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Abstract. The science guiding the EUREC*A campaign and its measurements is presented. EUREC*A com-
prised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic — eastward and
southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales,
EUREC*A marked a turning point in our ability to observationally study factors influencing clouds in the trades,
how they will respond to warming, and their link to other components of the earth system, such as upper-ocean
processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of
sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight
time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-
based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000
profiles), lower atmosphere (continuous profiling), and along the air—sea interface; a network of water stable
isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of
weather and climate models. In addition to providing an outline of the novel measurements and their composition
into a unified and coordinated campaign, the six distinct scientific facets that EUREC“A explored — from North
Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation
— are presented along with an overview of EUREC*A’s outreach activities, environmental impact, and guidelines
for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165
(Stevens, 2021), and a film documenting the campaign is provided as a video supplement.

Introduction

B. Stevens et al.: EUREC*A

The clouds of the trades are curious creatures. On the one
hand they are fleeting and sensitive to subtle shifts in the
wind, to the presence and nature of particulate matter, and
to small changes in radiant energy transfer, surface temper-
atures, or myriad other factors as they scud along the sky
(Siebesma et al., 2020). On the other hand, they are im-
mutable and substantial — like Magritte’s suspended stone
(Stevens and Schwartz, 2012). In terms of climate change,

Earth Syst. Sci. Data, 13, 4067-4119, 2021

should even a small part of their sensible side express itself
with warming, large effects could result. This realization has
motivated a great deal of research in recent years (Bony et al.,
2015), culminating in a recent field study named! EUREC?A.
The measurements made as part of EUREC*A, which this pa-

IEUREC#A is more of a name than an abbreviation; in terms of
the latter it expands to ElUcidating the RolE of Cloud—Circulation
Coupling in ClimAte and is pronounced heiireka, as Archimedes
is reputed to have exclaimed upon discovering buoyancy while
bathing.

https://doi.org/10.5194/essd-13-4067-2021
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per describes, express the most ambitious effort ever to quan-
tify how cloud properties covary with their atmospheric and
oceanic environment across an enormous (mm to Mm) range
of scales.

Initially EUREC“A was proposed as a way to test hypoth-
esized cloud-feedback mechanisms thought to explain large
differences in model estimates of climate sensitivity, as well
as to provide benchmark measurements for a new genera-
tion of models and satellite observations (Bony et al., 2017).
To meet these objectives required quantifying different mea-
sures of clouds in the trade winds as a function of their
large-scale environment. In the past, efforts to use measure-
ments for this purpose — from Bannon (1949) to BOMEX?
(Holland and Rasmusson, 1973) and from ASTEX (Albrecht
et al., 1995) to RICO (Rauber et al., 2007) — have been ham-
pered by an inability to constrain the mean vertical motion
over larger scales and by difficulties in quantifying some-
thing as multifaceted as a field of clouds (Bretherton et al.,
1999; Stevens et al., 2001; Siebesma et al., 2003; vanZanten
et al., 2011). EUREC*A was made possible by new methods
to measure these quantities, many developed through exper-
imentation over the past decade in and around the Barbados
Cloud Observatory (Stevens et al., 2016, 2019a). To execute
these measurements required a high-flying aircraft (HALO,
High Altitude and Long Range Research Aircraft) to char-
acterize the clouds and cloud environment from above, both
with remote sensing and through the distribution of a large
number of dropsondes around the perimeter of a mesoscale
(ca. 200km diameter) circle. A second low-flying aircraft
(the ATR), with in situ cloud sensors and sidewards-staring
active remote sensing, was necessary to ground truth the re-
mote sensing from above, as well as to determine the distri-
bution of cloudiness and aspects of the environment as seen
from below. By making these measurements upwind of the
Barbados Cloud Observatory (BCO), and by adding a re-
search vessel (the R/V Meteor) for additional surface-based
remote sensing and surface flux measurements, the environ-
ment and its clouds would be better constrained.

Quantifying day-to-day variations in both cloudiness and
its environment opened the door to additional questions,
greatly expanding EUREC*A’s scope. In addition to testing
hypothesized cloud-feedback mechanisms, EUREC*A’s ex-
perimental plan was augmented to (i) quantify the relative
role of micro- and macrophysical factors in rain formation;
(i1) quantify different factors influencing the mass, energy,
and momentum balances in the sub-cloud layer; (iii) identify
processes influencing the evolution of ocean meso-scale ed-
dies; (iv) measure the influence of ocean heterogeneity, i.e.,
fronts and eddies, on air—sea interaction and cloud formation;
and (v) provide benchmark measurements for a new genera-

2 Abbreviations for field experiments, many instruments, instru-
ment platforms, and institutions often take the form of a proper
name, which if not expanded in the text is provided in the cited
literature or in Appendix B describing the instrumentation.
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tion of both fine-scale coupled models and satellite retrievals.
Complementing these scientific pursuits, EUREC*A devel-
oped outreach and capacity-building activities that allowed
scientists coming from outside the Caribbean to benefit from
local expertise and vice versa.

Addressing these additional questions required a sub-
stantial expansion of the activities initially planned by
the Barbadian-French—German partnership that initiated
EUREC*A. This was accomplished through a union of
projects led by additional investigators. For instance,
EUREC*A-UK (a UK project) brought a Twin Otter (TO
for short) and ground-based facilities for aerosol measure-
ments to advance cloud physics studies; EUREC*A-OA se-
cured the service of two additional research vessels (the R/V
L’Atalante and the R/V Maria Sibylla Merian) and various
ocean-observing platforms to study ocean processes; and the
Atlantic Tradewind Ocean—Atmosphere Mesoscale Interac-
tion Campaign (ATOMIC) brought an additional research
vessel (the R/V Ronald H. Brown), assorted autonomous sys-
tems, and the WP-3D Orion, “Miss Piggy”, to help aug-
ment studies of air—sea and aerosol-cloud interactions. Ad-
ditionally, nationally funded projects supported a large-scale
sounding array, the installation of a scanning precipitation
radar, the deployment of shipborne kite-stabilized helium
balloons (CloudKites), a network of water stable isotopo-
logue measurements, and a rich assortment of uncrewed
aerial and seagoing systems, among them fixed-wing aircraft,
quadcopters, drifters, buoys, underwater gliders, and Sail-
drones. Support within the region helped link activities to
operational initiatives, such as a training program for fore-
casters, and fund scientific participation from around the
Caribbean. The additional measurement platforms consider-
ably increased EUREC*A’s scientific scope and geographic
footprint, as summarized in Fig. 1.

This article describes EURECA in terms of seven dif-
ferent facets as outlined above. To give structure to such a
vast undertaking, we focus on EUREC*A’s novel aspects but
strive to describe these in a way that also informs and guides
the use of EURECAA data by those who did not have the good
fortune to share in their collection. The presentation (Sect. 3)
of these seven facets is framed by an overview of the general
setting of the campaign in Sect. 2, as well as a discussion of
more peripheral, but still important, aspects such as data ac-
cess, good scientific practice, and the environmental impact
of our activities in Sect. 4.

2 General setting and novel measurements

EUREC*A deployed a wide diversity of measurement plat-
forms over two theaters of action: the “Tradewind Alley”
and the “Boulevard des Tourbillons”, as illustrated schemati-
cally in Fig. 1. Tradewind Alley comprised an extended cor-
ridor with its downwind terminus defined by the BCO and
extending upwind to the Northwest Tropical Atlantic Sta-

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Figure 1. The EUREC*A study area in the lower trades of the North Atlantic. The zonally oriented band following the direction of the
trades between the Northwest Tropical Atlantic Station (NTAS) and the Barbados Cloud Observatory (BCO) is called Tradewind Alley. It
encompasses study areas A and B. The “BUREC*A-Circle” is defined by the circular airborne sounding array centered at 13.3° N, 57.7° W. A
third study area (C) followed the southeast-to-northwest meanders of what we called the Boulevard des Tourbillons. The background shows
a negative of the cloud field taken from the 5 February 2020 MODIS-Terra (ca. 14:30 UTC) overpass.

tion (NTAS, 15° N, 51° W), an advanced open-ocean moor-
ing (Weller, 2018; Bigorre and Plueddemann, 2020) that
has been operated continuously since 2001. Measurements
aimed at addressing the initial objectives of EUREC*A were
situated near the western end of the corridor, within the range
of low-level scans of a C-band radar installed on Barbados.
The area of overlap between the radar and the (~ 200 km
diameter) EUREC*A-Circle (marked A in Fig. 1) defined
a region of intensive measurements in support of studies
of cloud—circulation interactions, cloud physics, and factors
influencing the mesoscale patterning of clouds. Additional
measurements between the NTAS and 55°W (Region B in
Fig. 1) supported studies of air—sea interaction and provided
complementary measurements of the upwind environment,
including a characterization of its clouds and aerosols.

The Boulevard des Tourbillons describes the geographic
region that hosted intensive measurements to study how
air—sea interaction is influenced by mesoscale eddies, sub-
mesoscale fronts, and filaments in the ocean (Region C in
Fig. 1). Large (ca. 300km) warm eddies — which migrate

Earth Syst. Sci. Data, 13, 4067-4119, 2021

northwestward and often envelope Barbados, advecting large
freshwater filaments stripped from the shore of South Amer-
ica — created a laboratory well suited to this purpose. These
eddies, known as North Brazil Current (NBC) rings, form
when the retroflecting NBC pinches off around 7° N. Char-
acterizing these eddies further offered the possibility to ex-
pand the upper-air network of radiosondes and to make con-
trasting cloud measurements in a potentially different large-
scale environment. This situation led EUREC“A to develop
its measurements following the path of the NBC rings to-
ward Barbados from their place of formation near the point
of the NBC retroflection, with a center of action near Region
C in Fig. 1. Measurements in the Boulevard des Tourbillons
extended the upper-air measurement network and provided
cloud measurements to contrast with similar measurements
being made in Tradewind Alley.

https://doi.org/10.5194/essd-13-4067-2021
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Figure 2. Heat map showing distribution of airborne-platform tracks, colored (with transparency) by platform. Sonde trajectories are shown
by trail of dots, with the slower ascent of the radiosondes leading to greater horizontal displacements leading to tracks resembling gray
whiskers. The legend includes the flight time (defined as the period spent east of 59° W and west of 45° W to exclude ferries) and number of
soundings. Radiosondes ascents and descents with valid data are treated as independent.

2.1 Platforms for measuring the lower atmosphere

Aerial measurements were made by research aircraft, un-
crewed (i.e., remotely piloted) aerial systems (UASs), and
from balloon- or parachute-borne soundings. These were
mostly distributed along Tradewind Alley. Figure 2 shows
the realization of the EUREC*A strategy: the EUREC*A-
Circle (teal) and box L (orange) stand out, indicative of the
number of times HALO and the ATR flew these patterns. The
very large number of dropsondes deployed by HALO (black
dots) gives further emphasis to the EUREC*A-Circle. Excur-
sions by HALO and flights by the P-3 extended the area of
measurements upwind toward the NTAS. The TO intensively
sampled clouds in the area of ATR operations in the west-
ern half of the EUREC*A-Circle. UASs provided extensive
measurements of the lower atmosphere, mostly in the area
between the EUREC*A-Circle and Barbados. Due to their
limited range many (Skywalkers, CU-RAAVEN, and quad-
copter) only appear as dots on Fig. 2.

Different clusters of radiosonde soundings (evident as
short traces, or whiskers, of gray dots) can also be discerned

https://doi.org/10.5194/essd-13-4067-2021

in Fig. 2. Those soundings originating from the BCO (342)
and from the R/V Meteor (362) were launched from rela-
tively fixed positions, with the R/V Meteor operating be-
tween 12.5 and 14.5° N along the 57.25° W meridian. East
of the EUREC*A-Circle, sondes were launched by the R/V
Ronald H. Brown (Ron Brown), which mostly measured air
masses in coordination with the P-3 measurements between
the NTAS and the EUREC*A-Circle. The R/V Maria Sibylla
Merian (MS-Merian) and R/V L’Atalante (Atalante) com-
bined to launch 424 sondes in total, as they worked water
masses up and down the Boulevard. For most sondes, mea-
surements were recorded for both the ascent and descent,
with descending sondes falling by parachute for all platforms
except the R/V Ron Brown. The synoptic environment en-
countered during EUREC?A, the radiosonde measurement
strategy, and an analysis of the sonde data are described in
more detail by Stephan et al. (2021).

HALO, the ATR, and most of the UASs emphasized sta-
tistical sampling. Hence flight plans did not target specific
conditions, except to adjust the ATR flight levels relative
to the height of the sub-cloud layer — but this varied rela-
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Figure 3. Flight time spent at different altitudes by different air-
borne platforms. Uncrewed aerial systems (UASs) shown in inset.

tively little. During planned excursions from its circling flight
pattern, HALO also positioned its track for satellite over-
passes — one by MISR (5 February 2021) and another by
the core GPM satellite (11 February 2020). Measurements
from the MPCK+ (a large CloudKite tethered to the R/V MS-
Merian) emphasized the lower cloud layer, selecting condi-
tions when clouds seemed favorable. The mini-MPCK was
used more for profiling the boundary layer and the cloud-
base region and was deployed when conditions allowed. The
Twin Otter targeted cloud fields, often flying repeated sam-
ples through cloud clusters identified visibly, but also sam-
pled the sub-cloud layer. The P-3 strategy was more mixed;
some flights targeted specific conditions, and others were
more statistically oriented (for example, to fill gaps in the
HALO and ATR sampling strategy). The different sampling
strategies are reflected in Fig. 3, where the measurements of
HALO are concentrated near 10.2 km and those of the ATR
at about 800 m, with relative uniform sampling of the trade
wind moist layer by the Twin Otter. Figure 3 also shows the
strong emphasis on sampling the lower atmosphere, with rel-
atively uniform coverage of the lower 3 km. Except for the
Twin Otter, which was limited to daytime operations, takeoff
and landing times of the aircraft were staggered, with three
night flights by the P-3, to better sample the diurnal cycle.
Data papers for the individual platforms are being prepared
and will describe their activities in greater detail.
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2.2 Airborne platforms for measuring the upper ocean
and air-sea interface

Four global-class research vessels — all equipped with sur-
face meteorological measurements and underway tempera-
ture/salinity sampling devices — and scores of autonomous
ocean-observing platforms (AOOPs) were deployed along
Tradewind Alley and the Boulevard des Tourbillons. The
tracks of the surface vessels are shown in Fig. 4. These tracks,
colored by measurements of the near-surface water temper-
ature, show slightly more variability in water temperatures
along the Boulevard des Tourbillons, in contrast with more
steady westward warming of surface temperatures following
the trades along Tradewind Alley. The more dynamic situa-
tion along the Boulevard des Tourbillons, as compared to the
situation on the Tradewind Alley, required a different mea-
surement strategy. For the former, research vessels actively
tracked and surveyed mesoscale features, and for the latter
the sampling was more statistical so as to better support the
airborne measurements and cloud characterization.

Along Tradewind Alley, the R/V Meteor mostly worked
along the line of longitude at 57.25° W between 12.4 and
14.2°N. The R/V Ron Brown, coordinating its measure-
ments with the P-3, was stationed between the NTAS and
the MOVE? moorings in January and in the region upwind
of the EUREC“*A-Circle, near 55° W in February. For both
positions, SWIFT buoys were deployed and recovered in co-
ordination with P-3 airborne expendable bathythermograph
(AXBT) soundings. A Saildrone, two Wave Gliders, an Au-
toNaut (Caravela), four underwater gliders, and extensive
conductivity—temperature—depth (CTD) casts from the two
ships profiled the upper ocean Fig. 5.

Along the Boulevard des Tourbillons the R/V MS-Merian
and the R/V Atalante studied the meso- and submesoscale
dynamics. Both research vessels extensively profiled the
ocean’s upper kilometer using a wide assortment of in-
struments, including underway CTDs, moving vessel pro-
filers, vertical microstructure profilers (VMP and MSS), ex-
pendable bathythermographs (XBTs), and expendable CTDs
(XCTDs). Three ocean gliders (one SeaExplorer and two
Slocum electric gliders) provided dense sampling (more
than 1300 profiles, most to at least 700 m, Fig. 5) of sub-
surface structures associated with mesoscale eddies. Of
the roughly 8000 upper-ocean profiles performed during
EUREC*A, nearly three-fourths were performed in coordi-
nation with the eddy sampling along the Boulevard des Tour-
billons. Four Saildrones, 22 drifters and four deployments
of two air—sea fluxes observing prototypes, OCARINA and
PICCOLO, substantially expanded the observations at the
ocean—atmosphere interface. Five Argo floats equipped with
a dissolved-oxygen sensor were deployed to allow a La-

3Meridional Overturning Variability Experiment mooring lo-
cated 50 nmi (nautical miles) northwest of the NTAS and not shown
in Fig. 1.
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with near-surface measurements.

grangian monitoring of the ocean surface and subsurface dy-
namics during and after the campaign.

To effectively survey features in the active waters of the
Boulevard des Tourbillons, the sampling strategy and cruise
plan were assessed daily, using information from the pre-
vious day’s measurements, updates from satellite products,
weather forecasts, and ocean predictions. Tailored satellite
products and model predictions were provided by a variety
of groups* to help track and follow surface features in near
real time.

2.3 Instrument clusters

EUREC*A set itself apart from past field studies both through
new types of measurements, as performed by individual plat-
forms, but also through the quantity or clustering of certain
instruments. Instrument clustering means using similar in-
struments across a number of platforms so as to improve the
statistical characterization of air masses and their evolution.
The ability to make such measurements enables estimates
of systematic and random measurement errors, giving rise

4Collecte Localisation Satellites, the Centre Aval de Traite-
ment des Données, Mercator Ocean, and the Center for Ocean-
Atmospheric Prediction Studies.
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to a different quality of measurement as compared to those
made previously, especially in marine environments. Exam-
ples are described below and include the use of remote sens-
ing, instruments for measuring stable water isotopologues,
and drones. A platform-by-platform listing of the EUREC*A
instrumentation is provided in Appendix B.

2.3.1 Remote sensing

EUREC“A included eight cloud-sensitive Doppler (W- and
Ka-band) radars. Four zenith-staring instruments were in-
stalled at surface sites (BCO, R/V MS-Merian, R/N Meteor,
and R/V Ron Brown) and three on aircraft (nadir, zenith on
the ATR, HALO, and the P-3). The ATR flew a second, hor-
izontally staring, Doppler system. Two scanning radars (a
C-band system installed on Barbados and a P-3 X-band tail
radar) and three profiling rain radars (one at the BCO, an-
other at the Caribbean Institute for Meteorology and Hydrol-
ogy (CIMH), and a third on the R/V MS-Merian) measured
precipitation. The R/V MS-Merian additionally had an X-
Band radar installed for wave characteristics and surface cur-
rents over a roughly 2 km footprint around the ship. Fourteen
lidars were operated, four of which were advanced (high-
spectral-resolution, multi-wavelength) Raman or DIAL (dif-
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ferential absorption lidar) systems for profiling water va-
por and aerosol/cloud properties. The Raman systems (at
the BCO, on the R/V MS-Merian, and on the R/V Me-
teor) were upward-staring surface-mounted systems, and the
DIAL aboard HALO operated in a nadir-staring mode (Wirth
et al., 2009). On the ATR a backscatter UV lidar operated
alongside the horizontally staring radar, looking horizontally
to provide an innovative planform view of cloudiness near
cloud base. In total, six wind lidars and three ceilometers
were operated from the BCO and all research vessels except
for the R/V Atalante. As an example of the sensor synergy
arising from the multitude of sensors, Fig. 6 shows water
vapor flux profiles (Behrendt et al., 2020) estimated from
co-located vertically staring Doppler wind lidar and Raman
(water vapor) lidar measurements from the ARTHUS system
(Lange et al., 2019) aboard the R/V MS-Merian. This type
of measurement strategy, employing a dense network of re-
mote sensors to both improve sampling and realize synergies,
is increasingly emphasized for land—atmosphere interaction
studies (e.g., Wulfmeyer et al., 2018), but it is more difficult
to realize, and thus uncommon, over the ocean.

More standard, but still unprecedented by virtue of its
space—time—frequency coverage, was the contribution of air-
borne, surface, and space-based passive remote sensing to
EUREC?A. Three 14-channel microwave radiometers oper-
ated from surface platforms, and a 25 channel nadir-staring
system operated from HALO (Mech et al., 2014; Schnitt
et al., 2017). Handheld sun-photometer measurements were
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Figure 6. Vertical latent-heat (vaporization enthalpy) flux as a func-
tion of time and height above the platform as measured from the
combination of water vapor Raman lidar (ARTHUS) and Doppler
wind lidar aboard the R/V MS-Merian. The mean value over the 3 d
period is 100 W m~2 at 200 m, and the fluxes are positive through-
out the sub-cloud layer.

made on all four research vessels, and an automated system
operated from Ragged Point, near the BCO, provided addi-
tional constraints on estimates of aerosol loading (from li-
dars) and column water vapor (from radiometers). Infrared
radiometers for measuring the surface skin temperature were
operated on the ATR, HALO, the R/V Ron Brown, the BO-
REAL, and CU-RAAVEN UASSs, as well as on the five Sail-
drones. For estimating fluxes of radiant energy, broadband
longwave and shortwave radiometers were installed on three
of the airborne (zenith and nadir) and surface (zenith) plat-
forms. In addition, HALO and the R/V Meteor hosted high-
spectral-resolution systems measuring shortwave and near-
infrared down- and upwelling radiances (Wendisch et al.,
2001). Near-real-time geostationary GOES-East satellite im-
agery and cloud product retrievals between 19° N-5° S and
49-66° W were collected, with finer temporal resolution ev-
ery minute (between 14 January and 14 February, with a few
data gaps from diversions to support hazardous weather fore-
casting in other domains) archived over most of this domain.
ASTER’s high-resolution (15m visible and near-infrared,
and 90 m thermal) imager on board TERRA was activated
between 7-17° N and 41-61° W. It recorded 412 images of
60km x 60km in 25 overpasses between 11 January and
15 February. These images are complemented by Sentinel-2
data with images at 10m resolution in some visible-near-
infrared bands and 20 m resolution in shortwave-infrared
bands relevant for cloud microphysical retrievals.

The intensity of remote sensing instrumentation in the
vicinity of the EUREC*A-Circle will support efforts to, for
the first time, observationally close the column energy bud-
get over the ocean, as well as efforts to test hypotheses that
link precipitation to processes across very different time and
space scales.

https://doi.org/10.5194/essd-13-4067-2021
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Figure 7. Water stable isotopologues mass fractions (a) binned by altitude over all EUREC*A measurements, including samples from
near-surface waters. Percent of measurements at each altitude (b) associated with winds from the east (45 to 135° from north).

2.3.2 Stable water isotopologues

EUREC*A benefited from an unusually complete and spa-
tially extensive network of stable water isotopologue mea-
surements (HESO, Héﬁo, and HDO) distributed across mul-
tiple platforms. Seven laser spectrometers and five precipi-
tation sampling systems especially designed to avoid post-
sampling re-evaporation were deployed. At the BCO, two
laser spectrometers provided robust high-frequency measure-
ments of isotopologues in water vapor and 46 event-based
precipitation samples were collected. Three ships — the R/V
Atalante, the R/V Meteor, and the R/V Ron Brown — were
similarly equipped and in addition collected ocean water
samples (340 in total) from the underway water line and
the CTDs. These samples have been analyzed in the labo-
ratory together with 50 shipboard rainfall samples. Two of
the high-frequency laser spectrometers were mounted on the
ATR and P-3 to measure the vertical distribution of water
isotopologues. The airborne measurements also added con-
tinuity, sampling air masses between the BCO and R/V Me-
teor stations and between the R/V Meteor and the upwind
R/V Ron Brown. The measurements provided very good
coverage through the lower (3km) atmosphere. Air-parcel
backward trajectories based on three-dimensional wind fields
from the operational ECMWF analyses indicate that bound-
ary layer air came almost exclusively from the east, with
a more heterogeneous origin of air masses sampled above
2500m (Fig. 7; see also Aemisegger et al., 2021). Large-
scale context for the in situ measurements will be provided
by retrievals of atmospheric HDO and Héﬁo from space-
borne instruments.

The size of the network of isotopologue measurements and
the degree of coordination among the different measurement
sites will enable investigations of the variability of the sta-
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ble water isotopologues — in space and time, in ocean water,
atmospheric vapor, and precipitation following the trades —
that were previously not possible.

2.3.3 Drones and tethered platforms

A diversity of tethered and remotely piloted platforms pro-
vided measurements in the lower atmosphere and upper
ocean. Many of these had been used in past field studies, but
what set EUREC?A apart was its coordinated use of so many
platforms. Five fixed-wing systems and a quadcopter pro-
vided approximately 200 h of open-ocean atmospheric pro-
filing, while seven underwater gliders profiled the underlying
ocean well over a thousand times, mostly between the sur-
face and 700 m. Figure 8 presents measurements from one of
the underwater gliders and the CU-RAAVEN — which along
with the other fixed-wing systems (BOREAL and Skywalk-
ers) was flown from Morgan Lewis Beach, a windward beach
about 20 km north of the BCO. The measurements highlight
the boundary layers on either side of the air—sea interface —
one (in the atmosphere) extending to about 700 m and capped
by a layer that is stably stratified with respect to unsaturated,
but unstable with respect to saturated, convection. The typi-
cal ocean mixed layer was as impressively well mixed, but
over a layer about 10 times shallower. Here the measure-
ments document the peculiar situation of salinity maintaining
the stratification that caps the downward growth of the ocean
mixed layer. Ship-based measurements of the air—sea inter-
face were greatly extended by 5 Saildrones, 3 wave gliders,
6 SWIFT drifters, 2 autonomous prototype drifters (OCA-
RINA and PICCOLO), and 22 drifters. In Fig. 8 the air-sea
temperature difference of about 0.8 K is based on Saildrone
data, which also quantifies the role of moisture in driving
density differences. During EUREC*A more than half of the
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Figure 8. Ocean and atmospheric boundary layer upwind of the
BCO. Dots show CU-RAAVEN measurements of the density po-
tential temperature vs. altitude, as well as underwater glider mea-
surements of the temperature below the surface. Values are normal-
ized to compensate for differences associated with either synoptic
variations or from variations in the depth of the sampled planetary
boundary layers. Blue dots show profile of cloud fraction from all
MPCK profiles. The dashed (black) line marks the potential temper-
ature of near-surface air isentropically lifted from the surface; the
slope discontinuity at the lifting condensation level (690 m) marks
the shift from an unsaturated to a saturated isentrope. The tempera-
ture difference between the sea surface and the lower atmosphere is
taken from Saildrone data.

density difference between the near-surface air and air satu-
rated at the skin temperature of the underlying ocean can be
attributed to variations in the specific humidity.

Kite-stabilized helium balloons, known as Max Planck
CloudKites (MPCKs), made their campaign debut during
EUREC?A. Three instrument systems were flown. One large
MPCK+ instrument was flown on the R/V MS-Merian, sus-
pended from the larger aerostat (115 kg lift, 1.5 km ceiling)
to sample clouds. Two smaller mini-MPCK instruments were
flown both on the same aerostat and the smaller aerostat on
the R/V Meteor (30kg lift, 1 km ceiling), which focused on
boundary layer and cloud-base profiling. Measurements from
the CloudKites are used to quantify the cloud coverage in
Fig. 8.
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3 EUREC“A’s seven science facets

In this section we elaborate on topics that motivated
EUREC*A and how this influenced the measurement strat-
egy. The presentation aims to emphasize novel contributions
without loosing sight of the need to also provide a clear
sketch of the campaign as a whole. Additional details de-
scribing the activities of specific platforms, or groups of plat-
forms, are being described in complementary data papers,
and a full listing of the deployed instrumentation is presented
in Appendix B.

3.1 Testing hypothesized cloud-feedback mechanisms

As described by Bony et al. (2017), EUREC*A was con-
ceived as a way to test the hypothesis that enhanced mix-
ing of the lower troposphere desiccates clouds at their base,
in ways that warming would enhance (Rieck et al., 2012;
Sherwood et al., 2014; Brient et al., 2016; Vial et al., 2016)
but the signal of which has not been possible to identify in
past measurements (Nuijens et al., 2014). In addition, re-
cent research suggests that clouds in the trades tend to or-
ganize in mesoscale patterns (Stevens et al., 2019b) selected
by environmental conditions (Bony et al., 2020). These find-
ings raise the additional question as to whether changes in
the mesoscale cloud organization with evolving environmen-
tal conditions might play a role in low-cloud feedbacks. To
address these questions, EUREC“A developed techniques to
measure the strength of convective-scale and large-scale ver-
tical motions in the lower troposphere, together with the co-
incident cloud-base cloud fractions, in addition to other pos-
sible drivers of changes in mesoscale cloud patterns, such as
coherent structures within the sub-cloud layer, radiative cool-
ing, and air mass trajectories.

To make the desired measurements required HALO and
the ATR to fly closely coordinated flight patterns, ideally
sampling different phases of the diurnal cycle (Vial et al.,
2019). This was realized by HALO circling (at an altitude
of 10.2km) 3.5 times over 210 min. Within this period three
full sounding circles were defined by a set of 12 dropsonde
launches, one for each 30° change in heading. The start time
of successive sounding circles was offset by 15 min so as to
distribute the sondes through the period of circling. During
this time HALO also provided continuous active and passive
remote sensing of the cloud field below. Flying 50 min “box”
patterns just above the estimated cloud base (usually near a
height of about 800 m, Fig. 3), the ATR provided additional
remote sensing, as well as in situ turbulence and cloud mi-
crophysical measurements. After two to three box patterns,
the ATR flew two to four L-shaped wind-aligned and wind-
perpendicular patterns (the “L” in Fig. 1) — at the top, middle,
and bottom of the sub-cloud layer — before returning to Bar-
bados to refuel for a second mission. While the ATR was
refueling, HALO made an excursion, usually in the direc-
tion of the R/V Ron Brown and the NTAS buoy. On all but
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Figure 9. Divergence of the horizontal wind versus height (a), and vertical pressure velocity versus height (b). Divergence estimated from
dropsonde measurements and vertical pressure velocity derived from these for the two sets of circles flown on 5 February. The black dashed
line on the rightmost panel denotes vertical pressure velocity averaged over all EUREC*A-Circle dropsonde measurements.

two occasions the ATR returned to the measurement zone af-
ter refueling (about 90 min later) to execute a second round
of sampling, accompanied by HALO returning for another
210 min tour of the EUREC*A-Circle. All told this resulted in
18 coordinated (4 h) flight segments, one of which involved
the P-3 substituting for HALO on one of its nighttime flights.

A first target of the flight strategy was the measurement,
for each sounding circle, of the vertical profile of mass diver-
gence using dropsondes (following Bony and Stevens, 2019).
In Fig. 9 the vertical pressure velocity, w, estimated from this
divergence is averaged over a set of three circles for the two
5 February circling periods. Also shown is the average over
all circles over all days. The continuity of the divergence
within a circle and across two circling periods — although
on some flights vertical motion can change more markedly
across sets of circles — gives confidence that the measure-
ments are capturing a physical signal. It also shows, for the
first time from measurements on this scale, how the mean w
reduces to the expected climatological profile, with a magni-
tude (of about 1 hPah~!) similar to what is expected if sub-
sidence warming is to balance radiative cooling.

The second target of the flight strategy was the measure-
ment of the cloud fraction at cloud base through horizon-
tal lidar-radar measurements by the ATR. In fields of op-
tically thin shallow cumuli (such as those associated with
the cloud patterns observed on 28 January), cloud droplets
were too small to be detected by the radar, but the lidar
could detect the presence of many successive clouds along a
roughly 10 km line of sight, i.e., half of its box-pattern width
(Fig. 10; Chazette et al., 2021). In the presence of larger
cloud droplets, normally associated with larger or more-
water-laden clouds, such as on 11 February, the radar de-
tected larger droplets and rain drops over a range of 10km

https://doi.org/10.5194/essd-13-4067-2021

(Fig. 10). The lidar-radar synergy will provide, for each
ATR box, the cloud fraction and the distribution of cloud
geometric and optical properties at cloud base. The second,
vertically pointing ATR cloud radar allows a characteriza-
tion of the aspect ratio of clouds, which may help infer the
mesoscale circulations within the cloud field. These mea-
surements, associated with new methods developed to es-
timate the cloud-base mass flux (Vogel et al., 2020), and
to characterize the mesoscale cloud patterns from GOES-
16, MODIS, or ASTER satellite observations (Stevens et al.,
2019b; Mieslinger et al., 2019; Bony et al., 2020; Denby,
2020; Rasp et al., 2021), will make it possible to test cloud-
feedback mechanisms and advance understanding of the pro-
cesses underlying the formation of the mesoscale cloud pat-
terns, as well as whether they influence the hypothesized
feedback mechanisms.

3.2 Quantifying processes influencing warm-rain
formation

As highlighted by Bodenschatz et al. (2010), the range of
scales, from micro- to megameters, that clouds encompass
has long been one of their fascinating aspects. Measurements
made during EUREC*A quantified, for the first time, the
main processes that influence trade wind clouds across this
full range of scales. By doing so, long-standing questions in
cloud physics were addressed, including (i) whether micro-
physical processes substantially influence the net amount of
rain that forms in warm clouds and (ii) how important is the
interplay between warm-rain development and the mesoscale
organization of cloud fields. These questions identify precip-
itation development as the link among processes acting on

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Figure 10. Illustration for January 28 lidar, February 5 lidar and radar, and February 11 radar cloud field observed at cloud base by the ATR
with horizontal lidar (detected cloud boundaries denoted by red dots) and radar measurements.

different scales and hence guided EUREC*A’s measurement
strategy.

On the particle scale, measurements were performed to
characterize aerosols and to quantify how small-scale turbu-
lence mixing processes influence droplet kinematic interac-
tions and activation. Aerosol properties and turbulence both
imprint themselves on the cloud microstructure and thereby
affect the formation of precipitation (Broadwell and Breiden-
thal, 1982; Cooper et al., 2013; Li et al., 2018; Pohlker et al.,
2018; Wyszogrodzki et al., 2013). In most cases, not only the
magnitude, but also the sign of the hypothesized effects can
be ambiguous, if not controversial. For example, by acting
as an additional source of cloud condensation nuclei (CCN),
Saharan dust may retard the formation of precipitation (Levin
et al., 1996; Gibson et al., 2007; Bailey et al., 2013), but if
present as giant CCN, it may have the opposite effect (Jensen
and Nugent, 2017).

On the cloud scale, the intensity of rain and the evapo-
ration of raindrops can lead to downdrafts, cold pools, and
mesoscale circulations which can lift air parcels, produc-
ing secondary and more sustained convection (e.g., Snod-
grass et al., 2009). These cloud-scale circulations, which the
EUREC*A-Circle measurements quantified, may also change
the vigor and mixing characteristics of cloud. This could in
turn influence precipitation formation, a process that Seifert
and Heus (2013) suggest may be self-reinforcing, consistent
with an apparent link between precipitation and mesoscale
cloud patterns such as “fish” or “flowers” (Stevens et al.,
2019b).

On larger (20 to 200km) scales, horizontal transport,
which determines whether or not Saharan dust reaches the
clouds, as well as factors such as the tropospheric stability, or
patterns of mesoscale convergence and divergence, which in-
fluence cloud vertical development, may affect the efficiency
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of warm-rain production. In addition to the characterization
of the environment from the dropsondes, the positioning of
surface measurements (R/V Meteor, R/V Ron Brown, and
BCO) helped characterize the Lagrangian evolution of the
flow, also in terms of aerosol and cloud properties.

Figure 11 shows an example of the cascade of measure-
ments, spanning scales covering 10 orders of magnitude.
On the smallest O(107> m) scale, a sample holographic im-
age from an instrument mounted on the MPCK+ shows the
spatial and size distribution of individual cloud drops. In
situ measurements and airborne remote sensing document
the cloud microphysical structure and its relationship to the
properties of the turbulent wind field. On scales of hundreds
of meters to a few kilometers, vertically and horizontally
pointing cloud radars and lidars characterize the geometry
and the macrophysical properties of clouds. On yet larger
0(10° m) scales, the spatial organization and clustering of
clouds and precipitation features are captured by satellite, by
high-resolution radiometry from high-altitude aircraft, and
by the C-band scanning radar, POLDIRAD (Schroth et al.,
1988).

An example of how the measurements upwind and down-
wind of the EUREC*A-Circle helped constrain its aerosol en-
vironment is shown in Fig. 12. Two periods with larger CCN
number concentration (near 450 cm—3), both associated with
periods of elevated mineral dust, can be identified in mea-
surements made aboard the R/V Ron Brown (east of 55° W)
and from the ground station at Ragged Point (Pohlker et al.,
2018). The slight lag of the Ragged Point measurements rel-
ative to those on the R/V Ron Brown is consistent with the
positioning of the two stations and the westward dust trans-
port by the mean flow. The episodes of elevated dust are be-
lieved to be from Saharan dust outbreaks, which are unusual
in the (boreal or northern) winter months (Prospero et al.,

https://doi.org/10.5194/essd-13-4067-2021
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Figure 11. Measurements within the Tradewind Alley test section (5 February) define a multi-scale cloud chamber. The figure highlights
clustering on different scales. Scanning C-band radar (POLDIRAD) 0.6° scan (11:25:25 UTC) is overlain on the 11:33:41 UTC brightness
temperature (at 10.6 um) measured by GOES-16, with coincident segments of the HALO and ATR flight tracks. Radar images from the ATR
(horizontal and zenith) and HALO (nadir) are shown (all radar imagery shares the same color scale), as well as cloud water and updraft
velocity from a penetration of cloud by the Twin Otter (later in the day, at 18:32 UTC, near 13.55° N, 58.26° W at 1910 m). Visual image
from the specMACS instrument, with POLDIRAD reflectivity contours superimposed, shows the cloud visualization along a segment of the
HALO flight track. MPCK+ hologram measurements (made in the southern portion of the circle — 12.25° N, 57.70° W at 1084 m — on 17
February) demonstrate the capability to measure the three-dimensional distribution of individual cloud droplets colored by size.

2020) and can greatly increase CCN number concentrations
(Wex et al., 2016). In between these events, CCN number
concentration are 3-fold smaller (150 cm™?), which we take
as representative of the clean maritime environment.

The degree of aerosol variability should aid efforts to un-
tangle the relative role of different factors influencing warm-
rain formation. Helping in this regard is that variations in
CCN concentrations are not too rapid to call into question
the idea of associating a 3 h period of measurements on the
EUREC*A-Circle with a particular concentration of CCN:

https://doi.org/10.5194/essd-13-4067-2021

50 % of the Ragged Point measurements change by less than
10 % over a 3 h period, and only 20 % of the time are changes
larger than 30 % measured.

3.3 Sub-cloud mass, matter, energy, and momentum
budgets

Early field studies extensively and compellingly documented
the basic structure of the lower atmosphere in the trades
(Riehl et al., 1951; Malkus, 1958; Augstein et al., 1974;

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Figure 12. Aerosol characteristics measured in the Tradewind Alley highlight two periods (31 January to 6 February and 9-12 February) of
CCN-laden air. Dust mass density from the R/V Ron Brown (a), which was mostly east of 55° W. Normalized histogram showing the relative
frequency of occurrence of different CCN concentration levels (c¢). Note that the periods of observation at the two locations are only partly

overlapping.

Brummer et al., 1974; Garstang and Betts, 1974). What re-
mains poorly understood is the relative role of specific pro-
cesses, particularly those acting at the mesoscale, in influenc-
ing this structure. A specific question that EUREC*A aims to
answer is the importance of downdrafts, and associated cold
pools (Rauber et al., 2007; Zuidema et al., 2012), in influenc-
ing boundary layer thermodynamic structure and momentum
transport to the surface. A related question is whether the
links between the cloud and sub-cloud layer depend on the
patterns of convective organization, for instance as a result
of differences in the circulation systems that may accompany
such patterns.

For quantifying the sub-cloud layer budgets, as for many
other questions, a limiting factor has been an inability to
measure mesoscale variability in the vertical motion field.
EUREC*A’s measurements not only address this past short
coming, but the ship-based sounding network additionally
quantifies the mean vertical motion at different scales. The
arrangement of measurements, particularly flight segments,
was designed to quantify the Lagrangian evolution of air
masses, with legs repeated on every mission at levels attuned
to the known structure of the lower troposphere, i.e., near
the surface, in the middle, near the top, and just above the
sub-cloud layer, as well as in and just above the cloud layer.
Past studies using a single aircraft, albeit in a more homo-
geneous environment, demonstrate that such a strategy can
close boundary layer moisture and energy budgets (Stevens
et al., 2003). Doing so also aids quantification of the verti-
cal profile of turbulent transport and contributions associated
with horizontal heterogeneity and sets the stage for estimat-
ing mass and energy budgets through the entire atmospheric
column.

To address the measurement challenge posed by an en-
vironment rich in mesoscale variability, EUREC?A made
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use of additional aircraft and a larger array of surface mea-
surements (also from uncrewed platforms) as well as exten-
sive ship and airborne active remote sensing, and a network
of water stable isotopologues (as presented in Sect. 2.3.2).
At the BCO, aboard the R/V Meteor and on the R/V MS-
Merian, advanced Raman lidars provided continuous profil-
ing of water vapor, clouds, temperature, and aerosols. The
nadir-staring WALES lidar on HALO likewise profiled wa-
ter vapor, clouds, and aerosols. As an example of this capa-
bility, Fig. 13 presents relative humidity data (deduced from
temperature and absolute humidity retrievals) from the BCO
lidar. These measurements document the time—height evolu-
tion of water vapor in the boundary layer, something impos-
sible to assess from in situ measurements, which measure at
only a few levels, or soundings, which are sparse in time.

The BCO lidar measurements quantify the structure of
moist or dry layers in the free atmosphere, as well as vari-
ations in the cloud and sub-cloud layers, illustrating days of
more nocturnal activity (centered on 1 February), and also
features presumed to be the signature of mesoscale circula-
tions. Analyses of Meteor data show a signature of the diel
cycle (0.54 K), but it is more pronounced (1.27 K) over the
BCO - both at the surface and as sensed by the BCO lidar at
400 m. Both a slight slackening of the winds and an upwind
adjustment in response to diurnal heating of the island could
be responsible for the amplification of the diel cycle over the
BCO.

Possible mesoscale circulations are the focus of the mag-
nification in the lower panels (of Fig. 13). Shown are mea-
surements in the lower 3 km for a 5 h period late on 2 Febru-
ary 2020. During this period aerosol-poor air appears to de-
scend adiabatically into the cloud layer (near 2km), coin-
cident with a large-scale fold of cloud layer air into the
sub-cloud layer. This results in a sharp contact discontinuity

https://doi.org/10.5194/essd-13-4067-2021
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Figure 13. Lidar profiling of the lower atmosphere using the CORAL lidar at the Barbados Cloud Observatory. The upper panel (a) shows
the relative humidity in the lower 5 km over the entirety of the campaign. The lower panel (b) shows (from left to right) show the specific
humidity over a 4 h period marked by a large intrusion of cloud layer air on 2 February and the associated aerosol/cloud backscatter. Also
shown is the Lagrangian evolution of humidity, or backscatter features, with dashed arrows following the descent with time of features
(white arrow in the upper panel: following RH feature; black arrow in the lower panel: following backscatter feature) being indicative of the
magnitude of vertical velocity variations on different temporal scales. Gray bars on lower plots (at 21 h) are missing data.

(aerosol front) near 21:00 UTC, which extends to the surface
and is also evident in the water vapor field. Typically the ma-
rine boundary (sub-cloud) layer is viewed as a turbulent layer
that primarily interacts with the much-larger-scale evolution
of the free atmosphere through small-scale entrainment at its
top. Events such as the one shown in Fig. 13 suggest that in
addition to downdrafts and the cold pools they feed, circula-
tions on scales commensurate with and larger than the depth
of the sub-cloud layer may be important for boundary layer
budgets.

Similar considerations also apply to the momentum bud-
get of the trades. In Dixit et al. (2020) idealized large-eddy
simulations are shown to underestimate the flux of momen-
tum in the sub-cloud layer, something they hypothesize to
arise from an absence of mesoscale circulations in the simu-
lations. As an example of efforts to quantify such processes
Fig. 14 shows the total wind speed measured in the sub-
cloud layer by the long-range wind lidar aboard the R/V Me-
teor. The lower panel documents kilometer-scale wind speed
variations on the order of 2ms~! that extend into the sur-
face layer (derived from the short-range wind lidar, defined
with respect to 3-hourly running means). One question asked

https://doi.org/10.5194/essd-13-4067-2021

is whether, for a given surface friction, convectively driven
flows can sustain a relatively large near-surface wind, and
weaker surface layer wind shear, than expected from shear-
driven turbulence alone. The third panel shows that the ratio
of wind speeds at 40 m to wind speeds at 200 m, as a mea-
sure of surface layer wind shear, is close (ca. 0.95) to unity.
Combined with surface heat and momentum fluxes measured
by other platforms, the lidars provide a unique opportunity to
identify the influence of (moist) convection on wind stress at
the surface.

3.4 Ocean mesoscale eddies and sub-mesoscale fronts
and filaments

Mesoscale eddies, fronts, and filaments — not unlike the
mesoscale circulations that are the subject of increasing at-
tention in the atmosphere — are coherent structures that
may be important for linking surface mixed layer to the
interior ocean dynamics (Carton, 2010; Mahadevan, 2016;
McWilliams, 2016). By virtue of a sharp contrast with their
surroundings, these structures can efficiently transport en-
thalpy, salt, and carbon through the ocean. Though satellite

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Figure 14. Sub-cloud layer lidar wind versus height above the R/V
Meteor. Panel (a) shows the value of the wind speed in the sub-
cloud layer, above 200 m. Fluctuations of the near-surface wind
speed from a 3-hourly running mean value (b) are shown with an
expanded vertical scale. The lower time series (¢) shows the ratio
of the wind speed at 40 m (the lowest remotely sensed level) to its
value at 200 m.

observations have enhanced knowledge of their occurrence
and surface imprint (Chelton et al., 2001), the sparsity of di-
rect observations limits our ability to test understanding of
such structures, in particular subsurface eddies. Understand-
ing of the role of these types of structures is further limited by
their short lifespans (hours to days) and small spatial scales
(0.1 to 10 km), which make them difficult to observe. These
facts motivated ocean observations during EUREC*A, as did
recent work suggesting that such coherent structures, in par-
ticular localized upwelling, downwelling, straining, stratifi-
cation variability, wave breaking, and vertical mixing, may
couple with and influence atmospheric processes, including
cloud formation (Lambaerts et al., 2013; Renault et al., 2016;
Foussard et al., 2019).

To address these questions, measurements during
EUREC*A attempted to quantify how near-surface currents,
density, and waves varied across and within different
dynamical regimes, e.g., for mesoscale eddies, fronts, and
filaments. Such measurements aimed to answer specific
questions not unlike those posed for the atmospheric
boundary layer, namely to quantify the contribution of
such structures to the spatial and temporal variability of
the upper ocean. EUREC*A distinguished itself from past
campaigns that have attempted similar measurements —
LatMix (Shcherbina et al., 2013), OSMOSIS (Buckingham
et al., 2016), and CARTHE (D’ Asaro et al., 2018) — by virtue
of the number and diversity of observing platforms deployed
(Saildrones, underwater gliders, instrumentally enhanced
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Figure 15. Surface density gradients at different horizontal length
scales. Bivariant histogram shows counts versus (1 to 200 km) and
strength of gradient as measured by Saildrones (note the log-scale
color bar). Inset is power spectral density of the surface density gra-
dients, calculated by averaging periodograms constructed for each
vehicle after de-trending the data and smoothing the data with a
2 km Gaussian filter. The red line shows the linear regression best
fit slope of —2.3.

surface and subsurface drifters, Wave Gliders, an AutoNaut,
and biogeochemical Argo floats). These mapped the ocean
down to 1000m or more, simultaneously across both the
Tradewind Alley and the Boulevard des Tourbillons (Fig. 2).
These measurements have resulted in an unprecedented view
of a large spectrum of ocean temporal and spatial scales
across different oceanic environments.

The richness of structure observed in the upper ocean dur-
ing EUREC“A can be quantified by the distribution of surface
temperature fronts. All seagoing platforms contributed to ob-
serving the upper-ocean temperature structure, surveying a
wide region and a large spectrum of ocean scales, and thus
can contribute to this measure of upper-ocean variability. An
example from one such platform, a Saildrone, is shown in
Fig. 15. The sensitivity of frontal density gradients to spatial
resolution was explored by subsampling data from 0.08 to
100 km (Fig. 15). For each length scale, the percentage fre-
quency of each density gradient was calculated. This analy-
sis demonstrates that smaller length scales yield larger den-
sity gradients. The largest gradients were found at spatial
scales of only 1km and were associated with strong, local
freshening. These are believed to be associated with small-
scale, but intense, rain showers, a potentially far-reaching
idea given the importance of rain for linking processes at dif-
ferent scales in the atmosphere (e.g., Sect. 3.2). The analysis
further documents self-similar (power law) scaling between
19 and 1900 km with a slope of —2.3. There is evidence of a
scale break at around 25 km. Surface quasi-geostrophic tur-
bulence generally predicts a slope of —5/3 or steeper (Callies
and Ferrari, 2013; Rocha et al., 2016; Lapeyre, 2017).
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Figure 16. Eddies in the Boulevard des Tourbillons (map) with vertical cross section (A-B transect near 10° N, 58° W on the map) showing
ship acoustic Doppler current profiler (SADCP) currents from the R/V Atalante (bottom left) and salinity from CTD casts (right). Surface-
eddy field derived from satellite altimetry (Pujol et al., 2016). Eddy contours are detected automatically by the TOEddies algorithm (Laxenaire
et al., 2018). The position of subsurface eddies (200 to 600 m deep) as identified from the eddy detection method (Nencioli et al., 2010)
applied to vector currents measured by SADCPs are shown by red circles. A subsurface eddy freshwater anomaly is indicative of South

Atlantic origins.

A wide array of instruments deployed from all four
ships (CTDs, underway CTDs, mounted vessel profilers, mi-
crostructure profilers, XBTs, XCTDs, Doppler current meter
profilers, five BGC Argo floats) and the seven underwater
gliders (e.g., Fig. 5) profiled water properties and ocean cur-
rents. This array of measurements, guided by near-real-time
satellite data and real-time ship profiling, revealed a surpris-
ingly dense and diverse distribution of mesoscale eddies. All
of the measured eddies captured by satellite data (Fig. 16)
were shallow, extending to a depth of about 150 m (Fig. 16)
and transporting warm and salty North Atlantic tropical wa-
ter swiftly northward. Below but not aligned with the sur-
face structures and separated by strong stratification, large
subsurface anticyclonic eddies (and on some occasions cy-
clonic eddies) extended from 150 to 800 m and carried large
quantities of water from the South Atlantic northward. An
example sampled by the R/V Atalante along a southwest-
to northeast-aligned transect near 50° N and 58° W is illus-
trated in Fig. 16. Here a ca. 200 km eddy characterized by
a 0.2 PSU freshwater anomaly was measured carrying water,
which was likely subducted in the south Atlantic, northward.

https://doi.org/10.5194/essd-13-4067-2021

The anomaly was associated with a circulation of ~ 1 ms™!

with maximum velocities near 300 m extending downward to
a depth of about 800 m. EUREC*A observations such as these
will be essential for understanding the complex dynamics of
the upper ocean and the extent to which they can be captured
by a new generation of kilometer-scale coupled climate mod-
els.

3.5 Air—sea interaction

What distinguished EUREC“A from the many previous cam-
paigns focused on air—sea interaction was its interest in as-
sessing how circulation systems, in both the ocean and the
atmosphere, influence surface exchange processes. These in-
terests extended to interactions with ocean biology and their
impact on both CO, exchange and profligate amounts of
seaweed (Sargassum) that have, in past years, developed
into a regional hazard. To study these processes EUREC*A
made use of a flotilla of uncrewed devices and a wealth of
nadir-staring airborne remote sensing, specifically designed
to characterize the air—sea interface on a range of scales.

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Figure 17. Near-surface temperature (7sea) from drifters and gliders in the three EUREC*A study regions. Panel (a) shows the tracks of
the instruments colored by Tgea. The magnification (upper left) expands the domain of the Caravela (and underwater glider) measurements
in Region A (near 57° W). January and February SWIFT buoy (Tsea at —0.3 m) deployments in Region B. Saildrone (Tgeq at —0.5 m)
measurements across an eddy near 11° N, with anti-cyclonic currents (at —5 m) shown by vectors, in Region C. Panel (b) shows time series
of Tsea measurements by the different instruments. Probability density, p, of air-sea temperature differences measured by two SWIFT buoys

between 04:00 UTC 4 February and 14:00 UTC 6 February (c).

Ocean eddies, fronts, and filaments influence the atmo-
sphere by perturbing air—sea surface fluxes (Chelton and
Xie, 2010; O’Neill et al., 2012) — a process that may
also feed back on the ocean by causing a damping of the
(sub)mesoscale activity (Renault et al., 2018). As an exam-
ple, Sullivan et al. (2020) use large-eddy simulation to show
how small-scale ocean fronts perturb the boundary layer
through its depth, giving rise to circulations on scales much
larger than that of the boundary layer, or of the front itself
(their Fig. 12). These lead to large perturbations in verti-
cal mixing and, one can speculate, on patterns of cloudi-
ness. Similarly, clouds influence the downward longwave and
shortwave irradiance, which influences both the sea surface
temperature and atmospheric temperatures directly, some-
thing that Naumann et al. (2019) have shown to commen-
surately power (2 to 200 km) circulations.

In the area near and within the EUREC*A-Circle (Region
A), measurements sought to quantify how surface exchange
processes vary with circulation (cloud pattern) regime. Mea-
surements by Caravela (an AutoNaut) and three underwater
gliders characterized the air—sea interface in a small, and spa-
tially fixed, (ca. 10 km) region in this domain (Fig. 17). These
measurements help untangle spatial from temporal variabil-
ity, with both a secular (seasonal) cooling of surface waters
over the course of the campaign and a variable, but at times

Earth Syst. Sci. Data, 13, 4067-4119, 2021

pronounced, diel cycle (Fig. 17). In addition, CTD casts,
lower atmospheric profiling (with a mini-MPCK and a quad-
copter), and eddy-covariance measurements from an outrig-
ger mast were performed by the R/V Meteor as it steamed up
and down the 57.25° W meridian bisecting the EURECA-
Circle just upwind of Caravela’s box. Rounding out the mea-
surements in this region were low-level Twin Otter, ATR (as
part of its “L” pattern) legs, and BOREAL UAS measure-
ments, as well as airborne remote sensing of sea surface tem-
peratures along the EUREC*A-Circle by HALO. Based on
preliminary analyses, these measurements are proving useful
in quantifying the diel cycle in both the upper ocean and in
the lower atmosphere.

Effects of ocean sub-mesoscale processes on air—sea inter-
actions were the focus of measurements in Region B (Fig. 1).
On two occasions the R/V Ron Brown deployed six SWIFT
drifters (spar buoys) in regions of surface heterogeneity: once
in January near the NTAS buoy and again in early Febru-
ary near 55° W. The deployments were performed and coor-
dinated with further measurements by the R/V Ron Brown,
as well as by the P-3, two Wave Gliders, and a Saildrone.
The P-3 (see also Figs. 4 and 2) dropped AXBTs around
the SWIFTS, quantified air—sea exchange with near-surface
flight legs, and surveyed the near-surface wind and wave
fields using remote sensing. Figure 17 documents how, dur-
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Figure 18. CO, fugacity (fCO;) measurements from different surface vessels (upper right) and versus longitude (lower). The presentation
contrasts strong variability in fCO, in association with eddies and salinity variations along Boulevard des Tourbillons (orange in lower
panel, track in upper right) versus in the Tradewind Alley (blues). Microscopic/epifluorescence image of several filaments of Trichodesmium,
an N»-fixing cyanobacterium that is found in the region (upper left), and mats of seaweed (Sargassum, photo by Wiebke Mohr, upper center)
which were frequently observed and difficult to navigate from some of the uncrewed surface vehicles.

ing the February deployment, the SWIFTS sampled large
0.5 K mesoscale (ca. 30 km) variability in sea surface tem-
perature (SST) features. This variability gives rise to air—sea
temperature differences twice as large as the baseline, as in-
ferred from the average of measurements over longer peri-
ods (i.e., as shown by the Saildrone data, orange lines) and is
characteristic of the SWIFT data away from the local feature
in surface temperatures (e.g., green solid line in Fig. 17).

In the Boulevard des Tourbillons (Region C), coordinated
sampling between Saildrones and two research vessels aimed
to quantify mesoscale and submesoscale air—sea interaction.
Submesoscale variability and strong near-surface currents,
with a circulation indicative of an NBC ring, were measured
by the Saildrones (Fig. 17). These measurements were co-
ordinated with the activities of the R/V Atalante and R/V
MS-Merian, as well as three underwater gliders (e.g., Fig. 4).
Extensive vertical profiling, also by high-speed underway
CTDs, aimed to quantify the impacts of submesoscale fronts
and filaments and mesoscale eddies on surface exchange pro-
cesses, and vice versa. Being able to resolve the thermal
structure of the upper ocean should also help quantify the im-
portance of the O(0.3 K) cool-skin effect and diurnal warm-
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ing just below the skin layer (Fairall et al., 1996) on ocean
mixing and air-sea exchange.

Factors, including the role of meso- and sub-mesoscale
variability, influencing air—sea gas exchange were also stud-
ied. pCO, measurements were made on the R/V Atalante,
R/V MS-Merian, and the R/V Ron Brown (Fig. 18). In ad-
dition, both the R/V MS-Merian and R/V Meteor regularly
sampled water at four different depths (selected based on
chlorophyll concentrations) for N fixation and primary pro-
duction rates as well as potential aerobic methane produc-
tion. DNA- and RNA-based sequencing will additionally be
performed on these water samples to identify diazotrophic
community members, potentially including so far unrecog-
nized members. Furthermore, large floating mats of seaweed
(genus Sargassum) were observed from all crewed platforms.
On the R/V MS-Merian, to investigate if, and to what de-
gree, this biomass and primary production can be supported
by local Ny fixation, incubation experiments including stable
isotopes were conducted on seaweed samples that were col-
lected underway. In addition to extending studies of air—sea
interaction to incorporate chemical and biological processes,
EUREC“A may also shed light on the role of meso- and sub-
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mesoscale ocean circulations on these chemical and biologi-
cal processes.

3.6 Benchmarks for modeling and satellite retrievals

The range of scales and types of processes that can presently
be captured by both satellites and models, and the extent to
which they were integrated into EUREC*A’s experimental
design (see Bony et al., 2017), allows EUREC?A to address
questions that could not be addressed with data from ear-
lier field studies. For instance, what resolution is required for
atmospheric models with an explicit (fluid-dynamical) rep-
resentation of clouds and convection to represent the ver-
tical structure of the lower troposphere, and its interaction
with mesoscale vertical motion and upper-ocean variability,
within the observational uncertainty? The fine scale of the
EUREC*A measurements also makes it possible to quan-
tify satellite retrieval uncertainty, for instance for measure-
ments of small-scale precipitation features, cloud microphys-
ical properties, or column energy budgets (Illingworth et al.,
2015).

For these purposes EUREC*A was closely coordinated
with efforts to develop and test a new generation of Earth-
system models. Recently, following the pioneering efforts
of Japanese colleagues (Tomita et al., 2005), a number of
groups in other countries have demonstrated — within the
DYAMOND?” project (Stevens et al., 2019¢c) — the capabil-
ity of performing kilometer-scale simulations on global (at-
mospheric) grids (Satoh et al., 2019). A follow-up, called
DYAMOND-Winter, is extending this capability to also in-
clude coupled global models and has been coordinated to
simulate the EUREC*A period. DYAMOND-Winter simula-
tions are being initialized from observational analyses on 20
January and run for at least 40 d. With grid scales of a few
kilometers in the atmosphere (and ocean for coupled runs)
the simulations explicitly represent scales of motion similar
to those observed, all as part of a consistently represented
global circulation. This enables investigations of processes
influencing the mesoscale organization of fields of shallow
convection, including the possible role of surface ocean fea-
tures, as well as a critical evaluation of the simulations.

An example of an uncoupled DYAMOND-Winter simula-
tion using ICON is given in Fig. 19. The simulated cloud
fields exhibit rich mesoscale variability whose structure,
while plausible, begs a more quantitative evaluation. The
combination of the field measurements and simulations with
realistic variability on the mesoscale will aid efforts to test
retrievals of physical quantities from satellite radiances. This
should make it possible to establish a self-consistent and
quantitative understanding of controls on cloudiness.

In addition to the global coupled modeling activities, co-
ordinating modeling activities using much-higher-resolution

Sthe DYnamics of the Atmospheric general circulation Modeled
On Non-hydrostatic Domains
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(meters to tens of meters) simulations of the ocean, atmo-
sphere, and the coupled system over a limited area are on-
going. These include idealized simulations with doubly peri-
odic boundary conditions, atmospheric simulations designed
to track the Lagrangian evolution of the flow, and simula-
tions with open boundaries matched either to meteorologi-
cal/oceanographic analyses or the free-running global simu-
lations. Few if any field studies have benefited from such a
rich complement of modeling activities.

Some of the challenges to evaluating these simulations are
illustrated with the help of preliminary, but idealized, large-
eddy simulations with the forcing specified based on pre-
liminary data in a manner similar to what has been adopted
in past studies (e.g., Stevens et al., 2005; vanZanten et al.,
2011), albeit (in the present case) over considerably larger
domains. Figure 20 shows, with the help of a satellite im-
age, the degree of mesoscale cloud variability. This apparent
whimsicality suggests that, given the imprecision in the forc-
ing and the cloud retrievals, assessing the magnitude of sys-
tematic biases in the simulations will be a challenge. In this
case, the simulations performed for the mean conditions in
the vicinity of “D” seem implausible. The challenge will be
to assess to what extent this reflects imprecision in the forc-
ing, of the sort that differentiates the different marked regions
in the figure.

Given a demonstration that fine-scale models can quanti-
tatively represent the macro-structure of the observed clouds,
EUREC*A measurements are expected to provide bench-
marks for the simulation of cloud microphysical process.
This would allow the first ever evaluation of the ability of
microphysical models, which depend on a variety of param-
eterized processes, to quantitatively represent precipitation
formation processes in realistically simulated cloud fields.
Previous attempts (Ackerman et al., 2009; vanZanten et al.,
2011) at making such an evaluation have highlighted large
differences in models, but it remains unclear to what ex-
tent these differences are due to the representation of cloud
macrophysics versus microphysics. Greater confidence in the
fidelity of these simulation approaches will also greatly ben-
efit their application to questions in remote sensing.

3.7 Scientific outreach and capacity building

A core, and hopefully sustainable, feature of the EUREC*A
field campaign was the rich human and scientific interactions
with the Barbadian public, the regional research community,
and the larger community of scientists from outside of the re-
gion. Activities that permitted these exchanges included op-
erational support for flight planning, inclusion in flight teams
and on-ship data collection teams, weekly seminars, a larger
symposium, and scientific outreach to schools and to the gen-
eral public. A total of more than 25 researchers from the re-
gion as well as representatives of regional governments con-
tributed to the data collection. This participation was essen-
tial not just for meeting EUREC*A’s original objectives, but
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Figure 19. Global 2.5 km mesh simulations performed by ICON as part of DYAMOND-Winter for the EUREC*A period. The snapshot, with
a magnification over the study region to show the degree of detail in the simulations, was taken from 2 February of a simulation initialized

on 20 January and allowed to freely evolve thereafter.

it also expanded the scope of activities to include the devel-
opment of regional climate resilience and capacity building
in the use of advanced weather and climate early warning
systems.

3.7.1 Operational support

Daily operational meetings were hosted at a facility shared
by the Barbados Meteorological Service and the Department
of Civil Aviation. Scientists from national meteorological
services across the region supported the effort by providing
daily weather forecasts, which helped to coordinate the mea-
surements for the following days. The European Centre for
Medium-Range Weather Forecasts and national weather ser-
vices in France, Germany, the Netherlands, the UK, and the
USA supported these activities by providing access to output
from global models at 10 km resolution and regional fore-
casts made specially for the region on kilometer-scale grids.
The daily weather discussions provided an opportunity for
scientists from different teams to discuss and analyze the
early results of the campaign and the perspectives ahead. For

https://doi.org/10.5194/essd-13-4067-2021

example, during one of these meetings it was learned that the
mesoscale cloud patterns identified as “fish” in the recent lit-
erature have long been termed “rope” clouds by the regional
forecast community.

3.7.2 Symposium and scientific seminars

Knowledge transfers of immense value were facilitated by
the organization of regular scientific presentations that pro-
vided an opportunity for exchange among EUREC*A par-
ticipants and researchers at the Caribbean Institute for Me-
teorology and Hydrology (CIMH). It is expected that such
exchanges will sustain collaborations well beyond the cam-
paign. Keynote presentations at the Barbados Museum and
Historical Society brought to a general audience the goals of
the EUREC*A campaign, the very early history of meteorol-
ogy on Barbados, and issues or relevance to climate change
and related adaptation.

Campaign participants also celebrated the 50th anniver-
sary of the Barbados Oceanographic and Meteorological EX-
periment (BOMEX) field campaign with a 2 d public sympo-
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Figure 20. Geostationary satellite image showing the cloud field in the measurement area on 5 February 2020. Snapshots of cloud fields
over 50 km x 50 km subdomains labeled “A” to “D” are compared to large-eddy simulation. The large-eddy simulation employed a 100 m
mesh, doubly periodic horizontal boundary conditions, and horizontally homogeneous mean forcing is estimated from measurements in the

vicinity of subdomain “D”.

sium entitled “From BOMEX to EUREC*A”. The sympo-
sium brought together a varied audience, including regional
and international scientists, EUREC“A participants, and stu-
dents from the University of the West Indies Cave Hill Cam-
pus (Fig. 21). The symposium provided an opportunity to re-
flect upon the evolution of climate research during the past
50 years. From fascinating speeches by BOMEX veterans,
to presentations describing the state of present-day under-
standing as expressed in EUREC*A’s objectives, the sympo-
sium helped contextualize the efforts being made as part of
EURECA.

In December 2019, prior to the start of the EUREC*A cam-
paign, the Caribbean Meteorological Organization (CMO)
Headquarters Unit and the University of Leeds, with the
assistance of CIMH, organized a Caribbean Weather Fore-
casting Initiative workshop at CIMH to promote knowledge
exchange between researchers and forecasters from CMO
members and other Caribbean states. This activity supported
the EUREC“A forecast testbed, in which many of the re-
gional forecasters who participated in the workshop provided
some of the daily forecasts previously discussed.

3.7.3 Scientific outreach in schools and facility visits

Scientific outreach activities, such as school visits and scien-
tific open houses, sought to sensitize the public, in particu-
lar school children, to the EUREC*A program and its impor-
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tant role in addressing issues of severe weather and climate
change. Together with the CIMH, and the Barbados Ministry
of Education, 10 visits to primary and secondary schools in
Barbados were arranged. Simple experiments were designed
and performed with the children to help build intuition as to
the underlying atmospheric and ocean processes relevant to
EUREC?*A’s scientific objectives, not to mention the weather
phenomena that surrounds them on a daily basis. These out-
reach efforts aimed to raise awareness in ways that would
increase the resilience of the region to weather and climate
extremes, to support citizen science, and to expose young
people to scientific career paths.

The open houses consisted of guided tours of many of the
measurement platforms. This included tours of the research
ships; visits to the BCO at Deebles Point, St. Philip (where
visitors could help launch radiosondes); the aerosol measure-
ment facility on nearby Ragged Point; BOREAL, Skywalker,
and CU-RAAVEN drone launches at Morgan Lewis Beach,
St. Andrew; and tours of the POLDIRAD radar at Colleton,
St. John. As an informal complement to the symposium, the
outreach activities provided a window into the daily life of
the campaign and gathered a diverse audience, from local
Barbadians to the scientists involved in EUREC*A. The suc-
cess of EUREC*A’s outreach efforts is perhaps best exem-
plified by the ad hoc team of young engineers (Fig. 22) that
helped flight proof the drones before their launch from Mor-
gan Lewis Beach.
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Figure 21. “From BOMEX to EUREC*A” symposium participants (photo by Frédéric Batier). Pat S. R. Callender (front, third from right)

and Clyde Outram (front center, with cane) participated in BOMEX.

Further activities included members of the scientific team
planting trees as part of Barbados’ “We Planting” initiative.
In parallel to the scientific campaign, two French filmmakers
also visited Barbados for the duration of the EUREC“A field
campaign to shoot a documentary combining scientific, cul-
tural, and historical elements of the island of Barbados. From
their material an additional short scientific documentary of
the campaign was created and is provided as a Supplement
(video asset) with this paper.

4 Scientific practice

EUREC*A advanced a culture of open and collaborative use
of data. It did so by initiating a series of discussions, starting
well before the field campaign and culminating in a docu-
ment outlining principles of good scientific practice. In arriv-
ing at these principles emphasis was placed on understanding
the differing cultural contexts in which data are collected.
For instance, the degree to which measurements are made
by individual investigators, or made for investigators by in-
stitutions, were often colored by different national practice.
Differences in how measurements are made lead to differ-
ences in expectations as to how the resultant data should be
made available and used and thus reflect this national color-
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Figure 22. Local children helping to evaluate air worthiness of CU-
RAAVEN UAS prior to launch from Morgan Lewis Beach (photo
by Sandrine Bony).
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ing. EUREC*A defined “good scientific practice” in terms of
four principles, summarized below:

1. To actively support the initial dispersal of data by mak-
ing (even preliminary) data available to everyone as
quickly as possible through the AERIS archive.

2. To publish finalized data in ways that ensure open and
long-term availability and bestow appropriate credit on
those who collected it.

3. To actively attempt to meaningfully involve those who
collected data in their analysis at the early stages of their
use.

4. To provide clear, timely, and unprompted feedback on
the use of the data, both by the analysis community for
the instrument groups and vice versa.

Most of the data collected during EUREC*A are already
available on the AERIS archive, much of them are described
by data papers published, or being published, as part of this
ESSD special issue.

Examples of “bad practice” were also outlined — for exam-
ple (i) in the first years after the campaign using data for spe-
cific analysis without asking the data provider whether/how
this analysis overlaps with his/her current analysis efforts,
(i1) using someone’s data to write a paper and then send-
ing the paper to the data providers only as it is about to
be submitted and offering authorship, or (iii) by assigning
co-authorship on the basis of someone’s status rather than
through substantive contributions. “Good practice” would
have been to intellectually involve the data provider at an
early stage of the study. “Good practice” also recognized the
importance of providing intellectual space for young scien-
tists to independently develop their ideas — giving them a bit
more time to recognize and reach what a more experienced
colleague might more immediately recognize as low-hanging
fruit.

Authorship of the present paper recognizes all techni-
cal/scientific contributions to the data collection. The ways
in which each author contributed to EUREC*A are summa-
rized in the Supplement on author contributions.

4.1 Data

The data collected during EUREC?A will, in different stages
of development, be uploaded and archived on the AERIS data
center. The AERIS data center is part of the French Data
Terra research infrastructure, which has the objective to facil-
itate and enhance the use of atmospheric data, whether from
satellite, aircraft, balloon, or ground observations, or from
laboratory experiments. It generates advanced products and
provides services to facilitate data use, to prepare campaigns,
and to interface with modeling activities.

In addition, emphasis is being placed on the publishing
of datasets through a special collection of articles in Earth
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System Science Data. Many of these data papers will involve
the construction of cross-platform datasets, for instance for
the upper-air network, or dropsondes, isotope measurements,
or classes of remote sensors. At the end of the data collection
phase, all data on AERIS will be mirrored by the Caribbean
Institute for Meteorology and Hydrology in Barbados.

4.2 Environmental impact

EUREC“A was motivated by an interest to better anticipate
how Earth’s climate will change with warming. This makes
it all the more relevant to ask how EUREC*A exacerbates
the problems it attempts to understand, or more pertinently,
whether it made appropriate use of scarce resources. The first
step in answering this question is to estimate the magnitude
of its environmental impact. We do so here mostly in terms
of EUREC*A’s carbon footprint, which we estimate (see Ap-
pendix A for details) to be 5000t of CO,. The marginal in-
crease — EUREC“A took place at the expense of other cam-
paigns — is of course much less. The main contribution to
the carbon footprint was from fossil fuels (kerosene and
diesel) used to power the research platforms. The travel of
the participating scientists contributed non-negligibly (5 %)
to EUREC*A’s carbon footprint and provides context for the
total emissions.

When learning about EUREC*A many people become
concerned about the environmental impact of the dropson-
des — a concern shared by some of the present authors. The
sondes have been designed to sink to the ocean floor after
descending to the sea surface. As elaborated upon in Ap-
pendix A, this along with the choice of materials (including
batteries), and their small size (which with planned modi-
fications may be reduced by a further factor of 2), results
in the environmental impact of the use of even a very large
number of sondes themselves being minimal. One hesitates
to call any environmental impact negligible, but compared to
many of the other activities — let alone the initial emotional
response to the idea of throwing objects out of an aircraft —
this is probably an apt description.

The potential of using yet smaller sondes, or smaller
platforms in general, to further reduce environmental im-
pacts was vividly illustrated by EUREC*A’s extensive use
of robotic sensors (uncrewed aerial systems, UASs; au-
tonomous ocean-observing platforms, AOOPs). In many
cases these provided more agile and less energy intensive
ways of sampling the environment. For instance, the Sail-
drones, Wave Gliders, and AutoNaut (Caravela) make use of
renewable energy sources for their propulsion (e.g., wind for
Saildrones, waves for the Wave Gliders and AutoNaut), and
for their scientific sensors (solar panels).

Validation for EUREC*A’s use of the resources was expe-
rienced not just through the data collected, but also through
the social interactions that the campaign enabled. These, as
discussed in Sect. 3.7, were expressed in bonds of friendship
that were established and through the many opportunities that
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were presented through the outreach and capacity building
activities (Fig. 22). Further validation of EURECA’s use of
resources depends on how the gained data advances scientific
understanding to help humanity. This ultimately depends on
what is done with the data — something over which we, the
authors, have considerable influence and responsibility. We
very much hope this realization will motivate a determina-
tion to learn as much as possible from the EUREC*A mea-
surements and that the importance of supporting such efforts
is recognized by funding agencies. We also acknowledge the
imperative this creates to make the hard-won data easy to ac-
cess and use, e.g., through data papers, and to also commu-
nicate what we learned from our efforts, as widely and freely
as possible.

5 Data availability

A standardized (CF-1.8 compliant) track data set provides
the trajectory data for the 59 mobile platforms deployed
during EUREC?A. Trajectories are described by the latitude
and longitude (and altitude or depth as applicable) of each
platform as a function of time. Airborne platforms are seg-
mented by flight. The data are freely available on the AERIS
archive (https://doi.org/10.25326/165, Stevens, 2021). The
EUREC*A film is freely available on the AERIS archive
(https://doi.org/10.25326/224, Lena et al., 2021).

6 Conclusions

Field studies are commonplace, and each — by virtue of tak-
ing a snapshot of nature at a given point in time and space —
is unique and unprecedented. This is in itself not particularly
remarkable. Field studies involving such a large number of
investigators and such a large degree of coordination, as was
the case in EUREC?A, are uncommon, but also this repre-
sents little more than an organizational achievement. More-
over, many of the questions EUREC*A attempted to address
have been the focus of past field studies. For instance, air—
sea interaction was at the heart of the original Barbados field
study, BOMEX (Holland and Rasmusson, 1973). Likewise a
great number of studies, most recently the Convective Pre-
cipitation Experiment (Leon et al., 2016) and Rain in Cumu-
lus over the Ocean (RICO Rauber et al., 2007), had warm-
rain formation processes as a central focus. The influence of
boundary layer processes on cloud formation was already ex-
tensively studied by Malkus (1958) and again more recently
by Albrecht et al. (2019). Field studies to measure aerosol—
cloud interactions are myriad and include very large inter-
national efforts such as the Indian Ocean Experiment (Ra-
manathan et al., 2001). And with new insights from model-
ing, an increasing number of studies have begun to focus on
ocean meso- and submesoscale dynamics (Shcherbina et al.,
2013; Buckingham et al., 2016; D’ Asaro et al., 2018). What
made EUREC*A an improvement was neither its size nor
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many of its specific questions — rather it was EUREC*A’s
ability to quantify a specific process: the link between cir-
culation and cloudiness. Doing so opened the door to char-
acterizing the totality of processes believed to influence the
structure of the lower atmosphere and upper ocean in the re-
gion of the trades. This is what made EUREC?A special.
The execution of EUREC*A was successful. All of the
measurements we set out to make have been made. For some
key quantities, such as the mean mesoscale vertical mo-
tion field, preliminary analyses (e.g., Fig. 9) suggest that the
measurements sampled substantial variability, which bodes
well for testing the hypothesized link between cloudiness
and cloud-based mass fluxes. The analysis of other measure-
ments, such as those that aim to quantify clouds, is more del-
icate and ongoing. We anticipate that each step of the sub-
sequent analysis of the EUREC“A data will teach us a great
deal more about the ways of clouds, how they couple to cir-
culation systems on different scales, how they influence and
are influenced by the upper ocean, the extent to which they
are susceptible to perturbations in the aerosol environment,
and how precipitation links processes across scales. At the
very least a better quantification of these sensitivities should
help us understand to what extent a warmer world will ex-
press the majesty of the clouds in the trades less markedly.
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Appendix A: Estimates of environmental impact

With a specific density of 0.82kgL™' we can com-
pute the total CO, emissions from aircraft opera-
tions as 629497L x3 kg CO; kg-fuel x0.82kg-fuel L~! =
1548 562 kg of CO, emissions, or roughly 1500t.

Estimates of the fuel consumption for the research ves-
sels are larger as they operate around the clock and support
the life of a community of scientists and their laboratories at
sea. They are also more roughly estimated. We begin with
numbers from the R/V Meteor, which burns sulfate-reduced
diesel. Its burn rate is estimated as S000Ld~!' when sta-
tionary and as much as twice that much when under way.
Given that the ships were generally steaming but with station
work mixed in, we adopt a burn rate of 8000 L d~!. Diesel is
denser than kerosene and produces more CO» per kilogram.
We adopt a conversion of 3.15 kg of CO; for every kilogram
of diesel and a density of 0.85kgL~'. Based on this we es-
timated that the R/V Meteor burned 21420kgd~". The re-
ported fuel use for the R/V Ron Brown was 79 922 gallons
or 363333 L, which included the ferry to and from a home
port. This fuel burn corresponds to 972 823 kg of CO,. As-
suming 35d of operations, this corresponds to a burn rate
of 10380 L d~!. For our estimates we adopt the 8000 L d !
burn rate for all the ships and estimate 5 d of ship ferry time,
so for four ships each with 30d~! of ship time we end up
with a total emission of 3000t of CO,, which is about twice
the direct emissions from the research aircraft. The ship num-
bers are not offset by the reduced personal emissions of those
on the ship, i.e., who do not need hotels, or rental cars, or the
operation of their home labs, and often have reduced travel,
but this is likely minor.

We estimated that 200 people traveled to EUREC*A. If
each is further assumed to have flown 15000 km (about the
round-trip distance from Frankfurt to Grantley Adams Inter-
national Airport in Barbados) in economy class, then we can
adopt an emission estimate of 75 gCO>km™! per passenger
(from Atmosfair for a non-stop flight with an Airbus 340-
500). This 200 x 15000 km x75 gCO2km™! = 225 000 kg of
CO; emissions. More modern aircraft have substantially re-
duced emissions (60 gkm™'), then again carbon-offsetting
schemes often estimate a 3-fold larger equivalent emission
due to the inclusion of other factors.

The environmental impact of the sondes is informed by
life cycle analyses that Vaisala has commissioned for their
radiosondes, as well as our own analysis. The life cycle anal-
ysis identified “the production of the printed circuit board
and the electricity used during the assembly [as having] the
most significant effect on the environmental impacts”. But
this analysis did not consider the impact of the waste, beyond
issues of things like battery toxicity. In this regard the lithium
batteries used by the sondes had the least environmental im-
pact of all available choices, i.e., alkaline or water-activated
batteries. We estimated that 1.2 kg of lithium was deposited
with the sondes in the ocean — which is roughly equivalent to
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what would be found naturally in the seawater displaced by
one of the EUREC?A research vessels. Plastic sensor casings,
parachutes, and/or remainders of the latex balloon add an ad-
ditional impact. This is minimized by designing the sondes to
sink to the ocean floor. Efforts are ongoing to identify differ-
ent materials to further reduce the environmental impact of
the sondes. One also questions whether the potential energy
loss by the sonde could be used to power the instrumentation
and whether a different and smaller sonde could forgo the use
of a parachute.

Appendix B: Platforms

B1 BCO

The Barbados Cloud Observatory (BCO) is located at the
far east of Barbados (13°09'45.8” N, 59°25'43.8” W) and
started operation in April 2010 with a growing set of dif-
ferent instruments for cloud observing and recording. Dur-
ing the whole EUREC*A campaign the BCO was staffed
for radiosonde launching and maintenance. Measurements
at Ragged Point listed below were made by the Univer-
sity of Miami, the University of Manchester, and the Max
Planck Institute for Chemistry. DLR and CIMH staff oper-
ated POLDIRAD at St. John (13°10'49” N, 59°29'47" W;
altitude 240 m).

B2 NTAS

The Woods Hole Northwest Tropical Atlantic Station
(NTAS) is a surface mooring maintained at approximately
15°N, 51°W since 2001 by means of annual mooring
“turnaround”, i.e., deployment of a refurbished mooring and
recovery of the old mooring. The refurbished mooring has
freshly calibrated sensors and is deployed first. A 1 to 2d pe-
riod of overlap before recovering the old mooring provides
intercomparison data and allows consecutive data records to
be merged. Meteorological variables suitable for estimation
of air—sea fluxes from bulk formulas, as well as upper-ocean
variables and deep ocean temperature and salinity, are mea-
sured. Data are available from the Upper Ocean Processes
Group at the Woods Hole Oceanographic Institution.

B3 ATR

The French ATR-42 aircraft, operated by SAFIRE (Service
des Avions Francais Instrumentés pour la Recherche en En-
vironnement, a national research infrastructure of Météo-
France/CNRS/CNES), is a turboprop aircraft that has the ca-
pability of flying in the lower troposphere (ceiling at about
8 km). During EUREC*A it flew 19 missions on 11d, from
25 January to 13 February 2020, totaling 91 flight hours.
It generally flew two missions per day. Each mission was
about 5h long, including a transit time from the airport to
the EUREC*A-Circle of 20 min in each direction. Most mis-
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Table A1. Fuel consumption from EUREC?A crewed aircraft. Some fuel burn rates were reported in pounds (Ib) and were converted to liters

using a conversion of 1.761b L

Aircraft  Total fuel/liters  Notes

ATR 92348  Includes cross-Atlantic transit from Toulouse, France.
HALO 235493  Includes ferry from Oberpfaffenhofen, Germany.

TO 33850 Not including ferry from Panama.

P-3 267806  Assuming 20 h of ferry and 95 flight hours.

Sum 629497

sions were composed of a transit leg to the circle flown at
an altitude of about 2.5 km, two or three box patterns (rect-
angles of 15km by 120 km) near cloud base, two L patterns
within the sub-cloud layer (near the top and the middle of the
layer, cross-wind and along-wind), and a surface leg (altitude
of 60 m) before a transit back to the airport at an altitude of
about 4.5 km.

B4 HALO

The German research aircraft HALO (High Altitude and
Long Range Research Aircraft) is operated by DLR in the
configuration described by Stevens et al. (2019a), with in-
struments developed, certified, and operated by groups from
around Germany. During EUREC*A it was stationed at the
Grantley Adams International Airport (GAIA, TBPB) on
Barbados. It flew 13 missions out of GAIA plus two transfer
flights from and to Germany, totaling in 130 flight hours. Its
first local flight was on 22 January and its last on 15 Febru-
ary 2020. HALO is a modified twin-engine business jet
(Gulfstream 550) with an endurance of over 8000 km and a
ceiling of 15.5 km. Most flights were spent around 10 km al-
titude with a flight speed of about 190 ms ™!, with a typical
flight pattern of two sets of 3.5 circles (each lasting about an
hour) on the EUREC*A-Circle separated by a 1h excursion
toward the NTAS buoy.

B5 P-3

The NOAA WP-3D Orion (P-3) “Miss Piggy” was operated
by NOAA’s Aircraft Operations Center. During EUREC*A
it flew 11 missions on 11d totaling 95 flight hours. Its first
flight was on 17 January and its last on 11 February 2020.
There were three night flights on 9, 10, and 11 February,
taking off between 22:00 and 23:30 local time on 8§, 9, and
10 February respectively. The P-3, one of two “Hurricane
Hunters”, is a four-engine turboprop and operates with a
maximum endurance of 10 flight hours and a maximum ceil-
ing of 8.75km. Flight strategies varied over the course of
the experiment but included circles at or above 7 km to de-
ploy dropsondes, slow profiles from 7km to 500 ft/150 m
for water vapor sampling, stacked straight and level legs to
vertically sample horizontal variability at different heights
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within the cloud and sub-cloud layers, and “lawnmower” pat-
terns at 2.75 to 3.00 km for deployment of airborne expend-
able bathythermographs and remote sensing of ocean surface
state. Flight-level data include aircraft navigation and orien-
tation and standard meteorological variables.

B6 TO

The Twin Otter (TO) was operated by the British Antarc-
tic Survey (BAS). It flew 25 missions on 15d totaling 90
flight hours. The first flight was on 24 January and the last
on 15 February 2020. All flights were during daylight hours.
The main objective of the TO flights was to observe the sub-
cloud and cloud layers at a number of altitudes from close
to the sea surface to the level of the detrainment region and
above. As many clouds as possible were sampled by zigzag-
ging to catch the clouds.

B7 Atalante

The R/V L’Atalante (Atalante) belongs to the French oceano-
graphic research fleet national infrastructure and is oper-
ated by IFREMER. This 85 m long vessel is the first mod-
ern vessel of the French open-ocean fleet. The R/V Atalante
ship time has been provided by the French operator to the
EUREC*A_OA project within the EUREC*A umbrella. It
sailed from Pointe-a-Pitre, Guadeloupe, on 20 January and
started its operations in Barbados water on 21 January 2020.
It navigated for more than 3000 nmi collecting ocean and at-
mosphere data from 6 to 15° N and 60 to 52° W and survey-
ing the Tradewind Alley and the North Brazil Current eddy
corridor (Boulevard des Tourbillons) in international waters
and in the EEZ (or Exclusive Economic Zone) of Barba-
dos, Trinidad and Tobago, Guyana, Suriname, and French
Guyana. During the cruise, an underwater electric glider
(Kraken) and surface drifters (including the OCARINA and
PICCOLO platforms) were deployed (see respective sub-
subsections).

B8 MS-Merian

The R/V Maria Sibylla Merian is a (95 m) long German
research vessel, owned and funded jointly by the Ger-
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Table B1. BCO.
Instrument Brief description
Cloud radar (CORAL) Metek MIRA-35 vertically staring pulsed 35 GHz Doppler cloud radar measuring radar reflectivity,
linear depolarization ratio, Doppler velocity, and spectral width
Rain radar (POLDIRAD) A scanning polarized Doppler C-band radar measuring radar reflectivity, linear depolarization ratio,
Doppler velocity, spectral width, differential reflectivity, copolar correlation coefficient, and differen-
tial propagation phase
Rain radar Metek Micro Rain Radar operating at 24 GHz to measure rain rate, liquid water content, and drop
velocity
Raman lidar (CORAL) A vertically staring backscatter lidar with attenuated backscatter at 355, 387, 407, 532, and 1064 nm
measuring particle backscatter at 355 nm, water vapor mixing ratio, temperature, and humidity
Wind lidar HALO Phononics scanning Doppler lidar measuring Doppler velocity and vertical and horizontal
winds
Ceilometer OTT CHM 15k pulsed laser cloud height detector at 1064 nm used to detect cloud-base height and

lifting condensation level

Isotopic analyzer

Picarro (L2130-i) cavity ring-down laser spectrometer to measure water stable isotopologues

Radiometer (BCOHAT) RPG HATPRO-GS scanning radiometer at K and V band used for retrievals of columnar water vapor
content, liquid water path, and rain rate

Pyrgeometer Kipp and Zonen CGR4 sensor measuring hemispheric broadband downwelling longwave (4.5 to
42 um) radiative fluxes

Pyranometer Kipp and Zonen CMP21 sensor measuring hemispheric broadband downwelling and diffuse short-
wave (0.285 to 2.8 um ) radiative fluxes

Pyrheliometer Kipp and Zonen CHP1 sensor measuring direct normal shortwave (0.2 to 4 um) radiative irradiance

All-sky camera

Vertically operating visible (hemispheric) and infrared camera to infer cloud coverage

Disdrometer

Eigenbrodt ODM470 optical sensor measuring droplet size distributions

Particle counter

Size-resolved CCN measurements (CCN-100, DMT vs. CPC 5.412 — GRIMM)

Particle counter

CPC (TSI 3750) measuring total aerosol/condensation nuclei (CN) concentration (d > 10 nm)

Particle sizer

SMPS (GRIMM 5.420) measuring aerosol/CN size distribution (10 to 1000 nm)

Particle sizer

WRAS (GRIMM, EDM 180) measuring aerosol/CN size distribution (0.25 to 32 pm)

Particle sizer

SMPS (TSI 3080) measuring aerosol/CN size distribution (15 to 650 nm)

Particle sizer

APS (TSI 3321) measuring aerosol/CN size distribution (0.5 to 20 pm)

Particle sizer

PAS (GRIMM 1.109) measuring aerosol/CN size distribution (0.25 to 32 um)

Aerosol mass spectrometer

AeroMegt LAAP-ToF mass spectrometer measuring single particle aerosol composition and mixing
state

Aerosol mass spectrometer

Aerodyne AMS, bulk chemical composition of non-refractory aerosol (d < 1 um)

Bioaerosol sensor

Wideband Integrated Bioaerosol Sensor (WIBS-4M) measuring aerosol size distribution, three-
channel fluorescence, and particle asymmetry

Aerosol filter measurements

Mass concentrations of dust and soluble ions collected daily using high volume sampling

Aerosol composition

Aerosol collection for offline analysis of mixing state and size-resolved composition

Anemometer

Gill R350 sonic anemometer to measure wind speed and wind direction

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Table B1. Continued.
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Instrument

Brief description

Weather sensors

Metpack (Vaisala WXT-510) to measure temperature, relative humidity, pressure, and precipitation

‘Weather sensors

Vaisala WXT-530 weather sensors measuring temperature, humidity, pressure, wind speed, wind di-
rection, and rain

GNSS Dual Trimble NetR9 GNSS receivers with Zephyr Geodetic 2 antennas for columnar water vapor
content
Radiosondes Vaisala RS41-SGP radiosondes measuring atmospheric profiles (during ascent and descent) of tem-

perature, relative humidity, pressure, wind direction, and wind speed

Table B2. NTAS.

Instrument

Brief description

ASIMET

Air-Sea Interaction METeorology system measuring air temperature, relative humidity, barometric
pressure, precipitation, wind speed, wind direction, longwave broadband irradiance, shortwave broad-
band irradiance, sea surface temperature, and sea surface salinity every 1 min (on surface buoy, sensors
at 3 m height)

Weather sensors

Vaisala WXT-520 measuring air temperature, relative humidity, barometric pressure, precipitation,
wind speed, and wind direction (sensor at 3 m height)

Thermometer Sea-Bird SBE-39 adapted to measure air temperature every 5 min (sensor at 3 m height)

Thermometer Sea-Bird SBE-56 fast-sampling temperature recorder measuring sea surface temperature every 1 min
(in buoy hull)

Thermometer Sea-Bird SBE-39 recording seawater temperature every 5 min (on mooring line at 5, 15, 20, 30, 35,
45, 50, 60, 65, 75, 80, 90, 100, and 110 m)

Thermometer Star-Oddi Starmon measuring seawater temperature every 10 min (on mooring line at 110-160m,

10 m intervals)

Wave height sensor

Xeos Brizo measuring surface wave height and period (every 60 min, with a 20 min sample interval
each hour)

Acoustic Doppler current meter

Nortek Aquadopp ADCM recording horizontal velocity every 20 min (on mooring line at 5.7 and
13m)

Current profiler

Nortek Aquapro profiler measuring horizontal velocity profile every 60 min (on mooring line at 24 m,
uplooking)

Acoustic Doppler current
profiler

Teledyne RDI ADCP measuring horizontal velocity profile every 60 min (on mooring line at 85 m,
uplooking)

CT sensor Sea-Bird SBE-37 measuring seawater temperature and conductivity/salinity every 10 min (on mooring
line at 10, 25, 40, 55, and 70 m)
CT sensor Sea-Bird SBE-37 measuring deep ocean temperature and salinity every 5 min (38 m above bottom).

man Research Foundation (DFG) and the German Ministry
for Education and Science (BMBF). The MSMS89 cruise
started (17 January 2020) and ended (20 February 2020) in
Bridgetown, Barbados (Karstensen et al., 2020). During the
cruise various ocean and atmosphere profile measurements
were carried out from the ship. In addition, underwater elec-
tric gliders and the CloudKite were deployed but are de-
scribed separately (see respective sub-subsections).

https://doi.org/10.5194/essd-13-4067-2021

B9 Meteor

The R/V Meteor is a 98 m long German research vessel,
which is funded jointly by the German Research Foundation
(DFG) and the German Ministry for Education and Research
(BMBF). The M161 cruise started in Bridgetown (Barbados)
on 17 January 2020, and R/V Meteor spent the following
month in the trade wind alley east of Barbados (between 12
to 15° N and 54 to 60° W). During this time, the atmosphere
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Instrument

Brief description

Backscatter lidar (ALIAS)

A horizontally staring backscatter lidar operating at 355 nm and detecting polarization (Chazette et al.,
2021)

Cloud radar (BASTA) A horizontally staring bistatic FMCW 95 GHz Doppler cloud radar characterizing clouds, rain, and
horizontal Doppler velocity (Delanog et al., 2016)
Cloud radar (RASTA) An upward-looking 95 GHz Doppler pulsed cloud radar characterizing clouds, rain, vertical Doppler

velocity, and Doppler spectrum

Isotopic analyzer

Picarro (L2130-i) cavity ring-down laser spectrometer measuring stable isotopologues in water vapor
(including water vapor mixing ratio)

Humidity sensor

WYVSS2 absolute humidity sensor (tunable diode laser absorption)

Humidity sensor

LICOR 7500 hygrometer

Humidity sensor

Campbell krypton hygrometer KH20 measuring humidity fluctuations

Humidity sensor

1011 C Buck dew point hygrometer

Humidity sensor

Enviscope capacitive sensor measuring relative humidity

Visible cameras

High-resolution visible cameras (AV GT1920C) looking sideways and downward

Particle sizer

UHSAS, measuring aerosol particle sizes from 0.06 to 1 um

Scattering spectrometer

FSSP 300, measuring particle sizes from 0.3 to 20 um

Cloud droplet probe

CDP/FCDP, measuring particle sizes from 2 to 50 um

Particle imager

2D-S Stereo probe measuring particle sizes from 10 pm to 2000 um

Liquid water sensor

LWC-300 hot-wire liquid water sensor to measure liquid water content

Pyrgeometer Kipp and Zonen sensor measuring hemispheric broadband upwelling and downwelling longwave (4.5
to 42 um) radiation
Pyranometer Kipp and Zonen sensor measuring hemispheric broadband upwelling and downwelling shortwave (0.2

to 3.6 um) radiation

Infrared radiometer
12.0 um and used to infer SST

CLIMAT CE332, a downward-staring infrared radiometer measuring irradiance at 8.7, 10.8, and

Core instrument

The aircraft and in situ data system (aircraft state, temperature, humidity, and pressure)

above and the ocean underneath was repeatedly probed using
a wealth of instruments that either were running continuously
or sampled discrete stations. At the end of the campaign, R/V
Meteor headed for its next working area. Additional mea-
surements were carried during this transit, and the vessel ar-
rived in Ponta Delgada (Azores, Portugal) on 3 March 2020
after a total of 6250 nmi of sailing (Rollo et al., 2020). The
autonomous platforms (such as CloudKite or ocean glider)
deployed from the R/V Meteor are described in their respec-
tive sub-subsections.

B10 Ron Brown

Sampling on board the NOAA Ship Ronald H. Brown took
place from 7 January to 13 February 2020 and focused on
the region between 57 and 51° W east of Barbados and north

Earth Syst. Sci. Data, 13, 4067-4119, 2021

of 12.5°N in the trade wind alley. The overarching strate-
gic goal of ATOMIC was to provide a view of the atmo-
spheric and oceanic conditions upwind of the EUREC*A
study region. Operations of the R/V Ron Brown were coordi-
nated with two Wave Gliders (245 and 247) and SWIFTS
deployed from the ship, the P-3 aircraft, Saildrone 1064,
and BCO (these platforms are described in their respective
sub-subsections). An additional logistical objective included
recovering the NTAS-17 mooring and replacing it with the
NTAS-18 mooring. A third objective was to triangulate and
download data from a Meridional Overturning Variability
Experiment (MOVE) subsurface mooring and related Pres-
sure Inverted Echo Sounders (PIESs). MOVE is designed to
monitor the integrated deep meridional flow in the tropical
North Atlantic. Additional information on shipboard sam-
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Instrument Brief description

Cloud radar (HAMP) A Downward-looking high-powered Ka-band polarized Doppler cloud radar

Microwave radiometers  An ensemble of microwave radiometers in K, V, W, F, and G bands to estimate cloud properties,
(HAMP) precipitation, and integrated water vapor amount

DIAL lidar (WALES) A differential absorption lidar near 935 nm, with additional channels at 532 and 1064 nm, to charac-

terize aerosols, clouds, and water vapor profiles

Hypersp. imager (specMACS)

A VNIR and a SWIR hyperspectral camera (0.4 to 2.5 ym) and two polarization cameras to character-
ize clouds, droplets, and optical thickness (Ewald et al., 2016)

Solar radiometer (SMART)

A spectral solar radiometer measuring visible and near-infrared radiation to infer cloud presence and
microphysics

Infrared imager (VELOX)

A spectral IR imager to characterize clouds and measure liquid water path and SST

Infrared thermometer (V-KT
19)

An infrared thermometer channel for the VELOX to measure SST

Broadband radiom. (BAC- A broadband radiometer for downwelling and upwelling irradiances in the LW and the SW
ARDI)
Dropsondes AVAPS dropsonde (Vaisala RD-41) system to measure temperature, humidity, and wind

Core instrument (BAHAMAS)

The aircraft and in situ data system (aircraft state, temperature, humidity, and pressure)

Table B5. P-3.
Instrument Brief description
Cloud radar Downward-looking PSL W-band (94 GHz) Doppler pulsed cloud radar to characterize clouds, precip-

itation, and the ocean surface wave state

Isotope analyzer

Picarro (L2130-i) cavity ring-down laser spectrometer measuring stable isotopologues in water vapor
(including water vapor mixing ratio)

Microwave radiometer

Stepped frequency microwave radiometer ProSensing Inc., measuring in six C-band frequencies to
characterize surface wind speed and rain rate

Wave radar

Wide Swath Radar Altimeter, ProSensing Inc., 80 beams to 30°, 16 GHz (Ku band) to characterize the
ocean surface wave state

Infrared radiometer

Heitronics KT19.85, measuring infrared brightness temperature in the atmospheric window (9.6 to
11.5 um)

Particle sizer

Measuring particle sizes from 0.5 to 50 um

Cloud droplet probe

Measuring cloud droplets size from 2 to 50 um

Particle imager

Measuring cloud and rain drops from 12.5 to 1550 pm

Rain imager

Measuring precipitation particles sizes from 0.1 to 6.2 mm

Core instrument

The aircraft and in situ data system (aircraft state, temperature, humidity, and pressure)

pling strategies, measurements, and data availability can be

found in Quinn et al. (2020).

cal Research (CNRM; Toulouse, France). During EUREC*A
it flew nine missions totaling 32 research flight hours. Its first
flight was on 26 January and its last on 9 February 2020.

B11 BOREAL

The BOREAL UAS was operated by BOREAL SAS
(Toulouse, France) and the National Center for Meteorologi-

https://doi.org/10.5194/essd-13-4067-2021

The BOREAL has a 4.2 m wingspan and a maximum takeoff
weight of 25kg. The BOREAL can fly up to 6 h, covering
more than 600 km, with a 5kg payload. During EUREC“A,
the BOREAL flew roughly 20km radius circles between
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Instrument Brief description

Hygrometer Buck 1011c cooled-mirror hygrometer measuring humidity at 1 Hz

Thermometer Non-de-iced and de-iced Rosemount probes measuring temperature at 0.7 Hz

Pyrgeometer Eppley pyrgeometer measuring longwave irradiance 4-50 um

Pyranometer Eppley pyranometer measuring shortwave irradiance 0.295-2.8 ym

Infrared thermometer

Heimann IR thermometer measuring temperature at 10 Hz

Camera

Forward camera mounted in the cockpit

Turbulence probe

Best Aircraft Turbulence (BAT) probe measuring air motions and high-frequency wind (50 Hz)

Ultra-fast thermometer
sampling frequency of 20 kHz

Ultra-fast thermometer 2 (UFT2, developed from UFT-M) measuring temperature fluctuations with a

Particle counter

TSI 3772 CPC measuring total ultrafine particle concentration (D > 10 nm)

Particle sizer

GRIMM Sky-OPC aerosol spectrometer measuring particle sizes from 0.3 to 10 um

Particle sizer

TSI SMPS 3938 and 3775 measuring aerosol particle sizes from 25 to 1 um

Particle counter

DMT PCASP measuring aerosol particle sizes from 0.1 to 3 ym

Particle counter

CCN-100 measuring cloud condensation nuclei as a function of supersaturation

Cloud droplet probe

DMT CDP-100 measuring cloud droplet sizes from 2 to 50 um

Scattering spectrometer

SPEC FFSSP measuring cloud droplet sizes from 1.5 to 50 ym

Particle imager

SPEC 2D-S measuring cloud particle sizes from 10 to 1280 um

Rain spectrometer

SPEC HVPS-3 measuring precipitation particles sizes from 150 um to 19.2 mm

Core instrument

The aircraft and in situ data system (aircraft state, temperature, humidity, and pressure)

80 and 1000 m above sea level centered at a distance of
roughly 50 km upwind of the Barbados Cloud Observatory
(see Fig. 2).

B12 CU-RAAVEN

The RAAVEN was operated from Morgan Lewis Beach, Bar-
bados, by the University of Colorado Boulder, under support
from the National Oceanic and Atmospheric Administration
(NOAA). During EUREC“A it flew 38 missions spanning
20 d and totaling 77 flight hours. Its first flight was on 24 Jan-
uary and its final flight was on 15 February 2020. It typi-
cally flew two flights per day, with one occurring in the mid-
morning and one in the mid-afternoon. It is an electric, fixed-
wing remotely piloted aircraft system and operates with an
endurance of approximately 2.5 h. Flights were primarily fo-
cused on the boundary layer, with all measurements collected
below 1000 m altitude and the majority of observations oc-
curring in the lowest 750 m of the atmosphere. Additional
information on the RAAVEN, its capabilities, and the data
collected during EUREC*A can be found in de Boer et al.
(2021).
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B13 MPCKs

The Max Planck CloudKites were operated on R/V MS-
Merian and R/V Meteor. Two different instrument boxes
were flown with the CloudKites, namely the MPCK+ (only
on R/V MS-Merian) and mini-MPCK (on both R/V MS-
Merian and R/V Meteor). The CloudKites (except for the
aerostats and winches that are produced by the Allsopp
Helikites Ltd) are designed and produced by the Mobile
Cloud Observatory at the Max Planck Institute for Dynamics
and Self-Organization. The MPCK+ and mini-MPCK aboard
R/V MS-Merian together flew 18 missions on 17 d (between
26 January and 18 February 2020) totaling 135 measurement
flight hours. Most of the flight time was spent at 1000 m with
the maximum altitude being at 1500 m. The mini-MPCK
aboard the R/V Meteor flew nine successful missions on 9d
(between 24 January and 6 February 2020) totaling 51 mea-
surement flight hours. Most of the flight time was spent be-
tween 200 and 1000 m.

B14 Skywalker

The Skywalker X6 UASs were operated by the National Cen-
ter for Meteorological Research (CNRM; Toulouse, France),

https://doi.org/10.5194/essd-13-4067-2021
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Instrument

Brief description

Underway data

DSHIP navigational data, base meteorology data, bathymetry: UTC time, latitude, longitude, head-
ing, heave, pitch, roll, pressure, air temperature, water temperature dew point, relative humidity, so-
lar broadband radiation, infrared broadband radiation, UV radiation, visibility, wind direction, wind
speed, relative wind direction, and relative wind speed

Radiosondes Vaisala RS41-SGP radiosondes measuring atmospheric profiles (during ascent and descent) of tem-
perature, relative humidity, pressure, wind direction, and wind speed

Radiosondes Meteomodem M 10 radiosondes measuring atmospheric profiles (during ascent only) of temperature,
relative humidity, wind direction and wind speed

Ceilometer Lufft CHM 8K ceilometer measuring profiles of attenuated backscatter at 905 nm

Cloud cameras

Upward all-sky visible images and upward 30° field-of-view thermal images, both at 0.1 Hz

Sun photometer

MICROTOPS sun photometer capturing at sun views the solar attenuation at 380, 440, 670, 870,
and 940 nm to derive column properties of aerosol optical depth (AOD) at these wavelengths and the
atmospheric water vapor content

Atmospheric mast

A meteorological station WXT-500, a 3D wind anemometer Gill HS-50, a CNR4 radiometer for di-
rect and indirect radiation, an inertial station to filter the ship motion, a refractometer for humidity, a
LICOR LI-7500DS for fast CO, and humidity measurements, fast measurements of wind, tempera-
ture, humidity, and pressure, two GPS antennas, and a motion pack

Isotope analyzer

Picarro (L2140-i7) cavity ring-down laser spectrometer measuring stable isotopologues in water vapor
(including water vapor mixing ratio)

Isotope sampler

Sampling system for measuring stable isotopologues in rain and seawater

Pyranometer

SPN1 Delta-T SNC radiometer measuring global and diffuse radiation

Hypersp. radiometer

ROX JBC hyperspectral radiometer measuring global, reflected, and diffuse spectral radiation from
350 to 950 nm

GNSS Global Navigational Satellite System (GNSS) antennas and receivers for measuring underway colum-
nar water vapor content
Aethalometer Aethalometer AE33 Magee Scientific measuring aerosol attenuation at seven wavelengths (370, 470,

520, 590, 660, 880, and 950 nm) and used to infer black carbon concentrations

Particle sizer

NanoScan TSI Inc. measuring particle number concentrations from 10 to 400 nm

Particle counter

GRIMM 1.107 optical particle counter measuring number concentrations from 0.25 to 32 um

Volume sampler

Echo PUF TCR Tecora measuring particle mass concentrations and chemical composition

Thermosalinograph SBE-21 and SBE38 thermosalinographs measuring near-surface seawater temperature, conductivity,
and fluorescence (to infer salinity and chlorophyll)

pCO, LICOR LI-7000 measuring system for pCO5 and fCO,

CTD casts SBE-911 Plus CTD for conductivity, temperature, and pressure measurements, a SBE-43 dissolved-

oxygen sensor, a Chelsea AquaTracka III fluorimeter for in situ detection of chlorophyll a, a WET
Labs CSTAR transmissometer for underwater measurements of beam transmittance, a Tritech PAS00
altimeter, and a Biospherical Instruments QCP2350 cosine-corrected irradiance collector for measur-
ing photosynthetically active radiation (PAR).

Moving vessel profiler

A MVP30-300 AML Oceanographic measuring water column temperature, salinity, pressure, and
high-frequency vertical profiles of seawater temperature and salinity within the upper ocean (0 to
200 m)

https://doi.org/10.5194/essd-13-4067-2021
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Instrument

Brief description

uCTD

Teledyne underway CTD is a profiler device measuring vertical profiles within the upper ocean (0—
400 m) of salinity (through conductivity), temperature (through a thermistor), and depth (through pres-
sure), deployed over a moving vessel; it has the convenience of an expendable device like the XBT,
but it is recoverable and reusable

Microstructure sonde

Rockland Scientific VMP-500 measuring vertical profiles of microstructure and dissipation-scale tur-
bulence in the upper 300 m of the ocean

Acoustic Doppler current
profiler

Teledyne RDI 38 and 150 kHz acoustic Doppler current profilers measuring subsurface (30 to 1000 m
and 30 to 150 m, respectively) water velocity

Acoustic Doppler current
profiler

Teledyne RDI 300 kHz duo acoustic Doppler current profiler measuring full water column water ve-
locity

XBTs Lockheed Martin Sippican XBT-T7 measuring vertical profiles of seawater temperature within the
upper ocean (0 to 800 m).

XCTDs Lockheed Martin Sippican XCTD-2 measuring vertical profiles of seawater temperature and conduc-
tivity (salinity) within O to 1000 m

Argo floats ARVOR-type Argo floats constructed through a cooperation between the Centro di Taratura

Oceanografico and NKE Instrumentation measuring vertical profiles of seawater temperature, salin-
ity, and dissolved oxygen within the upper ocean (initially O to 1000 m, parking depth 200 dbar, daily;

after 0 to 2000 m, parking depth 1000 dbar, every 10 d)

the French Civil Aviation University (ENAC; Toulouse,
France), and the Laboratory for Analysis and Architecture of
Systems (LAAS; Toulouse, France) as part of the NEPHAE-
LAE project (ANR-17-CE01-0003). During EUREC*A, the
team flew more than 50 flights over the ocean up to 15 km off
the eastern coast of Barbados. The first flight was on 25 Jan-
uary and the last was on 9 February 2020. The Skywalker has
a 1.5 m wingspan and a maximum takeoff weight of 2.5 kg.
The Skywalker flew up to 1 h and utilized sensor feedback to
map an individual cloud autonomously and adaptively.

B15 Caravela

The AutoNaut (Caravela) was operated by the University of
East Anglia (UEA). Caravela is an unmanned surface vehi-
cle with continuously sampling meteorological and oceano-
graphic sensors and can also be used to tow and deploy an
underwater glider. During EUREC?A it was deployed on 22
January from the coastguard station on Barbados towing un-
derwater glider SG579, which was released on 28 January.
Caravela continued to its study location centered at 14.2° N,
57.3° W and spent 11d repeating a butterfly pattern around
a square with 10km sides, before returning to Barbados for
recovery on 24 February.

B16 Underwater electric gliders

Three underwater gliders were operated by UEA. SG579 was
deployed from Caravela on 28 January and completed 76
dives to 1 000 m along the transect to the gliders’ study lo-
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cation, followed by 219 dives to 250 m while traversing the
same butterfly pattern as Caravela. It was recovered onto R/V
Meteor on 16 February. SG637 was deployed from R/V Me-
teor on 23 January, completed 155 dives to 750 m around the
same “butterfly”, all with ADCP data, and was also recov-
ered onto R/V Meteor on 16 February. SG620 was deployed
from the Meteor on 23 January and completed 131 dives to
750 min virtual mooring mode at the center of the butterfly,
before being recovered on 5 February onto R/V Meteor.

Three Teledyne Slocum G2 underwater electric gliders
were operated by GEOMAR. All three surveyed down to
1000 m depth. IFM03 and IFM12 were deployed from the
R/V MS-Merian on 24 January to survey the edge of a
mesoscale eddy. IFMO03 was recovered by the R/V Meteor on
3 February, and IFM12 was recovered with R/V MS-Merian
on 17 February 2020 after a complete survey. IFM09 was
operated within the EUREC*A-Circle as a virtual mooring
mission from 20 January and recovered by R/V MS-Merian
on 9 February 2020.

One SeaExplorer X2 underwater glider (Kraken) was de-
ployed and recovered from the R/V Atalante and operated
by DT INSU CNRS in connection with the ship chief sci-
entist. Kraken was deployed on 25 January at 10° 08'45” N,
57°29'37”W and was recovered on 13 February 2020 at
10°19'24” N, 57°53/30” W. It accomplished 472 profiles
down to 700 m across two different mesoscale eddies, both
anticyclonic: a North Brazil Current ring limited to the upper
150 m of depth and a thicker subsurface (200-600 m) eddy.

https://doi.org/10.5194/essd-13-4067-2021
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Table B8. MS-Merian.
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Instrument

Brief description

CTD casts

Sea-Bird SBE-911 CTD mounted on a rosette system, operated up to full water depth, measuring
vertical profiles of seawater temperature, salinity, fluorescence, oxygen, and PAR

Rosette bottle sampler

Samples used for ocean-microbiology observations, including biogeochemical parameters (e.g., nutri-
ents, chlorophyll a, particulate organic carbon and nitrogen, trace greenhouse gases), biogeochemical
process rates (e.g., primary production), and molecular analyses (e.g., microbial community structure)

Cloud cameras

Upward all-sky visible images and upward 30° field-of-view thermal images, both at 0.1 Hz

Underwater Vision Profiler

The Underwater Vision Profiler UVPS5 is an underwater camera system mounted on the CTD rosette
that can take images of particles and plankton down to 6000 m water depth

UV spectral sensor

The TriOS OPUS spectral sensor was mounted on the CTD rosette to acquire full-depth profiles of
nitrate and nitrite

Acoustic Doppler current
profiler

Teledyne RDI 300kHz lowered ADCP mounted on the CTD rosette to survey full-depth ocean currents
and acoustic backscatter

Acoustic Doppler current
profiler

Teledyne RDI ADCP 38 kHz and 75kHz were mounted in the hull of the ship (75 kHz) and in the ship
moon pool (38 kHz) to provide water currents and backscatter information from close to the surface
to more than 1 000 m depth; surveyed in an underway mode

Thermosalinograph

Sea-Bird SBE-45/SBE-38 measuring temperature and salinity underway from about 6.5 m water depth

Microstructure sonde

Sea & Sun Technology microstructure probe MSS 90 measuring the micro-scale temperature, pres-
sure, conductivity, and shear to determine the micro-scale water stratification and the strength of small-
scale turbulence in the water column

FerryBox system

OceanPack FerryBox underway system that acquires pCO, data from 6.5 m water depth

Radiosondes

Vaisala RS41-SGP radiosondes measuring atmospheric profiles (during ascent and descent) of tem-
perature, relative humidity, pressure, wind direction, and wind speed

Moving vessel profiler

An AML Oceanographic MVP30-350 measuring vertical profiles of temperature, salinity, pressure,
and fluorescence in the upper ocean, operated as underway system at selected segments

uCTD Teledyne Oceanscience underway CTD measuring vertical profiles of temperature, pressure, and salin-
ity in the upper ocean, operated as underway system at selected cruise segments
Wave radar A 9.4 GHz X-band wave radar measuring both phase and intensity of the radar backscatter and Doppler

speed (sampled up to a maximum range of about 3 km around the ship), to determine surface currents,
wind field, and surface signatures of internal waves

Sun photometer

MICROTOPS sun photometer capturing at sun views the solar attenuation at 380, 440, 670, 870,
and 940 nm to derive column properties of aerosol optical depth (AOD) at these wavelengths and the
atmospheric water vapor content

Weather sensors

German Weather Service (DWD) automatic weather station measuring underway wind speed, wind
direction, temperature (air, ocean), humidity, and barometric pressure

GNSS

Global Navigational Satellite System (GNSS) antennas and receivers for measuring underway colum-
nar water vapor content

Particle sizer

SMPS (TSI 3080) measuring aerosol/CN size distribution (10 to 420 nm)

Micro Rain Radar A 24 GHz meteorological radar profiler for Doppler spectra of hydrometeors and multiple parameters
related to rain
Cloud radar RPG FMCW94 cloud radar to characterize the atmospheric state and clouds (including precipitation

and turbulent structure of the atmospheric boundary layer) through reflectivity, Doppler velocity, spec-
tral width, and skewness
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Instrument Brief description

Raman lidar (ARTHUS) University of Hohenheim Raman lidar at 355 nm providing underway vertical profiles of temperature,
water vapor mixing ratio, aerosol particle backscatter, and extinction coefficients at up to 10 Hz and
7.5 m as well as range resolution

Wind lidar Doppler lidar (1 Hz temporal and 30 m range resolution) for the profiling of vertical wind and particle
backscatter coefficient as well as boundary layer depth and cloud-base height

Wind lidar Scanning Doppler lidar operated in the six-beam staring mode for the profiling of horizontal wind,

TKE, and momentum flux; horizontal wind profiles are delivered with 1 min as well as the TKE and
momentum flux profiles with 30 to 60 min resolution

Ocean microbiology

Measurements in the upper water column of biogeochemical parameters (e.g., nutrients, chlorophyll a,
particulate organic carbon and nitrogen, trace greenhouse gases), biogeochemical process rates (e.g.,
primary production), and molecular analyses (e.g., microbial community structure)

Underway data

Data acquired at high temporal resolution along the ship track: latitude, longitude, motion,
course/heading (multiple), water depth, solar global radiation, infrared radiation, PAR radiation, and

rain (vertical/lateral)

B17 Saildrones

Continuous measurements of air—sea interaction by five un-
crewed surface vehicle (USV) Saildrones were led by Far-
allon Institute, NOAA/PMEL, and CICOES/University of
Washington during EUREC*A and ATOMIC from 12 Jan-
vary to 3 March 2020. Three NASA funded Saildrones
(SD1026, SD1060, SD1061) and one NOAA-funded Sail-
drone (SD1063) were dedicated to the ocean eddy corri-
dor southeast of Barbados, where large North Brazil Cur-
rent rings migrate northwestward. The NOAA-funded Sail-
drone SD1064 was dedicated to the trade wind alley be-
tween NTAS buoy and the HALO flight circle. The two
NOAA-funded Saildrones continued their observation after
the EUREC*A/ATOMIC intensive observation period until
15 July 2020.

B18 SWIFTs and Wave Gliders

A total of six SWIFT (Surface Wave Instrument Floats with
Tracking) drifting platforms were deployed from the R/V
Ron Brown during EUREC“A. There was an initial deploy-
ment for 2 weeks in January 2020 and a second deployment
for another 2 weeks in February 2020. SWIFTs are produced
and operated by the Applied Physics Laboratory at the Uni-
versity of Washington. Two of the SWIFTs were version 3
models, as described in Thomson (2012), and four of the
SWIFTs were version 4 models, as described in Thomson
et al. (2019). SWIFTs collect data in a wave following ref-
erence frame, with burst sampling and statistical products
available hourly.

Two Wave Glider ASVs (autonomous surface vehicles),
designated WG245 and WG247, operated from the R/V
Ron Brown during EUREC*A. The missions each spanned
4 weeks from January to February 2020. The Wave Gliders

Earth Syst. Sci. Data, 13, 4067-4119, 2021

are built by Liquid Robotics, Inc, with additional sensors in-
tegrated by the Applied Physics Laboratory at the University
of Washington for air—sea flux calculations (Thomson and
Girton, 2017).

B19 Surface drifters, OCARINA and PICCOLO

Ten SVP-BSW (barometer—salinity—wind) drifters from Pa-
cific Gyre were deployed from R/V Atalante from 23 Jan-
uary to 4 February 2020. Each drifter had temperature and
salinity measurements at three levels (0.50, 5, and 10 m) as
well as barometric sea level pressure and wind. Five SC40
SVP-BRST drifters (from EUMETSAT grant TRUSTED to
Météo-France/CLS) manufactured by NKE were deployed
for three short periods of time from the R/V Atalante be-
fore being finally released at sea between 10 and 14 Febru-
ary 2020. Each drifter provided high-precision measure-
ments of temperature at 20 cm depth and of barometric sea
level pressure. Two SC40 SVP-BSC drifters (from Météo-
France/LOCEAN with CNES/SMOS support) manufactured
by NKE were deployed for three short periods of time from
the R/V Atalante before being released at sea between 10
and 14 February 2020. Each drifter measured temperature
and salinity at 20 cm depth and barometric sea level pres-
sure. Two Surpact wave riders manufactured by SMRU (Uni-
versity of St Andrews) and LOCEAN (with CNES/SMOS
support) were deployed for short times from the R/V Ara-
lante before being released at sea between 10 and 14 Febru-
ary 2020. These drifters do not have a drogue to follow
the currents at 15m and thus are deployed tethered to an-
other drifter. Each float measured temperature and salinity
at 5 cm depth, as well as vertical acceleration and thus wave
spectra. Moreover, the noise recorded by a microphone un-
der a cupola was spectrally analyzed to estimate the noise

https://doi.org/10.5194/essd-13-4067-2021
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Table B9. Meteor.
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Instrument

Brief description

Underway data

Data acquired along the ship track: time, position (latitude, longitude), motion (heave, pitch, roll),
atmospheric state (pressure, air temperature, water temperature, dew point, relative humidity), wind
(wind direction, wind speed, relative wind direction, relative wind speed), downward broadband so-
lar radiation (200-3600 nm), downward broadband infrared radiation (4.5—42 um), ocean currents at
different depth (ADCP), and surface water sea salt content and water temperature (thermosalinograph)

Raman lidar

Lidar providing vertical profiles of attenuated backscatter at 355, 532, and 1064 nm, volume depolar-
ization ratio at 532 nm, particle linear depolarization ratio, and vertical profiles of water vapor mixing
ratio

Cloud radar

94 GHz cloud radar operating on a balanced platform measuring radar reflectivity , linear depolariza-
tion ratio, Doppler velocity, and spectral width

Microwave radiometer

HATPRO microwave radiometer measuring brightness temperatures in K and V Bands

Solar spectrometer

Measuring downward spectral solar irradiance between 300 and 2200 nm for droplet effective radius
and liquid water path retrievals

Ceilometer

Jenoptik system measuring vertical profiles of attenuated backscatter at 1064 nm to infer cloud base
as a function of altitude and aerosol

Cloud cameras

Upward all-sky visible images and upward 30° field-of-view thermal images, both at 0.1 Hz

Sun photometer

MICROTOPS sun photometer capturing at sun views the solar attenuation at 380, 440, 670, 870,
and 940 nm to derive column properties of aerosol optical depth (AOD) at these wavelengths and the
atmospheric water vapor content

Solar spectrometer

MAX-DOAS (Multi-AXis Differential Optical Absorption Spectroscopy) measuring scattered sky so-
lar radiances at different elevation angles to infer NO;, SO, SO,, HyO, and oxygen dimer (near the
surface, vertical profiles, and column data)

GNSS

Global Navigational Satellite System (GNSS) antennas and receivers for measuring underway colum-
nar water vapor content

Particle sizer

WRAS (GRIMM, EDM 180) measuring aerosol/CN size distribution (0.25 to 32 pm)

Photoacoustic extinctiometer

PAX photoacoustic nephelometer measuring the scattering of aerosol (size information) and the photo-
acoustic absorption (black carbon concentration)

Air sampler

Locomotive air sampler measuring concentrations of larger (PM10) aerosol particles

Wind lidar

WINDCUBE WLS70 wind lidar measuring vertical wind profiles for the 100-2000 m range

Wind lidar

WINDCUBE V2 wind lidar measuring vertical wind profiles for the 40-250 m range

Eddy covariance

A 4m outrigger in front of the Meteor and one high up in the main mast close to the operational
wind measurements providing high-resolution (20 Hz) measurements of vertical wind speed and gas
concentrations to derive surface momentum, enthalpy, and CO, fluxes

Isotope analyzer

Picarro (L.2140-17) cavity ring-down laser spectrometer measuring stable isotopologues in water vapor
(including water vapor mixing ratio)

Isotope sampler

Sampling system for measuring stable isotopologues in rain and seawater

Rain collector

Palmex rain collector avoiding re-evaporation used to sample precipitation

Radiosondes Vaisala RS41-SGP radiosondes measuring atmospheric profiles (during ascent and descent) of tem-
perature, relative humidity, pressure, wind direction, and wind speed
UASs Light ship-based (quadcopter) UASs were operated (during stations only) for measuring temperature

and wind speed profiles in the lower atmosphere (up to 300 m) and temperature profiles within the
upper 20 m of the ocean

https://doi.org/10.5194/essd-13-4067-2021
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Table B9. Continued.

Instrument Brief description

CTD casts Vertical profiles, within the upper 800 m of the ocean, of temperature, salinity, dissolved oxygen, and
fluorescence

Ocean microbiology Measurements in the upper water column of biogeochemical parameters (e.g., nutrients, chlorophyll a,

particulate organic carbon and nitrogen, trace greenhouse gases), biogeochemical process rates (e.g.,
primary production), and molecular analyses (e.g., microbial community structure)

of the wind/waves and rainfall. Five barometer—temperature
drifters from Pacific Gyre were deployed from R/V MS-
Merian from 21 January to 4 February 2020. Each drifter
measured temperature at 20cm depth and barometric sea
level pressure. Each drifter had a 6 m long drogue centered
at a depth of 15 m. The drifters used Iridium SBD telemetry
and a 50-channel GPS system (including WAAS correction),
and data were transmitted every 30 min.

The R/V Atalante also deployed two drifting platform
prototypes, OCARINA (Ocean Coupled to Atmosphere, Re-
search at the Interface with a Novel Autonomous platform)
and PICCOLO (Profiling Instrument to Check if the wind
Curvature is Only Logarithmic on the Ocean), to measure
air—sea fluxes (momentum, sensible heat, latent heat, radia-
tive shortwave and longwave up and down) very close to
the sea surface. The platforms were deployed on 25 Jan-
uary 2020 from 15:00 to 21:00 UTC (start position 10.11° N,
57.50° W; end position 10.15° N, 57.45° W), on 3 February
from 10:00 to 21:00 UTC (start position 6.83° N, 54.14° W;
end position 6.83° N, 54.34° W), on 10 February from 10:00
to 19:00 UTC (start position 10.38° N, 59.13° W; end posi-
tion 10.53° N, 59.23° W), and on 17 February from 09:00 to
18:00 UTC (start position 13.13° N, 59.75° W; end position
13.10° N, 59.82° W).

Earth Syst. Sci. Data, 13, 4067—4119, 2021 https://doi.org/10.5194/essd-13-4067-2021
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Table B10. Ron Brown.
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Instrument Brief description
Anemometer Metek uSonic-3 anemometer measuring wind vector, stress, and heat flux (bow mast)
Rain gauge Optical precipitation sensor ORG-815 DA measuring the rain rate at 1 Hz (bow mast)

Humidity sensor

LICOR 7500 gas analyzer measuring water vapor density (bow mast)

‘Weather sensors

Vaisala HMT335 transmitter measuring air temperature and humidity, and Vaisala PTB220 barometer
to measure atmospheric pressure (bow mast)

Pyranometer

Eppley PSP measuring shortwave 295-2800 nm irradiance (bow mast)

Pyrgeometer

Eppley PIR measuring downward longwave irradiance 4-50 um (bow mast)

Inertial system

Mast and ship motions (bow mast)

Ceilometer Vaisala CL31 ceilometer measuring vertical profiles of backscatter from refractive index gradients,
cloud-base height, and cloud fraction (O3 deck)

Disdrometer Two Parsivel optical rain gauges (650 and 780 nm) measuring the size, fall speed and precipitation
intensity, radar reflectivity, particle number, and cumulated precipitation for rain droplets with sizes
between 0.2 and 8 mm (O3 deck)

Camera StarDot NetCam XL camera pointed to starboard (field of view of 15 m, image captured every 4 s, O3
deck)

Doppler lidar For measuring atmospheric velocities and backscatter to infer cloud-base height and boundary layer
turbulence (02 deck)

Cloud radar Vertically pointing W-band (95 GHz) Doppler cloud radar measuring vertical profiles of non-

precipitating and lightly precipitating clouds up to 4.2 km with 30 m resolution (02 deck)

Radon detector

Dual-flow loop two-filter radon (222Rn) detector (O3 deck)

‘Weather sensors

Vaisala WXT-536 weather sensors measuring air temperature, humidity, pressure, rainfall, and wind
(02 deck)

Isotope analyzer

Picarro (L2130-i) cavity ring-down laser spectrometer measuring stable isotopologues in water vapor
(including water vapor mixing ratio)

Isotope sampler

Sampling system for measuring stable isotopologues in rain and seawater

Radiosondes

Vaisala RS41-SGP radiosondes measuring atmospheric profiles (during ascent and descent) of tem-
perature, relative humidity, pressure, wind direction, and wind speed (every 4 h, main deck)

Ozone analyzer

Thermo Environmental Model 49C measuring ozone concentration (aerosol inlet)

In situ aerosol instrumentation

Collection with multi-jet cascade impactors and analysis by ion chromatography, thermal-optical,
gravimetric, and XRF analysis to measure size-segregated concentrations of C1~, NO3', SO,
methanesulfonate (MSA), Na™, NHI, Kt, Mg;', Ca; , organic carbon, elemental carbon, and trace
elements (aerosol inlet)

Particle sizer

DMPS and TSI 3321 APS measuring number and size distributions 0.02 to 10 um (aerosol inlet)

Particle sizer

TSI 3025A, 3760A, and 3010 measuring number concentrations > 3, 13, and 13 nm (aerosol inlet)

Nephelometer TSI 3563 nephelometer measuring aerosol light scattering and backscattering at 60 % relative humid-
ity by splitting light into 450, 550, and 700 nm wavelengths (aerosol inlet)

Nephelometer TSI 3563 nephelometer measuring aerosol light scattering and backscattering as a function of relative
humidity by splitting light into 450, 550, and 700 nm wavelengths at dry and 80 % relative humidities
(aerosol inlet)

Photometer Radiance Research particle soot absorption photometer (PSAP) measuring light absorption at 467,

530, and 660 nm (aerosol inlet)

https://doi.org/10.5194/essd-13-4067-2021
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Instrument

Brief description

Particle counter

DMT cloud condensation nuclei counter (CCNC) measuring the number of particles which can acti-
vate cloud droplets at a specific supersaturation (0.1 % to 0.6 % supersaturation)

Sun photometer

MICROTOPS sun photometer capturing at sun views the solar attenuation at 380, 440, 670, 870,
and 940 nm to derive column properties of aerosol optical depth (AOD) at these wavelengths and the
atmospheric water vapor content

Spectrometer Marine Atmospheric Emitted Radiance Interferometer (M-AERI) spectrometer to infer skin sea sur-
face temperature (O2 deck)
Radiometer Remote Ocean Surface Radiometer (ROSR) measuring sea surface skin temperature (O2 deck)

Thermistor (sea snake)

Floating YSI 46040 Thermistor (deployed off port side with outrigger) measuring near-skin sea sur-
face temperature

Altimeter Riegl 1D laser altimeter measuring wave height (bow mast)

CTD casts Sea-Bird 9+ CTD at station measuring conductivity (salinity), temperature, depth (pressure), PAR,
fluorescence, and dissolved oxygen (deployed off starboard side, main deck)

Thermosalinograph Sea-Bird SBE-45 and SBE-38 thermosalinographs measuring seawater temperature and conductivity
near the surface and 5 m below the surface

CTD/uCTD ADCP measuring ocean currents to 600—750 nm using an RBRconcerto underway CTD and a Tuna

Brute winch (uCTD) to measure conductivity (salinity) and temperature and depth (pressure) in the
upper 60 to 130 m (deployed off starboard aft quarter)

Table B11. BOREAL.

Instrument

Brief description

Particle counter

CPC measuring aerosol concentrations (D > 11 nm) at 1 Hz

Particle counter

Optical particle counter measuring aerosol size distribution (0.3um < D < 3nm) at 1 Hz

Infrared thermometer

Measuring infrared brightness temperatures to infer SST

Turbulence probe

Multihole probe measuring vertical and horizontal winds at 30 Hz to characterize turbulence and fluxes

Radar altimeter

To characterize the sea state, including wave height, speed, and direction; 1 Hz

‘Weather sensors

Measuring temperature, pressure, and relative humidity

Solar radiometer

Solar irradiance and broadband solar flux (400 to 1100 nm); 1 Hz

Camera

High-resolution visible camera looking forward and down to characterize clouds and the sea state

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Table B12. CU-RAAVEN.
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Instrument

Brief description

Weather sensors

Vaisala RSS-421 PTH sensors (two body-mounted RSS-421s, similar to sensors in RS41 radiosondes
and RD41 dropsondes) measuring pressure, temperature, and relative humidity

Multihole probe

Black Swift Technologies multihole pressure probe measuring static and dynamic pressure, airspeed,
angle of attack, sideslip, attitude and acceleration, temperature, and humidity, primarily for wind esti-
mation

Inertial system

VectorNav VN-300 INS to measure aircraft position, attitude, acceleration, inertial velocities, static
pressure, and inertial motion unit, with integrated GPS

Infrared thermometer

Melexis IR thermometers measuring surface and sky brightness temperatures in a narrow field of view
for sensing surface temperature and cloud presence

Turbulence probe

Custom fine-wire array (three-wire array with two cold wires and one hot wire) for fast temperature,
humidity, and velocity sensing

Table B13. MPCK+.

Instrument

Brief description

Weather sensors

Aosong relative humidity (2 % RH accuracy) and temperature (0.1-1 K accuracy) sensor (0.2 Hz)

Anemometer 1D static tube with PT100 measuring wind speed and temperature at 100 Hz, wind speed range 3 to
20ms~! with <5 % accuracy, temperature —35...55 °C with accuracy of +0.3K
Anemometer Five-hole static tube; 100 Hz, 4...15ms—1, < 5 % wind speed accuracy, 1° wind direction accuracy

to measure 3D wind velocity

Particle image velocimetry

PIV at 15Hz with a pulsed 532nm laser and a high-speed camera, max. probing. vol.
150 mm x 100 mm x 5 mm, to characterize droplet 2D velocity and spatial distribution

Holography In-line holography at 75Hz with a pulsed 355nm laser and 25 Mpx camera, max. probing. vol.
15mm x 15 mm x 250 mm, to characterize 3D droplet size and spatial distribution
Cloud droplet probe SPEC Fast CDP using forward scattering to measure droplet size and number concentration of 2 to

50 um particles up to 2000 em ™3

Table B14. Mini-MPCK.

Instrument

Brief description

Weather sensors

Aosong relative humidity (2 % RH accuracy) and temperature (0.1-1 K accuracy) sensor (0.2 Hz).

Anemometer 1D static tube with PT100 measuring wind speed and temperature at 100 Hz, wind speed range 3—
20ms~! with <5 % accuracy, and temperature —35...55 °C with accuracy of £0.3 K

Anemometer Metek uSonic-3 Class A ultrasonic anemometers operating at 30 Hz, 0-40m s~ ! with minimal flow
shadowing from of the arms, and 1° wind direction accuracy

Cloud droplet probe DMT CDP-2, a forward-scattering optical spectrometer to determine size and number concentration

of 2 to 50 um particles

Weather sensors

Vaisala HMP7 heated humidity and temperature probe; response time ~ 15, £0.8 % RH accuracy,
+0.1 K temperature accuracy

‘Weather sensors

Bosch BMP388 sensor measuring pressure and temperature (£50Pa absolute pressure accuracy,
40.3 K temperature accuracy)

Hot wire

Dantec mini-hot wire measuring air velocity fluctuations at 8 kHz

Ultra-fast thermometer

Ultra-fast thermometer M (UFT-M, provided by University of Warsaw) measuring temperature fluc-
tuations with a sampling frequency of 8 kHz

https://doi.org/10.5194/essd-13-4067-2021
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Table B15. Skywalker.
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Instrument

Brief description

Cloud sensor

Cloud extinction measured at three wavelengths (1 Hz)

Cloud active mapping system

Adaptive sampling and real-time mapping of clouds

‘Weather sensors

Measurements of temperature and relative humidity

Camera

High-resolution visible camera looking forward and down to characterize clouds and the sea state

Inertial system

Paparazzi Apogee autopilot providing UAS flight parameters (latitude, longitude, altitude, pitch, roll,
yaw, horizontal wind speed)

Table B16. Caravela.

Instrument Brief description
Pyranometer CS301 Apogee SP-110-SS pyranometer measuring downwelling shortwave radiation (360-1120 nm)
Pyrgeometer Apogee SL-510 pyrgeometer measuring downwelling longwave radiation (5-30 um)

Weather sensors

Airmar 120WX weather station measuring wind velocity, air temperature (measurement height 1.5 m)

Weather sensors

Rotronic HC2A-S3, Rotronic MP402H 082000, and Rotronic AC1003 measuring air temperature and
humidity (measurement height 1 m)

Ocean state

Valeport miniCTD measuring sea surface temperature and conductivity (mounted through Caravela’s
hull, measurement depth 0.2 m)

Acoustic Doppler current
profiler

Nortek Signature1000 1 MHz acoustic Doppler current profiler (ADCP) with a five-beam setup for
estimating velocity shear and biomass in the water column, range 30 m

Table B17. Humpback (SG579).

Instrument Brief description

CT sail Sea-Bird unpumped CT sail measuring temperature and conductivity

PAR sensor Biospherical Instruments QSP2150 measuring photosynthetically active radiation

Fluorometer WET Labs ECO Triplet measuring chlorophyll fluorescence, chromophoric dissolved organic matter

(CDOM) fluorescence, and optical backscatter at 650 nm

Table B18. Omura (SG637).

Instrument

Brief description

CT sail

Sea-Bird unpumped CT sail measuring temperature and conductivity

Acoustic Doppler current
profiler

Nortek Signature1000 1 MHz acoustic Doppler current profiler (ADCP) measuring vertical shear of
horizontal current velocity

Table B19. Melonhead (SG620).

Instrument

Brief description

CT sail

Sea-Bird unpumped CT sail measuring temperature and conductivity

Microstructure sonde

Rockland Scientific MicroPods microstructure system measuring shear and temperature and thus
ocean turbulence

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Table B20. IFM03.

4111

Instrument

Brief description

CTD sensor

Measuring temperature and salinity

Oxygen sensor

Optode measuring dissolved oxygen

Fluorometer

WET Labs ECO puck measuring chlorophyll fluorescence and turbidity

Microstructure sonde

Rockland Scientific MicroRider turbulence sensor

Table B21. IFM09.

Instrument

Brief description

CTD sensor

Measuring temperature and salinity

Oxygen sensor

Optode measuring dissolved oxygen

Fluorometer

WET Labs ECO puck measuring chlorophyll fluorescence and turbidity

Microstructure sonde

Rockland Scientific MicroRider turbulence sensor

Table B22. IFM12.

Instrument

Brief description

CTD sensor

Measuring temperature and salinity

Oxygen sensor

Optode measuring dissolved oxygen

Fluorometer

WET Labs ECO puck measuring chlorophyll fluorescence and turbidity

Nutrient analyzer

Sea-Bird Submersible UV Nitrate Analyzer (SUNA)

Optical sensor

Measuring dissolved organic matter (CDOM)

Table B23. Kraken.

Instrument

Brief description

CTD sensor

Sea-Bird CTD (GPCTD) measuring temperature, salinity, and pressure

Oxygen sensor

Optode measuring dissolved oxygen

Fluorometer and backscatter

sensor

WET Labs ECO puck BB2FLVMT measuring chlorophyll a fluorescence and turbidity

Optical sensor

WET Labs ECO puck measuring dissolved organic matter (CDOM)

https://doi.org/10.5194/essd-13-4067-2021
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Table B24. Saildrones.

B. Stevens et al.: EUREC*A

Instrument

Brief description

Anemometer

WindMaster Gill 1590-PK-020 sonic anemometer 10 Hz at 5.2 m above water line, measuring wind
speed and direction

Weather sensors

Rotronic HygroClip 2 measuring air temperature and relative humidity at 1 Hz, 1 min measurements
every 5 min at 2.3 m above water line

Pyrometer Heitronics CT 15.10 infrared pyrometer to measure skin SST (experimental)

Cameras Four visible cameras looking sideways, upward, and downward

PAR sensor LICOR LI-192SA sensor measuring photosynthetically active radiation at 2.6 m above water line

CT sensor SBE-37-SMP-ODO MicroCAT measuring seawater temperature, salinity, conductivity, and dissolved
oxygen (pumped CTD at 0.5 m depth)

CT sensor RBR Ltd C.T.ODO.chl-a logger measuring seawater temperature, salinity, conductivity, dissolved
oxygen, and chlorophyll a (experimental); inductive CTD at 0.53 m depth

Fluorometer WET Labs ECO-FL-S G4 and Turner Cyclops measuring chlorophyll a (experimental) at 0.5 m depth

Barometer Vaisala PTB210 measuring barometric pressure at 0.2 m above water line

Inertial system

VectorNav VN300 Dual GPS-aided inertial measurement unit deriving estimates of significant wave
height and dominant period from wave spectrum

Thermistors

Sea-Bird SBE-57s thermistors of seawater temperature (on keel at 0.3, 0.6, 0.9, 1.2, 1.4, and 1.7m
depths)

Acoustic Doppler current
profiler

Teledyne Workhorse 300 kHz ADCP measuring ocean current profiles between 6 and 100 m depths

Pyranometer SPN1 Delta-T Sunshine Pyranometer measuring total and diffuse solar radiation (equipped on NOAA-
funded Saildrones, 2.8 m above water line, sampling at 5 Hz for tilt correction, Zhang et al., 2019)
Pyrgeometer Eppley Precision Infrared Radiometer (PIR) measuring downward longwave radiation (equipped on

NOAA-funded Saildrones, 0.8 m above water line)

Table B25. SWIFTs.

Instrument

Brief description

Inertial system

SBG Ellipse GPS measuring drift speed from 5 Hz positions and velocities

Inertial system

SBG Ellipse IMU measuring surface waves from 5 Hz displacements (processed for hourly wave
spectral parameters)

Weather sensors

Vaisala WXT-536 measuring air temperature, humidity, pressure, rainfall, and wind at 1 m

‘Weather sensors

Airmar PB200 measuring wind speed and direction, air temperature, and air pressure at 1 m above
surface

CT sensors

Aanderaa CT sensor measuring surface conductivity and temperature to infer ocean salinity and tem-
perature at 0.5 m below surface

Acoustic Doppler current
profiler

Nortek Aquadopp 2 MHz ADCP used in pulse-coherent (HR) mode to measure ocean turbulence and
current profiles with high resolution

Acoustic Doppler current
profiler

Nortek Signature 1 MHz ADCP used in pulse-coherent (HR) mode to measure ocean turbulence and
current profiles with high resolution

Camera

Low-resolution sky cameras providing pictures every 4 s

Earth Syst. Sci. Data, 13, 4067-4119, 2021
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Table B26. Wave Gliders.
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Instrument

Brief description

Inertial system

MicroStrain GPS measuring vehicle speed from 5 Hz positions and velocities

Inertial system

MicroStrain IMU measuring surface waves from 5 Hz displacements (processed for hourly wave spec-
tral parameters, Thomson et al., 2018)

Weather sensors

Vaisala WXT-536 measuring air temperature, humidity, pressure, rainfall, and wind at 1 m

Weather sensors

Airmar PB200 measuring wind speed and direction, air temperature, and air pressure at 1 m above
surface

CT sensors Aanderaa CT sensor measuring surface conductivity and temperature to infer ocean salinity and tem-
perature at 0.3 m below surface
Glider payload Sea-Bird GPCTD measuring conductivity, temperature, and depth to infer ocean salinity and temper-

ature at 8 m below surface

Acoustic Doppler current
profiler

300kHz ADCP measuring ocean current profiles from 0 to 120 m depth

Table B27. SVP-BSW drifters.

Instrument Brief description

Thermistor 30K thermistor measuring seawater temperature at a depth of 20 cm

CT sensors Sea-Bird SBE-37-SI measuring seawater temperature and conductivity (salinity) at a depth of 20 cm
CT sensors Sea-Bird SBE-37-IM measuring seawater conductivity and temperature to infer ocean temperature

and salinity at depths of 5 and 10 m

Pressure sensor

Honeywell integrated pressure transducer (IPT) measuring atmospheric pressure at a height of 50 cm

Tilt compensated compass

PNI TCM-2.5 measuring wind direction at a height of 50 cm

Anemometer

Gill WindSonic two-axis ultrasonic anemometer measuring wind speed at a height of 50 cm

GPS

To monitor the current at sea surface

Table B28. SVP-BRST drifters.

Instrument

Brief description

HRSST thermistor

Digital high-resolution thermistor measuring seawater temperature at a depth of 15cm

Pressure sensor

Vaisala PTB110 barometer measuring atmospheric pressure at a height of 50 cm

GPS

To monitor the current at sea surface

Table B29. SVP-BSC drifters.

Instrument

Brief description

CT sensors

Sea-Bird SBE-37-SI measuring seawater temperature and conductivity (salinity) at a depth of 15 cm

Pressure sensor

Vaisala PTB110 barometer measuring atmospheric pressure at a height of 50 cm

GPS

To monitor the current at sea surface
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Table B30. SURPACT drifters.

Instrument Brief description

CT sensors Valeport CTD probe measuring seawater temperature and conductivity (salinity) at depth of 4 cm
Pressure sensor Honeywell integrated pressure transducer (IPT) measuring atmospheric pressure

Audio analyzer MSGEQ7 graphic equalizer rain sensor to infer rain intensity from sound spectra

Table B31. Pacific Gyre barometer—temperature drifters.

Instrument Brief description

Thermistor 30 K thermistor measuring seawater temperature at a depth of 20 cm

Pressure sensor Honeywell integrated pressure transducer (IPT) measuring atmospheric pressure at a height of 50 cm
GPS monitors the current at sea surface

Table B32. OCARINA.

Instrument Brief description

Anemometer Gill R3-50 three-axis sonic anemometer measuring wind speed and horizontal and vertical velocities
at S0 Hz at a height of 1.6 m

Weather sensors Vaisala WXT-520 measuring air temperature, barometric pressure, and relative humidity at 1 Hz at a
height of 1 m

Pyranometer Campbell CNR4 Kipp and Zonen radiometer measuring broadband downward solar irradiance at a
height of 1 m

Pyrgeometer Campbell CNR4 Kipp and Zonen radiometer measuring upward and downward broadband infrared

irradiance at a height of 1 m

Inertial platform Xsens MTi-G IMU measuring time and accelerations at 50 Hz through gyroscopes, accelerometers,
magnetometers, a GPS, and a barometer at a height of 0.1 m

CT sensor Sea-Bird SBE-37 SI measuring sea surface temperature and conductivity/salinity at 1 Hz at a height
of —0.2m

Acoustic Doppler current Nortek Signature 1.2 GHz ADCP measuring vertical profiles of ocean current and horizontal and

profiler vertical velocities at 25 Hz from —0.3 to —17.3 m every 0.5 m of water

Table B33. PICCOLO.

Instrument Brief description

Anemometers Five homemade cup anemometers measuring the horizontal wind speed close to the surface (at 0.40,
0.60, 0.85, 1.15, and 1.6 m) to infer the friction velocity u, the wave peak period, and the roughness
aerodynamic length z(

Inertial platform Xsens MTi-G IMU measuring time and accelerations at 50 Hz through gyroscopes, accelerometers,
magnetometers, a GPS, and a barometer at a height of 0.1 m
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Video supplement. A film documenting EUREC“A activities, by
ITulian Furtuna and Marius Lena, is made available as a video sup-
plement (https://doi.org/10.25326/224, Lena et al., 2021).
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