Climate Change in the Great Lakes Region Starting a Public Discussion

Tonight:

Effects of Climate Change on the Fish and Fisheries of the Great Lakes Basin

Brian Shuter

Research Scientist, Ontario Ministry of Natural Resources

Adjunct Professor of Zoology, University of Toronto

www.seagrant.wisc.edu/ClimateChange

OVERVIEW

PART 1 - PAST AND FUTURE CHANGES IN CLIMATE

PART 2 – IMPACTS ON LAKE ENVIRONMENTS

PART 3 – IMPACTS ON FISH AND FISHERIES

PART ONE PAST AND FUTURE CHANGES IN CLIMATE

Past and Present CO₂ Levels in the Atmosphere

(Source: IPCC, 2001. Climate Change 2001: Synthesis Report - Figure SPM-10a on Page 33)

Global Annual Air Temp Index 1856-2000

(global annual air temp, measured as deviations from the 1856-2000 mean)

Recent (1960- present) Trends Match

Carbon Dioxide

Global Air Temp

Natural forcings alone do not explain observed warming in 2nd half of century...simulations including JUST natural forcings cannot predict recent warming trends. Add recent trends in greenhouse gas and Sulphate aerosol concentrations and recent warming trends are accounted for.

....the overall large-scale pattern of observed near-surface temperature change over the 20th century is consistent with our understanding of the combined impacts of natural and anthropogenic forcings. Natural forcings were relatively more important in the early-century warming and anthropogenic forcings have played a dominant role in warming observed in recent decadesglobal mean temperatures continue to increase at a rate similar to that observed over the last three Decades [in response to predicted future trends in greenhouse gas emissions] Stott et al. 2000. Science 290:2133-2137.

How Will Future CO₂ Levels Drive Climate?

YEAR

Past and Future Changes in Great Lakes Region Climate

RAINFALL

Conservative Estimate of Climate Change by 2090

(i) 10 to 20% increase in rainfall(ii) 2 to 4 C increase in temperature

PART TWO IMPACTS ON LAKE ENVIRONMENTS

Conservative Estimate of Climate Change by 2090

(i) 10 to 20% increase in rainfall

(ii) 2 to 4 C increase in temperature

IMPACTS ON LAKES

Rule of Thumb

A 10% increase in rainfall is needed for each 1^o C of warming In order to maintain existing water levels.

Therefore

- (i) reduction in water levels
- (ii) increase in ice free periods
- (iii) increase in summer surface water temperatures

(iv) increase in stratification period

DECREASE IN LAKE WATER LEVELS

Lake	$2 \times CO_2$	2030	2090
	(range of	(range of 4	(range of 2
	4 simulations)	simulations)	simulations)
Lake Superior	- 0.23 m to	- 0.01 m to	+ 0.11 m to
	- 0.47 m	- 0.22 m	- 0.42 m
Lakes Huron	- 0.99 m to	+ 0.05 m to	+ 0.35 m to
& Michigan	- 2.48 m	- 0.72 m	- 1.38 m
Crystal Lake Wisconsin	- 1.00 m to - 1.90 m		
Groundwater near Lansing, Michigan		+ 0.1m to - 0.6m	

Less Fresh Water

Warmer, Open Waters

Longer Ice Free Period

Expected Decreases in Ice Cover

Lake	Current Situation	Future Scenarios	
		By 2030	By 2090
Lake Superior (3 basins) ^a	No ice-free winters	Increase ice- free winters to as much as 4%	Increase ice-free winters to as much as 45%
Lake Erie (3 basins) ^a	2% of winters are ice free	Increase ice free winters to as much as 61%	Increase ice free winters to as much as 96%
Small inland lakes ^b	~90–100 days of ice cover	Decrease ice cover by $45-60$ days with a doubling of atmospheric CO_2	

Do recent historical trends reflect these projections for the future???

Lake Erie: Historical Changes in Winter Duration and Summer Surface Temperatures

From: Jones, M et al. 2006. Canadian Journal of Fisheries and Aquatic Sciences

WINTER DURATION: Monitoring the Intensity and 'Visibility' of Change

Lake Erie 1900-2000: Winter Duration – Summer Water Temperature

Mid-Summer Surface Temperature 1900-2000 5 year running averages

Summer Mean Surface Temperature Versus Year by Basin For 4 Great Lakes

ONTARIO* 1970-2000 Summer Surface Water Temps

ERIE* 1970-2000 Summer Surface Water Temps

HURON* 1970-2000 Summer Surface Water Temps

SUPERIOR** 1980-2005 Summer Temps: Air & Surface Water

•Dobiesz and Lester, In Prep.

**Austin and Colman, 2007, Geophysical Research Letters, Vol. 34.

LAKE SUPERIOR (1980-2005)

SUMMER

WINTER

From: Austin and Colman, 2007, Geophysical Research Letters, Vol. 34.

PART THREE IMPACTS ON FRESHWATER FISH OF:

•Less water,

•Longer ice free periods

•Warmer surface water temperatures *

Preferred Temperature

temperature

Temperature Groupings of Common Great Lakes Fish

from page 53

Kling, G.W. et al.. 2003. Confronting climate change in the Great Lakes Region. Union of Concerned Scientists and Ecological Society of America, Washington, D.C.

Typical Representatives of Each Thermal Guild

Lake Trout: 42 - 72 N. Lat

Biogeographic Ranges

Walleye: 30-70 N. Lat.

Smallmouth bass: 33-50 N.Lat.

Correspondence Between Physiological Preference and Climate at Northern Limit of Range

Physiological Preference and Climate at Northern Limit of Range

Ē

Duluth-Manitowoc climate data from: http://data.giss.nasa.gov/gistemp/station_data/

Temperature Groupings of Common Great Lakes Fish

from page 53

Some Winners and Losers

TABLE 2. Some fishes which could alter their range within the Great Lakes basin under conditions of climate warming.

Win	Losers	
river carpsucker lake chubsucker bigmouth buffalo black buffalo river redhorse grass carp comely shiner red shiner blacktail shiner black bullhead brindled madtom northern madtom flathead catfish blue catfish	white catfish white perch mud sunfish redbreast sunfish warmouth orangespotted sunfish flier banded sunfish bantam sunfish banded pygmy sunfish blackbanded sunfish	brook trout lake trout lake whitefish round whitefish burbot slimy sculpin

From: Mandrak, N. 1989. Journal of Great Lakes Research.

Assessing impacts of warming on a walleye population.....

Example: Walleye in Lake Erie

Zoogeographic Range: 30 to 70 North Latitude

Preferred temperatures: 20-25 C

Impact of Climate Change on Supply of Suitable Walleye Habitat in Lake Erie

LAKE ERIE Three Basins: west = smaller and shallow central = largest and a bit deeper east = smaller and very deep

Less Water Longer Ice Free Period Warmer, Open Waters

SEE: Jones et al. 2006. Canadian Journal of Fisheries and Aquatic Sciences 63:457-468.

Lake Erie

WALLEYE PREFERENCES

Defining Suitable Thermal Habitat

Defining Suitable Optical Habitat

Percent Change in Suitable Habitat (= Habitat Supply) Given:

- * 2C increase in surface temperature
- * 2m drop in water level

Docin	Weighted Habitat Area		Weighted Habitat Volume			
Dasin	Optical	Thermal	Combined	Optical	Thermal	Combined
East	-5	22	32	-10	4	7
Central	-9	8	3	-20	-9	-16
West	-29	-13	-26	-38	-26	-38

IF

Changes in Climate Affect the Quantity and Quality of Habitat Available to Individual Populations

THEN

How Will Sustainable Harvests Change?

Impacts of Declines in Both Habitat Supply and Habitat Quality on Sustainable Harvests

Percent Change in Suitable Habitat (= Habitat Supply) Given:

- * 2C increase in surface temperature
- * 2m drop in water level

Basin	Weighted Habitat Area		Weighted Habitat Volume			
	Optical	Thermal	Combined	Optical	Thermal	Combined
East	-5	22	32	-10	4	7
Central	-9	8	3	-20	-9	-16
West	-29	-13	-26	-38	-26	-38

Change in habitat supply ~ = Change in sustainable harvests

General Impacts of Likely Changes in Climate on Fish Ecology & Consequences for Fisheries.

Climate Change Impacts on Fish Ecology	Consequences for Fisheries
Change in overall fish production in a particular aquatic ecosystem	Change in sustainable harvests for all fish populations in the ecosystem
Change in relative productivity of individual fish populations in a particular aquatic ecosystem	Change in sustainable levels of exploitation that can be directed against the fish populations of the ecosystem
Large-scale shifts in geographic distribution of species	Change in mixture of species that can be sustainably harvested within a specific region. Change in location of profitable fishing grounds
Small-scale shifts in the spatial distribution of members of a specific population	Change in sustainable harvest for the population Change in efficiency of fishing gear , leading to change in sustainable levels of fishing effort

Adapting to Climate Change

Water conservation increased demand for direct human uses may lead to severe reductions in habitat supply

Refocus fishing on populations whose productivity is improved by climate change.

Protect populations whose productivity is damaged by climate change

Reduce impacts from other agents of stress:

- Eg: mitigate impacts of contaminants
 - limit competition between humans and fish for water
 - control access of invasive species

Actively accelerate northward shift of warmwater species AND / OR

Actively protect coldwater species from competition with warmwater species

TAKE HOME MESSAGES

1. Climate change is underway.

2. Some future change is unavoidable – however, **if limited**, the impact of this change on aquatic environments can be evaluated and planned for.

3. Delaying control of greenhouse gases will accelerate the rate and magnitude of future change and thus render planning and mitigation difficult, and perhaps impossible.

Acknowledgements

Ontario Ministry of Natural Resources University of Toronto, Fisheries and Oceans Canada, Natural Sciences and Engineering Research Council of Canada, Union of Concerned Scientists, Ecological Society of America

and

Norene Dobiesz, Karen Ing, Mike Jones, Nigel Lester, Ken Minns, Phil Ryan, Li Wang, Yingming Zhao For Michigan, summers in 2030 could be like those in Kentucky, while by the end of the century, they may feel like ones in Arkansas today.

Kling, G.W. et al. Zack. 2003. Confronting climate change in the Great Lakes Region. Union of Concerned Scientists and Ecological Society of America, Washington, D.C.

Frequency and severity of droughts may also increase in central North America

Central North America

Longer and more often.....

Kling, G.W. et al. Zack. 2003. Confronting climate change in the Great Lakes Region. Union of Concerned Scientists and Ecological Society of America, Washington, D.C.