

1 **3-D Printed Customizable Vitrification Devices for Preservation of Genetic Resources of**
2 **Aquatic Species**

3

4 Journal: *Aquacultural Engineering*

5

6 Connor J. Tiersch^{a1}, Yue Liu^b, Terrence R. Tiersch^c, William T. Monroe^{b,*}

7

8 ^aCraft & Hawkins Department of Petroleum Engineering, Louisiana State University, 3207

9 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, USA

10 ^bDepartment of Biological & Agricultural Engineering, Louisiana State University, 149 E. B.

11 Doran Building, Baton Rouge, Louisiana, 70803, USA

12 ^cAquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources,

13 Louisiana State University Agricultural Center, 2288 Gourrier Avenue, Baton Rouge, Louisiana,

14 70820, USA

15

16 ¹ Present address: Aquaculture Systems Technologies, LLC, 2120 N. 3rd Street, Baton Rouge,

17 Louisiana, 70802, USA

18

19 Corresponding author:

20 W. Todd Monroe, PhD

21 163 E. B. Doran Building, Department of Biological and Agricultural Engineering, Louisiana

22 State University, Baton Rouge, LA 70803, USA

23 Email: tmonroe@lsu.edu

24

25 **Abstract**

26

27 Sperm vitrification as an alternative approach to conventional cryopreservation (equilibrium
28 freezing) allows quick and low-cost sample preservation and is suitable for small-bodied aquatic
29 species with minuscule testis, fieldwork at remote locations, and small-scale freezing for research
30 purposes. The goal of this present study was to develop operational prototypes of 3-dimensional
31 (3-D) printed vitrification devices with innovative components that can provide comprehensive
32 functionalities for practical repository development for aquatic species. The design featured an
33 elongated loop to suspend a thin film of sperm sample in cryoprotectant, a retractable sleeve to
34 protect the vitrified samples and allow permanent labeling, a handle to facilitate processing and
35 storage, and a shaft with annular grooves to guide positioning of the protective retractable sleeve.
36 To span a wide range of sample capacities and configurations, a total of 39 different
37 configurations (3 loop lengths \times 13 loop heights) were fabricated by 3-D printing with the
38 thermoplastics polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). A total of 86
39 devices were fabricated with ABS filament with a print failure rate of 9%, and 97 devices were
40 fabricated with PLA filament with a failure rate of 20%. Major types of printing failures included
41 disconnected loops, insufficient build surface adhesion, stringing, and inconsistent extrusion. The
42 sample volume capacity ranged from 1-47 μ L and had linear relationships to the loop lengths and
43 layer numbers. Vitrified samples were observed in 10-mm and 15-mm loops fabricated with PLA
44 and ABS but not in 20-mm loops. This study demonstrated the feasibility of development of
45 standardized low-cost (\$0.05 material cost) devices fabricated by 3-D printing with practical
46 functions including vitrification, volume control, labeling, protection, and storage within
47 conventional systems. These prototypes can be further developed, standardized, and used to assist
48 development of germplasm repositories to protect the genetic resources of aquatic species by user
49 groups such as breeders, hatcheries, aquariums, and researchers.

50

51 Keywords: 3-D printing, sperm vitrification, device, low-cost, standardization, aquatic species

52

53

54

55 **Introduction**

56

57 Development of germplasm repositories to protect the genetic resources of aquatic species has
58 been hindered by several factors over the past 70 years including an almost complete focus on
59 cryopreservation research and protocol development. Other problems include a lack of
60 approaches for standardization, and the requirement to adapt equipment and supplies developed
61 for livestock and human medicine for use with fish and shellfish. New fabrication technologies
62 such as 3-dimensional (3-D) printing can provide expanded access to CAD-CAM capabilities,
63 and open new opportunities for custom design and production of standardizable devices directly
64 based on the needs of aquatic user communities. Inexpensive devices such as these can be
65 distributed as open-source files to facilitate application, and to support and focus protocol
66 development, ensuring that high-quality material can be made available to centralized germplasm
67 repositories.

68

69 Because of the current lack of repository development, the utility of cryopreservation remains
70 largely unrealized for aquatic species in multiple areas including genetic improvement for
71 aquaculture (Blackburn, 2011; Hu et al., 2011), stock enhancement for wild fisheries (Riley et al.,
72 2004; Tiersch et al., 2004), protection of genetic diversity in imperiled species (Liu et al., 2018;
73 Wayman et al., 2008), and storage and distribution of tens of thousands of research lines of
74 biomedical research models (Torres et al., 2017; Yang and Tiersch, 2009). Cryopreserved sperm
75 has been incorporated into germplasm repositories for protection and management of genetic
76 resources in other species such as livestock (Purdy et al., 2016), but that is because they have
77 moved past protocol research into application, often by utilization of engineering approaches.

78

79 Efforts in application of engineering technologies for sperm cryopreservation have primarily
80 focused on conventional cryopreservation ('equilibrium freezing') methods. A critical factor

81 determining the success of equilibrium freezing is to identify and achieve ideal cooling rates (e.g.,
82 5-40 °C/min) during freezing (Hezavehei et al., 2018). Control of cooling rate requires
83 specialized equipment, which can cost tens of thousands of dollars for computer-programmed
84 types or several thousand dollars for other types.

85

86 An alternative and relatively new method for sperm cryopreservation is vitrification, by which
87 liquid is cooled at > 1,000 °C/min ('rapid cooling') to transform into an amorphous solid (glass)
88 phase without the formation of crystalline ice (Cuevas-Uribe et al., 2017; Rall and Fahy, 1985).
89 The rapid cooling can be obtained simply by plunging a thin film (e.g., several µl loaded on
90 loops) or droplets (e.g., on plates or strips) of sample into liquid nitrogen. As such, vitrification
91 allows low-cost sample preservation (Magnotti et al., 2018) and is suitable for: (1) small-bodied
92 species with minuscule sample volumes, (2) fieldwork at remote locations where equipment or
93 electricity are not accessible, and (3) small-scale freezing for research purposes. For example,
94 swordtails and guppies (family Poeciliidae) are popular ornamental and aquaculture species in the
95 U.S. and typically provide < 5 µl of sperm from each male (Huang et al., 2009; Yang et al.,
96 2009), and thus vitrification could be an ideal method for preserving sperm of these species for
97 genetic management purposes (Cuevas-Uribe et al., 2011b).

98

99 There are several major limitations of existing devices (i.e., with specialized vitrification
100 functions) and tools (i.e., designed for applications other than vitrification) used in sperm
101 vitrification. Firstly, most commercial vitrification devices previously reported were designed for
102 freezing of mammalian oocytes and embryos, and thus only accommodate small sample volumes
103 (e.g. < 2 µl) for sperm loading. For example, the Cryotop® devices (KITAZATO, Valencia,
104 Spain), designed for vitrification of human oocytes and embryos, were used in sperm vitrification
105 of Eurasian perch (*Perca fluviatilis*) and European eel (*Anguilla anguilla*) (Kása et al., 2017).
106 However, only 2 µl of sperm suspension could be loaded onto each device (Marco-Jiménez et al.,

107 2016). Secondly, devices specifically designed for sperm vitrification are often medical devices
108 intended for human clinical application, and thus these devices are costly. For example, the
109 Cryotop® costs more than \$20/device. The Sperm VD device (Berkovitz et al., 2018) designed for
110 sperm vitrification with storing and labeling mechanisms costs \$60 and can only load about 1 μ l
111 of sample per device. Thirdly, non-specialized tools have been adopted for sperm vitrification.
112 For example, a study of sperm vitrification of channel catfish (*Ictalurus punctatus*) evaluated
113 various options (Cuevas-Uribe et al., 2011a), such as pipette tips (originally for liquid transfer),
114 sperm cryopreservation straws (for equilibrium freezing of semen) cut at various angles, and
115 inoculation loops (for microbiology). Although these tools can help reduce costs and some of
116 them can provide limited functionality for operation and sample recovery, they lack the capability
117 to be customized, standardized, securely labeled, and efficiently stored.

118

119 Recently, the increasing availability of consumer-level 3-D printing makes it possible to rapidly
120 prototype and fabricate devices at a low cost. This technology has been introduced to the field of
121 cryobiology (Hu et al., 2017; Tiersch and Monroe, 2016) and repository development for aquatic
122 species (Tiersch and Tiersch, 2017). Previous work has demonstrated the feasibility of using 3-D
123 printed loops with a material cost of \$0.01/unit to perform sample vitrification (Tiersch et al.,
124 2019). Given the feasibility of vitrification within 3-D printed loops (a single component) the
125 next step is design and test operational devices (multiple integrated components), with additional
126 features to achieve practical capabilities and functionalities, such as handling, sorting, labeling,
127 and storage. The goal of the present study was to develop and test operational prototypes of low-
128 cost 3-D printed sperm vitrification devices with innovative elements that can provide
129 comprehensive functionalities for practical repository development for aquatic species. The
130 specific objectives were to: (1) design component prototypes and operational prototypes; (2)
131 evaluate fabrication feasibility with consumer-grade 3-D printers; (3) evaluate the relationship of
132 sample volume capacity with various configurations, and (4) evaluate the feasibility of

133 operational prototypes to achieve vitrification. The innovation of these operational prototypes can
134 provide a foundation for further performance testing, and divergent modifications, and ultimately
135 standardization (as a long-term goal) based on the needs of user communities.

136

137 **Methods**

138

139 *Design of prototypes*

140

141 Computer-aided design (CAD) software (Inventor® Autodesk, San Rafael, CA) was used to create
142 3-D designs of prototypes. Based on concepts of previous studies (Tiersch et al., 2019; Tiersch
143 and Tiersch, 2017), the present study (Fig. 1A) integrated several innovative components and
144 functions, including: (1) a loop to suspend a thin film of fluid (i.e. sperm suspension); (2) a
145 retractable sleeve to protect vitrified samples and allow permanent labeling by ink-jet printing;
146 (3) a handle to facilitate processing and storage; (4) a shaft with annular grooves to position the
147 protective retractable sleeve in the “open” (freezing position) or “closed” (storage position)
148 positions, and (5) a detent inside the retractable sleeve to fit the annular grooves for appropriate
149 positioning. For prototyping, identification jackets from commercially available 0.5-mL sperm
150 cryopreservation straws (Cryo Bio System, L'Aigle, France) (referred to as ‘CBS straws’) were
151 used as protective retractable sleeves. These jackets can be labeled by automated straw printers
152 such as MAPI (CBS) and Quattro (Minitube, Tiefenbach, Germany) systems, and have been
153 evaluated for use with aquatic species (Hu et al., 2011).

154

155 The design constraints included: (1) the width and thickness (Fig. 2) of the loop must be less than
156 the inner diameter (ID) of the protective retractable sleeve (ID = 3.1 mm); (2) the length of the
157 shaft must be greater than the length of the protective retractable sleeve (50.0 mm); the overall
158 length of the device must be less than the length of common cryopreservation straws (~134 mm);

159 (4) the minimum feature thickness must be ≥ 0.2 mm due to current limitations of the 3-D printers
160 used; (5) the geometry of 3-D models should be suitable for fabrication by fused-deposition
161 modeling (FDM) 3-D printers (e.g., no overhang structures), (6) and the material cost of each
162 device should be $< \$0.05$. Dimension variations in the loop length and loop thickness were
163 created to characterize sample volumes and performance in vitrification testing.

164

165 *Evaluation of fabrication feasibility*

166

167 The 3-D models of prototypes were converted to stereolithography (STL) files in the Inventor
168 software and imported into a slicing software (MakerBot Desktop Beta, MakerBot, New York
169 City, New York). The default “standard” settings in the software were used for fabrication (Table
170 1). The printing settings and 3-D models were converted to G-Code format (transferred by a SD
171 card) and imported to an FDM-type 3-D printer (MakerBot Replicator 2X, MakerBot).

172

173 Different versions of prototypes were initially designed to evaluate the functionality of individual
174 components, and suitable versions of each component were chosen to evaluate the operation of
175 integrated prototypes (operational prototypes). In operational prototyping, a total of 39
176 dimensional configurations (3 different loop lengths \times 13 different layer numbers) were printed
177 with filament (1.75 mm diameter, MakerBot) of two thermoplastic materials: polylactic acid
178 (PLA) and acrylonitrile butadiene styrene (ABS). The PLA filament was printed at 200 °C (heat
179 block temperature) on an unheated (room temperature) print bed. The ABS filament was printed
180 at 230 °C (heat block temperature) on a heated (110 °C) print bed. The printing environment
181 (room 116 at the Aquatic Germplasm and Genetic Resources Center) was controlled at 24-26 °C
182 (adjusted by a central air conditioner) and a humidity of 46-53% (adjusted by a dehumidifier).

183

184 It took ~ 5 min (not including heating) to print each device. After each batch of printing, the
185 fabricated prototypes were visually inspected. Undesired deformities were recorded and
186 categorized as fabrication failure. The prototypes with fabrication print failures were reprinted
187 until a total of 156 failure-free devices (3 loop lengths × 13 loop heights × 2 thermoplastics × 2
188 duplicates) were printed for evaluation. The print failure rate was calculated as: (the number of
189 fabrication failures)/(the total number fabricated). The layer height of each layer number was
190 measured with a digital caliper (Neiko 01407A). The increment layer height was calculated as the
191 height differences between two contiguous layer numbers. The layer height of layer number 1
192 equaled to the first increment layer height. A total of 13 increment layer heights were averaged
193 for 13 layer numbers.

194

195 *Evaluation of sample volume capacity*

196

197 Deionized water was used to initially evaluate the sample volume capacity of various
198 configurations to provide a standardizable testing method (Tiersch et al., 2019). Water has broad
199 accessibility and standard physical properties, enabling researchers around the world to compare
200 results. In addition, the mass of water can be easily and precisely converted to volume at known
201 temperature. In contrast, typical cryoprotectant and extender solutions used for vitrification are
202 widely divergent in physical and chemical properties, and are typically admixtures with multiple
203 components that make it extremely difficult to precisely calculate volume based on mass
204 measurement. Finally, films formed with water are often less stable than those formed by high-
205 viscosity vitrification solutions, and can provide a conservative measure for evaluation of film
206 failure. The loop section of each prototype was submerged into deionized water to form a film.
207 An analytical balance (Mettler, AE 166, Columbus, OH) was used to measure the mass (mg) of
208 the devices before and after film formation. The recorded masses were converted into volumes in

209 μ L using the relationship between mass and volume of deionized water (1:1 at 4 °C, corrected for
210 testing at 24 °C).

211

212 *Evaluation of vitrification feasibility*

213

214 Vitrification occurrence was evaluated with a vitrification solution (20% Hanks' balanced salt
215 solution, 40% methanol, methyl glycol 20%, 1,2 propanediol 20%) described in previous studies
216 (Cuevas-Uribe et al., 2011a; Tiersch et al., 2019). All solutions were stored at 4 °C between
217 testings, and were mixed thoroughly before each use. Prior to sample loading, the protective
218 retractable sleeve was slid to the "open" position (Fig. 2). A loop was submerged into the
219 vitrification solution to form a film, followed by plunging of the loop into liquid nitrogen
220 (Cuevas - Uribe et al., 2015). The loop remained submerged in the liquid nitrogen while the
221 retractable sleeve was slid to the "closed" position (Fig. 3). Prototypes with frozen films were
222 transferred into a daisy goblet within liquid nitrogen, and subsequently transferred into a liquid
223 nitrogen dewar for storage for at least 24 hr.

224

225 To determine vitrification quality, a standardized evaluation method (Tiersch and Tiersch, 2017)
226 previously established was used. Briefly, after removal from liquid nitrogen, the frozen films in
227 loops were precisely positioned in front of a viewing panel on a custom 3-D printed pedestal, and
228 visually examined. Vitrification quality was classified by clarity of the frozen film as determined
229 by the visibility of parallel horizontal lines on the viewing panel. Frozen films were classified as:
230 (1) 'Film failure' (indicating there was a fracture or absence of the film within the loop), (2)
231 'Opaque' (film was intact with low clarity, indicating abundant crystalline ice formation), (3)
232 'Translucent' (film was intact with high clarity but not full transparency, indicating partial
233 vitrification), or (4) 'Transparent' (film was intact with full transparency, indicating substantial

234 vitrification or glass transition). To perform the determination of vitrification quality in a
235 standardized manner (Tiersch et al., 2019; Tiersch and Tiersch, 2017), two people (assessor and
236 recorder) were used to conduct experimentation. Assessments were made as the recorder started a
237 timer when the assessor said “start,” which signified the removal of a vitrification device from
238 liquid nitrogen. The assessor placed the device on the pedestal (aligning the film in front of the
239 viewing lines) and voiced a classification. The recorder immediately stopped the timer and
240 documented the time of assessment and the classification. The time between when the assessor
241 removed a device from liquid nitrogen until voicing the classification was the documented time of
242 assessment. Samples were assessed in a walk-in refrigerated room, which remained at 4-7°C with
243 65-70% relative humidity. A maximum time for assessment was set at ≤ 2.5 sec to ensure that
244 classifications were assigned before the films began to thaw.

245

246 *Statistical analysis*

247

248 All statistical analyses were performed using SAS 9.4 (SAS Institute, NC, USA). A one-sample *t*-
249 test (PROC TTEST) was used to compare the difference between the nominal (0.2 MM) and
250 measure increment layer height. A paired *t*-test (PROC TTEST ‘PAIRED’) was used to compare
251 the sample volume capacity of prototypes fabricated with ABS and PLA. Simple linear regression
252 analyses (PROC REG) were performed to evaluate the relationship between the sample volume
253 capacity and the layer number of loops. The vitrification quality of ‘Film failure’ < ‘Opaque’ <
254 ‘Translucent’ < ‘Transparent’ classifications were considered as ordinal data. A Wilcoxon-Mann-
255 Whitney test (PROC NPAR1WAY) was used to compare the vitrification quality between
256 devices fabrication by ABS and PLA, and a Friedman’s test (PROC FREQ) with repeated
257 measures was used to compare vitrification quality among devices with different loop lengths.
258 Logistic regression (PROC LOGISTIC) analyses were used to analyze the relationship between
259 vitrification quality and loop layer numbers. For the logistic regression, the vitrification quality

260 values were converted to binary data as 'vitrified' and 'not vitrified', and the loop length of 20
261 mm was eliminated (because no vitrification was formed in this group) to satisfy assumptions for
262 the analyses. The results were considered statistically significant at $P < 0.05$.

263

264 **Results**

265

266 *Design of prototypes*

267

268 Based on 32 versions of initial component prototypes (data not shown), the design of operational
269 prototypes was developed (Fig. 2) and evaluated. The loop featured a lanceolate shape with
270 configurations of three different lengths (10, 15, and 20 mm) and 13 different thicknesses.

271 Thirteen layers was the maximum that could fit within the protective retractable sleeve (0.2 to 2.6
272 mm based on 1 to 13 layers of thermoplastic deposition with a nominal 0.2-mm thickness of each
273 layer). The handle length was designed to be 49 mm to be sufficiently long to avoid cryogenic
274 injury to users when submerging the loop in liquid nitrogen. An overall length of 127 mm
275 ensured that the device could fit into commercially available Daisy goblets (about 135 mm in
276 height when covered by lids) (IMV Technologies, L'Aigle, France), which are commonly used
277 for sorting and storage of sperm cryopreservation straws (about 133 mm in length). Annular
278 grooves with widths of 2 and 4 mm were designed on a shaft to enable the sliding and positioning
279 of a CBS retractable sleeve for sample protection and identification.

280

281 *Evaluation of fabrication feasibility*

282

283 A total of 97 operational prototypes were fabricated with PLA filament with a print failure rate of
284 20% (Fig. 4A), and 86 prototypes were fabricated with ABS filament with a print failure rate of
285 9%. Four major types of printing failures (Fig. 5) were observed, including: (1) disconnected

286 loops (non-continuous deposition and gaps on loops), (2) poor build surface adhesion (e.g., a
287 portion of the loop was warped inwards), (3) stringing (thin strands of plastic caught on the loop),
288 and (4) inconsistent extrusion (droplets of extra plastic deposited periodically along the print
289 path), due to inconsistent feeding rate of filament.

290

291 The actual measurement of layer height increment was 0.19 mm to 0.20 mm. No significant
292 differences ($0.1545 < P < 0.8920$) in layer height increment were found between the actual
293 measurement and nominal increment (0.2 mm) (Fig 4B).

294

295 *Evaluation of sample capacity*

296

297 The sample volume capacity ranged from 1-26 μL for prototypes with 10-mm loops, 1-32 μL for
298 15-mm loops, and 1-47 μL for 20-mm loops (Fig. 6). The sample capacity of prototypes
299 fabricated with PLA was significantly ($P < 0.0001$) higher than those fabricated with ABS in all
300 three loop lengths. In all materials and loop lengths, the sample volume capacity had a significant
301 ($P < 0.0001$, $r^2 > 0.98$) relationship with the layer number (i.e., the volume increased with layer
302 number), and loop length ($P < 0.0001$, $r^2 = 0.93$) (i.e., volume increased with loop length).

303

304 *Evaluation of vitrification feasibility*

305

306 No prototypes were damaged due to exposure to liquid nitrogen. The average assessment time
307 was ~ 14 sec from initial submersion into cryoprotectant solutions for sample loading, through
308 dipping into liquid nitrogen for freezing. For quality evaluation, samples were assessed for
309 vitrification classification within 2.5 s of removal from liquid nitrogen (Tiersch et al. 2019).
310 Vitrified samples (transparent frozen films) were observed in 10-mm and 15-mm loops fabricated
311 with PLA and ABS, but not in 20-mm loops. Among 10-mm and 15-mm configurations,

312 vitrification feasibility was observed in PLA loops with 1-6 layers and ABS loops with 1-3 layers.

313 Film failures were observed in all layer numbers in the 20-mm configurations.

314

315 No significant differences ($P = 0.0679$) were found in vitrification quality between prototypes

316 fabricated using ABS and PLA filaments. Vitrification quality decreased significantly ($P <$

317 0.0001) with loop length. Logistic regression (Fig. 7) indicated that the probability of vitrification

318 decreased significantly ($P = 0.0039$) with increasing number of loop layers. The Hosmer-

319 Lemeshow goodness-of-fit test showed strong prediction ($\chi^2 = 4.2876$, d.f. = 8, $P = 0.8303$) of the

320 logistic model.

321

322 **Discussion**

323

324 Basic methods for cryopreserving gametes of aquatic and livestock species were each first

325 developed about 70 years ago (Blaxter, 1953; Polge and Rowson, 1952), and since then

326 cryopreserved sperm of livestock has grown into a multi-billion-dollar global industry (Hu et al.,

327 2011), but aquatic species remain at initial stages with tremendous growth potential. Some

328 progress has been made, for example, the National Animal Germplasm Program (NAGP) of the

329 U.S. Department of Agriculture, a national repository established for agricultural animals,

330 currently includes more than 7,000 individuals comprising 110,000 samples from freshwater and

331 marine aquatic species (Animal-GRIN, 2019; Blackburn, 2011). However, there is no integrated

332 set of practices available to reliably collect, process, cryopreserve, transport or use aquatic species

333 samples in repositories or in commercial germplasm markets (Torres and Tiersch, 2018). As

334 indicated above, a critical problem that impedes application of cryopreservation in aquatic species

335 is the lack of innovative technologies that can provide inexpensive, standardized, and practical

336 devices for a wide range of users such as breeders hatcheries, aquariums, researchers, and

337 repository operators (Hagedorn et al., 2019).

338

339 *Rapid prototyping of cryopreservation devices with 3-D printing*

340

341 In the past several years, 3-D printing technology has become available and affordable, providing
342 tremendous opportunities for development of innovative technologies for aquaculture research
343 (Hu et al., 2017; Tiersch and Monroe, 2016). With the rapid prototyping capabilities provided by
344 3-D printing (Rayna and Striukova, 2016) and computer-aided design software (Ho et al., 2015),
345 innovative ideas can be fabricated as prototypes to be tested within minutes for small objects,
346 such as the devices evaluated in this study.

347

348 We recognize three major phases in the rapid prototyping process for device development. In the
349 first phase (component prototyping), ideas are transformed into designs, which are subsequently
350 fabricated into prototypes of individual components (e.g., loops only). Functionalities of these
351 components are evaluated individually, design changes are made, and different versions of
352 “component prototypes” are developed. In the second phase (operational prototyping), suitable
353 versions of the component prototypes are integrated into composite devices (e.g., loops plus
354 handles and sleeves). The operation of integrated prototypes (“operational prototypes”) are
355 evaluated and multiple “variations” are developed. In the third phase (performance prototyping),
356 advanced operational prototypes (“performance prototypes”) are tested for performance,
357 including biological utility, reproducibility, reliability and efficiency, and further refinements are
358 made. The goal of the present study was to develop operational prototypes of a 3-D printed
359 vitrification device, which can be further evaluated as performance prototypes. The long-term
360 goal is to develop standardized vitrification devices that can be made available to aquatic user
361 communities.

362

363 *Design of prototypes*

364

365 Efficient handling, appropriate storage, and secure labeling of cryopreserved samples are
366 essential in preservation and utilization of germplasm resources (Torres and Tiersch, 2018). The
367 design of operational prototypes featured a loop with variable configurations, a handle, a shaft
368 with annular grooves on it, and a retractable protective sleeve. The function of the loops was to
369 support a thin film of sample to enable a sufficiently high cooling rate to achieve vitrification.
370 The widths of the loops were constrained by the inner diameter of the retractable sleeves, which
371 were adopted from commercially available CBS labeling jackets. To enhance sample volume
372 capacity, the loops were designed as lanceolate shapes instead of circles to maximize loop length.
373 The retractable sleeve was necessary for practical operation during sorting, shipping, and long-
374 term storage, in which there is a risk of samples contacting other objects, resulting in detachment
375 of loops. The annular grooves on the shaft provided standardized positioning of the protective
376 sleeve to ensure full coverage of the loop in the low visibility conditions often encountered when
377 working with liquid nitrogen due to condensation.

378

379 In addition to protection, this retractable sleeve could be labeled by commercial-scale straw
380 filling, sealing, and printing equipment, (such as the MAPI (CBS) and Quattro (Minitube), or
381 research-scale tags, such as Cryo-StrawTAG™ (GA International, Quebec, Canada). The handle
382 provided efficiency when gripping the device with two fingers (without reliance on tools such as
383 tweezers) during operations, including freezing, sliding the retractable sleeve, sorting, loading
384 into containers, quality evaluation, and thawing. After freezing and closure of the sleeve, the
385 samples could be sorted and stored within Daisy goblets, which are commonly used for sperm
386 cryopreservation straws, and thus did not require custom container development.

387

388 In future studies, other choices of protective retractable sleeves should be considered. For
389 example, commercially available sperm cryopreservation straws ('French straws') (IMV) could

390 be used as protective retractable sleeves to reduce the cost (several cents per straw) compared to
391 the CBS jackets (\$0.15 per jacket sold separately). The CBS jackets used in this study were for
392 prototyping purposes only, although they can be printed with alphanumeric labels on automated
393 equipment.

394

395 *Fabrication of prototypes*

396

397 A major advantage of prototype fabrication by 3-D printing is that design files can be shared
398 (supplemental data S1) and prototypes can be replicated easily by users who have access to a 3-D
399 printer (Rayna and Striukova, 2016). The limitation is that this method can allow variations in
400 fabrication quality (Fernandez-Vicente et al., 2016). Even with an identical design, slight
401 variations in parameter settings can result in variable fabrication quality. As such, for different
402 users to replicate prototypes with their own 3-D printers, it is important for the printing
403 parameters to be reported in detail in a standardized way. Undesired fabrication features were
404 observed in the prototypes printed in the present study. However, the fabrication quality can be
405 improved by identifying the causes, adjusting parameters in the slicing software, and re-
406 calibrating the 3-D printers (Devicharan and Garg, 2019; Frauenfelder, 2013).

407

408 For example, stringing could be caused by inappropriate settings for retraction (i.e., pulling back
409 a small amount of filament before the nozzle travels between two printing locations), printing
410 temperature (within heat block to melt filament), or printing speed (speed of nozzle travel during
411 deposition of melted plastic). To reduce the stringing defects, settings in the slicing software can
412 be adjusted to increase retraction distance or speed, lower the printing temperature, or lower the
413 printing speed. In addition, the defects of poor build surface adhesion could be addressed by
414 reducing the fan speed of the first layer (used to rapidly cool thermoplastic after extrusion) or by
415 increasing the temperature of the build surface (unheated for PLA in this study). Disconnected

416 loops could be addressed by careful calibration of build surface leveling, and inconsistent
417 extrusion could be addressed by unclogging the printing nozzle or untangling of the filament as it
418 leaves the spool. We attempted to print the operational prototypes using standard settings as much
419 as possible to allow identification of the problems and defects that would be encountered in
420 general practice. For performance testing and beyond, optimized printer settings could be used.

421

422 The measured layer height increment showed no difference with the nominal increment of 0.2
423 mm for each layer, suggesting that FDM 3-D printing was able to fabricate vitrification loops
424 with specific height reliably. However, the reliability in such small dimension (< 0.5 mm) is
425 highly sensitive to operational settings of 3-D printers and slicing software. Standardized
426 operation of 3-D printing in biological research application should be addressed in future studies.

427

428 *Evaluation of sample volume capacity*

429

430 Sample volume capacity is critical for vitrification quality and efficiency (Fahy and Wowk,
431 2015). Relatively higher volumes can reduce the possibility of vitrification because of inadequate
432 cooling rates, whereas lower volumes can increase the operation cost, time, and storage space
433 requirements (Cuevas-Uribe et al., 2017). Commercially available vitrification devices and tools
434 used for sperm cryopreservation have fixed volumes and are not customizable. Based on the
435 relationships revealed in the present study, sample volume capacity could be controlled by
436 adjusting the length and the height of the loop, providing a customization capability for future
437 development. With these highly correlated relationships, the number of vitrification devices to be
438 used in a freezing operation can be calculated. In this study, water was used as a model to
439 evaluate sample volume capacity to facilitate standard comparisons across studies (actual
440 volumes of sperm cryopreservation solutions may be different based on physical properties).

441 Future designs could include modifications such as multiple loops on a single device to increase

442 sample capacity. Tailored 3-D printing filaments with widely varying hydrophobicity are
443 becoming more readily available (Jafari et al., 2019), and could be incorporated to optimize film
444 formation and stability in these devices.

445

446 The volume of semen collected from small-sized aquatic species, such as swordtails
447 (*Xiphophorus Spp.*), is usually < 10 µL/male without dilution, and about 250 µL after dilution for
448 cryopreservation (e.g., 1×10^8 cells/mL) (Cuevas-Uribe et al., 2011b). The prototypes in this
449 study provided a sample capacity range of 1-10 µL for a single device for about \$0.04 (material
450 cost), indicating that the efficiency of these prototypes was superior to commercial sperm
451 vitrification devices (1 µl per device for about \$50) (Berkovitz et al., 2018) and can potentially
452 freeze samples from a single male swordtails within 10 devices. Currently, a consumer-level 3-D
453 printer with reliable printing quality costs < \$250 (e.g., Creality Ender 3, Shenzhen Creality 3D
454 Technology Co., LTD.), and thus investing in a 3-D printer and printing five devices would be
455 less than the investment for purchasing six commercial vitrification devices, useful only for a
456 single fish (\$300).

457

458 *Evaluation of vitrification feasibility*

459

460 This study demonstrated the feasibility of vitrifying samples with 3-D printed devices that can fit
461 into labeled retractable sleeves during storage. A previous study (Tiersch et al., 2019) of
462 component prototypes (loops only) investigated loop lengths of 15, 19, and 23.5 mm and 1-6
463 layers, suggesting that shorter loop lengths and heights could increase vitrification probability.
464 Based on this result, the present study evaluated loop lengths of < 15 mm and increased layer
465 numbers (1-13). The results showed the trend of vitrification probability decreasing with
466 increases in loop length and height were compatible with the previous study. Because the present
467 study was a feasibility evaluation of operational prototype devices, only two replicates for each

468 prototype configuration were evaluated. The results indicate further investigations can be focused
469 on shorter loop lengths (< 15 mm) and heights (<1.2 mm), based on the occurrence of
470 vitrification in the conditions that were studied. The reduction in vitrification probability might be
471 caused by insulative effects of the thermoplastic (which diminish the ability to transfer heat
472 effectively), and increased sample mass (which could reduce the cooling rate. Further
473 investigation could use simulation modeling techniques to predict vitrification probability by
474 examining the relationship between cooling rate and design geometry (and dimensions).
475 Reproducibility of selected operational prototypes should be characterized in further performance
476 prototyping studies with larger sample sizes (i.e. > 10 duplicates per dimension) to yield more
477 strict statistical comparisons.

478

479 **Conclusions**

480

481 This study demonstrated the feasibility of custom fabricating 3-D printed, inexpensive (< \$0.1
482 material cost), and customizable devices with practical functions including vitrification, volume
483 control, labeling, protection, and storage. Overall, it should be recognized that research itself
484 cannot directly lead to standardization. An innovative device (or approach) will not immediately
485 (or naturally) become a standardized device (or approach) without interaction with user
486 communities. After a new method is developed and published, it usually diverges into
487 modifications by individuals within a research community based on different motivations, such as
488 customization, optimization, specification, curiosity, or errors (Liu et al., 2019). Eventually, the
489 modified methods may be integrated and converged into a standardized approach at the
490 community level to enable direct comparison of research results and to foster technology
491 application. The use of 3-D printing in prototyping of innovative devices can greatly facilitate this
492 community-level standardization process. The innovative prototypes in the present study would
493 allow users to make modifications easily with the long-term goal of converging such

494 modifications to yield a generalized community standard. The prototypes developed herein were
495 inexpensive, standardizable, and practical, and can be applied by a wide range of users such as
496 aquatic researchers, commercial customers, and repository operators. Such devices would also be
497 available to other user communities (e.g., mouse researchers) that require vitrification of small
498 samples including oocytes and embryos. The utility of any type of cryopreservation device will
499 be greatly enhanced by forward thinking to include scaling options based on throughput needs,
500 and compatibility with programs for quality assurance and quality control, biosecurity, and data
501 management and integration (Liu et al., 2019; Torres and Tiersch, 2018).

502

503 **Acknowledgments**

504

505 This work was supported in part by funding from the National Institutes of Health, Office of
506 Research Infrastructure Programs (R24-OD010441 and R24-OD011120), with additional support
507 provided by the National Institute of Food and Agriculture, United States Department of
508 Agriculture (Hatch project LAB94420), the USDA NAGP-AGGRC Cooperative Agreement
509 (Award 58-3012-8-006), the Louisiana State University Research & Technology Foundation
510 (AG-2018-LIFT-003), and the LSU-ACRES (Audubon Center for Research of Endangered
511 Species) Collaborative Program. We thank W. Childress for technical assistance, T. Gutierrez-
512 Wing and N. Tiersch for discussions, and A. Lin and R. Yiu for data collection.

513

514 **References**

515 Animal-GRIN, 2019. Explore the Inventory of National Animal Germplasm Program. Accessed
516 August 2019 [https://nrrc.ars.usda.gov/A-
517 GRIN/tax_inv_drilldown_page_dev?language=EN&record_source=US](https://nrrc.ars.usda.gov/A-GRIN/tax_inv_drilldown_page_dev?language=EN&record_source=US).

518 Berkovitz, A., et al., 2018. A novel solution for freezing small numbers of spermatozoa using a
519 sperm vitrification device. *Human Reproduction* 33, 1975-1983.

520 Blackburn, H., 2011. The USDA national animal germplasm program and the aquatic species
521 collection, in: Tiersch, T.R., Green, C. (Eds.), *Cryopreservation in Aquatic Species* 2nd
522 Edition. World Aquaculture Society, Baton Rouge, LA.

523 Blaxter, J., 1953. Sperm storage and cross-fertilization of spring and autumn spawning herring.
524 *Nature* 172, 1189.

525 Cuevas-Uribe, R., et al., 2017. Vitrification as an alternative approach for sperm cryopreservation
526 in marine fishes. *N. Am. J. Aquacult.* 79, 187-196.

527 Cuevas-Uribe, R., et al., 2011a. Production of channel catfish with sperm cryopreserved by rapid
528 non-equilibrium cooling. *Cryobiology* 63, 186-197.

529 Cuevas-Uribe, R., et al., 2011b. Production of F1 offspring with vitrified sperm from a live-
530 bearing fish, the Green Swordtail *Xiphophorus hellerii*. *Zebrafish* 8, 167-179.

531 Cuevas-Uribe, R., et al., 2015. Vitrification of sperm from marine fish: effect on motility and
532 membrane integrity. *Aquacult. Res.* 46, 1770-1784.

533 Devicharan, R., Garg, R., 2019. Optimization of the print quality by controlling the process
534 parameters on 3D Printing machine, *3D Printing and Additive Manufacturing*
535 Technologies. Springer, pp. 187-194.

536 Fahy, G.M., Wowk, B., 2015. Principles of cryopreservation by vitrification, *Cryopreservation*
537 and freeze-drying protocols. Springer, pp. 21-82.

538 Fernandez-Vicente, M., et al., 2016. Effect of infill parameters on tensile mechanical behavior in
539 desktop 3D printing. *3D printing and additive manufacturing* 3, 183-192.

540 Frauenfelder, M., 2013. *Make: ultimate guide to 3D printing* 2014. Maker Media, Inc.

541 Hagedorn, M., et al., 2019. Workshop report: Cryopreservation of aquatic biomedical models.
542 *Cryobiology* 86, 120-129.

543 Hezavehei, M., et al., 2018. Sperm cryopreservation: A review on current molecular cryobiology
544 and advanced approaches. *Reproductive biomedicine online*.

545 Ho, C.M.B., et al., 2015. 3D printed microfluidics for biological applications. *Lab on a Chip* 15,
546 3627-3637.

547 Hu, E., et al., 2017. 3-D printing provides a novel approach for standardization and
548 reproducibility of freezing devices. *Cryobiology* 76, 34-40.

549 Hu, E., et al., 2011. High-throughput cryopreservation of spermatozoa of blue catfish (*Ictalurus*
550 *furcatus*): Establishment of an approach for commercial-scale processing. *Cryobiology* 62,
551 74-82.

552 Huang, C., et al., 2009. Sperm cryopreservation in guppies and black mollies — a generalized
553 freezing protocol for livebearers in Poeciliidae. *Cryobiology* 59, 351-356.

554 Jafari, R., et al., 2019. Recent progress and challenges with 3D printing of patterned hydrophobic
555 and superhydrophobic surfaces. *The International Journal of Advanced Manufacturing
556 Technology* 103, 1225-1238.

557 Kásá, E., et al., 2017. Development of sperm vitrification protocols for freshwater fish (Eurasian
558 perch, *Perca fluviatilis*) and marine fish (European eel, *Anguilla anguilla*). *Gen. Comp.
559 Endocrinol.* 245, 102-107.

560 Liu, Y., et al., 2019. Development of germplasm repositories to assist conservation of endangered
561 fishes: Examples from small-bodied livebearing fishes. *Theriogenology* 135, 138-151.

562 Liu, Y., et al., 2018. Production of live young with cryopreserved sperm from the endangered
563 livebearing fish Redtail Splitfin (*Xenotoca eiseni*, Rutter, 1896). *Anim. Reprod. Sci.* 196,
564 77-90.

565 Magnotti, C., et al., 2018. Cryopreservation and vitrification of fish semen: a review with special
566 emphasis on marine species. *Reviews in Aquaculture* 10, 15-25.

567 Marco-Jiménez, F., et al., 2016. Development of cheaper embryo vitrification device using the
568 minimum volume method. *PLOS one* 11, e0148661.

569 Polge, C., Rowson, L., 1952. Fertilizing capacity of bull spermatozoa after freezing at -79° C.
570 *Nature* 169, 626.

571 Purdy, P., et al., 2016. Biobanking genetic resources: challenges and implementation at the
572 USDA National Animal Germplasm Program. *Reprod. Fertil. Dev.* 28, 1072-1078.

573 Rall, W.F., Fahy, G.M., 1985. Ice-free cryopreservation of mouse embryos at -196 C by
574 vitrification. *Nature* 313, 573-575.

575 Rayna, T., Striukova, L., 2016. From rapid prototyping to home fabrication: How 3D printing is
576 changing business model innovation. *Technol. Forecast. Soc. Change* 102, 214-224.

577 Riley, K.L., et al., 2004. Cryopreservation of sperm of red snapper (*Lutjanus campechanus*).
578 *Aquaculture* 238, 183-194.

579 Tiersch, N.J., et al., 2019. Three-dimensional printing of vitrification loop prototypes for aquatic
580 species. *Zebrafish* 16, 252-261.

581 Tiersch, N.J., Tiersch, T.R., 2017. Standardized assessment of thin-film vitrification for aquatic
582 species. *N. Am. J. Aquacult.* 79, 283-288.

583 Tiersch, T., et al., 2004. Transport and cryopreservation of sperm of the common snook,
584 *Centropomus undecimalis* (Bloch). *Aquacult. Res.* 35, 278-288.

585 Tiersch, T.R., Monroe, W.T., 2016. Three-dimensional printing with polylactic acid (PLA)
586 thermoplastic offers new opportunities for cryobiology. *Cryobiology* 73, 396-398.

587 Torres, L., et al., 2017. Challenges in development of sperm repositories for biomedical fishes:
588 quality control in small-bodied species. *Zebrafish* 14, 552-560.

589 Torres, L., Tiersch, T.R., 2018. Addressing reproducibility in cryopreservation, and
590 considerations necessary for commercialization and community development in support of
591 genetic resources of aquatic species. *Journal of the World Aquaculture Society* 49, 644-
592 663.

593 Wayman, W.R., et al., 2008. Cryopreservation of sperm from endangered pallid sturgeon. *North*
594 *American Journal of Fisheries Management* 28, 740-744.

595 Yang, H., et al., 2009. Sperm cryopreservation of a live-bearing fish, *Xiphophorus couchianus*:
596 male-to-male variation in post-thaw motility and production of F1 hybrid offspring. *Comp.*
597 *Biochem. Physiol., C: Toxicol. Pharmacol.* 149, 233-239.

598 Yang, H., Tiersch, T.R., 2009. Current status of sperm cryopreservation in biomedical research
599 fish models: zebrafish, medaka, and *Xiphophorus*. *Comp. Biochem. Physiol., C: Toxicol.*
600 *Pharmacol.* 149, 224-232.

601

602

603

604 Table 1. Specifications used for 3-D printing of vitrification devices in the present study

605

Parameters	Settings
Printer name	MakerBot Replicator 2X
Slicing software	MakerBot Desktop Beta Version 3.10.1.1389
Filament material	PLA ^a and ABS ^b
Filament diameter	1.75 mm
Heat block temperature	200 °C for PLA and 230 °C for ABS
Print speed	90 mm/s for infill and 40 mm/s for outermost layers
Nozzle diameter	0.4 mm
Nominal layer height	0.2 mm
Retraction distance	1.3 mm
Retraction speed	25 mm/s
Print bed temperature	110 °C for ABS and room temperature (~25 °C for PLA)
Build surface material	ScotchBlue TM tape
Part cooling fan speed	50%
First layer printing speed	40 mm/s
Infill rate	100%
Infill pattern	Hexagonal (honey comb) pattern
Perimeter layer number	2
Top layer number	4
Bottom layer number	4
Support usage	No support applied
Build surface size	24.6 L × 15.2 W × 15.5 H cm

606

607 ^a Polylactic acid

608 ^b Acrylonitrile butadiene styrene

609

610 Table 2. The vitrification feasibility of samples frozen in devices fabricated with two
611 thermoplastics (PLA and ABS), and various loop lengths, and layer numbers. Prototypes with 13
612 various layers and 3 lengths (10-20 mm) were evaluated. The vitrification performance was
613 classified based on integrity and transparency of frozen film: 0 — Film failure, 1 — Opaque, 2 —
614 Translucent, and 3 Transparent.

615

Layer number	PLA			ABS		
	10 mm	15 mm	20 mm	10 mm	15 mm	20 mm
1	0,3	0,0	0,0	0,3	0,3	0,0
2	3,3	0,3	0,0	3,3	0,2	0,0
3	0,3	0,3	0,0	0,2	3,3	0,0
4	2,3	0,0	0,2	2,2	0,0	0,0
5	2,3	0,0	0,2	1,2	0,0	0,0
6	1,1	2,3	0,2	1,1	0,1	0,0
7	2,2	0,0	0,2	1,2	0,2	0,0
8	1,1	0,2	0,0	1,2	0,0	0,0
9	1,2	0,1	0,0	1,1	0,1	0,0
10	1,1	1,1	0,0	1,1	0,0	0,0
11	1,1	0,0	0,0	0,2	0,0	0,0
12	1,1	0,1	0,0	1,1	0,0	0,0
13	1,1	0,0	0,0	1,1	0,0	0,0

616

617

618

619

620

621

622

623

624

625 **Figure Legends**

626 **Fig. 1.** Diagram of the features of a prototype 3-D printed vitrification device. Several innovative
627 elements and functions were integrated, including a loop to suspend a thin film of fluid (i.e.
628 sperm suspension), a retractable sleeve (not shown) to protect vitrified samples and allow
629 permanent labeling by ink-jet printing, a handle to facilitate processing and storage, a shaft to
630 avoid cryo-injuries to users during freezing, and annular grooves on the extension pole to guide
631 the protective retractable sleeve to the ‘open’ or ‘closed’ positions.

632

633 **Fig. 2.** Dimensional diagram of an example of prototype 3-D printed vitrification devices. The
634 loop length (LP) was 10, 15, or 20 mm, and the loop height (LH) varied between 0.2 mm and 2.6
635 mm (13 variations with 0.2-mm increments). No variations were designed for the loop width
636 (LW).

637

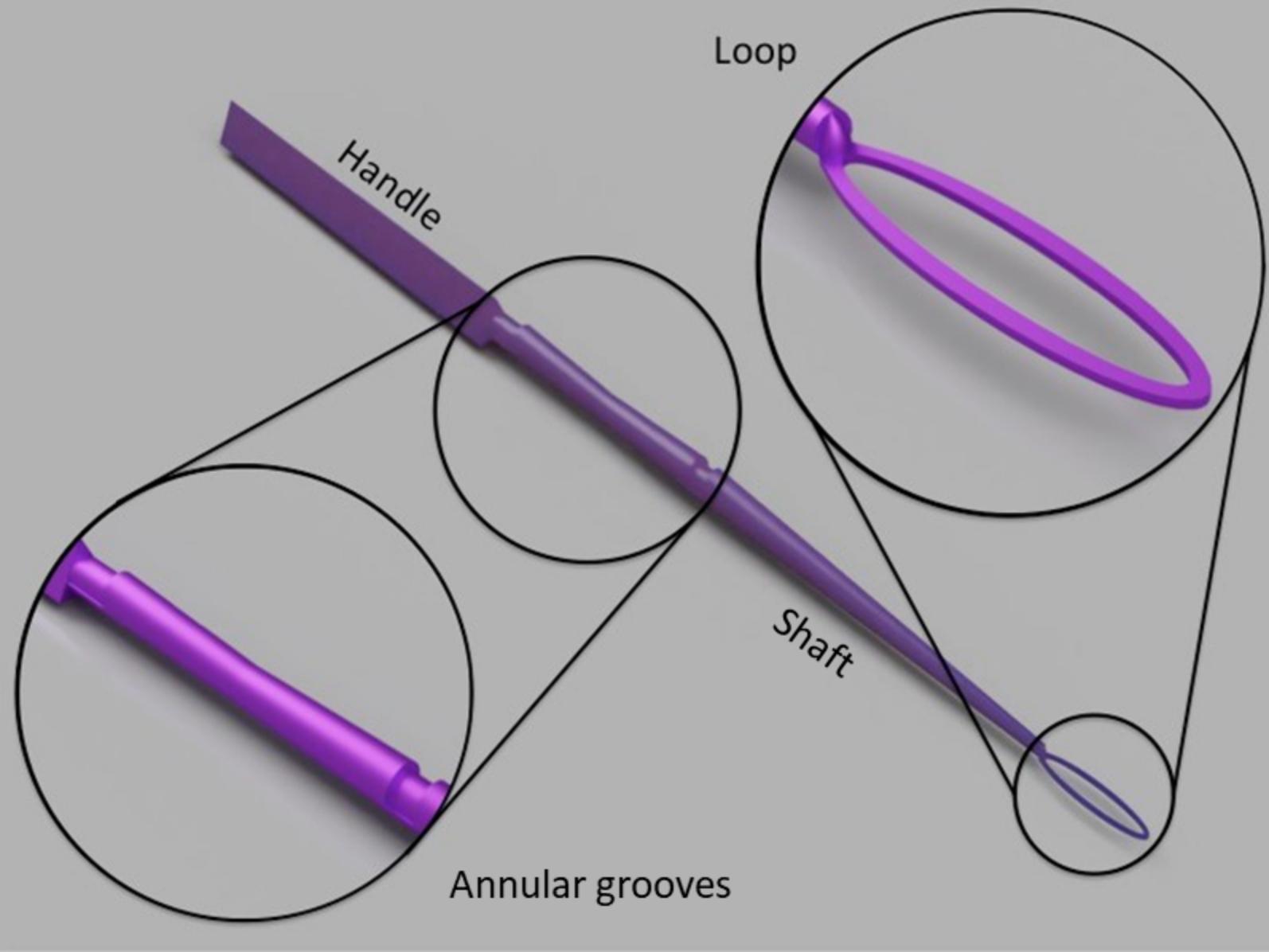
638 **Fig. 3.** Demonstration of the positioning of a protective retractable sleeve. The retractable sleeve
639 was placed in the “open” position during freezing and thawing, and slid to the ‘closed’ position
640 for storage. The retractable sleeve was adopted for prototyping purposes only from protective
641 jackets of commercially available 0.5-mL sperm cryopreservation straws (Cryo Bio System,
642 L'Aigle, France).

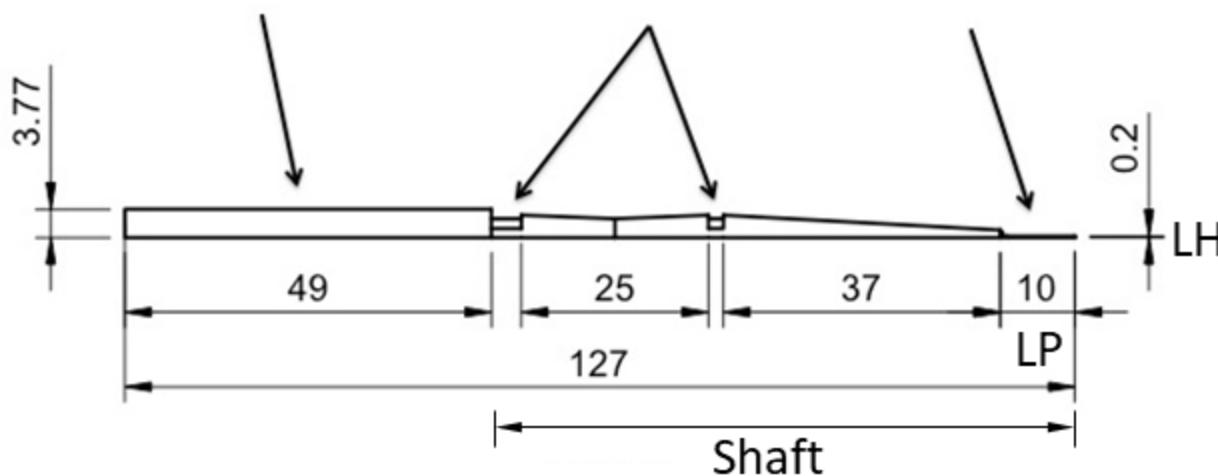
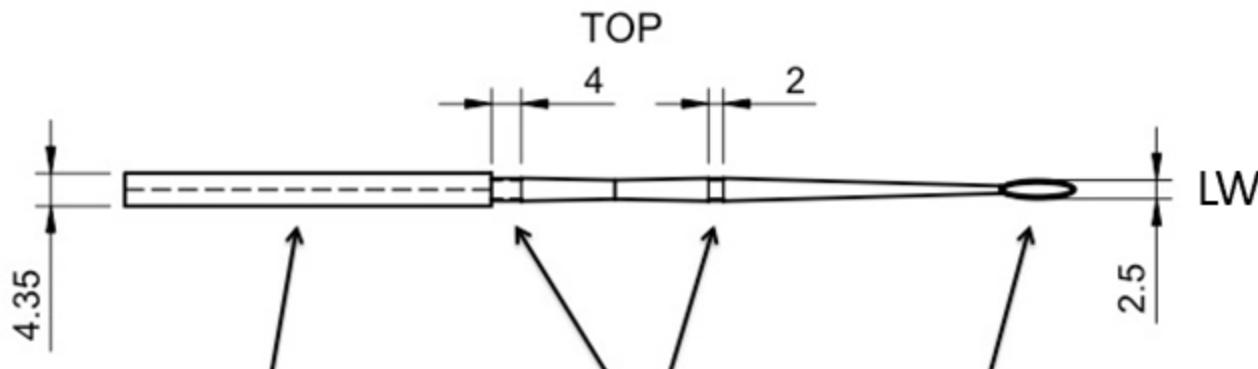
643

644 **Fig. 4.** Fabrication quality of a total of 97 devices fabricated with PLA filament (black bars), and
645 86 devices fabricated with ABS (grey bars). (A) Fabrication print failures of prototype
646 vitrification devices with different loop lengths and fabrication materials. (B) Actual
647 measurement of layer height increment (n = 13).

648

649 **Fig. 5.** Examples of major types of fabrication failures.

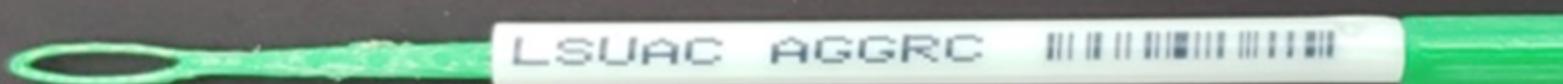

650



651 **Fig. 6.** The relationships between the sample volume capacity of water and the layer number of
652 loops for prototype vitrification devices fabricated with PLA (open circles) and ABS (closed
653 circles).

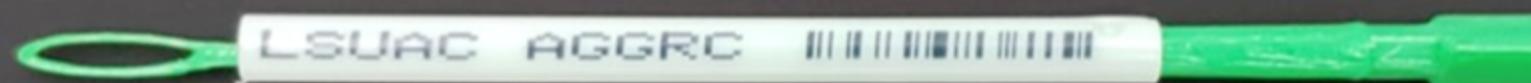
654

655 **Fig. 7.** Predicted probability of achieving vitrified (clear) samples with prototype devices
656 fabricated with ABS (solid line) and PLA (dashed line). The different loop lengths and layer
657 numbers were combined for analysis.

658



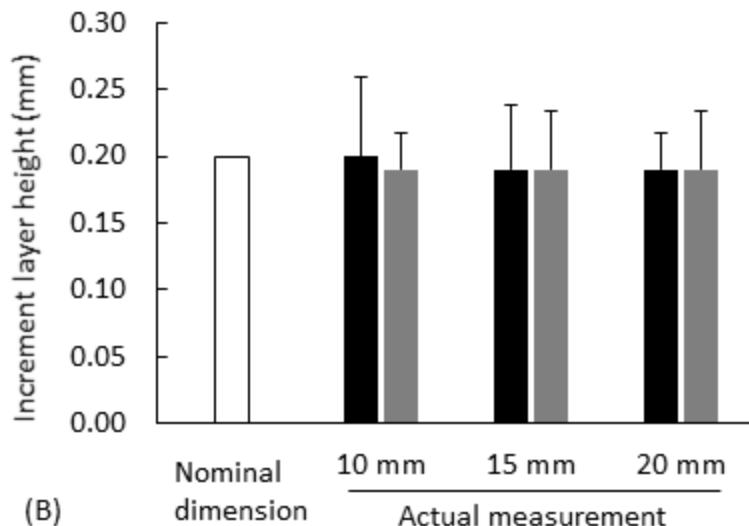
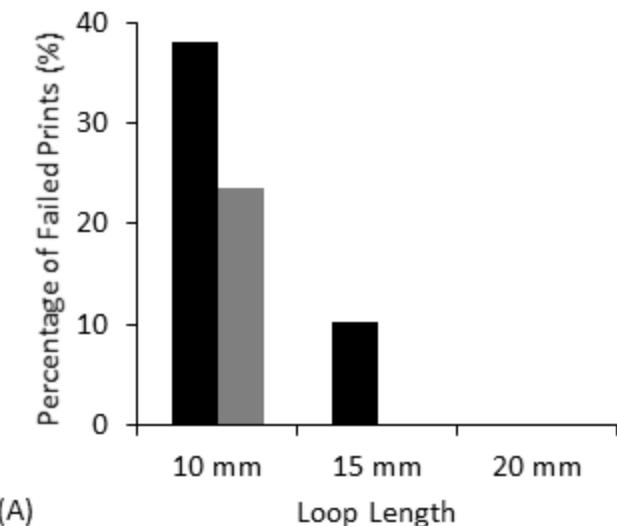
FRONT


(Dimensions in mm)

Open position during freezing and thawing

LSUAC AGGRC

← Sliding



LSUAC AGGRC

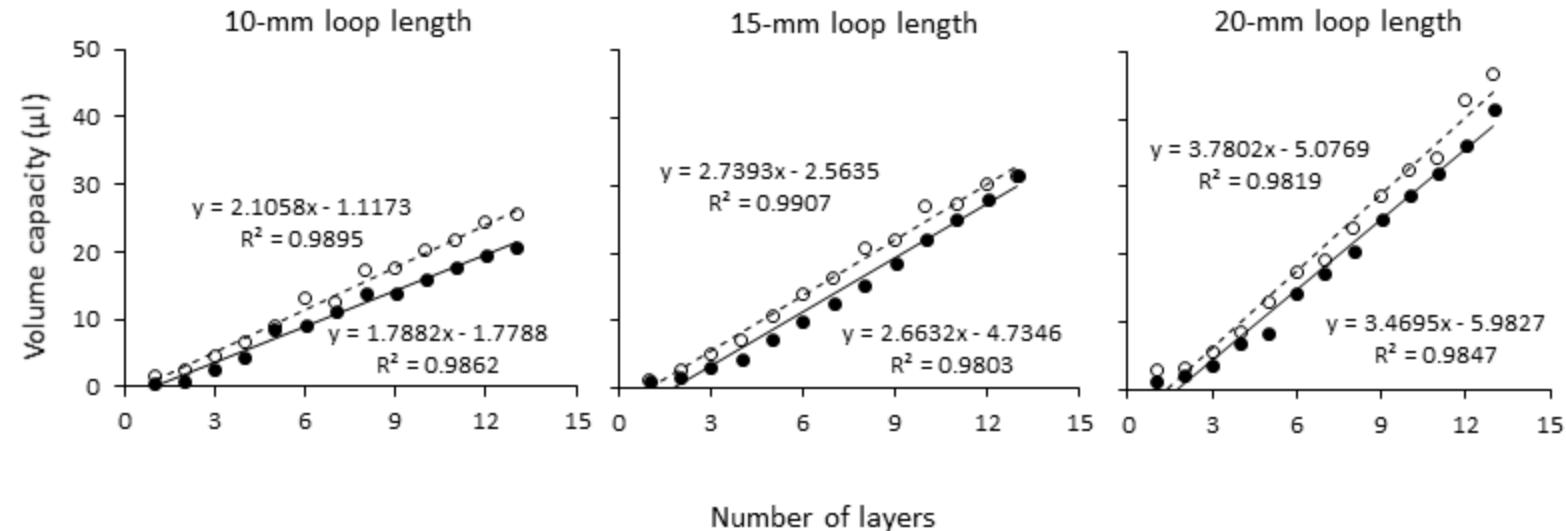
Closed position during storage

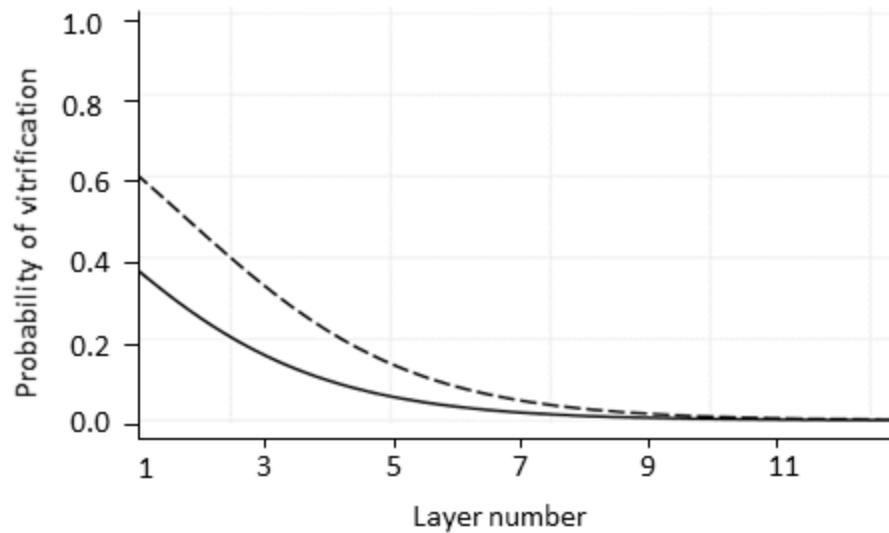
LSUAC AGGRC

10 mm

Disconnected
loop

Poor build
surface adhesion


Stringing



Inconsistent
extrusion

10 mm

