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1.  INTRODUCTION

Phototrophic plankton form the base of most
aquatic food webs, producing organic carbon that
will be utilized by higher trophic levels. Phototrophic
biomass is commonly estimated by measuring chl a
concentrations in water samples because the chl a
pigment is present in almost all phototrophs and has
been shown to be a direct proxy for their biomass
(Steele 1962, Strickland 1965, Cullen 1982), albeit an
imperfect one (Buchanan 2020). As a result of the
emphasis on the collection of chl a concentration
data, the potential importance of mixotrophs in per-

forming some combination of both photosynthesis
and ingestion goes largely unknown (Millette et al.
2018). It is necessary to understand the nutritional
modes being used by the phototrophic assemblage
because these factors contribute to variability in bio-
geochemical cycling (Lomas et al. 2014, Brierley
2017), water quality (Shashi Shekhar et al. 2008,
Valiela et al. 2016), and productivity and stability
(Ptacnik et al. 2008, Vallina et al. 2014, Tian et al.
2017). For example, recent modeling studies that
examined the potential contribution of mixotrophy to
carbon cycling propose that mixotrophs could sub-
stantially increase the amount of primary production
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ABSTRACT: A significant proportion of phototrophic species are known to be mixotrophs: cells
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 methods to estimate mixotroph abundance in situ are known to be limited in their ability to help
identify conditions that favor mixotrophs over strict autotrophs. For the first time, we combine
microscopic analysis of phototrophic taxa with immunoprecipitated bromodeoxyuridine (BrdU)-
labeled DNA amplicon sequencing to identify and quantify active and putative mixotrophs at
2 locations in a microtidal temperate estuary. We analyze these data to examine spatial and tem-
poral variability of phytoplankton and mixotrophs. Microscopy-based phototrophic diversity and
abundances reveal expected seasonal patterns for our 2 stations, with the start of growth in winter
and highest abundances in summer. Diatoms tend to dominate at the site with less stratification,
while dinoflagellates and euglenids are usually more prominent at the stratified station. The
BrdU-based mixotroph identifications are translated to the microscopy identification and abun-
dances to estimate the proportion of mixotrophs (cells >10 μm in size) at both sites. The average
proportion of potential mixotrophs is higher at the station with higher stratification (51%) com-
pared to the station with lower stratification (30%), and potential mixotrophs tend to be higher in
summer, although we did not conduct BrdU experiments in any of the other seasons. Combining
the identification of active mixotrophs through the uptake of BrdU-labeled bacteria with robust
abundance measurements can expand our understanding of mixotrophs across systems.
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and the transfer of carbon to higher trophic levels
(Mitra et al. 2016, Ward & Follows 2016).

A major impediment to incorporating mixotrophy
into environmental studies is the inability to reason-
ably estimate the abundance of mixotrophs in a sys-
tem. Fluorescently labeled bacteria and fluorescent
microspheres have long been used to estimate mixo -
troph abundance and ingestion rates, but research
shows that these methods underestimate true abun-
dance (Anderson et al. 2017, Li et al. 2021). More re -
cently, a few studies have identified potential mixo -
trophs in field samples via taxonomy, referring to
phototrophs that have been found to consume prey in
previous experiments (Haraguchi et al. 2018, Leles et
al. 2019, Cesar-Ribeiro et al. 2020, Schneider et al.
2020). For example, Schneider et al. (2020) used
microscopy-based taxonomic information from a
long-term North Sea dataset to link the occurrence
and abundance of potential mixotrophs with abiotic
conditions (offshore versus estuarine). While this me -
thod of potential mixotroph identification provides
the opportunity to reanalyze available microscopy
samples and estimate the proportion of mixotrophs, it
likely overestimates their abundance since species
presence does not necessarily translate to mixotroph
behavior.

Here, we apply a relatively new molecular method
to constrain the identification of mixotrophs in micro -
scopy data to known active mixotrophs in the same
environment. By feeding live bacteria labeled with
bromodeoxyuridine (BrdU) to a plankton sample, it is
possible to ascertain cells that ingest the bacteria and
incorporate the BrdU into their DNA through an
immunoprecipitation process (Fay et al. 2013). From
there, the immunoprecipitated samples are amplified
and sequenced to identify the mixotrophs taxonomi-
cally as amplicon sequence variants (ASVs) that are
associated with protists known to contain chloro-
plasts (Gast et al. 2018). Mixotrophs identified from
the BrdU experiments can then be matched with taxa
identified in microscopy samples to estimate the
abundance and proportion of mixotrophs greater
than 10 μm in size. The BrdU method improves upon
previous research by curating a list of active mixo -
trophs specific to our study site. Improved estimation
of the abundance and proportion of mixotrophs can
advance our understanding of how mixotrophs vary
in response to local environmental conditions.

The goal of this study is to investigate the spatial
and temporal variability of the phytoplankton (strict
phototrophs) and mixotrophs present in a temperate
estuary (Waquoit Bay, MA, USA) and identify possi-
ble environmental conditions driving their variabil-

ity. Due to intensive long-term monitoring, there is
good temporal and spatial coverage on chl a concen-
tration and other environmental data in Waquoit Bay,
but data on the phototrophic taxa present are ex -
tremely limited. This research project has 3 specific
objectives: (1) identify the phototrophic taxa present
in Waquoit Bay, (2) determine which of these taxa are
capable of phagotrophy, and (3) examine what envi-
ronmental factors are associated with the spatial and
temporal variability in phyto- and mixotrophic abun-
dance and proportion.

Data were collected on the abundance of pho-
totrophic taxa and environmental conditions over a
15 mo period (2018−2019) at 2 of the long-term mon-
itoring locations in the Waquoit Bay Estuary. Labora-
tory experiments were conducted over a 3 mo period
in the summer of 2019 to determine which photo -
trophic taxa were capable of ingesting bacteria. This
study provides some of the first data on the pro -
portion of potential mixotrophs within the photo -
trophic assemblage throughout the year in a temper-
ate estuary.

2.  MATERIALS AND METHODS

2.1  Waquoit Bay

The Waquoit Bay Estuary (Fig. 1) is a shallow
microtidal system that is part of the National Estuar-
ine Research Reserve System (NERRS). At its deep-
est, the estuary is approximately 3 m deep at low
tide, but on average the estuary is only 1.5 m deep at
mean low tide. The average tidal range for the estu-
ary is roughly 1 m. Salinity ranges from 27 to 32 at
the mouth of the estuary, while the tidally influenced
tributaries experience a much greater salinity ampli-
tude of 5 to 30.

Each reserve within the NERRS is required to main-
tain at least 4 System-Wide Monitoring Program
(SWMP) stations where a series of water quality data
are collected (Centralized Data Management Office−
NERRS SWMP manual https://cdmo.baruch.sc.edu/
request-manuals/). In addition to the SWMP, the
Waquoit Bay National Estuarine Research Reserve
(WBNERR) coordinates a citizen science water qual-
ity monitoring program, the Waquoit BayWatchers
(WBW). The WBW program involves 12 to 16 volun-
teers who monitor 10 locations throughout the Wa -
quoit Bay Estuary. At each site, the volunteers meas-
ure standard water quality parameters and collect
water samples which are analyzed for a suite of nutri-
ent components and chl a concentration.
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The WBNERR monitoring stations at Childs River
(CR) and Menauhant (MH) were sampled between
May 2018 and August 2019 in coordination with the
WBW program (Fig. 1). These 2 dockside stations
were sampled every 2 wk in June through Septem-
ber and sampled once a month from October through
May, for a total of 23 collection dates. These stations
were selected because of the regular sample fre-
quency and the difference in chl a concentration; CR
experiences relatively high chl a concentrations dur-
ing the summer months, while MH generally has low
chl a concentrations overall (Howes et al. 2013).

The MH site has an average depth of approxi-
mately 2 m at low tide and is located at one of the
estuary’s southern inlets where the marine water
mass from Vineyard Sound exchanges with the estu-
arine outflow. The average water depth at CR is ap -
proximately 1 m at low tide, and the site receives
freshwater flow from surface water and groundwater
discharge upstream while also experiencing meso-
haline tidal influence from Vineyard Sound (Tomasky-
Holmes et al. 2013). Due to dense residential devel-
opments within the sub-watershed, excess nitrogen
from leaching septic systems has resulted in an over-
abundance of macroalgae, excess phytoplankton

production, and thus frequent sum-
mer hypoxia events at the CR site
(Valiela et al. 1992, D’Avanzo & Kre-
mer 1994, Foster & Fulweiler 2019).

2.2.  Environmental data

At each station, the WBW volun-
teers used a YSI Pro2030 sonde to col-
lect water temperature (°C), sa linity,
and dissolved oxygen concentrations
(mg l−1) at the surface (0.25 m below
water surface) and bottom (within
2−5 cm of benthic sediments) of the
water column. Sampling and meas-
urements occur red before 09:00 h on
an outgoing tide, usually within 3 h of
slack low tide. For the nutrient and
chl a analysis, the volunteers col-
lected 2 l of water in 2 pre-rinsed 1 l
acid-washed amber Nalgene bottles
with a custom-designed pole sampler.
The water samples were filtered onto
GF/Fs within 2 h of sampling and
frozen at −20 °C until analyzed for
nutrient (μM) and chl a (μg l−1) con-
centrations at the Center for Coastal

Studies Water Quality Laboratory in Provincetown,
MA, following a protocol developed by WBNERR
based on standard operating procedures outlined by
the EPA (US EPA 2006).

Using the surface and bottom values for water tem-
perature and salinity, a stratification index was cal-
culated according to Eq. (4) in Cohen (1985). The
index is between 0 and 1, with 0 being the highest
stratification and 1 being no stratification.

2.3.  Microscopy

In tandem with the volunteers, additional water
samples were collected using a 5 l Niskin bottle
(General Oceanic) from just below the surface for
microscopy analysis of phototrophic taxa at both sta-
tions. Triplicate 500 ml water samples were immedi-
ately preserved with 5% Lugol’s solution in glass
amber bottles and sealed with electrical tape. Each
500 ml Lugol’s sample was concentrated in the labo-
ratory by settling for 24 h in a 1 l container and then
gently pipetting liquid off the top to reduce the total
volume. Periodically, this liquid was checked to con-
firm that organisms were not being removed from
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the concentrated sample. The final concentrated vol-
ume for samples ranged from 9 to 85 ml. Samples col-
lected at CR for 6 sampling dates (13 and 27 Jul 2018,
10 and 25 Aug 2018, and 2 and 16 Aug 2019) were
not concentrated because cell abundances were very
high. To identify taxa to the lowest classification level
and estimate abundances (cells ml−1), samples were
analyzed with a Zeiss Axiovert S 100 microscope at
400× magnification on a Sedgewick rafter slide
(Sherr & Sherr 1993). This magnification allowed us
to count all microplankton and larger nanoplankton
species (~10−200 μm length), but cells that were too
small to be identified were excluded from the counts.
A minimum of 300 cells were counted per sample.
The focus was on phototrophic taxa, but a single het-
erotrophic dinoflagellate (Protoperidinium sp.) was
included in the counts and analysis.

2.4.  BrdU-labeled bacterial ingestion experiments

From June 2019 to August 2019, BrdU incorpora-
tion experiments were conducted using water col-
lected via Niskin bottles at both sites. BrdU, a thymi-
dine nucleotide analog, is incorporated into prey
genomic DNA. When labeled prey are eaten, BrdU is
transferred to the grazer genomic DNA via digestion,
assimilation, and replication. This material is then re -
covered by immunoprecipitation and followed by
eukaryotic ribosomal amplicon sequencing.

Seawater was taken back to the laboratory and
prefiltered through 100 μm Nitex mesh, and tripli-
cate incubations were set up for +BrdU and −BrdU
bacterial additions (see Text S1 in the Supplement
at www. int-res. com/ articles/ suppl/ m677 p017 _ supp. pdf
for details on labeling bacteria with BrdU). The
100 μm seawater (250 ml) was placed into a 500 ml
Whirl-Pak bag, and bacteria were added to a final
concentration of 105 to 106 cells ml−1. Bags were incu-
bated for 48 h at 15°C with a 14 h light:10 h dark
cycle. From each incubation bag, 100 ml was col-
lected onto 47 mm, 3 μm Isopore filters, which
reduced the amount of bacterial material in the final
sample. DNA was isolated following the hot deter-
gent method reported by Gast et al. (2004) using
400 μl of lysis buffer.

2.5.  Immunoprecipitation of +BrdU DNA 
and sequence analysis

DNA from +BrdU incubations was immunoprecipi-
tated using an anti-BrdU monoclonal antibody fol-

lowing the process reported by Fay et al. (2013) and
Gast et al. (2018), with modifications (see Text S1 for
details). Amplicons for sequencing were generated
from −BrdU DNA and +BrdU immunoprecipitated
DNA by PCR amplification of the V4 region of the
18S ribosomal gene using primers 574V4F (5’-[TCG
TCG GCA GCG TCA GAT GTG TAT AAG AGA
CAG]CGG TAA YTC CAG CTC YV-3’) and
1132V4R (5’-[GTC TCG TGG GCT CGG AGA TGT
GTA TAA GAG ACA G]CCG TCA ATT HCT TYA
ART-3’), described in Hugerth et al. (2014) and modi -
fied to include 5’ adapter sequences (in square
brackets) for Illumina MiSeq. Each sample was am -
plified in triplicate using up to 3 μl template DNA,
1.25 units AmpliTaq Gold 360 DNA polymerase,
2 mM MgCl2, 2 μl 2.5 μM dNTPs, and 2.5 μl 10× re -
action buffer (25 μl total volume). Amplification con-
ditions were 95°C for 8 min; 40 cycles of 95°C for 30 s,
58°C for 30 s, 72°C for 90 s; 72°C for 5 min; 4°C hold.
Replicate reactions were pooled and purified using
Qiagen Min-Elute. Purified amplicons were sent to
the University of Rhode Island Genomics and Se -
quencing Center for library preparation and Illumina
MiSeq sequencing (300 bp paired end; 600 cycle
kit V2).

Only forward reads were analyzed because the
fragment was too large (580 bp) to permit efficient
assembly with the reverse reads. QIIME2 was used
to demultiplex, denoise, remove chimeras, and
quality control the forward read Illumina data (see
Text S1 for details). The size of the quality-con-
trolled forward read fragment was 200 bp and cov-
ered the 5’ half of the V4 fragment routinely used
for amplicon diversity (Stoeck et al. 2010, Tragin et
al. 2018). Al though these fragments were short, the
sequence quality was high and contained useful
information for taxonomic identification. ASVs were
grouped at 100% identity and taxonomy assigned
using the Silva 132 database. ASVs identified as
bacteria, meta zoa, fungi, and macroalgae were re -
moved from the dataset, as were those that occurred
only once (singletons). Raw sequence reads have
been de posited at the NCBI Sequence Read Archive
(PRJNA690935).

For each experiment, taxa were identified as puta-
tive bacterivores based on comparison of tag se -
quences between +BrdU and −BrdU samples. ASV
abundances were converted to a percentage of the
total tags for each sample, and the average of each
−BrdU ASV was subtracted from the average of the
corresponding +BrdU ASV. The ASV was considered
a putative bacterivore if the subtracted value was
positive and >0.1% of the total average amplicon
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abundance and if it was present in at least 2 of the
+BrdU samples. If only 1 of the +BrdU samples had
the ASV, its abundance needed to be >1% of the
total average amplicon abundance to be considered.
Putative bacterivores identified as taxa containing
chloroplasts were then considered as putative mixo -
trophs. This approach was based on prior work (Fay
et al. 2013), and the use of 0.1 and 1% as cutoffs was
to represent the more abundant amplicons in the
datasets. This balanced the effect of variability be -
tween incubation replicates and reduced the influ-
ence of non-specific recovery of extremely abundant
DNA (e.g. from diatom taxa). The putative mixotroph
ASV taxonomic identifications were compared to the
microscopy taxa, and the qualitative identification of
a microscopy taxon as a potential mixotroph was
made if there were matches at the genus level.

2.6.  Analysis

ANOSIM (Primer v7; Clarke & Gorley 2015) was
applied to the microscopy data to examine whether
the data groupings based on factors of site, season,
and month were significantly different. Microscopy
cell counts were log(x + 1) transformed to balance the
contributions of dominant and rare variants. Bray-
Curtis resemblance matrices were generated. One-
way unordered ANOSIM was run with 999 permuta-
tions for each factor.

We utilized the +BrdU ASV taxonomic information
to identify mixotroph taxa in the microscopy samples
and their corresponding abundances in 2 ways. First,
for only the 2019 summer microscopy samples col-
lected in tandem with water for +BrdU experiments,
taxa detected by each +BrdU experiment were
identi fied in the corresponding microscopy samples.
These are referred to as active mixotrophs because
only the taxa that were identified to be grazing when
the sample was collected were considered. Second,
we applied any taxa detected across all +BrdU exper-
iments to all the microscopy samples. Mixotrophic
abundance estimations using the second approach
are referred to as potential mixotrophs because al -
though data on whether these taxa were consuming
bacteria when the samples were collected were not
available, they have demonstrated the ability to con-
sume bacteria in other Waquoit Bay samples. Due to
the limitation of microscopy (greater than ~10 μm),
estimates of mixotroph abundance were restricted to
larger cells.

Poisson generalized linear models (GLMs) with
an offset analysis were applied to examine potential

environmental drivers of different taxonomic group
abundances at each station using microscopy data.
The environmental data (independent variables)
we considered were water temperature, salinity,
turbidity, ammonium, nitrate + nitrite (NOx), sili-
cate, ortho-phosphate, dissolved inorganic nitrogen
(DIN) and total nitrogen (TN) concentration, DIN:
dissolved inorganic ortho-phosphate (DIP) ratio,
and stratification index (0−1). The offset term was
the proportion of the microscope slide that was
counted for each sample. The independent vari-
ables for each model run were tested for collinearity
using the car package in R with the variance infla-
tion factor (VIF) function (Fox & Weisberg 2016).
The VIF function tests for variation−inflation in the
GLM analysis. Any environmental variable that
had a collinearity VIF value of 3 or greater (Zuur et
al. 2010) was removed so that analyses were run
only with variables that had <3 VIF. Any variables
with p-values greater than 0.05 were also removed
until the selected GLM for each taxonomic group at
a station had only sig nificant variables with no
collinearity. All GLM runs were conducted in R
(version 3.6.3) using the built-in linear regression
(glm) function.

3.  RESULTS

3.1.  Environmental data

Most of the environmental data collected by the
WBW from May 2018 to August 2019 were signifi-
cantly different between MH and CR (Table 1). Aver -
age salinity, dissolved bottom O2 concentrations, and
stratification index were significantly high er (mean-
ing lower stratification) at MH (Table 1). Average
chl a, ammonium, NOx, silicate, TN concentrations,
and DIN:DIP ratio were significantly higher at CR
(Table 1). Average temperature, turbidity, and phos-
phate concentrations were not significantly different
between MH and CR (Table 1).

3.2.  Microscopy data

The average (±SE) phototroph abundance at MH
was 1189 ± 221 cells ml−1 compared to 7128 ± 2070
cells ml−1 at CR (Fig. 2). Typically, the highest abun-
dances at CR occurred in July and August in both
years, with noticeable peaks in October and Decem-
ber 2018 (Fig. 2). At MH, cellular abundances were
highest in summer 2018, declined into fall, and then
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started to increase again in winter 2019 (Fig. 2). For
both stations, summer abundances were higher in
2018 compared to 2019 (Fig. 2). Forty taxa were iden-
tified over the course of 15 mo; all 40 occurred at MH,
and 37 occurred at CR (Table 2). Twenty-five dia -
toms, 12 dinoflagellates, 1 cryptophyte, 1 chlo ro -
phyte, and 1 euglenid were identified (Table 2). Of
the taxa listed in Table 2, all contain chloroplasts
except for Protoperidinium. Given the higher total
cellular concentration at CR, in dividual taxon abun-
dance was norm alized to total abundance to make
 comparisons between the 2 stations (Table 2).

Based on the ANOSIM analysis, there was a signif-
icant difference in the phototrophic assemblage
between MH and CR (Table 3). The proportion of
diatoms was significantly higher at MH, and the pro-
portions of dinoflagellates and euglenids were signif-
icantly higher at CR, while the cryptophyte genus,
Teleaulax, was consistently prominent at both sta-
tions (Table 2, Fig. 3). The phototrophic assemblage
was also significantly different be tween seasons and
months (Table 3). At CR, there was a strong seasonal
variability in the proportion of different taxonomic
groups, with cryptophytes and euglenids more pro -
minent in the summer and diatoms dominating in
winter and spring (Fig. 3a). There were exceptions to
this pattern, with a dinoflagellate bloom in December
2018 and diatoms dominating in late July and early
August 2019 (Fig. 3a). At MH, diatoms were consis-
tently more dominant throughout the year, with an
occasional increase in cryptophytes (Fig. 3b). The
overall proportion of dinoflagellates was higher at
CR than at MH, but their proportions remained rela-
tively consistent throughout the year at each station
(Fig. 3).

At CR, the 3 most dominant taxa were Teleaulax
sp., Leptocylindrus spp., and Eutreptiella gymnastica
(Table 2). At MH, the 3 most dominant taxa were
Leptocylindrus spp., Teleaulax sp., and Skeletonema
spp. (Table 2). Nine diatom taxa composed a signifi-
cantly higher proportion of the phototrophic assem-
blage at MH compared to CR, while 4 dinoflagellate
and 1 diatom taxa composed a significantly higher

proportion of the phototrophic assemblage at CR
(Table 2). At CR, the abundances of diatoms, dinofla-
gellates, and cryptophytes were negatively related to
some form of inorganic nitrogen, and all but crypto-
phytes were positively related to phosphate
(Table 4). At MH, the abundances of all taxonomic
groups were negatively related to phosphate and
positively related to temperature (Table 5). Diatoms
were positively related to the stratification index (less
stratified), while dinofla gellates and cryptophytes
were ne gatively related to the index (Table 5).

3.3.  Mixotrophy data

Between CR and MH, 53 unique ASVs identified
as containing plastids were associated with BrdU-
labeled bacterial ingestion over 6 sampling dates
(Table 6). More than half of the mixotroph ASVs
were shared at both sites, but 9 occurred only at CR
and 18 at MH (Table 6). Almost half of the taxa iden-
tified as mixotrophs by this process were dinoflagel-
lates, but other common taxa included Microglena
uva-maris and Ostreococcus spp. Seven of the ASVs
could be matched with 6 genera identified in micro -
scopy samples that were collected simul taneously:
Teleaulax sp. (Teleaulax un cultured eukaryote), Gy -
rodinium sp. (Gyrodinium uncultured eukaryote),
Gymnodinium sp. (Gymnodinium sp. GSSW10), Het-
erocapsa spp. (H. niei and Heterocapsa uncultured
dinoflagellate), Alexandrium sp. (Alexandri um un -
cultured eukaryote), and Scrippsiella sp. (Scrippsiella
uncultured eu karyote) (Table 6). The BrdU method
could be biased towards the detection of mixotrophic
dinoflagellates relative to other mixotrophic taxa due
to their high ribosomal gene copy number, but it was
possible to detect chlorophyte, cryptophyte, and och -
rophyte ASVs, and some were as abundant as the
most prevalent dinoflagellate ASVs (e.g. Ostreococ-
cus at >1%). Only a few of the dinoflagellate ASVs
occurred at more than 1% in the mixotrophic predic-
tions for each sample. Finally, 98 heterotrophic taxa
ASVs were identified by the method (Table S1), and
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Temp Salinity Dissolved NTU Chl a NH4
+ NOx SiO2 PO4

3− TN DIN:DIP S
(°C) O2 (mg l−1) (μg l−1) (μM) (μM) (μM) (μM) (μM)

CR 17.8±1.6 17.1±1.6 5.4±0.8 2.4±0.5 26.8±7.1  2.7±0.4  22.0±0.4  44.3±4.4  0.42±0.04 66.6±5.8 114.9±48.0  0.7±0.1
MH 17.4±1.7 30.0±0.2* 7.1±0.4* 1.7±0.5 3.4±0.4* 1.2±0.2* 0.5±0.1* 5.1±0.8* 0.40±0.05 24.7±1.6* 7.8±1.5* 1.0±0.0*

Table 1. Average (±SE) water quality data collected 23 times between May 2018 and August 2019 at 2 stations in Waquoit Bay. Temp:
 temperature; Dissolved O2:  bottom dissolved oxygen concentration; NTU: turbidity; NH4

+: ammonium concentration; NOx: nitrate + nitrite
concentration; SiO2: silicate concentration; PO4

3−:  phosphate concentration; TN: total nitrogen; DIN:DIP: (NH4
+ + NOx)/PO4

3− ratio; S:  
stratification index. *Significant difference between the 2 stations (paired, 2-tailed t-test, p < 0.05)
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some were much more abundant than the dinoflagel-
lates (e.g. a jakobid ASV at >8% and a cercozoan
ASV at >3%). While there may be bias associated
with the response of individual organisms to the in -
cubation conditions, this approach allowed the iden-
tification of many actively grazing taxa.

Forty-six ASVs that were identified from the BrdU
experiments were not associated with taxa from the
microscopy samples. These consisted of organisms
that were too small to be accurately identified via
microscopy (e.g. Ostreococcus spp., Micromonas sp.,
M. uva-maris), organisms whose identification was
too generalized (e.g. Suessiaceae uncultured, Dino-
phyceae uncultured, Eustigmatales uncultured), or
organisms that were not identified in microscopic
samples, despite being large enough (e.g. Go ny anulx
spinifera, Pelagodinium sp., Paragymnodinium sp.).

We used ASVs from the BrdU experiments to esti-
mate the abundance and proportion of active mixo -
trophs and potential mixotrophs in the microscopy
samples. Active mixo trophs are taxa that were iden-
tified to be grazing on bacteria for a specific sample
date (Table 6) and then associated with microscopy
samples at the sample location and date; this could
only be applied to samples collected between June
and August 2019 (Fig. 4). At CR, there was an aver-
age of 1623 ± 146 active mixotrophs ml−1 (Fig. 4a),
which accounted for 34% of the average total num-

ber of cells counted (Fig. 4b). At MH,
there was an average of 149 ± 33
active mixo trophs ml−1 (Fig. 4a),
which account ed for 26% of the aver-
age proportion of total cells counted
(Fig. 4b).

Potential mixotrophs are taxa asso-
ciated with the ASVs from all BrdU
experiments, regardless of whe ther
BrdU experiments were conducted on
the sampling date; this was applied to
all samples (Fig. 5). There was a sea-
sonal pattern to potential mixotroph
abundance, with mixo trophs gener-
ally more prevalent in the summer
than in the fall, winter, or spring
(Fig. 5). Mixotrophs were more abun-
dant at CR, with an average of 4072 ±
1693 potential mixotrophs ml−1

(Fig. 5a), which accounted for 51% of
the average proportion of total cells
counted (Fig. 5). At MH, there was an
average of 301 ± 110 potential mixo -
trophs ml−1 (Fig. 5a), which ac -
counted for 30% of the average pro-

portion of total cells counted (Fig. 5b). Based on the
GLM analysis, the abundance of potential mixo -
trophs at CR was positively related to turbidity, strat-
ification index, and phosphate concentration and
negative ly related to NOx and ammonium concentra-
tions (Table 4). At MH, potential mixotroph abun-
dance was positively related to temperature and
salinity and negatively related to stratification index,
NOx, and phosphate concentrations (Table 5). The
proportion of potential mixotrophs (to total pho-
totroph cells counted) at CR was positively related to
temperature, stratification index, and silicate con-
centrations and negatively related to turbidity and
NOx, ammonium, and phosphate concentrations
(Table 4). At MH, the proportion of potential mixo -
trophs (to total phototroph cells counted) was posi-
tively re lated to temperature, stratification index,
and NOx and ammonium concentrations and nega-
tively re lated to phosphate concentrations (Table 5).

The 2 major taxonomic groups that represented the
potential mixotrophs were cryptophytes and dinofla-
gellates, and the proportion of each group varied
throughout the year and between stations (Fig. 6).
On average, cryptophytes accounted for a higher
proportion of the potential mixotroph abundance at
both stations compared to dinoflagellates: 64.9 ±
5.6 % at CR and 79.8 ± 0.8% and MH. However,
dino flagellates account ed for a higher proportion of
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Fig. 2. Total abundance of phototrophs (+SE) at Childs River and Menauhant
between May 2018 and August 2019. Average data point is the average
 cellular abundance (+SE) over the course of the study. Dates are mo/d/yr
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the potential mixotroph abundance at
CR (35.1 ± 5.6%) compared to MH (20.2
± 3.6%). In general, cryptophytes were
more dominant in the summer, while
dinoflagellates were more dominant
during winter and spring at both sta-
tions (Fig. 6).

4.  DISCUSSION

The microscopy analysis of water
samples revealed how the phototrophic
assemblage differed between CR and
MH. The proportion of diatoms was sig -
nificantly higher at MH than at CR,
while the pro portions of dinoflagellates
and euglenids were sig nificantly higher
at CR than at MH (Table 2). The aver-
age composition of the phototrophic
 as semblage at each station was poten-
tially explained by the stability of the
wa ter column and nitrogen concentra-
tion. Diatoms are known to be better
competitors in environments with a
more active water column (MH), while
dinoflagellates are better competitors in
a more stable or stratified water column
(CR; Marga lef 1978, Smayda & Rey -
nolds 2001). Additionally, re gions with
better water quality, specifically low
nutrient concentrations and higher irra-
diance levels as seen at MH, generally
support phototrophic assemblages
dominated by diatoms. Conversely, re -
gions with higher nutrients and lower
irradiance levels, like those seen at CR,
tend to have photosynthetic assem-
blages dominated by dinoflagellates
(Bucha nan 2020).

The seasonal and temporal variability
in the photo trophic assemblage at CR
generally followed the pattern expected

in a temperate estuary, with diatoms more prominent
in spring and flagellates more prominent in summer
(Marshall et al. 2005). At MH, dia toms tended to
dominate throughout the year, but there were peri-
ods when cryptophytes would in crease in proportion.
Overall, abundances of dia toms, dinoflagellates, and
cryptophytes at both stations were po sitively related
to temperature, reflecting that total photo troph
abundance was typically higher in warmer months.
The factors related to variability in dinoflagellate
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Group                   Taxon                                          CR                     MH

Diatoms                Asterionellopsis sp.*           0.28 ± 0.15          3.47 ± 1.49
                             Chaetoceros spp.*               5.38 ± 2.98          9.27 ± 2.78
                             Corethron sp. −                  0.06 ± 0.03
                             Coscinodiscus sp.*              0.05 ± 0.02          0.25 ± 0.07
                             Cylindrotheca sp.*              0.07 ± 0.03          0.20 ± 0.07
                             Dactyliosolen sp.*               0.26 ± 0.19          1.25 ± 0.49
                             Ditylum brightwellii            0.00 ± 0.00          0.03 ± 0.02
                             Entomoneis sp.                    0.01 ± 0.01          0.05 ± 0.03
                             Eucampia sp.                       0.04 ± 0.03          0.12 ± 0.07
                             Fragilaria sp.                       0.09 ± 0.04          0.09 ± 0.04
                             Gryosigma sp.*                   0.02 ± 0.02          0.11 ± 0.04
                             Leptocylindrus spp.*        12.50 ± 4.76        27.08 ± 4.95
                             Licmophora sp.                    0.04 ± 0.03          0.62 ± 0.35
                             Lithodesmium sp. −                  0.18 ± 0.12
                             Melosira sp.                         0.68 ± 0.31          0.06 ± 0.03
                             Navicula spp.                      0.09 ± 0.04          0.18 ± 0.05
                             Nitzschia spp.*                    2.64 ± 1.22          8.08 ± 2.59
                             Odontella sp. −                  0.09 ± 0.08
                             Paralia sp.                            0.00 ± 0.00          0.03 ± 0.02
                             Proboscia sp.                       0.12 ± 0.06          1.40 ± 0.71
                             Pseudo-nitzschia spp.         0.54 ± 0.20          0.70 ± 0.17
                             Skeletonema spp.*              4.31 ± 2.06          8.76 ± 2.67
                             Striatella sp.                         0.01 ± 0.01          0.02 ± 0.01
                             Thalassionema spp.*          0.02 ± 0.02          0.15 ± 0.06
                             Thalassiosira spp.                1.15 ± 0.93          1.70 ± 0.94
                             Total diatoms*                   29.74 ± 6.29        65.05 ± 4.39
Dinoflagellates    Akashiwo sanguinea          0.33 ± 0.15          0.11 ± 0.07
                             Alexandrium sp.                 0.06 ± 0.03          0.01 ± 0.01
                             Cochlodinium sp.                0.04 ± 0.04          0.01 ± 0.01
                             Dinophysis sp.*                   0.42 ± 0.27          0.01 ± 0.01
                             Gymnodinium sp.               3.71 ± 1.69          0.97 ± 0.15
                             Gyrodinium sp.*                 1.76 ± 0.48          0.65 ± 0.16
                             Heterocapsa rotundata      6.41 ± 3.90          1.48 ± 0.61
                             Heterocapsa triquetra*      3.22 ± 1.48          0.38 ± 0.19
                             Karlodinium sp.*                 0.16 ± 0.05          0.04 ± 0.02
                             Prorocentrum spp.              1.82 ± 0.61          1.33 ± 0.43
                             Protoperidinium sp.            0.50 ± 0.19          0.29 ± 0.11
                             Scrippsiella sp.*                  1.91 ± 0.48          0.56 ± 0.13
                             Total dinoflagellates*       22.63 ± 4.19          6.06 ± 0.81
Cryptophytes       Teleaulax sp.                     37.25 ± 5.82        27.20 ± 4.19
Chlorophytes       Tetraselmis sp.                    0.10 ± 0.08          0.16 ± 0.10
Euglenids             Eutreptiella gymnastica*   9.88 ± 3.95          1.53 ± 0.47

Table 2. Average (±SE) proportion of each group or taxa at Childs River (CR)
and Menauhant (MH). (−) Genera or species that were never recorded for a
site. *Significant difference between the 2 stations (paired, 2-tailed t-test, p <
0.05). Bold indicates taxa associated with amplicon sequence variants iden-

tified to ingest bacteria in the bromodeoxyuridine experiments

Site Season Month

Microscopy both sites 0.001 0.0002 0.0001
Microscopy MH n/a 0.001 0.0008
Microscopy CR n/a 0.0003 0.0001

Table 3. ANOSIM p-values (Primer v7; Clarke & Gorley
2015) of microscopy data to examine whether the factors of
site, season, and month were significant for differences
between the phytoplankton communities. MH: Menauhant; 

CR: Childs River; n/a: not applicable
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abundance at both stations were what
would be expected for a group that
was more prominent in the summer:
high temperature, low inorganic nitro-
gen (ammonium), and high stratifica-
tion (negative relationship with the
stratification index) (Smayda & Rey -
nolds 2001, Li et al. 2010, Jauzein et al.
2017). However, dinoflagellates at CR
had a positive relationship with the
stratification in dex, which implies that
their abundan ces were high er when
stratification was lower; this was un -
expec ted. The relationship with low
ammonium concentration may be the
result of dinoflagellates having taken
up this form of inorganic nitrogen
(Halbach et al. 2019). From our analy-
sis at MH, the factors influencing
diatom abundance differed from cryp-
tophytes and dinoflagellates in 2 key
ways: low er stratification (positively
related to stratification index) and NOx

concentration. Diatoms prefer low
stratification and NOx, so these rela-
tionships were expected, again assum-
ing they were taking up NOx (Glibert
et al. 2016). At CR, diatom abundance
was again related to low NOx concen-
tration but not to stratification. Over-
all, the stratification results for CR did
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CR Temp NTU S NOx NH4
+ PO4

3− SiO2

Total cryptophytes + − + − −
(Teleaulax sp.)

Total diatoms + − − + +
Total dinoflagellates + + − + +
Potential mixotroph + + − − +

abundance
Proportion of potential + − + − − − +

mixotrophs

Table 4. Results for the Poisson generalized linear model (GLM) with an offset
analysis for select groups at Childs River (CR). The factors temperature
(Temp), turbidity (NTU), stratification (S), nitrate + nitrite (NOx), ammonium
(NH4+), phosphate (PO4

3−), and silicate (SiO2) were used in at least 1 of the
models. The residual degrees of freedom for all GLMs was 63. (−/+): factor was
positively (+) or negatively (−) related to the dependent variable. Blank space:
factor was not significantly (p > 0.05) related to variability in the dependent 

variable or was removed due to collinearity (VIF > 3)

Fig. 3. Proportion of total abundance that 5 plankton groups, identified through microscopy, accounted for at each sample date
(mo/d/yr) between May 2018 and August 2019 at (a) Childs River and (b) Menauhant. Average data point is the average 

proportion of each group over the course of the study

MH Temp NTU Salinity S NOx NH4
+ PO4

3−

Total cryptophytes + − + − −
(Teleaulax sp.)

Total diatoms + + − + − −
Total dinoflagellates + + − − + − −
Potential mixotroph + + − − −

abundance
Proportion of potential + + + + −

mixotrophs

Table 5. Same as Table 4 but for Menauhant (MH)
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Plankton group / ASV CR MH

Chlorophyta
Ostreococcus marine metagenome x x x x x x x x x
Ostreococcus uncultured eukaryote* x x
Ostreococcus uncultured Chlorophyte‡ x
Micromonas uncultured marine eukaryote* x
Tetraselmis uncultured marine eukaryote* x
Tetraselmis prasinophyte sp. Xmm38S5* x
Microglena uva-maris x x x x x x x x
Chlamydomonas sp. NIES-3904* x
Chlorophyceae uncultured eukaryote x x x

Cryptophyceae
Teleaulax uncultured eukaryote x x x x x x x x x
Hemiselmis uncultured phytoplankton x x x x x x
Leucocryptos uncultured katablepharid x x
Cryptomonadales uncultured cryptophyte* x x

Dinoflagellata
Gyrodinium uncultured eukaryote x x x
Paragymnodinium uncultured eukaryote* x
Polykrikos kofoidii x x x x x x
Erythropsidinium uncultured marine dinoflagellate x x x x x
Erythropsidinium agile‡ x
Chytriodinium uncultured dinoflagellate* x
Gymnodinium sp. GSSW10* x
Warnowia sp. BSL-2009a* x
Biecheleria natalensis* x x
Biecheleria uncultured dinoflagellate* x x x x
Symbiodinium uncultured dinoflagellate x x x x
Pelagodinium beii x x x x x x x x
Pelagodinium uncultured marine dinoflagellate x x x x
Suessiaceae uncultured eukaryote x x
Gonyaulax cochlea x x x x x x x
Gonyaulax spinifera x x x x
Heterocapsa niei x x x x x x
Heterocapsa uncultured dinoflagellate x x
Alexandrium uncultured eukaryote‡ x
Azadinium sp. uncultured eukaryote* x
Lessardia uncultured marine eukaryote‡ x
Scrippsiella uncultured eukaryote‡ x
Sinophysis uncultured marine eukaryote x x
Dinophyceae uncultured eukaryote x x x x x x
Dinophyceae uncultured; uncultured eukaryote* x
Dinophyceae uncultured freshwater eukaryote x x x
Haplozoon uncultured eukaryote* x
Noctilucales uncultured eukaryote x x x x x x x x x

Protalveolata
Chromera uncultured freshwater eukaryote x x x

Ochrophyta
Bolidomonas uncultured marine eukaryote* x
Apedinella radians‡ x
Ciliophrys infusionum* x
Pedinellales uncultured marine eukaryote x x
Pedinellales uncultured marine picoeukaryote x x
Eustigmatales uncultured stramenopile x x x
Eustigmatales uncultured eukaryote x x x
Aureococcus anophagefferens x
Chattonellales MOCH-3‡ x
Chattonellales uncultured eukaryote‡ x x x
Chloromorum sp. toxicum‡ x

Table 6. Amplicon sequence variants (ASVs) identified as active mixotrophs for each experiment at Childs River (CR)
and Menauhant (MH) between June 2019 and August 2019 (dates as mo/d/yr). ASVs that occurred only at MH are marked
with *, and those that occurred only at CR are marked with ‡. Bold refers to ASVs associated with chloroplast-containing taxa 

in the microscopy samples
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not make sense, likely because of the high variability
in this factor. Increased sampling frequency could
help improve our statistical strength and elucidate
the real significance of stratification on temporal
variability at CR.

Regarding mixotrophy, our approach of combining
BrdU experimental data with microscopy results
made it possible to estimate that potential mixo -
trophs accounted for, on average, one-third to one-
half of the >10 μm phototrophic assemblages and
that the spatial difference in those estimations was
largely related to the proportion of diatoms and dino-

flagellates at each site. Diatoms are the only protistan
phytoplankton group with no known mixotrophic
species (Flynn et al. 2013). Therefore, the proportion
of potential mixotrophs >10 μm is expected to be
lower at MH compared to CR since the average pro-
portion of diatoms was significantly higher at MH
(Table 2). Many of the potential mixotrophs identi-
fied belonged to taxa in the cryptophyte and dino -
flagellate groups. The most prominent group was
cryptophytes, but the average proportion of crypto-
phytes was not significantly different between the 2
stations. This means that while cryptophytes account
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Fig. 4. Estimated (a) abundance and (b) percentage of active mixotrophs in microscopy samples collected between June and
August 2019 based on the genera of chloroplast-containing plankton that were identified to be ingesting bacteria for the 

bromodeoxyuridine experiment for each week. Dates (mo/d/yr) correspond to collection dates. Error bars are SE

Fig. 5. Estimated (a) abundance and (b) percentage of potential mixotrophs in all microscopy samples based on the genera of
chloroplast-containing plankton that were identified to be ingesting bacteria by the bromodeoxyuridine experiments run 

between June 2019 and August 2019. Dates are mo/d/yr. Error bars are SE
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for the largest proportion of mixotrophs at both sta-
tions (Fig. 6), the difference in the proportion of
mixotrophs between stations was not driven by crypto -
phytes. Instead, the microscopy-estimated propor-
tion of mixotrophs was higher at CR compared to MH
due to a combination of a lower proportion of diatoms
and a higher proportion of dinoflagellates at CR
(Table 2). However, looking at just the diatom:dino-
flagellate ratio in a sample from any system will not
provide complete insight into when and where mixo -
trophs dominate; all taxa should be considered.

The temporal variability of potential mixotroph
abundance and proportion was high at both stations
(Fig. 5). It has long been hypothesized that mixo -
trophs dominate the plankton community when
either light or nutrients are limiting (Stoecker 1998,
Edwards 2019). This appears to describe both CR, a
station with sufficient inorganic nitrogen concentra-
tion and potentially reduced irradiance levels, and
MH, a station with lower nitrogen concentration and
potentially sufficient irradiance level (Table 1). Sub-
regions of an estuary with significant freshwater in -
flow, such as at CR, are associated with high turbid-
ity, sediment and detritus input, and resuspension,
all of which reduce irradiance (Kemp et al. 2005).
The GLM analysis suggested that potential mixo -
troph abundance was related to higher turbidity,
which would support a light limitation hypothesis.
Assuming light was the growth-limiting factor at CR,
collection of data on irradiance levels, not just turbid-
ity, might provide more insight into when mixotrophs
dominate the photosynthetic community. At MH, po -

tential mixotroph abundance was related to higher
temperatures and lower NOx concentrations, i.e.
summer conditions. Considering that turbidity was
lower at MH compared to CR, albeit not significantly
(Table 1), nutrient limitation potentially played a
larger role than light limitation.

Recent analysis in the southern North Sea sug-
gested that there was little evidence of mixotrophs in
turbid eutrophic temperate estuaries (Schneider et
al. 2020), similar to conditions in Waquoit Bay. How-
ever, our analysis demonstrates that it is possible for
mixotrophs to account for a high proportion of the
photosynthetic assemblage. Our results do not con-
tradict Schneider et al. (2020), or vice versa, because
estuaries are highly heterogeneous, and it can be dif-
ficult to directly compare 2 systems. This indicates
that more research on mixotrophs across estuaries
could help to identify the type that favors mixotrophs
and when they are an important part of the food web.
For example, Chesapeake Bay is a well-studied estu-
arine system with robust data on the phototrophic as -
semblage but lacks data on the abundance and pro-
portion of mixotrophs. Given the well-documented
presence of dinoflagellates throughout the year
(Mul holland et al. 2018), it would be expected that
Chesapeake Bay would favor mixotrophs under ap -
propriate conditions. However, research is needed to
identify these conditions.

Our estimation of potential mixotrophs in the micro -
scopy samples has drawbacks, but we believe it is
useful in highlighting how much of the photosyn-
thetic assemblage in temperate estuaries can be
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Fig. 6. Proportion of estimated potential mixotrophs composed of cryptophytes and dinoflagellates at (a) Childs River and 
(b) Menauhant. Average data point is the average proportion of each group over the course of the study
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mixotrophs even if they are not actively engaged in
their alternative nutrient acquisition mode. It is pos-
sible that we were simultaneously under- and over-
estimating the abundance of different mixotrophs.
We were unable to microscopically identify most of
the mixotrophic ASVs, potentially underestimating
our total number of potential mixotrophs. As previ-
ously mentioned, the ASVs that were not identified
in microscopic samples consisted of taxa that were
too small (10−15 μm) to be identified (such as Ostre-
ococcus spp. and Microglena sp.) and certain dino -
flagellate species. This incongruence between micro -
scopy and amplicon data has been noted in many
recent studies that have compared the 2 approaches
(e.g. Eiler et al. 2013, Gong et al. 2020, Rynearson et
al. 2020). The abundances of the small genera were
not included in our total abundance of phototrophs;
therefore, the identification of potential mixotrophs
was biased towards larger species, which tended to
be dinoflagellates. This bias may have affected our
interpretation regarding the difference in mixotroph
proportion between stations, which we related to the
balance between diatoms versus dinoflagellates.

If we were able to identify and count smaller taxa
such as Ostreococcus and Microglena, then our esti-
mation of both potential mixotroph abundance and
total photosynthetic cell abundance would likely in -
crease. Even with this increase in the proportion of
potential mixotroph abundance, large mixotrophs
would still likely dominate the total biomass of
mixotrophs because dinoflagellates are known for
their high carbon content compared to other taxa
groups (Menden-Deuer & Lessard 2000). If the pro-
portion of potential mixotrophs was altered by in -
cluding smaller species, then our understanding of
factors influencing spatial and temporal variability
might be different. This bias is an issue not only in
our analysis but in any study that uses taxonomy-
based identification of mixotrophs in microscopy
samples. However, our analysis (and previous analy-
sis) is not rendered invalid by this caveat but is
merely restricted to larger mixotrophs (>10 μm). It
should also be noted that many of these smaller spe-
cies were not previously reported as mixotrophs, and
further laboratory work would help clarify this status.

In the case of larger dinoflagellate-associated ASVs,
their lack of identification in microscopy samples was
likely the result of misidentification or abundances
being too low to be detected. While misidentification
is possible, it is most likely to occur with athecate
genera, such as Gymnodinium sp. and Gyrodinium
sp., because of their less-defined morphologies com-
pared to thecate dinoflagellates. In this case, Gymno-

dinium sp. and Gyrodinium sp. were both mixo -
trophs, so the abundance of potential mixotrophs
would not change, but it is possible that this would
result in an overestimate if heterotrophic and photo -
trophic species are included in the genus (e.g. Gyro-
dinium). If the abundance of a species was too low to
be counted in the microscopy samples, then their
abundance would be too low to have an impact on
the proportion of mixotrophs in a sample.

The largest source of overestimation likely came
from a lack of data on which genera were actively
grazing in all samples, hence the use of the term
potential mixotroph. It was clear from the summer
2019 comparison of microscopy data and BrdU ex -
periments that not every ASV was always grazing on
bacteria (Table 6). There was 1 experiment (CR; July
5, 2019) in which none of the mixotrophic ASVs as -
sociated with genera in the microscopy samples were
grazing (Fig. 4). Additionally, the ASV data for
Micro glena uva-maris revealed an interesting pat-
tern of mixotrophic activity; at times of high ASV
abundance in the −BrdU samples at CR on June 21
and July 5, it was not identified as an active mixo -
troph, but it was definitively identified as mixotro-
phic when at lower ASV abundances. This suggests
that under bloom conditions, it may grow primarily
as a phototroph, but when conditions are less favor-
able, it ingests prey. Re gardless of whether a mixo -
troph was actively grazing when a sample was
collec ted, knowledge of when a phototrophic com-
munity is dominated by those with the ability to
switch nutrient modes is worthwhile. There is an
energetic cost associated with being a mixotroph, as
they must simultaneously maintain chloroplasts and
feeding vacuoles (Stoecker 1998). Even if a mixo -
troph is not engaged in its alternative nutrient ac -
quisition mode, it should dominate under different
conditions than a pure phytoplankter. Therefore,
studying potential mixotrophs still provides impor-
tant information about the type of organisms in the
phototrophic community.

From our analysis, it is clear that even with the lim-
ited match of 7 ASVs with 6 genera by microscopy,
mixotrophic species can be an important part of the
phototrophic community in temperate estuaries, at
times accounting for up to 98% of the group. Very
 little is known about the presences of mixotrophs in
estuarine systems across different temporal scales
(diurnal, tidal, seasonal, annual, etc.). Using taxon-
omy to estimate the potential abundance of mixo -
trophs in plankton samples, as demonstrated here
and in Schneider et al. (2020), can help to begin ex -
panding our knowledge of this trophic mode in estu-
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aries. Estimates of potential mixotroph abundance by
using plankton taxonomy could be readily accom-
plished in systems with robust plankton assemblage
data, such as Chesapeake Bay. However, our work
also demonstrates that estimating the abundance of
mixotrophs through taxonomy is imperfect due to 2
primary challenges: not all phagotrophic phototroph
taxa are known, and the conditions under which they
actively graze are often unclear. We suggest that
using BrdU incubations can provide a constraint on
estimations of mixotroph abundance by only detect-
ing taxa actively grazing in a given sample. We
acknowledge that it is a costly and time-consuming
method, but widespread estimations of mixotroph
abundance based on taxonomy of plankton samples,
supplemented with BrdU incubations, when possi-
ble, would rapidly increase our understanding of
mixotrophic components.
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