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13 Abstract 

The socioeconomic stability of the Central Asian Republics in the Amu Darya watershed 

is sensitive to drought. Activities related to agriculture employ a large fraction of the population 

and are responsible for at least one fifth of the gross domestic products of Afghanistan, 

Tajikistan, and Turkmenistan. Toward building a predictive understanding that may be applied 

to drought early warning practices, the characteristics, precursors and potential predictability 

of agricultural drought in the Amu Darya watershed are examined in a large ensemble of 

Community Earth System Model version 1 simulations during 1920-2019. Agricultural drought is 

examined over Upper and Lower regions of the Amu Darya watershed, which have different 

mean hydroclimates, and is defined by 1-m soil moisture deficits lasting three or more months. 

The likelihood of drought onset and demise is phase-locked with the seasonal cycle of 

precipitation of each region, but with some notable differences. For the Upper region, drought 

onset and demise are three times more likely to occur during Autumn and Spring than other 

seasons. For the Lower region, drought onset and demise are three times more likely to occur 

during November-April than during Summer. Precipitation anomalies drive drought onset and 

demise during the climatological wet periods of both regions while temperatures play a smaller 

role. The probability of drought onset and demise is modulated by La Niña and El Niño, which 

control the interannual variability of precipitation over the Central Asian Republics during their 

wet seasons, indicating that the state of the El Niño Southern Oscillation serves as a key 

predictor of agricultural drought phase changes. 
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34 1. Introduction 

35 1.1 Motivation 

Rainfed and irrigated agriculture are key to the well-being of four Central Asia Republics 

in the Amu Darya watershed (Rakhmatullaev et al. 2010). Afghanistan, Tajikistan, Turkmenistan, 

and Uzbekistan (Fig. 1) generate 20.5%, 21.2%, 9.3% and 28.5% of their gross domestic product, 

respectively, from activities related to agriculture (The World Bank 2019a). The Central Asian 

Republics are therefore exceptionally sensitive to agricultural production shocks since they are 

among the world’s poorest nations (The World Bank 2019b), the agricultural sector employs a 

large fraction of the population (Mirzabaev 2018), and food insecurity is already widespread 

(Food and Agricultural Organization of the United Nations 2018). 

Drought is a key driver of shocks in agricultural production and the socioeconomic 

wellbeing of nations in the Amu Darya watershed. Drought in 2018 led to crisis levels of acute 

food insecurity over most of Afghanistan (Famine Early Warning Systems Network 2018), which 

was related to the displacement of hundreds of thousands of people (British Broadcasting 

Company 2018; Al Jazeera 2018). Drought in 2007 and 2008 over Afghanistan led to a major 

decline in wheat production (United States Department of Agriculture Foreign Agricultural 

Service 2008) and was related to social instability that empowered the Taliban (Gall 2008). A 

three-year drought spanning 1999-2001 over Afghanistan led to water scarcity, little crop 

production and extreme hardship (Bearak 2000). While long-term droughts like 1999-2001 and 

2007-2008 are arguably more harmful because the impacts span multiple years, the effects of 

droughts lasting one year or less like in 2018 should not be understated. Surface water 
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availability varies by as much as 30% between pluvial          and drought years, which has     

ramifications for both irrigated and rainfed agriculture (Pervez et al.         2014).  

Motivated by   the devastating effects    of  drought  in Central   Asia, we investigate the   

characteristics, precursors,   and potential predictability of agricultural drought      in  the Amu Darya   

watershed. Our goal    is to build a more complete understanding of drought over this region to             

establish a foundation from which we can predict them with skill. This predictive understanding             

in turn may be used for early warning of food and water insecurity              to provide aid more     

effectively  to societies in need.      

 

1.2  Background  

 Previous research on Central and Western Asia drought has largely focused on the            

drivers  of  precipitation variability during the rainy season that spans N       ovember-April  (see  

Barlow et al. 2016 and     references  therein).  Given our focus  area, we limit our background   

discussion  to this extended cold season over the A       mu Dar ya watershed, whi ch  has a smal ler set  

of drivers than the larger Central       and Western Asia region.    Key  drivers relevant to Amu Darya   

precipitation and the time scales over which they operate          include the   El Niño-Southern  

Oscillation  (ENSO) on seasonal   time scales and the Pacific Decadal       Oscillation (PDO) on decadal     

time scales.   

 ENSO, the leading mode of tropical       interannual  variability, is related to the frequency of        

distinct weather types over Central     Asia (Gerlitz et al.  2018) that re sults in cold season     

precipitation anomalies over Afghanistan, Tajikistan and southern portions of Uzbekistan and            
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Turkmenistan (Barlow et al. 2002; Mariotti      2007; Hoell   and Funk 2013; Hoell     et al. 2013; Hoell    

et al. 2014a; Hoell    et al. 2014b; Hoell    et al. 2017a ; Hoell  et al. 2017b; Rana et al. 2017; Hoe    ll et  

al. 2018b ; Rana et al  2017; Rana et al. 2018; Gerlitz et al. 2019    ). El Niño, the warm phase of      

ENSO, is on average related to above average precipitation over the region while La              Niña, the   

cold phase of EN   SO, is on average related to below average precipitation over the region.              

Several  characteristics of   El Niño  and La  Niña  events affect Amu Darya watershed    

precipitation. First, Amu Darya precipitation is sensitive to the flavor of a           given EN SO event  

(Hoell  et al. 2014a; Hoell    et al. 2014b; Hoell    et al. 2018b), where flavor refers to the longitudinal         

location of the strongest tropical     Pacific sea surface temperature (SST) anomalies during El        Niño  

or La  Niña  (e.g.  Johnson 2013; Capotond  i  et al. 2014 ). Central  Pacific La  Niña  events are related    

to a high probability of below average precipitation over the Amu Darya watershed while             

eastern Pacific La   Niña  events are not. Both eastern and central        Pacific El   Niño  events are   

related to high probabilities of above average precipitation over the Amu Darya watershed           . 

Second, Amu Darya precipitation is sensitive to the magnitude of SST anomalies in the western               

Pacific during La   Niña  events (Hoell   and Funk 2013; Hoell     et al. 201 4a). The warmest west   

Pacific SSTs during La    Niña  events are related to the largest negative precipitation departures.         

Finally, the relationship between EN    SO and Amu Darya precipitation changes in time (Hoell         et 

al. 2017a; Rana et al. 2018), either      because of differences in SST anomalies related to EN        SO,  

internal  atmospheric variability , or both.    

SST patterns related to the      PDO, the leading mode     of decadal N orth Pacific SST    

variability (e.g. Zhang et al. 1997; Manuta et al. 1997; N       ewman et al. 2016), have been linked to        

extended cold season precipitation over the Amu Darya watershed (Hoell          et al. 2015 b; Rana et  
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al. 2019). SST patterns related to the positive phase of the PDO resemble El               Niño  and are   

associated with above average A    mu Darya watershed precipitation. SST patterns related to the         

negative phase of the PDO resemble La       Niña  and are associated with below average Amu Darya        

watershed precipitation. Given that the     SST patterns related to the      PDO  are a result of many    

processes,  which include teleconnections related to EN     SO and local    atmosphere-ocean  

interactions over the N   orth Pacific (N  ewman et al. 2016), it is unclear at this time whether         the  

PDO itself drives Amu Darya precipitation or whether their relationship is a symptom            of 

consecutive  ENSO  events.  

A common th  eme  among EN SO and PDO are their      origins in the tropical     Indian and   

Pacific Ocean. While some differences exist between the      m, both excite   tropospheric convection   

and diabatic heating anomalies over the       tropical  Indian Ocean, Maritime Continent and west    -

central  Pacific Ocean, which in turn force atmospheric circulation anomalies over the Amu             

Darya watershed (Barlow et al. 2002; Barlow et al. 2007; Hoell         et al. 2013; Hoell    et al.  2017b).   

There are two    known  pathways through which the atmospheric circulation anomalies        

reach the Amu Darya watershed. The first, and most direct pathway, is through a Gill-Matsuno            

(Matsuno 1966; Gill    1980) response. In this response, baroclinic Rossby waves develop          

poleward and westward of the tropical       diabatic heating anomalies over the Indian and Pacific         

Ocean (Barlow et al. 2002; Barlow et al. 2007; Hoell         et al. 2013; Hoell    et al. 2017b ). The second 

pathway is through stationary Rossby waves with northeastward group velocity that make their             

way around the globe to the Amu Darya (Shaman and Tziperman 2005; Hoell             et al. 2013;   

Niranjan K umar et al. 2016). This second pathway has only been linked to EN           SO, presumably   

because it requires forcing to be sustained       over weeks to seasons  .   
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The atmospheric circulation anomalies alter the local vertical motions and flux of 

moisture, which in turn modifies Amu Darya precipitation. In terms of vertical motions, the 

baroclinic Rossby waves interact with the mean jet, which produces anomalous temperature 

advection that is subsequently balanced by precipitation-altering anomalous vertical motions 

(Barlow et al. 2002; Barlow et al. 2007; Hoell et al. 2013; Hoell et al. 2017b; Hoell et al. 2018b). 

In terms of atmospheric moisture fluxes, the atmospheric circulation anomalies lead to 

precipitation-altering moisture flux convergence anomalies (Hoell et al. 2017b, Cannon et al. 

2017, Hoell et al. 2018b) 

1.3 Outline 

Previous research related to Central Asia drought has largely focused on the behavior of 

precipitation during the region’s rainy season (see Barlow et al. 2016 and references therein). 

Given that precipitation constitutes only part of the surface water budget, an understanding of 

agricultural drought is lacking over the Amu Darya watershed. Here, we investigate agricultural 

drought using variations in 1-m soil moisture (World Meteorological Organization 1975), since 

soil moisture integrates the effects of supply (precipitation) and demand (potential 

evapotranspiration) on the surface water balance. 

Agricultural drought is examined using a 40-member ensemble of transient fully coupled 

earth system model simulations during 1920-2019. The earth system model simulations are 

based on the Community Earth System Model version 1 (CESM1) large ensemble from the 

National Center for Atmospheric Research (Kay et al. 2015). The 4000 years of simulated 

7 



 
 

            

           

                

              

         

           

            

             

                 

             

            

               

              

            

              

            

              

        

  

  

   

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

environmental conditions provides a large sample from which to probe drought behaviors than 

is possible from the existent observed record over the region that is spatially and temporally 

incomplete (Fig. 2; see also Hoell et al. 2015b and Hoell et al. 2017a). The earth system model, 

the estimates of observed conditions that are used to benchmark the model, and methods 

employed are described in sections 2 and 3. 

In section 4, we probe the characteristics, precursors, and potential predictability of 

agricultural drought in the Amu Darya watershed. To better appreciate the variety of drought 

characteristics possible in the watershed, we begin with a discussion on the potential variability 

of the region’s hydroclimate based on traces of 1-m soil moisture in the earth system model. 

The first characteristic that we examine is drought prevalence, taken here to be the amount of 

time spent in drought for every 100 years. The second drought characteristic that we examine 

is duration by probing he likelihood of droughts lasting more than a certain amount of time. We 

then turn our attention to the behaviors of drought onset and demise and their potential 

predictability by addressing the following questions. During what months are onset and demise 

most likely? What conditions, in terms of precipitation and air temperature and the lead times 

over which these conditions occur, are related to drought onset and demise? Are drought onset 

and demise related to phases of ENSO and are therefore potentially predictable? Are prolonged 

droughts related to persistent eastern Pacific SST anomalies? 

2. Tools 

2.1 Watersheds 
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 The extent of the Amu Darya watershed is based on the          HydroBASINS  global  watershed  

boundaries (Lehner and Grill     2013). HydroBASIN S  is constructed from the ‘    Hydrological  data 

and maps based on Shuttle      Elevation Derivatives at multiple    Scales’ (HydroSHEDS; Lehner et al.     

2008)  on a grid resolution of 15 arc seco      nds. HydroBASIN S  diagnoses a hierarchy of watersheds     

across  12 spatial  scales, known as ‘   levels’,  that range in size from the continental       scale (level   1)  

to the size of a lake with an area of less than 2 km           2  (level 12). Level  3 defines large river basins      

like the Amu Darya and level      4 defines the basins within large river basins. We therefore define            

the Amu Darya watershed based on HydroBASIN     S  levels 3 and 4   .  

 

2.2  Climate Model   Simulations  

 Two transient coupled climate model     ensembles are considered. The first is comprised       

of 40 realizations of the CESM large ensemble version 1 (K         ay et al. 2015).    CESM1 is a   

sophisticated earth system model     framework that is comprised of atmosphere (CAM5; Hurrell        

et al. 2013), land surface (CLM4; Lawrence et al. 2011), ocean (POP2; Smith et al. 2010) and sea               

ice components (CICE4; Hunke et al. 2013) all        run at a nominal   1°x1°   horizontal  resolution.  Each  

realization is forced by the same radiative forcing: historical          forcing prior to    2005 based on   

Lamarque et al. (2010) and representative concentration pathway 8.5 (RCP8.5) forcing is            

applied thereafter based on Meinshausen et al. (2011) and Lamarque et al. (2011). While the              

same external   forcing is applied to all      40 CESM1 realizations, each realization follows a different      

trajectory because of their initializations from slightly different atmospheric states. Differences           

between the CESM1 realizations are therefore a result of only internal          variability of the earth     
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system (K ay et al. 2015)  . The second ensemble is comprised of a single        transient realization of   

37 different models listed in Table 1 that participated in the Coupled Model            Intercomparison  

Project Phase 5 (CMIP5; Taylor et al. 2012). The external         forcing of the CMIP5 models are like        

the CESM1 large ensemble. However, the architecture of each CMIP5 model            are different  as  

well  as how and each of the models handle chemistry, radiative effects, and land surface               

changes.   

 

2.3  Historical  Precipitation, Temperature , and 1-m Soil     Moisture Estimates   

Gridded analyses of monthly precipitation, near     -surface air temperature and 1    -m soil  

moisture are used to diagnose estimates of observed conditions for comparison with climate              

models. Precipitation is based on the Global        Precipitation Climatology Centre (GPCC, Schneider      

et al  2014) version 7 at a 1.0°   x1.0° horizontal   resolution. GPCC is constructed by combining       

monthly precipitation anomalies based on quality-controlled station data with a monthly          

climatology. The observed precipitation gauge network over Central         and Southwest Asia  

common to all    long-term historical   precipitation reconstructions is sparse in space and time,         

particularly prior to    1950 and after   1990  (Fig. 2). Even during the three decades spanning 1960      -

1990 in which precipitation sampling was at its greatest in the Amu Darya, sampling in neither               

Upper nor Lower regions exceeded, on average, more than 0.5 stations per grid point               in the  

GPCC  precipitation dataset.   

Near-surface air temperature is based on the terrestrial         temperature dataset from the    

University of Delaware (UDEL; Willmott and Matsuura 2001) version 5.01 at a 0.5°        x0.5°  
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horizontal  resolution. UDEL is constructed by spatially       interpolating available weather station     

data from a suite of archives, which includes the Global         Historical  Climatology N etwork (Menne   

et al. 2018) among others.      

1-m soil   moisture is based on a simulation of the CLM2 land surface model            forced by an    

estimate of the time   -varying meteorology as part of the Global       Land Data Assimilation System    

(GLDAS; Rodell   et al. 2004). Data from 1979-   2019 on a 1°  x1° horizontal   grid with 10 vertical     

levels, with the first seven reaching      a depth of approximately 1m, is used. The CLM2         model is 

analyzed because it is the predecessor to the CLM4         land  model, the l  and compone nt of CESM1 . 

Like estimates of observed precipitation,      caution should be used when considering       estimates of   

GLDAS  soil  moisture in the Amu Darya watershed because the precipitation data used to force            

the land surface models are not based on a spatially and temporally complete in situ data              

(Fig.2;  Hoell  et al. 2015b; Hoel  l  et al. 2017a).   

Estimates of observed SSTs are based on the Extended Reconstructed Sea Surface            

Temperature dataset version 5 (ERSST5; Huang et al. 2017). Observed SST estimates are used to              

calculate the   Niño3.4 index, area averaged SST anomalies over      5°S-5°N  and  170°W-120°W, from 

1920-2019.  

 

3.  Methods  

3.1 Defining  Upper and Lower Amu Darya Regions      
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The Amu Darya watershed is generally separated into Upper and Lower regions based 

on orography and hydroclimatic variability, as described by Rakhmatullaev et al. (2010). The 

Upper region, comprising the southeastern part of the watershed, is characterized by the 

complex orography of the Pamir and Hindu Kush mountains. The Lower region, comprising the 

northwestern part of the watershed, is characterized by lower elevation semi-arid steppe. 

We separate the Amu Darya watershed similarly. The entire Amu Darya watershed, as 

indicated by the perimeter of the heavy polygons in Fig. 1b, is based on HydroBASINS level 3. An 

aggregation of many HydroBASINS level 4, as indicated by the light polygons in Fig. 1b, is used 

to define the Upper and Lower Amu Darya regions. The Upper region is comprised of three level 

4 basins, which cover all of Tajikistan, northern Afghanistan, eastern Turkmenistan, and 

southern Uzbekistan. The Lower region is comprised of many level 4 basins, covering most of 

Uzbekistan, a small portion of eastern Turkmenistan and a tiny portion of southern Kazakhstan. 

Conditions over the Upper and Lower Amu Darya regions are based on area-weighted averages 

of the gridded data. For a grid box to be included in a regional average then 50% of its area 

must fall within the polygons that define the Upper and Lower Amu Darya. 

3.2 Characterizing Amu Darya Hydroclimate Using Climate Models 

Given the short and spatially incomplete existent observed record in the Amu Darya 

watershed (Fig. 2; see also Hoell et al. 2015b and Hoell et al. 2017a), we explore the suitability 

of two large ensembles of climate model simulations to probe drought behavior in the region. 

The first ensemble is comprised of a single simulation from many different CMIP5 models, 
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which has the advantage of not being biased towards a single model’s architecture. The second 

ensemble is comprised of many realizations from a single model, CESM1, which has the 

advantage of sampling internal climate variability (according to that model) without confusing it 

with differences in model architecture (e.g. Tebaldi et al. 2011, Kay et al. 2015). 

A large ensemble comprised of many different CMIP5 models is not feasible for probing 

drought over the Amu Darya watershed, given the great disparity among the CMIP5 models in 

their ability reproduce key aspects of Upper and Lower region hydroclimate. Most models 

cannot reasonably reproduce the precipitation seasonality and magnitude of monthly 

precipitation when compared with estimates of observed conditions in the Upper and Lower 

regions during 1920-2019 (Fig. 3). Especially noteworthy is that almost all CMIP5 models 

simulate noteworthy precipitation into late spring and early summer when observed estimates 

indicate that the climatological dry season has long begun. Most of the CMIP5 models simply 

cannot be trusted in terms of representing reasonable drought behavior when the precipitation 

seasonality is so erroneous. 

By contrast, CESM1 is an example of a model that reasonably captures key aspects of 

climatological precipitation in the Upper and Lower Amu Darya regions when compared with 

observed estimates during 1920-2019 (Fig. 3), which provides some evidence that a large 

ensemble of simulations based on this model may be suitable for probing drought over the 

Amu Darya watershed. All 40 100-year CESM1 realizations capture the seasonal cycle well, 

especially the increase in average precipitation from fall to winter and the decrease in average 

precipitation from spring into summer. It is important to note, however, that CESM1 simulates 
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too much precipitation over the Upper region in late winter and early spring and too little                 

precipitation over the Lower region during the core of the rainy season.             

We further examine the suitability of CESM1        in representing Amu Darya hydroclimate    

by comparing box plots of monthly precipitation, 2-m air temperature and 1-m soil              moisture 

with observed estimates    (Fig. 4). As noted previously, similar seasonal       cycles and spread of     

monthly precipitation are also found in the observed estimates and           CESM1 for the Uppe   r and   

Lower Amu Darya regions (   Figs. 3 and 4). The rainy season for both regions spans N           ovember-

April, though the specifics of the seasonal        cycle are different between the two. Upper region        

precipitation peaks in February   -April  while Lower region precipitation is more evenly        

distributed across all    months of the rainy season.      CESM1 i s wetter over the Upper region       during  

spring  and slightly drier over the Lower region when compared with observed estimates           . 

Monthly precipitation variability is large for both the Upper and Lower Amu Darya regions in               

the observed estimates and     CESM1, as demonstrated by the large spread in possible          

precipitation outcomes relative to the median, indicating a propensity for          similar magnitudes of    

wet and dry extremes.     

 Likewise, similar 2-m temperature variability and seasonal        cycles are found in the      

observed estimates and    CESM1 realizations for the Upper and Lower Amu Darya regions (         Fig. 

4). Temperatures over both regions reach minimums during January and maximums during July,              

though the Upper region is colder during all         months because of elevation. There are some        

biases in CESM’  s representation of 2-m temperature for both regions. Over the Upper region,             

there is a seasonality to the bias, as the model          is colder during the cold season and warmer         
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during the warm season. Over the Lower region, the model           is biased warm during the warm       

season.  

 Furthermore, aspects  of 1-m soil   moisture behavior in observed estimates and       CESM1  

are similar over both Upper and Lower Amu Darya regions, particularly their seasonal             cycles  

(Fig. 4). Though this provides another line of evidence that CESM        1 can simulate    many aspects of    

Amu Darya watershed   hydroclimate, it should be noted that there is a disparity between the          

values of CESM1 and CLM2-derived observed estim      ate of 1-m soil     moisture. It’ s not entirely    

clear how to interpret these differences, or whether these differences are meaningful, since the              

CLM2 simulation uses a predecessor, not the same, land surface model         as CESM 1 and the    

precipitation used to force the CLM2 simulation lack much in situ data after 2000 (Hoell               et al.  

2015b; Hoell   et al. 2017a).   

 CESM1 also reasonably captures annual      average  observed precipitation estimates   

spatially across the topographically diverse region (Fig. 1b), as similar patterns and magnitudes              

of mean annual    precipitation over the Amu Darya watershed are found (       Fig. 5). The greatest   

precipitation falls in the Upper Amu Darya region collocated with the Hindu K           ush Mountains in    

Afghanistan and the Pamir Mountains in Tajikistan. It must be noted that precipitation totals            

are about 20% larger in the earth system model         than in the observed estimates over these        

elevated areas. Comparably lower annual      precipitation is found in the Lower Amu Darya region,         

with similar magnitudes and patterns between       CESM1 and observations.    

 Perhaps most importantly, CESM1 appears to capture a re      alistic relationship between    

Amu Darya precipitation and EN   SO during the region’   s wintertime rainy season. This is a       

15 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

necessary characteristic of an earth system model        used to diagnose weather and climate in the         

Amu Darya watershed, given the known sensitiv     ity of Central    and Southwest Asia to El    Niño  and  

La Niña  events. Like Hoell    et al. (2017a), a realistic precipitation response to EN      SO simulated by    

CESM1 is demonstrated by comparing 30-year end point correlations of the           Niño3.4 index and    

precipitation betwe en  the 40 CES  M1 realizations (Fig.    6, gray l  ines) and the obse   rved e stimates  

(Fig. 6, pink line) during November-April. F or cor relations endi ng after 1970,    the 30-ye ar pe riod  

in which observations in the regions increase (Fig. 2), the observed estimates             fall  within the   

spread of the 40 CESM1 ensemble members. It is important to note, however, that the 30            -year  

correlations based on observed estimates falls on the low end of the CESM1 realizations before                

2000. If the observed precipitation estimates are to be trusted, then these correlations may               

suggest that the Amu Darya sensitivity to EN    SO may be marginally too strong in CESM1.         

Moreover, since observed estimates are analogous to a single realization of a climate model,             

we highlight  that the correlations based on observed estimates       (Fig. 6, pink line) display similar   

properties as a single trace of CESM1 (Fig. 6, orange line) in terms of decadal               fluctuations,  

further suggesting the realism of the model.        

Based on the comparison of key hydroclimatic variables simulated by CESM1 with             

observed estimates   (Figs. 3-5) and CESM1’  s appar ently ability to capture a realistic EN     SO  

response (Fig.  6),  we employ the    40-member  ensemble of  CESM1 simulations to diagnose     

drought over the Upper and Lower Amu Darya water      shed. While Amu Darya drought   

characteristics would be subject to possible biases       of  CESM1, we argue that a large    ensemble 

based on this earth system model       is the best tool    available to perform such a study    , given the    

inability of most CMIP5 models to realistically simulate key climatic aspects in this region              (Fig. 
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329 3). Furthermore, using a large ensemble of CESM1 ensures that internal           climate variability in    

the model   may be sampled without confusing it with differences in model         architecture (e.g.   

Tebaldi  et al. 2011, K  ay et al. 2015).    

 

3.3  Defining Drought  

Given the importance of widespread crop production over the Upper and Lower Amu              

Darya regions, we focus on agricultural      drought, defined by the World Meteorological       

Organization (1975) as “the degree to which growing plants have been adversely affected by               an  

abnormal  moisture deficiency.”   Our definition of an agricultural      drought-related moisture   

deficiency is based on 1    -m soil   moisture percentile ranks from the CESM simulations      . Our  

definition follows K  eyantash and Dracup (2002) who found that agricultural drought is best         

estimated by soil    moisture computed in numerical     models that consider a full    water balance.    

Droughts are identified separately     in CESM1 for the Upper and Lower Amu Darya        

regions.  Drought for both regions occur when regionally averaged 1-m soil moi         sture falls below    

the 20th percentile for 3 months or more and ends when soil             moisture exceeds the 30th     

percentile. This drought definition resembles Mo (2011) and Svoboda (2002), the latter of            

which serves as the foundation for the U.S. Drought Monitor        1. The definition of drought is      

illustrated in Fig. 7     using 1-m soil   moisture from the Lower Amu Darya in a single        CESM1  

realization. In this example, drought onset occurs in March 1982 and drought demise occurs in             

 
1  https://droughtmonitor.unl.edu/AboutUSDM/WhatIsTheUSDM.aspx  
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December 1982. There are 1200 drought events in the Upper        and 851 drought events in the      

Lower Amu Darya regions in the 4000 simulated CESM years.          

Monthly 1-m soil    moisture, precipitation , 2-m temperature and SST variations are       

displayed as percentile ranks, as is common in the dissemination of seasonal             forecasts from   

sources that include the World Meteorological      Organization Global   Producing Centres   

(https://www.wmolc.org/). A percentile rank for a given month is calculated against all           like  

months in the entire ensemble of       CESM1. For example, the perce    ntile r ank for any given Mar    ch  

is calculated against all    4000 Marchs (the product of 40 realizations each 100 years in length).            

Conditions are above or below average when they         rank in the upper and lower thirds of the          

record.  

 

4. Results  

4.1  Drought Characteristics and Variability    

The behavior of 1-m soil      moisture in each of the      CESM1 realizations (Fig. 8   ) highlights  

the potential variabil  ity of the region’   s hydroclimate   and emphasizes that agricultural    droughts  

with a variety of characteristics are possible       (Fig. 9).  Given the differences in 1    -m soil   moisture  

variability among the    40  realizations,  one  could  gain quite different perceptions of Amu Darya       

watershed  drought, since  each of the realizations is equally likely to occur. This also applies to              

the interpretation of a   n observed time series since     that time series is analogous to a single       

model  realization. In support of these points, behaviors of 1-m soil          moisture are illustrated    

using the Lower Amu Darya region      in Fig. 8. Similar features and the interpretation of those         

18 

https://www.wmolc.org


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

features are gleaned from Upper Amu Darya region, which is not shown here in the interest              of 

brevity.  

Two examples of how 1-m soil       moisture can vary in time      in the   Lower  Amu Darya  region  

are highlighted   by  pink  and orange traces    in Fig. 8.  These two realizations    of  CESM1  were 

chosen because they have the      greatest and   fewest  number of years in drought of the 40         

simulations and they demonstrate a variety of 1-m soil         moisture variability across time scales    . 

The  pink  trace stands out as having high 1-     m soil  moisture per centiles throughout much of the     

100-year period . Extended pluvial   periods prevail,   most notably  during  the 1920s, the 15-year     

period beginning in 1935, the 1960s and late 1990s.          The post-2005 period was the driest time      

for the   pink  trace, as several    one-year droughts emerged and quickly decayed. By contr       ast, the   

orange trace stands out as having low 1-m soil         moisture percentiles throughout much of the      

100-year period. Extended drought periods prevail,      most notably  during  the 1930s, early 1940s,     

early 1960s and the post-    2000 period.  The  orange trace was not without pluvial     periods, 

however,  as the late 1950s, early 1960s and early 1990s were a wet time in this realization.               

Another key feature of 1-m soil       moisture  in the Lower Amu Darya region is the lack of         

long-term trend in the     CESM1  ensemble average  (Fig. 8, black line), which suggests that      

anthropogenic influences   does  not force aridification   or  wetting of the Amu Darya watershed      in 

the earth system model     for 1920-2019. The same result is found      in Upper Amu Darya region.    

The average 1-m soil     moisture across all    simulations mutes the transient variability in each       

realization, thereby isolating the common feature among the simulations, which is the change              

in atmospheric composition and aerosols based       on  the CMIP5 protocol    that is meant to   

replicate  human influences.   This result should not be interpreted as anthropogenic influences       
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cannot affect aspects of Amu Darya hydroclimate, but if there are effects, they are not manifest 

in terms of changes in 1-m soil moisture in this ensemble of simulations. 

Given the differences in 1-m soil moisture variability between each of the 40 CESM1 

realizations (Fig. 8), we explore the possibilities in agricultural drought prevalence during 100-

year periods in the Amu Darya watershed (Fig. 9a). We find that both the Upper and Lower 

regions demonstrate similarly large possibilities in the prevalence of drought in 100-year 

periods, ranging from just a couple of years to as many as four decades . The large spread in 

possible drought prevalence suggests potential pitfalls in anticipating drought prevalence at 

future time horizons. Though not likely outcomes, droughts can prevail for as few as 8 years or 

as many as 40 years in a 100-year period over the Lower Amu Darya. Likewise, droughts can 

prevail for a few as 9 years or as many as 36 years in a 100-year period over the Upper Amu 

Darya. While the unlikely tail values paint an extremely variable picture of drought prevalence 

over the Amu Darya Watershed, there is still appreciable spread in the more likely outcomes. 

The interquartile range of drought prevalence in 100-year periods for the Upper and Lower 

regions spans approximately 18-27 years, a 9-year range that is about 40% of the median value 

of 22 years. 

We also probe the likelihood of drought length based on the 1200 and 851 droughts in 

the Amu Darya watershed, respectively (Fig. 9b). There is a clear preference for short droughts 

over the region, as 50% of droughts in both the Upper and Lower regions persist for less than 

six and nine months, respectively. Continuing this preference, 75% of droughts in the Upper 

and Lower regions persist for 12 months and 14 months, respectively. These results suggest 

that droughts are rather frequent in the region and most are ameliorated in the rainy season 
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following  drought onset.  Despite th is preference for  droughts lasti ng a cal endar year or less   , 

CESM1 indicates that Amu Darya    droughts in the upper     quintile  of the distribution can last for      

upwards of two years, as the top quintile of droughts in the Upper and Lower regions persist for                  

1.5 and 2 year  s, respectively . Most strikingly , the maximum drought length in the Upper and        

Lower regions  in the earth system model      simulations is 5 and     10 years, respectively .  

 

4.2  Drought Seasonality,  Precursors, and Potential Predictability     

 The  occurrence  of drought onset  in  the Upper and Lower Amu Darya regions, based        on 

the median and interdecile range of       occurrence  from  the 40   CESM1 re alizations, demonstr ates  

a distinct seasonality and a notable spread around the central          value  (Fig. 10). The seasonality   of 

drought onset occurrence  coincides with the precipitation seasonal      cycle,  but with  some  

notable differences, and can vary greatly from one         100-year realization of the earth system       

model  to the next. The variability      among the realizations, obtained via the interdecile range,        

indicates that a single 100-year time series may not accurate      ly  reflect the  most likely  

seasonality of drought onset   occurrence.  

In the Upper Amu Darya, drought onset      occurrence  is largest during the beginning of the       

rainy season, in N   ovember and December, and during the end of the rainy season, in March-            

May (Fig.   10a). While January and February make up the midst of the rainy season of the Upper                

region, the   occurrence  of onset during these months is about half as during the core months            

and is on par with the       occurrence  of drought onset during the June   -October dry season. In the      

Lower Amu Darya, the     occurrence  of drought onset is approximately the same across all        
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months of the November-April rainy season, though it should be noted that the occurrence is 

higher during December than the other months (Fig. 10c). The occurrence of drought onset 

during the May-October dry season is rather low and is approximately a third of the occurrence 

as during the rainy season. 

Likewise, the occurrence of drought demise in the Upper and Lower Amu Darya regions 

demonstrates a distinct seasonality that coincides with the precipitation seasonal cycle and a 

notable spread around the central value (Fig. 10b,d). In the Upper Amu Darya, drought demise 

occurrence is bimodal, with peaks during the beginning of the rainy season (October-

December) and the end of the rainy season (March-April). While January makes up the midst of 

the rainy season in the Upper region, the occurrence of drought demise is less than half as in 

fall and spring and is on par with some summertime months. In the Lower Amu Darya, the 

occurrence of drought onset is approximately the same across all months of the November-

April rainy season, with a slight peak in November and December. The occurrence of drought 

demise during summer is very low over the Lower Amu Darya, as indicated by a median value of 

zero for June-September, though it is possible since the interdecile range peaks at 

approximately 1%. 

To gain a better understanding of the conditions that precede drought onset over the 

Amu Darya watershed, we explore the likelihood of above and below average 1-m soil 

moisture, precipitation and 2-m temperature in the CESM simulations as a function of onset 

month and lead time (Fig. 11). We find that the drought onset precursors in the Upper and 

Lower Amu Darya regions, and the lead times over which these precursors occur, are similar 

and vary according to the seasonal cycle. Droughts that begin during October-December are 
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related to high likelihoods of below average precipitation during the onset month and the 

month prior to onset. This suggests that droughts beginning early in the rainy season may 

materialize quicker than the other times of the year. Surprisingly, the Upper and Lower regions 

diverge in terms of 2-m temperatures, as the Upper and Lower regions are related to 40% 

probabilities of above and below average temperatures, respectively. Droughts the begin 

during January-April are related to below average precipitation for up to three months prior to 

drought onset, suggesting that drought onset during the latter part of the rainy season is a 

comparably slow process. Warm temperatures accompany drought onset over the Upper 

region during the month of onset and the month prior during January-April while warm 

temperatures accompany onset over the Lower region during March-May. Drought onset 

during the warm and dry season, nominally May-October, is related to different conditions than 

during the cool wet season. Onset during the warm season is related to high probabilities of 

below average soil moisture in the five months leading up to drought, below average 

precipitation, and warm temperatures during the month of onset. These conditions suggest 

that warm season drought onset is not primarily caused by a failure of rains, but rather 

antecedent soil moisture conditions and warm temperatures. 

Conditions related to drought demise are less complex than those related to drought 

onset over the Amu Darya watershed in CESM. Drought demise requires up to just two months 

of above average precipitation over both regions of the watershed and is not consistently 

related to above or below average 2-m temperatures (Fig. 12). During the November-April rainy 

season, drought demise in both regions is related to a greater than 40% probability that 

precipitation is above average during the month of demise and the month preceding demise. 
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For the Upper region, there is a slightly elevated probability of below average temperatures              

during the beginning of the rainy season, but a slightly elevated probability of above average              

temperatures during the end of the rainy season. For the           Lower region,  temperatures are not   

consistently above or below average      across the rainy season when drought ends     .  

 While infrequent, drought demise can occur during the May       -October dry season    (Fig. 

10) despite the   climatologically meager pr  ecipitation that falls during this time of year (Fig       s. 2-

3). Two interesting aspects of dry season drought demise over both Amu Darya regions are a             

high likelihood that soil    moisture remains below average and demise is only related to a 40%            

probability of above average precipitation during the month of demise           (Fig. 12). Drought ends  

by our definition when soil      moisture exceeds the 30th percentile, so it is possible to endure           

below average soil    moisture, defined at less than the 33rd percentile      , after drought demise.    

This is more  prominent over the Lower region than the Upper region, but re        gardless, it calls   

into question whether a drought can truly end during a dry season.          

 Since ENSO is  a primary driver of rainy season precipitation over the Amu Darya          

watershed, we explore whether drought phase changes are potential       ly  predictable via  

knowledge of EN  SO state. Indeed, drought phase changes are potentially predictable         according  

to CESM1, as drought onset in the Amu Darya watershed is related to statistically            significant 

increases and decreases in the      occurrence  of La Niña  and  El Niño, respectively   (Fig. 13).  

Moreover, the prospects for     onset predictability  are bolstered by the preferred seasonality       in  

the relationship between drought onset and EN    SO  occurrence  that spans the N  ovember-April  

rainy season over both Upper and Lower regions. In the Upper region, drought onset is related               

to statistically significant decreases in the      occurrence  of El Niño  during November-April, 
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consistent with the relationship between El      Niño  and above average precipitation over the       

region.  By contrast, drought onset over the Upper region is related to statistically significant           

increases in the    occurrence  of La  Niña  during the same extended cold season, which is again          

consistent with the relationship between La     Niña  and below average precipitation over the       

region.  Drought onset in the Lower region is similarly related to EN        SO, insofar as onset is     

related to a decreas  ed  occurrence  of El Niño  and an increased    occurrence  of La  Niña  during the   

November-April  rainy season.   

 Drought demise in the Amu Darya watershed is related to a more complicated           

seasonality  of  statistically  significant changes in the    occurrence  of El Niño and La   Niña  (Fig. 14)  

than drought onset ( Fig. 13)  in CESM1. Nonetheless,  the earth system model     simulations  

suggest that drought demise  is  potentially predictable via knowledge of the EN     SO state ;  

however, the nuances in seasonality must be       considered if these relationships are to b      e applied  

successfully  to prediction . The less regular seasonality in the relationship between drought         

demise and EN  SO  occurrence, when compared to onset, is perhaps attributable to the demise            

and onset time scale  s. In the earth system model, it takes up to two months of above average              

precipitation for drought demise (Fig. 12) while it takes up to four months of below average               

precipitation for drought onset (Fig. 11). Two months of above average precipitation is easier to              

attain, through processes internal     to the atmosphere  , than four months of below average        

precipitation without systematic precipitation forcing from phenomena like EN      SO. Further   

research into the relationship between drought demise and EN       SO  is needed.   

Over the Upper region, drought demise is related to statistically significant increases in            

the  occurrence  of El Niño  during N ovember and December, no change in the        occurrence  of El 
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Niño during January and February, and significant decreases in the occurrence of El Niño during 

March-June (Fig. 14). Drought demise over the Upper region is related to significant decreases 

in La Niña during November-February and significant increases in La Niña in August and 

September, though drought demise during these months is rather unlikely (Fig. 10). Over the 

Lower region, drought demise is related to increases in the occurrence of El Niño during 

October-February and decreases in the occurrence of La Niña during November-January and 

April. 

Given the links between decadal variations in Pacific SST (e.g. PDO) and Central and 

Southwest Asia precipitation (Hoell et al. 2015b; Rana et al. 2019), we conclude the results 

section with an assessment of whether 10-year spans in which Amu Darya drought is most 

prevalent are related to an elevated likelihood of below average eastern Pacific SST (Fig. 15). 

Indeed, CESM1 indicates that decades in which Upper Amu Darya drought is most prevalent are 

related to a 40-50% likelihood of an SST pattern that is like persistent La Niña-like SST or the 

cool phase of the PDO (Figs. 15a,b). However, it is important to note that according to CESM1 

the most prevalent drought decades are only related to a La Niña-like SST pattern upwards of 

50% of the time, thereby suggesting that the majority of prevalent drought periods are related 

to variability that cannot be explained by persistent SST anomalies. While prevalent Upper Amu 

Darya drought is related to Pacific SST, the same is not found for the Lower Amu Darya region 

(Figs. 15c,d). 

5. Summary and Discussion 
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 We illustrated characteristics, precursors, and potential predictability of agricultural          

drought  in the Amu Darya watershed that covers the       food insecure  Central  Asia Republics of   

Afghanistan, Tajikistan, Turkmenistan, and Uzbekistan    . Drought, defined  by 1-m soil   moisture  

deficits lasting three or more months,       was diagnosed   in  40  realizations of a fully coupled earth      

system model   spanning 1920- 2019 under  observed  radiative forcing before 2005 and RCP8.5       

forcing  thereafter. The  model  realizations wer e based on    the CESM l arge ense mble ve rsion 1 , 

which we   found realistically  reproduces the variability and seasonal      cycles of key hydroclimatic     

variables estimated by widely used gridded datasets of observed conditions. CESM1 also             

captures a realistic relationship between Amu Darya weather and climate and EN         SO during the    

region’s wintertime rainy season. The 4000 simulated years from          CESM1 provides a large    

sample from which to probe drought behavior than is possible using           the existent short and    

spatially incomplete observed records over Central       Asia.   

Motivated by the variability of Amu Darya hydroclimate based on traces of 1-           m soil  

moisture in each of the earth system model         realizations, we explored  characteristics of drought   

over the region: the prevalence of drought in 100       -year periods and the length of individual        

droughts. In terms of drought prevalence, the Upper and Lower regions demonstrated similarly             

large possibilities, ranging from just eight years to as many as four decades in drought for every               

100 years . In terms of drought length,     there is a clear preference for short droughts over the         

region, as 50% of the droughts in both the Upper and Lower regions persist for less than six and                  

nine months, respectively. However, it must be noted that despite this preference for short           

droughts, long droughts are a possibility. 5% of droughts last for 2 and 2.75 years over the                

Upper and Lower regions, respectively, while the longest droughts can last upwards of 8 years.              
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 We next explored characteristics of drought onset and demise over the Upper and           

Lower Amu Darya regions, including seasonality, precursor conditions like precipitation and 2          -m 

temperature, and potential    predictability based on EN   SO phase. There is a distinct seasonality      

to drought onset and demise    in the Amu Darya water   shed. The  seasonality of onset and demise     

does not entirely follow the precipitation seasonal       cycle, and consistent with the hydroclimatic      

variability of the region, the seasonality can vary from one 100-year period to the next.                The  

occurrence  of drought onset in the Upper Amu Darya is greatest during N        ovember and   

December, the beginning of the rainy season, and March-May, the end of the rainy season.                The  

occurrence  of drought onset in the Lower Amu Darya is similarly high across all            months of the    

November-April  rainy season, with a sl   ightly highe r  occurrence  during December than the other      

months. T he  occurrence  of drought onset during summertime dr   y se ason is low for both Upper       

and Lower   regions  but  is nonetheless possible .  The  occurrence  of drought demise in the Upper      

Amu Darya is displays a bimodal     seasonality, with symmetrical    peaks during the beginning of      

the rainy season (October   -December) and the end of the rainy season (March-May). The           

occurrence  of drought demise in the Lower Amu Darya is approximately the same across all             

months of the rainy season, with a slight peak in N        ovember and December. The     occurrence  of 

drought demise is low during summertime over both Upper and Lower Amu Darya, given that              

precipitation during the dry season is generally unable to ameliorate drought.            

 Conditions related to drought onset, and the lead times over which these conditions             

occur, vary according to the seasonal       cycle  and are similar for the Upper and Lower Amu Darya          

regions. Droughts beginning in the early wintertime rainy season       , October-December,  

materialize quicker than other times of the year, as drought onset is related to increased              
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likelihoods of below average precipitation during the month of onset and the month prior.              

Droughts beginning during the core of the rainy season, January         -April, materialize   more slowly,  

as increased likelihoods of below average precipitation are found up to three months prior to                

onset. Droughts beginning in the warm and dry season are related to different conditions that              

during the cool    wet season. Onset during   this time is not related to failed rains, but rather         

antecedent soil  moisture conditions and warm 2-    m temperatures.  

 Conditions related to drought demise are comparably simple, as demise during the cool             

wet season is related to just two months of above average precipitation. While infrequent, our              

definition of drought allows for drought demise during the summertime dry season, and we             

find that demise during this time of year may not lead to drought recovery. Drought demise             

during this time of year      is related to high likelihoods of below average soil          moisture, which sits    

at the cusp for the threshold of drought demise. A question raised here is whether drought can               

truly end during a dry season.      

 Drought onset and demise are potentially predictable via knowledge of the EN        SO state,   

given that drought phase changes are related to statistically significant changes in the           

occurrence  of El Niño  and La  Niña. However, for knowledge of the EN     SO state to be     applied  

successfully to prediction,    one must consider the    seasonality in the    relationships between EN  SO  

and drought phase changes. Drought onset is related to significant changes in EN        SO  occurrence  

during the entire N   ovember-April  rainy season over both Upper and Lower regions, where          

onset is related to increased (decreased)      occurrence  of La  Niña  (El Niño). By contrast, there a     

complex seasonality to the relationship between drought demise and significant changes in           

ENSO occurrence. For the Upper region, drought demise is related to significant increases in the            
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occurrence  of El Niño  during N ovember and December and decreases in the        occurrence  of El 

Niño  during March-June. For the Lower region, drought demise is related to increases in the              

occurrence  of El Niño  during October -February. Given the complex seasonality of the        

relationships between drought demise and La     Niña, the results suggest that onset is more      

predictable  than demise   based on EN  SO phase .  

 Here we focus on agricultural      drought for the practical    purpose of building a predictive     

understanding that may be applied to      drought  early warning over a region in which rainfed and         

irrigated agriculture play a vital     role in socioeconomic stability and food security. However,         our  

current study does not address other facets of drought, principally hydrological          drought, taken   

here as the availability of water in the Amu Darya river         . Amu Darya river flows are critical       to  

water security over the region, as water from the river is used for consumption, irrigating                

agriculture, and replenishing the     diminishing  Aral  Sea (e.g. Micklin 1988; Micklin 2007)     . Like  

analyses of agricultural    drought in the   Amu Darya watershed, analyses of hydrological      drought 

are lacking, with just a handful     of studies having been performed (     e.g., Barlow et al. 2008; Apel     

et al. 2018; Dixon and Wilby 2019). Given that data scarcity over Central           Asia in space and time     

inhibits robust studies of all     kinds, it is important that the community creatively and responsibly        

create  new data sources, lik  e Zhou et al.    (2018), and appropriately use simulations from models        

that are deemed fit for purpose     to develop a more holistic understanding of drought over the         

region.  
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 Model  Institution 
 INM-CM4     Institute for Numerical Mathematics 

 BCC-CSM1.1    Beijing Climate Center 
BCC-CSM1.1(m)     Beijing Climate Center 

  NorESM1-M    Norwegian Climate Centre 
 NorESM1-ME    Norwegian Climate Centre 

 MRI-CGCM3    Meteorological Research Institute 
 MPI-ESM-LR     Max Planck Institute for Meteorology  
 MPI-ESM-MR     Max Planck Institute for Meteorology  

 MPI-ESM-P     Max Planck Institute for Meteorology  

 MIROC5 
         Atmosphere and Ocean Research Institute (The University of Tokyo), 

        National Institute for Environmental Studies, and Japan Agency for  
   Marine-Earth Science and Technology  

 MIROC-ESM 
         Atmosphere and Ocean Research Institute (The University of Tokyo), 

        National Institute for Environmental Studies, and Japan Agency for  
   Marine-Earth Science and Technology  

 MIROC-ESM-CHEM 
         Atmosphere and Ocean Research Institute (The University of Tokyo), 

        National Institute for Environmental Studies, and Japan Agency for  
   Marine-Earth Science and Technology  

 IPSL-CM5A-LR   Institut Pierre-Simon Laplace 
 IPSL-CM5A-MR   Institut Pierre-Simon Laplace 

 IPSL-CM5B-LR   Institut Pierre-Simon Laplace 
  HadGEM2-A    Met Office Hadley Centre 

 HadGEM2-CC    Met Office Hadley Centre 
 HadGEM2-ES    Met Office Hadley Centre 

 GISS-E2-H       NASA Goddard Institute for Space Studies 
 GISS-E2-R       NASA Goddard Institute for Space Studies 
 GFDL-CM3    Geophysical Fluid Dynamics Laboratory  

 GFDL-ESM2G    Geophysical Fluid Dynamics Laboratory  
 GFDL-ESM2M    Geophysical Fluid Dynamics Laboratory  

 FIO-ESM      The First Institute of Oceanography, SOA, China  

FGOALS-g2          LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences;  
   and CESS, Tsinghua University 

 FGOALS-s2          LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 
 CanESM2       Canadian Centre for Climate Modelling and Analysis  

 CSIRO-Mk3.6.0 
      Commonwealth Scientific and Industrial Research Organisation in  

        collaboration with the Queensland Climate Change Centre of 
 Excellence 

 CNRM-CM5          Centre National de Recherches Meteorologiques / Centre Europeen de 
      Recherche et Formation Avancees en Calcul Scientifique 

817 Table 1:   The  37 CMIP5 models considered.     
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CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 

CESM1(CAM5) National Science Foundation, Department of Energy, National Center 
for Atmospheric Research 

CESM1(BGC) National Science Foundation, Department of Energy, National Center 
for Atmospheric Research 

CCSM4 National Center for Atmospheric Research 

BNU-ESM College of Global Change and Earth System Science, Beijing Normal 
University 

ACCESS1.0 CSIRO (Commonwealth Scientific and Industrial Research Organisation, 
Australia), and BOM (Bureau of Meteorology, Australia) 

ACCESS1.3 CSIRO (Commonwealth Scientific and Industrial Research Organisation, 
Australia), and BOM (Bureau of Meteorology, Australia) 
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821 Figure Captions   

Figure 1:  (a) The four countries in pink       – Tajikistan,   Afghanistan, Uzbekistan and Turkmenistan –      

that contain most of the land area in the Amu Darya watershed. (b) Elevation above            

mean sea level   (km) and representation of the Amu Darya watershed. The perimeter of           

the heavy polygon is the HydroBASIN     S  Level  3 r epresentation of the Amu Darya     

watershed while the light polygons are the HydroBASIN      S  Level  4 representation of the     

sub-basins that make up the Amu Darya. The heavy pink and blue polygons represent             

the Upper and Lower Amu Darya regions, respectively.        

Figure 2: (a) Average count of stations reporting per grid point in the GPCC precipitation dataset              

for 1920-2016 in   the Uppe r (pink) and Lowe   r (or ange) A mu  Darya regions. N umber of   

stations reporting in the GPCC precipitation dataset in (b) January 1950 and (c) January              

1980.  

Figure  3: 1920-2019 monthly average precipitation for a single realization of 37 CMIP5 models            

shown in Table 1 (gray), 40 CESM realizations (light pink), the average of the 40 CESM              

realizations (dark pink) and GPCC (blue) for the (a) Upper and (b) Lower Amu Darya               

regions. CMIP5 models are not individually identified for clarity       .  

Figure  4: Boxplots of monthly (top row) precipitation, (center        row)  2-m air temperature and     

(bottom row) 1-m soil     moisture for the (left column) Upper and (right       column) Lower  

Amu Darya regions in 40 CESM realizations (pink) and observed estimates (orange         ). 

Precipitation and 2-m temperature are based on data from 1920-2019 and 1-          m soil  

moisture draws on data from 1979-2018. For the boxplots, whiskers denote the            
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interdecile range, the boxes the interquartile range, and the horizonal           line inside the    

box the median.    

Figure  5: Annual   average precipitation (mm) for (a) GPCC and (b) CESM. The pink and orange              

polygons represent the Upper and Lower Amu Darya regions, respectively       .  

Figure  6: For the (a) Upper and (b) Lower Amu Darya regions, 30-year end point correlations              

between precipitation and the     Niño3.4 index. Plotted are the observed estimate based         

on GPCC  (pink line), 40 CESM realizations (gray lines) and the CESM realization (or        ange)  

that is most like the observed estimate, the correlation with the lowest root mean           

square difference   from the observed estimate     since 1970.  

Figure  7: Time series of 1-m soil   moisture percentiles in the Lower Amu Darya region from the          

second ensemble member of CESM, as an illustration of the drought definition. Drought            

begins in March 1982 and ends in December 1983.          

Figure  8: Time series of Lower Amu Darya 1-m soil        moisture percentiles from the CESM     

simulations. All   40 ensemble members are shown in gray, ensemble member 37           

(wettest) is shown in     pink, ensemble member 39 (driest) is shown in orange and the            

ensemble average is shown in black     .  

Figure  9: Box plots of (a) drought prevalence in years and (b) drought length in years bas            ed  on  

the 40 CESM realizations in the Upper and Lower Amu Darya regions.           

Figure  10: Monthly  occurrence  of drought (left column) onset and (right column) demise in the        

(top row) Upper and (bottom row) Lower Amu Darya regions. The bars represent the             
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median  occurrence  and the whiskers the interdecile range. The median and the deciles            

are obtained from the drought     occurrence  across each of the 40 100-year CESM       

realizations.  

Figure  11: The probability of above or below average (left column) 1        -m soil   moisture, (center   

column) precipitation and (right column) 2-m air temperature for the (top row) Upper             

and (bottom row) Lower Amu Darya regions related to drought onset in the CESM           

realizations. 0 months prior indicates the month of drought onset and 5 months prior             

indicates five months prior to drought onset. The most likely category is plotted when it             

exceeds  40%.  

Figure  12: The probability of above or below average (left column) 1        -m soil   moisture, (center   

column) precipitation and (right column) 2-m air temperature for the (top row) Upper             

and (bottom row) Lower Amu Darya regions related to drought demise in the CESM             

realizations. 0 months prior indicates the month of drought demise and 5 months prior              

indicates five months prior to drought demise. The most likely category is plotted when             

it exceeds  40%.  

Figure  13: Occurrence  of El   Niño (left column) and (right column) La N    iña in the (top    row) U pper  

and (bottom row) Lower Amu Darya regions related to drought onset in the CESM           

realizations. Red (blue) bars indicate statistically significant increases (decreases) in          

occurrence  at p<0.05 based on resampling. The gray shading indicates the range of            

values at p>0.05. El    Niño and La N  iña occur when the N   iño3.4 index exceeds 0.5°C and      -
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0.5°C, respectively. The Niño3.4 index is defined as the area averaged SST anomaly over 

the region 5°S-5°N, 170°W-120°W. 

Figure 14: Occurrence of El Niño (left column) and (right column) La Niña in the (top row) Upper 

and (bottom row) Lower Amu Darya regions related to drought demise in the CESM 

realizations. Red (blue) bars indicate statistically significant increases (decreases) in 

occurrence at p<0.05 based on resampling. The gray shading indicates the range of 

values at p>0.05. El Niño and La Niña occur when the Niño3.4 index exceeds 0.5°C and -

0.5°C, respectively. The Niño3.4 index is defined as the area averaged SST anomaly over 

the region 5°S-5°N, 170°W-120°W. 

Figure 15: The probability of above or below average (left column) 1-m soil moisture and (right 

column) SST for the (top row) Upper and (bottom row) Lower Amu Darya regions during 

10-year periods in which drought was most prevalent in the CESM realizations. The most 

likely category is plotted when it exceeds 40%. Most prevalent drought decades are 

defined as the top decile of drought occurrence in non-overlapping 120-month periods. 
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Figure 1: (a) The four countries in pink – Tajikistan , Afghanistan , Uzbekistan and 
Turkmenistan – that contain most of the land area in the Amu Darya watershed. (b) Elevation 
above mean sea level (km) and representation of the Amu Darya watershed. The perimeter 
of the heavy polygon is the HydroBASINS Level 3 representation of the Amu Darya watershed 
while the light polygons are the HydroBASINS Level 4 representation of the sub-basins that 
make up the Amu Darya. The heavy pink and blue polygons represent the Upper and Lower 
Amu Darya regions, respectively. 
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Figure 2: (a) Average count of stations reporting per grid point in the GPCC precipitation dataset 
for 1920-2016 in the Upper (pink) and Lower (orange) Amu Darya regions. Number of stations 
reporting in the GPCC precipitation dataset in (b) January 1950 and (c) January 1980. 
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Figure 3: 1920-2019 monthly average precipitation for a single realization of 37 CMIP5 
models shown in Table 1 (gray), 40 CESM realizations (light pink), the average of the 40 CESM 
realizations (dark pink) and GPCC (blue) for the (a) Upper and (b) Lower Amu Darya regions. 
CMIP5 models are not individually identified for clarity. 
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911 

Figure 4: Boxplots of monthly (top row) precipitation, (center row) 2-m air temperature and 
(bottom row) 1-m soil moisture for the (left column) Upper and (right column) Lower Amu 
Darya regions in 40 CESM realizations (pink) and observed estimates (orange). Precipitation 
and 2-m temperature are based on data from 1920-2019 and 1-m soil moisture draws on 
data from 1979-2018. For the boxplots, whiskers denote the interdecile range, the boxes the 
interquartile range, and the horizonal line inside the box the median. 
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Figure 5: Annual average precipitation (mm) for (a) GPCC and (b) CESM. The pink and orange 
polygons represent the Upper and Lower Amu Darya regions, respectively. 
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917 

918 

919 Figure  6: For the (a) Upper and (b) Lower Amu Darya regions, 30-year end point correlations              
between precipitation and the     Niño3.4 index. Plotted are the observed estimate based on GPCC           
(pink line), 40 CESM realizations (gray lines) and the CESM realization (orange        ) that is most like   
the observed estimate, the correlation with the lowest root mean square difference           from the   
observed estimate   since 1970.  
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Figure 7: Time series of 1-m soil moisture percentiles in the Lower Amu Darya region from 
the second ensemble member of CESM, as an illustration of the drought definition. Drought 
begins in March 1982 and ends in December 1983. 
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929 

Figure 8: Time series of Lower Amu Darya 1-m soil moisture percentiles from the CESM 
simulations. All 40 ensemble members are shown in gray, ensemble member 37 (wettest) is 
shown in pink, ensemble member 39 (driest) is shown in orange and the ensemble average is 
shown in black. 
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932 

Figure 9: Box plots of (a) drought prevalence in years and (b) drought length in years based 
on the 40 CESM realizations in the Upper and Lower Amu Darya regions. 
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936 

Figure  10: Monthly   occurrence  of drought (left column) onset and (right column) demise in       
the (top row) Upper and (bottom row) Lower Amu Darya regions. The bars represent the              
median  occurrence  and the whiskers the interdecile range. The median and the deciles are             
obtained from the drought    occurrence  across each of the 40 100-year CESM realizations.         
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939 

Figure  11: The probability of above or below average (left column) 1-         m soil  moisture, (center   
column) precipitation and (right column) 2-m air temperature for the (top row) Upper and              
(bottom row) Lower Amu Darya     regions  related to drought onset i   n the CESM realizations  . 0 
months prior indicates the month of drought onset and 5 months prior indicates             five  months  
prior to drought onset  . The most likely category is plotted when it exceeds 40%.         
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Figure  12: The probability of above or below average (left column) 1        -m soil   moisture, (center   
column) precipitation and (right column) 2-m air temperature for the (top row) Upper and              
(bottom row) Lower Amu Darya regions related to drought demise in the CESM realizations          . 0  
months prior indicates the month of drought demise and 5 months prior indicates five              
months prior to drought demise. The most likely category is plotted when it exceeds 40%.             
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946 

Figure 13: Occurrence of El Niño (left column) and (right column) La Niña in the (top row) 
Upper and (bottom row) Lower Amu Darya regions related to drought onset in the CESM 
realizations. Red (blue) bars indicate statistically significant increases (decreases) in 
occurrence at p<0.05 based on resampling. The gray shading indicates the range of values at 
p>0.05. El Niño and La Niña occur when the Niño3.4 index exceeds 0.5°C and -0.5°C, 
respectively. The Niño3.4 index is defined as the area averaged SST anomaly over the region 
5°S-5°N, 170°W-120°W. 
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Figure 14: Occurrence of El Niño (left column) and (right column) La Niña in the (top row) 
Upper and (bottom row) Lower Amu Darya regions related to drought demise in the CESM 
realizations. Red (blue) bars indicate statistically significant increases (decreases) in 
occurrence at p<0.05 based on resampling. The gray shading indicates the range of values at 
p>0.05. El Niño and La Niña occur when the Niño3.4 index exceeds 0.5°C and -0.5°C, 
respectively. The Niño3.4 index is defined as the area averaged SST anomaly over the region 
5°S-5°N, 170°W-120°W. 
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Figure  15: The probability of above or be     low average (l  eft column) 1 -m soil   moisture and   
(right column) SST for the (top row) Upper and (bottom row) Lower Amu Darya regions              
during  10-year periods in which drought was most prevalent in the CESM realizations        . The  
most likely category is plotted when it exceeds 40%. Most prevalent drought decades         are  
defined as the top     decile  of drought occurrence in non-overlapping 120-month periods     .  

953 

62 


	Characteristics, Precursors, and Potential Predictability of Amu Darya Drought in an Earth System Model Large Ensemble
	Abstract
	Introduction
	Tools
	Methods
	Results
	Summary and Discussion
	Acknowledgements
	References
	Table Captions



