depletion, ons can show that the average catch

Tate is

E{CPUE} o E—(ﬂ— %)
+r
A
Ihirc v 1ia the set m@., H(r) is the average catch from a set of length
T and 1)_'1 is the mean time batween detectioms of schools. If one ignores
dapletion, then it is reasonable to assume that ) = ¢N whera ¢ i3 a
'constant (usually unknown). With this assumption, (4) becomes
Alr)e
B{CPUE) n SDNE ()
'_lqultioﬁ (5) 1s sinilar to (3), except that ¢ and T have clear opera-

tional interpretations as the search effectiveness and set time, There

are three "regimes" associated with (5). These are:

1, If Net << 1, then E{CPUE] m» H(T)¢N snd catch par unit effort is

proportional to population abundance,

2, If Ber 5> 1, then E{CPUE} s R(T)/v and catch per unit effort s

independent of sabuncance,

It 4is perhaps easiest to think of the first case as low abundance, so that
finding a echool of fish is & rare event and the second case a high abmdance,

80 that one easily finds schools and is essentially fishing all the tima.



3. If Ket w1, then one is dealing with the "curved” part of (5),
_rather than the "linsar” or "flat" portions (see Figure 1),

Consider & value of N for which Met w 1., Suppose that one tries to fit
cPUR = AN to (5). Taxing logarithms gives

log A+ p log N= log H(T) + log ¢ + log W - log(sN™il). (6)
Thus, one can identify A and p = p(N) by

log A = logH(T) + log ¢
)
pQN) = El'-i{1og K- log(eNt+ 1)},
Table 1 shows values of p(N) for a numbar of choices of ¢ and T, Clsarly,
this model can give riss to valuss of p less than 1. Note from (7) that

ﬁ(N) can be vritten as

NT+41
Pm)- 1- lo.n

80 that one clesrly sees the importance of the product ¢Nr in determining
the value of p(N).

-



" Table 1

. Values of p(N) from (7), for the formula

", R{crug} = anP
e : . Y )} . ks . 1))
.01 1 49 .90 .001 1 499 .93
149 .82 1499 .87
29 77 2499 .84
349 .74 3499 .82
449 .72 4499 .80
Ol 4 12 .84 4001 5 99 91
42 o 299 84
.72 .68 © 499 .80
87 - .66 699 77
+005 5 19 87
39 <78
139 .70

179 «67
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Two key questions remsin., The first is: what happens when stock
deplation i»s taken into account. That is, can one still see a region in
which CPUE = ANP with p < 17 The second question 1a: How does one
recognize the magnitude of Ne7, vhen both N and ¢ are unknown?

The first question is one that mainly involves modeling. It is
ansvered in the next section. Thers are three major cosponents to this
discussion. These are local catchability based om a search wodel, handling
time, and the possibility of globally varying catchebility. 7Two kiads of
search models are used, These are the random search, with and without
deplation (Koopman, 1980; Mangel, 1984; Mangal and Beder, 1985) and
exhsustive search (Neyman, 1949; Mangel, 1985). The wodels cover the
gamut of possibilities. _

The second question 1s one of statistical estimation and 1s discussed
in the third section. A method that can be used to i.dcnl:ify.‘tha ragine
when one has search time data available is described acd 1llustrated
using data on Pecific ocean perch from Rencell Sound, British Columbis.

th letion 2 | .
The objective of this section 1s to show how to gmerate the
relationship between CPUE and abundance when depletion of the stock is
important., For completensss, sand pedagogical easa, tha first models

discussed are ones without depletiom,

1.  Randon Segxch Models: Fixed Catch

It is instructive to first provide a derivation of the search modals,
since the concepts involved appear in every sub-section. Imagine a large
region of area A containing N "gchoole™ (schools of fish, pods of whales,
generic aggregations). Also imagine that in operating time t an area
wt is searched. Assuming that the schools ars randomly distributed, oﬁa has



Br{k schools encountered} = _I (,:) (_%)k(l -.'i.f—)n.-k (8)

In the limit of large A, N vith § defived to be q, the binomisl distri-

~ ‘bution (8) s spproximated by the Polsson distribution

x

-qit
Pr{x schools encountered} = !i;?l!i)_ . (9)

Equation (9) corresponds to randowm search (see, e.g. Xoopman (1980),
Mangel (1984)). |

' !lw suppose that one specifies that the catch is C, The time T
vequired to achieve this catch is a random variable with

T=T +Ch (10)

vhere 'l.'. is the search time and h is the handling time per school. Consider
‘the CPUE, given by CPUE = C/T. It also s a random variable vith axpectation
_ spproximated by a Taylor's expansion around T = E{T} as follows

E{C/T} = CB{1/T} = CB{1/T - L/TA(2-T)
Q1)
+ 2P - + 0T,

wvhere O(x) mesns a term that behaves like a constant times x. Taking the

expectation in (11) gives
E{C/T) = C{U/T + 2/T° var{T} + 0Q/T)]. 2)

The mean and variance of T = '1‘. + Ch are computed as follows. Since search
corresponds to a Poisson process with parameter qN, the time for th-’ firat
C encounters follows a gamma distributfon with parameters C aond qN.(Ross,

1980). Thus



BT} = T - o/qN + cn = chEoE, |
13)
Var{T] = ¢/ (q®?

vhen (13) is substituted back into (12), the following eguation is obtained

B{c/T) = Togs * 5 + O(L/T) (14)

C(1+ghN)
The first term in this expansion was derived by Paloheimo aud Dickie (1964),
Beddington (1979), Clark and Mangel (1979), and Cooks (1985a,b) in differeant
vays, for differing sssumptions. One could, without difticulty, derive
more terma (e.g. explicitly eonpul:i the coefficient of the O(I.ﬁ‘ ) term).
Assume now that gqhN is sufficiently large that all terms other than
the first in (14) can be ignored., If one makes this assumption, then the

expected value of CPUR {s

E{CPUE) "#E'Ei . | - Q15)

Cooke (1985a,b) argues that q 4in (14) or (15) should be constant
oaly locally. That is, the catchability q may vary on a global scale
dus to environmental fluctuations, etc. Cooke suggests that q should have
a skewed distribution and chooses the log-normal. A different choice of a
skewed distribution is the gamma distribution with parassters y and g,

80 t:_hat

'gr['qsq_<j+¢q}-i_-$. V" dq. - (16)



The mean of q is then E{q] = u/o and the coefficient of variation s
C¥(q) = 1//v. The average, over q, of the E{CPUE}, denoted by
(E(CPUE}) , Lo then

e aN &’ _~aq v-1
cagoromyy m [T - 7y oW a
o“N s ¥
“TO J: 1+qhn
= 3 T v amne/ an

where I'(a,x) is the incomplete gamma function (Erdelyi, 1981) given by

re,x = [ o %! ae, (18)

x
It fs worthwhile to study two limits of (17), These are N fixed,
h 4 0, in vhich one expects from (15) that the average CPUE will be
proportional to N, and the limit h fixed, N . » in wvhich one expects
that the average CPUE will be equal to 1/h, since virtuslly all the time fs
speat fishing, The first limit corresponds to o/hN 4 w, Now for lazrge x,

xl-le-x

r(a,z) ~ X (19)
so that (17) becomes
(e{CPUE})  ~ L ashao0, 8 tixed, (20)

‘Observe that since E{q} = v/a, (20) 1s 1in sccord with intuition.

For the other limit (R 4 », h fixed) reconsider the integral defining

{E{CPUE)} )qo It can be revritten as

a*
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v -t
(E[CPUE})q - I'(:)h r . ea de (21)

(to do this, simply set oq = t in the integral in (17) and them divide both
numerator and denominator by hN). Letting N4 e for h fixed in (19)

gives

cagorvED, ~ by [ et e - 1 (22)

Thus, the two limits are verified. What remains 1s to study the behavior of
{{ CPUE} )q given by (17) for moderate values of the dimensionless variable

x = of/hN, - (23)
To do this, rewrite (17) as
-E- {E{ CPUE) by = XV (~v,x)e* | _(24)
so that
103(%) + 1og((E{CPUE}) ) = v log x + x + log(I(-v,x)). (25)

observe that 1og x = log o - log h - log N. Thus, a slope plot of

log[% (n{mm}}q] against -log x gives the parameter p in the formula
CPUE = ANP, In order to construct such a plot, 1'(~v,x) was integrated
numerically, the plot generated and fit by a strajght line. Pigure 2 is an
example of the results of such a procedure. ‘The slope of the line in
Figure 2 is about .5. The result derived here fs similar to the results
obtained by Cooke (1985a,b).
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R Seaxch: Fi exating T
An alternate random search model is based on & fixed oparating time,
It can be descxibed as follows. let p(n,t) dencte the probability that
.n “schools are encountered in gearch time t, If the operating time is
T, each encounter requires a handling time of h, end search or handling
are the only two operations, the posesible catches are n = 0,1,2++« min(M,N) whe:
M = Int!T/h} schools and Tat(x) is the integer part of x, Strietly
speaking, the cateh of the last school may require time grester than T,
but if T >> h the error from this approximation should be negligible,

(fhis error 1e currently being investigated.) Consequently, the expacted

CPUE 1s
'ﬂn(ﬁgﬂ)
L %10
CPUE) = ——-B=0 | (26)
.[. - ] li.n(H.N) ' * :
T p{u,T-nh)
neQ

- The upper limit for the sum in (26) is either the total number of schools

(N) or the maximum possible mumber of schools that can be caught in {0,e] (M),
vhichever is smalier. The denominator in (26) is required for purposes of
normalization, Once a model for p(n,t) is given, the expacted CPUE can be

easily calculated. A number of models will be introduced hers. These are:

Globally Random Sesrch. For this model, assume that
e'thgch !n
p(n,t) = (27)

i.e, & pure Poisson process with parameter ) = gN.
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al Ry ) Glob v Catchability. PYor this model,

sssume that q in (27) has a discxibution. Based on the results of the
last section, assume that the distribution of ¢ is a gamma with paramaters

v and g, Then

to n:

-qNt no_-eq
pla,t) = r"—.(ilﬁ_ -1?‘?\3 V1Y aq

- Tt G ™, (28)

The distribution in (28) 1s a negative binomial distribution (see Feller
(1969 for a gcﬁeul discussion or Mangel (1985) for a discussion relevant
to fisheries).

These two models (local random search) do not have depletion in thenm,
Thus, the upper limit in (26) should be replaced by M_ and ane sbould
envision that each time a catch occurs, that school is replaced. The
inability to include depletion is an isherent fault of models based on the
Poisson assumption. The next two models do not suffer from this deficiency.

Global Random Search With Depletion. For this model, assume that
catchability q is constant but that stock depletion is importent. It can
then be shown that (Mangel and Beder, 1985) the appropriate model is

PLt) = ()1 - o 16T (e IE) R, (29)

vhich is & binomial distribution., Observe that for large N and smalil qt,
this distribution is well approximated by th§ Poisson with parameter
H(l-c-qt) ~ Nqt, Thus, the global random search model can be thought of as
the "short operating time" limit of the model global random search with

depletion.



A

-Zocal Random Search With Depletion, Glabally Varying Catchability.

In this wodal, one wants to assume that q in (29)has a distribution as
well. Ouce again choosing the gamma distribution with parameters v and

o leads to the following result.

-1
pla,t) = (:) J‘:(l_e'%)n(‘-qt n—ﬂ M

r(v)

v=1l v
&k (“)c 1ty e g

0 §=0 J T)

- & e - | o0

=A1tﬁough not & standerd distribution, (30) is easily computed for a given
set of parameter values,

It now remains to compute the expected CPUE given by (ﬁ).for each of
these models. Each of the models involves a number of parameters. By
appropriate scaling, the nunber of parameters that one has to deal with can
be reduced. It is instructive to work through an example, so consider the
model of local random search, globally varying catchability. Using (28) in

(26) gives
min(u’u) - 1 o \ N‘I"ﬂ 2
oo T O oy ) (o)
n(cm}.—um AT . (31)
2 om =il i (T-nh) |

For simplicity assume that T = Mh exactly and introduce the following scaled
variables
M= T/h
B = o/T ' : (32)
A = §/M
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Thus, M is & measure of the maximum number of schools that could be

caught in the opersating time, p"l is a nondimensional measure of the

operating time and )\ 1s & measure of abundance in terms of M, Finally,
set M = min(M,N), Using these scaled variables in (31) gives

M* n
e nhv=-1

n
E 1 O gmoe D) P
E{CPUE} = —H* (33)

’men-n)] Lﬂﬂ.(H-n)]

n-O
Pinally, defining A = A/P leads to one more simplification, which gives

M

RS bl ol

Mx (n-l'v* o4

a )—i—-n.] [1-!- -!:n)]

T+E{ CEUE}

nnO

The formulation (31) has as parameters: ¥, T, v, o, N, h, but (33) Las only
three parameters: M, v, %« A further simplification occurs if one is willing tc
considerable uncertainty in the aystem, say a coefficient of variation of the
order of 1007 so that v = 1, Once again, there are two limits that can be
easily studied in (34). These are A + @ (N3 ») and ) 4 O with M fixed

(N + 0). The following behavior is easily verified.
T*E{CPUE} ~ M a8 A » . (35)

The interpretation of (35) is that for very large abundance all the operating

time is spent fishing ((35) is equivalent to E{CPUE} ~ 1/h).



For )\ + 0, it is easily shown from (33) that
LR
E{CPUE} ~ BT M-1)L as )y a0, (36)

1.e. that expected CPUE is proportional to N,

For the intermediate range of )\ values, numerical computation of (34)
is easily done. Figure 3 shows two plots of log[T-E[CPUE}} against
log i = log N - log M - log o + log T for two values of M, The slopes of
the lines in Figure 3 are about p = .5, giving E{CPUE} a N's (assuming
that all other parameters are fixed),

$imilar calculations were performed using the four different models
(27) - (30) in (26), The results of these specific calculations for
apecific parameter values are summarized in Table 2. The re_ault:s presented
in this table show that all of the four models can give values of p 1less

than 1.



‘Results for Random Search Models with Fixed Operating Time

del

Global Random
Search

Local Random Search
Globally Varying
Catchabilitcy

Global Random Search
with Depletion

local Random Search with
Depletion, Globally
Varying Catchability

. Table 2

Depletion

No

No

Yes

Yes

Parameter Values

h=,5 T=2 q=1

v=g=}
T =10

veg=1
T=3

T=3

h=,2

h=,2

h= .2

-

o6

o8

16
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3 austive Search: Fixed rating Time
The altemative to raudom search is exhaustive search, in which vessals

follow straight line tracks and detect with probability 1 everything within
& fixed sighting distance of the vessel. This case was studied by Neyman
(1949) and again by Mangel (1985)., It is once again agssumed that the
operating time T is fixed and that each discovery of a school leads to a
handling time of h hours. 1In this theory, thexre are two probabilities of

interest:

P (k,T) = Pr{catch 1s %k achools and the vessel is
fishing at T}

(37)

r.(u,r) = Pr{catch 43 k schools and the vessel
iz searching at T}

If Z{t) is the number of schools completely or partially fished by time ¢,
8 natural choice for the definition of expected CPUE is
nin(M,N)

E(CPUE} = % £ pe{z(r) = x) (38)
w=0

vhere, as before, M = Int(T/h), Note that
Pr{Z(T) = k] = Pf(k-l,‘r) + P'(k,'r). (39)

Consider a region of area A that contains N schools of fiash,
Assuming that the area swept per unit time is 2W, and that all schools
within the swept area arec discovered, the following results can be

demonstrated (Neyman (1949), Mangel (1985)).



If the N schools are randomly distributed in A&, so that the chance
that an area a has Kk schools is binomial with paramcters N and

p = afA, then

M m N-m
PO = 1 - p (RGN | ZCh "
=0 >

K m Nem
- N}/ZW T- (k+1)h . 2W§1—§h+11ht\
Pe(s,T) mEO(m N A ) (,1 A ")

XN YR 20Tk NV |
i mEQ(NNCZh A ,)(ﬁ'- A ) }

(40)

k B 0,1,2,...,}!-"1

k N-k
N, 2U(T-xh)Nry  26(T-
Pyl = (EECER (1 - B

kK =0,1,2, +oe

If one uscs the Folsson limit of the binomial, with ) = N/A being the

density of schools, then in (40) terms of the form

are replaced by

£ A HT0h)) o (2onn))™

md

One could icagine that the N schools are not randomly distributed in
the region, but have some "clumped” ox "contagious"™ distribution. Im such

a case, the negative binomial distribution can be used as a model (see
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e.g. Pielou (1977)). If this model is adopted, terms of the form

- M=t
N./2W (L-wh )™ 20 (T~mh
(m)(z A ,(" A )

are replaced by

Cﬂv tYa-l-zw {T~vh )) \, ;gutl(.‘;_dl)

vhere y and g are parameters in the negative binomial distribution. 1In
particular, y 1s & measure of the level of aggrcgation (larger vy implying
lass qggregation) and o * vA/N,

It turns out, in fact, that for the parameter values used in the
coumputations reported below all three models gave virtually the same
results, For these computations, the values T» 1, h = .1 and y = 1 were
chosen, The values of p in the formula CPUE = ANP for three different

valuss of WI/A are shown below:

wt/a P
.01 ~ 1
.1 «8
.3 N

The decrease in the value of p with increasing values of W/A can be
partially understood by a consideration of (40), That is, for extremely small
values of WT/A, the chence of finding more than one school is so slight that
CPUE roughly grows linearly with N. For larger values of W/A, this s

not the case and the effects of handling, saturation, and depletion on CPUE

become important,



Identifying the Regime

The results in the previous section show that one can generate
formulas of the form CPUL = AN® with p <1 for virtually any reasonable

‘'model, It is now worthwhile to reconsider equation (5), rewritten below

H(7):N
E{CPUE} ~ o5 (61)

Recall that the rajor question associated with this form:la 1s how one
estimates M and ¢ simultaneously., One way to do this involves an
extension of the methodology of Mangel and Beder (1985). This extensfon
proceﬁds as follows,

The underlying stochastic model is the following one, Assume that
K schools are initfally present and that, given n schools were

discovered and fished already,

Prob{another detection of a school
in the next At}
42)
= ¢ (N-n)az + o(apt)
This assumption leads to the binomial distribution (29), with ¢ = ¢, This
assunption also means that the time to detect the 1th school 1a an
exponential random variable with parameter €(N-(i-1)),

Imagine now a data set consisting of the times TI""’Tk needed to
detect the first k schools and the search time § after the detection
of the kth school but before the detection of the (h+1)'t school. The
likelihoovd of this data set is

k-1 -(N-—i)cTi
[0 -iee ] exp{ ~(H-Kk)eS]. (43)

The maximum Iikelihood estimates & and ¢ for N and ¢ setigfy the

equations



"2t

x 51
~ - ¥ (u-i)'r1 + (N-k)S
e i{n0

(44)
Xk

k-1
- (N-k)S + '(N-i)’.l'i

R
=0

These are easily solved on a desk top microcomputer. One is interested
in the product ﬁ:, since the regime will be determined by the product

Nev.

As au example, consider the following data om Pacific Ocean perch in
Rennell Sound, British Columbia (see Mangel and Beder (1985) for more

details):
TI = 13.9 hrs 1['7 = 31.5 hrs
T, = 4 Thre TB- = 22.6 hrs
Ty = 4.5 hrs Tg = 11,1 hre
T, = 5.6 hrs 'l'm = 16,5 hra
'rs = 1,3 hrs Ty = 5  hrs
TG = 11,7 hrs T12 = 30,3 hrs

T13 = 23.1 hrs

The value of S was unknown, 80 it was treated as a parameter in the
eatimation, Table 3 shows the results of solving (44).
These results show that as the search time without a detection

increases, the estimate for N decreases, in accord with incuttion,



S (hrs)

10
15
20
25
30
40
50
60

70

=

386
199
137
106
87
15
60
51
45

41

Table 3

Estimatlion of ke

2,11
4.05
5.84
7.49
92.00
1.04
1.28
1,49
1.66
1,80

x 10"

x 10~
A

x 1074

x 10~

x 1073

x 16~3

x 10"

-3

 j22



The -vemarkable agpect, however, is that the product ﬁ: is very stable (as
N . decreases by about 90%, ﬁ; decreases by about 9%), This suggests that
. ome may be able to estimate Ne without knowing the last search time S.
For the data presented here T w 1 hour, so that.the results indicate
that Res << 1, and CPUE should be proportional to abundance. (There are,
however, some other problems with using CPUE to measure abundance, See
Mavgel and Beder (1985) for details, whera abundance eatimation based on

encounter rates is also discussed,)

Suppary god Conclusfon
There are three themes to this paper. The first is that, depending

on operational parameters when depletion is ignored one can expect CPUE
‘to be proportional to abundance, independant of abundance or of the form
AN? with p = p(N) less than 1, The second theme is that virtually all
reasonable models that include depletion also lead to the three regimas
and, in particular, to a regime with p < 1, The third thems, perhaps

the most important one from a management viewpoint, is that it is possible
to use encounter rate data to estimate the regime (CPUE proportional to
abundance, independent of abundance or CPUE = ANP). Thus, one is capable
of determining the regime, at least at some approximate level. This
provides another way of interpreting catch-effort data,.

Two aspects of the problem not discussed here are:

1) the behavior of catch per effort searching and 2) the role of school
structure in the process of search, handling and harvest,

A number of authors (e.g., Cooke (1985a,b), Zahl (1982,83)) have
suggested that CPUE be defined in terms of catch per unit effort of

searching (CPUEs),



‘Por the fixed catch model one has (see equationsll - 13)

E{C/T ) » (:'[1/"1?li + 2/'1"3 Var(T} }

N
- v+ BE, &3)

Thus, the simple use of C/E{T_} underestimates the true CPUEs (also nmoted
by Zahl (1982)). More importantly, there is no guarantee that the higher
‘terms in (43) are small -- {un fact they may be of the same order or lazger
a8 (43) demonstrates, Thus, the validity of an expansion similaxr to (12)
comes into question, Cooke (2985b) has found that for a Io;-normal

distribution on catchability,-CPUEs is proporticunal to NP with p < 1.

The work presented hare ignored the effects of school sli.:e and structure
-on CPUE. These effects may occur in ﬁany ways. First, the probability of
detection in the search process may depend upon school size (ses, e.g. Quinn
(1979) for a discussion of the effects of school structure on abundance
estimates in transect theory). In additionm, schooi size and structure will
affect the number of schools and density of stock within schools. Some

behavioral rules for schools are:

i) constant density of f£ish within a school
1i) constant school radius

1ii) constant number of fish withis & gchool

Since the search and detection process is one in which schools are detected,
the ultimate relationship between CPUE and abundance will depend upon the

mechanism of school formation. This problem awaits further investigation,



In the end though, perhaps the most important question ias the
Inferential one: tow does one estimate the value of p, at least to be
sble to say pwl, pa~ 0 or pas .57 1f search times are known, then the
method introduced here works well, 'If the data just consist of effort
sod catch, the problem is harder, The kinds of models discussed in this

paper may provide guidance in the analysis of such noisy catch-effort data,
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Figugp Captions

Figure 1. a) The CPUE curve given by equation (5).
b) A linear approximacion to it.
¢) When data fall in the middle region, a linear fit gives

CPUE = AN? with p < 1.

Figure 2. A plot of logih/v (CPUE)q] given by (22) against
-log x, vhere x = o/hN for the fixed catch model.

The straight line has a slope about 0,5.

Figure 3, A plot of 1og[T+E{CPUE}] giver by (32) against log i
whera i = NT/nM for two values of M, B=yx=l,

The straight lines have slope zbout 0.5,
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