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Abstract

The socioeconomic stability of the Central Asian Republics in the Amu Darya watershed
is sensitive to drought. Activities related to agriculture employ a large fraction of the population
and are responsible for at least one fifth of the gross domestic products of Afghanistan,
Tajikistan, and Turkmenistan. Toward building a predictive understanding that may be applied
to drought early warning practices, the characteristics, precursors and potential predictability
of agricultural drought in the Amu Darya watershed are examined in a large ensemble of
Community Earth System Model version 1 simulations during 1920-2019. Agricultural drought is
examined over Upper and Lower regions of the Amu Darya watershed, which have different

mean hydroclimates, and is defined by 1-m soil moisture deficits lasting three or more months.

The likelihood of drought onset and demise is phase-locked with the seasonal cycle of
precipitation of each region, but with some notable differences. For the Upper region, drought
onset and demise are three times more likely to occur during Autumn and Spring than other
seasons. For the Lower region, drought onset and demise are three times more likely to occur
during November-April than during Summer. Precipitation anomalies drive drought onset and
demise during the climatological wet periods of both regions while temperatures play a smaller
role. The probability of drought onset and demise is modulated by La Nifia and El Nifio, which
control the interannual variability of precipitation over the Central Asian Republics during their
wet seasons, indicating that the state of the El Nifio Southern Oscillation serves as a key

predictor of agricultural drought phase changes.
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1. Introduction

1.1 Motivation

Rainfed and irrigated agriculture are key to the well-being of four Central Asia Republics
in the Amu Darya watershed (Rakhmatullaev et al. 2010). Afghanistan, Tajikistan, Turkmenistan,
and Uzbekistan (Fig. 1) generate 20.5%, 21.2%, 9.3% and 28.5% of their gross domestic product,
respectively, from activities related to agriculture (The World Bank 2019a). The Central Asian
Republics are therefore exceptionally sensitive to agricultural production shocks since they are
among the world’s poorest nations (The World Bank 2019b), the agricultural sector employs a
large fraction of the population (Mirzabaev 2018), and food insecurity is already widespread

(Food and Agricultural Organization of the United Nations 2018).

Drought is a key driver of shocks in agricultural production and the socioeconomic
wellbeing of nations in the Amu Darya watershed. Drought in 2018 led to crisis levels of acute
food insecurity over most of Afghanistan (Famine Early Warning Systems Network 2018), which
was related to the displacement of hundreds of thousands of people (British Broadcasting
Company 2018; Al Jazeera 2018). Drought in 2007 and 2008 over Afghanistan led to a major
decline in wheat production (United States Department of Agriculture Foreign Agricultural
Service 2008) and was related to social instability that empowered the Taliban (Gall 2008). A
three-year drought spanning 1999-2001 over Afghanistan led to water scarcity, little crop
production and extreme hardship (Bearak 2000). While long-term droughts like 1999-2001 and
2007-2008 are arguably more harmful because the impacts span multiple years, the effects of

droughts lasting one year or less like in 2018 should not be understated. Surface water
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availability varies by as much as 30% between pluvial and drought years, which has

ramifications for both irrigated and rainfed agriculture (Pervez et al. 2014).

Motivated by the devastating effects of drought in Central Asia, we investigate the
characteristics, precursors, and potential predictability of agricultural drought in the Amu Darya
watershed. Our goal is to build a more complete understanding of drought over this region to
establish a foundation from which we can predict them with skill. This predictive understanding
in turn may be used for early warning of food and water insecurity to provide aid more

effectively to societies in need.

1.2 Background

Previous research on Central and Western Asia drought has largely focused on the
drivers of precipitation variability during the rainy season that spans November-April (see
Barlow et al. 2016 and references therein). Given our focus area, we limit our background
discussion to this extended cold season over the Amu Darya watershed, which has a smaller set
of drivers than the larger Central and Western Asia region. Key drivers relevant to Amu Darya
precipitation and the time scales over which they operate include the El Nifio-Southern
Oscillation (ENSO) on seasonal time scales and the Pacific Decadal Oscillation (PDO) on decadal

time scales.

ENSO, the leading mode of tropical interannual variability, is related to the frequency of
distinct weather types over Central Asia (Gerlitz et al. 2018) that results in cold season

precipitation anomalies over Afghanistan, Tajikistan and southern portions of Uzbekistan and
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Turkmenistan (Barlow et al. 2002; Mariotti 2007; Hoell and Funk 2013; Hoell et al. 2013; Hoell
et al. 2014a; Hoell et al. 2014b; Hoell et al. 2017a; Hoell et al. 2017b; Rana et al. 2017; Hoell et
al. 2018b; Rana et al 2017; Rana et al. 2018; Gerlitz et al. 2019). El Nifio, the warm phase of
ENSO, is on average related to above average precipitation over the region while La Nifia, the

cold phase of ENSO, is on average related to below average precipitation over the region.

Several characteristics of El Nifio and La Nifia events affect Amu Darya watershed
precipitation. First, Amu Darya precipitation is sensitive to the flavor of a given ENSO event
(Hoell et al. 2014a; Hoell et al. 2014b; Hoell et al. 2018b), where flavor refers to the longitudinal
location of the strongest tropical Pacific sea surface temperature (SST) anomalies during El Nifio
or La Nifia (e.g. Johnson 2013; Capotondi et al. 2014). Central Pacific La Nifia events are related
to a high probability of below average precipitation over the Amu Darya watershed while
eastern Pacific La Nifia events are not. Both eastern and central Pacific El Nifio events are
related to high probabilities of above average precipitation over the Amu Darya watershed.
Second, Amu Darya precipitation is sensitive to the magnitude of SST anomalies in the western
Pacific during La Nifia events (Hoell and Funk 2013; Hoell et al. 2014a). The warmest west
Pacific SSTs during La Nifia events are related to the largest negative precipitation departures.
Finally, the relationship between ENSO and Amu Darya precipitation changes in time (Hoell et
al. 2017a; Rana et al. 2018), either because of differences in SST anomalies related to ENSO,

internal atmospheric variability, or both.

SST patterns related to the PDO, the leading mode of decadal North Pacific SST
variability (e.g. Zhang et al. 1997; Manuta et al. 1997; Newman et al. 2016), have been linked to

extended cold season precipitation over the Amu Darya watershed (Hoell et al. 2015b; Rana et

5
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al. 2019). SST patterns related to the positive phase of the PDO resemble El Nifio and are
associated with above average Amu Darya watershed precipitation. SST patterns related to the
negative phase of the PDO resemble La Nifia and are associated with below average Amu Darya
watershed precipitation. Given that the SST patterns related to the PDO are a result of many
processes, which include teleconnections related to ENSO and local atmosphere-ocean
interactions over the North Pacific (Newman et al. 2016), it is unclear at this time whether the
PDO itself drives Amu Darya precipitation or whether their relationship is a symptom of

consecutive ENSO events.

A common theme among ENSO and PDO are their origins in the tropical Indian and
Pacific Ocean. While some differences exist between them, both excite tropospheric convection
and diabatic heating anomalies over the tropical Indian Ocean, Maritime Continent and west-
central Pacific Ocean, which in turn force atmospheric circulation anomalies over the Amu

Darya watershed (Barlow et al. 2002; Barlow et al. 2007; Hoell et al. 2013; Hoell et al. 2017b).

There are two known pathways through which the atmospheric circulation anomalies
reach the Amu Darya watershed. The first, and most direct pathway, is through a Gill-Matsuno
(Matsuno 1966; Gill 1980) response. In this response, baroclinic Rossby waves develop
poleward and westward of the tropical diabatic heating anomalies over the Indian and Pacific
Ocean (Barlow et al. 2002; Barlow et al. 2007; Hoell et al. 2013; Hoell et al. 2017b). The second
pathway is through stationary Rossby waves with northeastward group velocity that make their
way around the globe to the Amu Darya (Shaman and Tziperman 2005; Hoell et al. 2013;
Niranjan Kumar et al. 2016). This second pathway has only been linked to ENSO, presumably

because it requires forcing to be sustained over weeks to seasons.
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The atmospheric circulation anomalies alter the local vertical motions and flux of
moisture, which in turn modifies Amu Darya precipitation. In terms of vertical motions, the
baroclinic Rossby waves interact with the mean jet, which produces anomalous temperature
advection that is subsequently balanced by precipitation-altering anomalous vertical motions
(Barlow et al. 2002; Barlow et al. 2007; Hoell et al. 2013; Hoell et al. 2017b; Hoell et al. 2018b).
In terms of atmospheric moisture fluxes, the atmospheric circulation anomalies lead to
precipitation-altering moisture flux convergence anomalies (Hoell et al. 2017b, Cannon et al.

2017, Hoell et al. 2018b)

1.3 Outline

Previous research related to Central Asia drought has largely focused on the behavior of
precipitation during the region’s rainy season (see Barlow et al. 2016 and references therein).
Given that precipitation constitutes only part of the surface water budget, an understanding of
agricultural drought is lacking over the Amu Darya watershed. Here, we investigate agricultural
drought using variations in 1-m soil moisture (World Meteorological Organization 1975), since
soil moisture integrates the effects of supply (precipitation) and demand (potential

evapotranspiration) on the surface water balance.

Agricultural drought is examined using a 40-member ensemble of transient fully coupled
earth system model simulations during 1920-2019. The earth system model simulations are
based on the Community Earth System Model version 1 (CESM1) large ensemble from the

National Center for Atmospheric Research (Kay et al. 2015). The 4000 years of simulated
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environmental conditions provides a large sample from which to probe drought behaviors than
is possible from the existent observed record over the region that is spatially and temporally
incomplete (Fig. 2; see also Hoell et al. 2015b and Hoell et al. 2017a). The earth system model,
the estimates of observed conditions that are used to benchmark the model, and methods

employed are described in sections 2 and 3.

In section 4, we probe the characteristics, precursors, and potential predictability of
agricultural drought in the Amu Darya watershed. To better appreciate the variety of drought
characteristics possible in the watershed, we begin with a discussion on the potential variability
of the region’s hydroclimate based on traces of 1-m soil moisture in the earth system model.
The first characteristic that we examine is drought prevalence, taken here to be the amount of
time spent in drought for every 100 years. The second drought characteristic that we examine
is duration by probing he likelihood of droughts lasting more than a certain amount of time. We
then turn our attention to the behaviors of drought onset and demise and their potential
predictability by addressing the following questions. During what months are onset and demise
most likely? What conditions, in terms of precipitation and air temperature and the lead times
over which these conditions occur, are related to drought onset and demise? Are drought onset
and demise related to phases of ENSO and are therefore potentially predictable? Are prolonged

droughts related to persistent eastern Pacific SST anomalies?

2. Tools

2.1 Watersheds
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The extent of the Amu Darya watershed is based on the HydroBASINS global watershed
boundaries (Lehner and Grill 2013). HydroBASINS is constructed from the ‘Hydrological data
and maps based on Shuttle Elevation Derivatives at multiple Scales’ (HydroSHEDS; Lehner et al.
2008) on a grid resolution of 15 arc seconds. HydroBASINS diagnoses a hierarchy of watersheds
across 12 spatial scales, known as ‘levels’, that range in size from the continental scale (level 1)
to the size of a lake with an area of less than 2 km? (level 12). Level 3 defines large river basins
like the Amu Darya and level 4 defines the basins within large river basins. We therefore define

the Amu Darya watershed based on HydroBASINS levels 3 and 4.

2.2 Climate Model Simulations

Two transient coupled climate model ensembles are considered. The first is comprised
of 40 realizations of the CESM large ensemble version 1 (Kay et al. 2015). CESM1 is a
sophisticated earth system model framework that is comprised of atmosphere (CAM5; Hurrell
et al. 2013), land surface (CLM4; Lawrence et al. 2011), ocean (POP2; Smith et al. 2010) and sea
ice components (CICE4; Hunke et al. 2013) all run at a nominal 1°x1° horizontal resolution. Each
realization is forced by the same radiative forcing: historical forcing prior to 2005 based on
Lamarque et al. (2010) and representative concentration pathway 8.5 (RCP8.5) forcing is
applied thereafter based on Meinshausen et al. (2011) and Lamarque et al. (2011). While the
same external forcing is applied to all 40 CESM1 realizations, each realization follows a different
trajectory because of their initializations from slightly different atmospheric states. Differences

between the CESM1 realizations are therefore a result of only internal variability of the earth



183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

system (Kay et al. 2015). The second ensemble is comprised of a single transient realization of
37 different models listed in Table 1 that participated in the Coupled Model Intercomparison
Project Phase 5 (CMIP5; Taylor et al. 2012). The external forcing of the CMIP5 models are like
the CESM1 large ensemble. However, the architecture of each CMIP5 model are different as
well as how and each of the models handle chemistry, radiative effects, and land surface

changes.

2.3 Historical Precipitation, Temperature, and 1-m Soil Moisture Estimates

Gridded analyses of monthly precipitation, near-surface air temperature and 1-m soil
moisture are used to diagnose estimates of observed conditions for comparison with climate
models. Precipitation is based on the Global Precipitation Climatology Centre (GPCC, Schneider
et al 2014) version 7 at a 1.0°x1.0° horizontal resolution. GPCC is constructed by combining
monthly precipitation anomalies based on quality-controlled station data with a monthly
climatology. The observed precipitation gauge network over Central and Southwest Asia
common to all long-term historical precipitation reconstructions is sparse in space and time,
particularly prior to 1950 and after 1990 (Fig. 2). Even during the three decades spanning 1960-
1990 in which precipitation sampling was at its greatest in the Amu Darya, sampling in neither
Upper nor Lower regions exceeded, on average, more than 0.5 stations per grid point in the

GPCC precipitation dataset.

Near-surface air temperature is based on the terrestrial temperature dataset from the

University of Delaware (UDEL; Willmott and Matsuura 2001) version 5.01 at a 0.5°x0.5°

10
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horizontal resolution. UDEL is constructed by spatially interpolating available weather station
data from a suite of archives, which includes the Global Historical Climatology Network (Menne

et al. 2018) among others.

1-m soil moisture is based on a simulation of the CLM2 land surface model forced by an
estimate of the time-varying meteorology as part of the Global Land Data Assimilation System
(GLDAS; Rodell et al. 2004). Data from 1979-2019 on a 1°x1° horizontal grid with 10 vertical
levels, with the first seven reaching a depth of approximately 1m, is used. The CLM2 model is
analyzed because it is the predecessor to the CLM4 land model, the land component of CESM1.
Like estimates of observed precipitation, caution should be used when considering estimates of
GLDAS soil moisture in the Amu Darya watershed because the precipitation data used to force
the land surface models are not based on a spatially and temporally complete in situ data

(Fig.2; Hoell et al. 2015b; Hoell et al. 2017a).

Estimates of observed SSTs are based on the Extended Reconstructed Sea Surface
Temperature dataset version 5 (ERSST5; Huang et al. 2017). Observed SST estimates are used to
calculate the Nifio3.4 index, area averaged SST anomalies over 5°S-5°N and 170°W-120°W, from

1920-2019.

3. Methods

3.1 Defining Upper and Lower Amu Darya Regions

11
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The Amu Darya watershed is generally separated into Upper and Lower regions based
on orography and hydroclimatic variability, as described by Rakhmatullaev et al. (2010). The
Upper region, comprising the southeastern part of the watershed, is characterized by the
complex orography of the Pamir and Hindu Kush mountains. The Lower region, comprising the

northwestern part of the watershed, is characterized by lower elevation semi-arid steppe.

We separate the Amu Darya watershed similarly. The entire Amu Darya watershed, as
indicated by the perimeter of the heavy polygons in Fig. 1b, is based on HydroBASINS level 3. An
aggregation of many HydroBASINS level 4, as indicated by the light polygons in Fig. 1b, is used
to define the Upper and Lower Amu Darya regions. The Upper region is comprised of three level
4 basins, which cover all of Tajikistan, northern Afghanistan, eastern Turkmenistan, and
southern Uzbekistan. The Lower region is comprised of many level 4 basins, covering most of
Uzbekistan, a small portion of eastern Turkmenistan and a tiny portion of southern Kazakhstan.
Conditions over the Upper and Lower Amu Darya regions are based on area-weighted averages
of the gridded data. For a grid box to be included in a regional average then 50% of its area

must fall within the polygons that define the Upper and Lower Amu Darya.

3.2 Characterizing Amu Darya Hydroclimate Using Climate Models

Given the short and spatially incomplete existent observed record in the Amu Darya
watershed (Fig. 2; see also Hoell et al. 2015b and Hoell et al. 2017a), we explore the suitability
of two large ensembles of climate model simulations to probe drought behavior in the region.

The first ensemble is comprised of a single simulation from many different CMIP5 models,

12
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which has the advantage of not being biased towards a single model’s architecture. The second
ensemble is comprised of many realizations from a single model, CESM1, which has the
advantage of sampling internal climate variability (according to that model) without confusing it

with differences in model architecture (e.g. Tebaldi et al. 2011, Kay et al. 2015).

A large ensemble comprised of many different CMIP5 models is not feasible for probing
drought over the Amu Darya watershed, given the great disparity among the CMIP5 models in
their ability reproduce key aspects of Upper and Lower region hydroclimate. Most models
cannot reasonably reproduce the precipitation seasonality and magnitude of monthly
precipitation when compared with estimates of observed conditions in the Upper and Lower
regions during 1920-2019 (Fig. 3). Especially noteworthy is that almost all CMIP5 models
simulate noteworthy precipitation into late spring and early summer when observed estimates
indicate that the climatological dry season has long begun. Most of the CMIP5 models simply
cannot be trusted in terms of representing reasonable drought behavior when the precipitation

seasonality is so erroneous.

By contrast, CESM1 is an example of a model that reasonably captures key aspects of
climatological precipitation in the Upper and Lower Amu Darya regions when compared with
observed estimates during 1920-2019 (Fig. 3), which provides some evidence that a large
ensemble of simulations based on this model may be suitable for probing drought over the
Amu Darya watershed. All 40 100-year CESM1 realizations capture the seasonal cycle well,
especially the increase in average precipitation from fall to winter and the decrease in average

precipitation from spring into summer. It is important to note, however, that CESM1 simulates

13
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too much precipitation over the Upper region in late winter and early spring and too little

precipitation over the Lower region during the core of the rainy season.

We further examine the suitability of CESM1 in representing Amu Darya hydroclimate
by comparing box plots of monthly precipitation, 2-m air temperature and 1-m soil moisture
with observed estimates (Fig. 4). As noted previously, similar seasonal cycles and spread of
monthly precipitation are also found in the observed estimates and CESM1 for the Upper and
Lower Amu Darya regions (Figs. 3 and 4). The rainy season for both regions spans November-
April, though the specifics of the seasonal cycle are different between the two. Upper region
precipitation peaks in February-April while Lower region precipitation is more evenly
distributed across all months of the rainy season. CESM1 is wetter over the Upper region during
spring and slightly drier over the Lower region when compared with observed estimates.
Monthly precipitation variability is large for both the Upper and Lower Amu Darya regions in
the observed estimates and CESM1, as demonstrated by the large spread in possible
precipitation outcomes relative to the median, indicating a propensity for similar magnitudes of

wet and dry extremes.

Likewise, similar 2-m temperature variability and seasonal cycles are found in the
observed estimates and CESM1 realizations for the Upper and Lower Amu Darya regions (Fig.
4). Temperatures over both regions reach minimums during January and maximums during July,
though the Upper region is colder during all months because of elevation. There are some
biases in CESM’s representation of 2-m temperature for both regions. Over the Upper region,

there is a seasonality to the bias, as the model is colder during the cold season and warmer
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during the warm season. Over the Lower region, the model is biased warm during the warm

season.

Furthermore, aspects of 1-m soil moisture behavior in observed estimates and CESM1
are similar over both Upper and Lower Amu Darya regions, particularly their seasonal cycles
(Fig. 4). Though this provides another line of evidence that CESM1 can simulate many aspects of
Amu Darya watershed hydroclimate, it should be noted that there is a disparity between the
values of CESM1 and CLM2-derived observed estimate of 1-m soil moisture. It’s not entirely
clear how to interpret these differences, or whether these differences are meaningful, since the
CLM2 simulation uses a predecessor, not the same, land surface model as CESM1 and the
precipitation used to force the CLM2 simulation lack much in situ data after 2000 (Hoell et al.

2015b; Hoell et al. 2017a).

CESM1 also reasonably captures annual average observed precipitation estimates
spatially across the topographically diverse region (Fig. 1b), as similar patterns and magnitudes
of mean annual precipitation over the Amu Darya watershed are found (Fig. 5). The greatest
precipitation falls in the Upper Amu Darya region collocated with the Hindu Kush Mountains in
Afghanistan and the Pamir Mountains in Tajikistan. It must be noted that precipitation totals
are about 20% larger in the earth system model than in the observed estimates over these
elevated areas. Comparably lower annual precipitation is found in the Lower Amu Darya region,

with similar magnitudes and patterns between CESM1 and observations.

Perhaps most importantly, CESM1 appears to capture a realistic relationship between

Amu Darya precipitation and ENSO during the region’s wintertime rainy season. This is a
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necessary characteristic of an earth system model used to diagnose weather and climate in the
Amu Darya watershed, given the known sensitivity of Central and Southwest Asia to El Nifio and
La Nifia events. Like Hoell et al. (2017a), a realistic precipitation response to ENSO simulated by
CESM1 is demonstrated by comparing 30-year end point correlations of the Nifio3.4 index and
precipitation between the 40 CESM1 realizations (Fig. 6, gray lines) and the observed estimates
(Fig. 6, pink line) during November-April. For correlations ending after 1970, the 30-year period
in which observations in the regions increase (Fig. 2), the observed estimates fall within the
spread of the 40 CESM1 ensemble members. It is important to note, however, that the 30-year
correlations based on observed estimates falls on the low end of the CESM1 realizations before
2000. If the observed precipitation estimates are to be trusted, then these correlations may
suggest that the Amu Darya sensitivity to ENSO may be marginally too strong in CESM1.
Moreover, since observed estimates are analogous to a single realization of a climate model,
we highlight that the correlations based on observed estimates (Fig. 6, pink line) display similar
properties as a single trace of CESM1 (Fig. 6, orange line) in terms of decadal fluctuations,

further suggesting the realism of the model.

Based on the comparison of key hydroclimatic variables simulated by CESM1 with
observed estimates (Figs. 3-5) and CESM1’s apparently ability to capture a realistic ENSO
response (Fig. 6), we employ the 40-member ensemble of CESM1 simulations to diagnose
drought over the Upper and Lower Amu Darya watershed. While Amu Darya drought
characteristics would be subject to possible biases of CESM1, we argue that a large ensemble
based on this earth system model is the best tool available to perform such a study, given the

inability of most CMIP5 models to realistically simulate key climatic aspects in this region (Fig.
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3). Furthermore, using a large ensemble of CESM1 ensures that internal climate variability in
the model may be sampled without confusing it with differences in model architecture (e.g.

Tebaldi et al. 2011, Kay et al. 2015).

3.3 Defining Drought

Given the importance of widespread crop production over the Upper and Lower Amu
Darya regions, we focus on agricultural drought, defined by the World Meteorological
Organization (1975) as “the degree to which growing plants have been adversely affected by an
abnormal moisture deficiency.” Our definition of an agricultural drought-related moisture
deficiency is based on 1-m soil moisture percentile ranks from the CESM simulations. Our
definition follows Keyantash and Dracup (2002) who found that agricultural drought is best

estimated by soil moisture computed in numerical models that consider a full water balance.

Droughts are identified separately in CESM1 for the Upper and Lower Amu Darya
regions. Drought for both regions occur when regionally averaged 1-m soil moisture falls below
the 20th percentile for 3 months or more and ends when soil moisture exceeds the 30th
percentile. This drought definition resembles Mo (2011) and Svoboda (2002), the latter of
which serves as the foundation for the U.S. Drought Monitor!. The definition of drought is
illustrated in Fig. 7 using 1-m soil moisture from the Lower Amu Darya in a single CESM1

realization. In this example, drought onset occurs in March 1982 and drought demise occurs in

1 https://droughtmonitor.unl.edu/AboutUSDM/WhatlsTheUSDM.aspx
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December 1982. There are 1200 drought events in the Upper and 851 drought events in the

Lower Amu Darya regions in the 4000 simulated CESM years.

Monthly 1-m soil moisture, precipitation, 2-m temperature and SST variations are
displayed as percentile ranks, as is common in the dissemination of seasonal forecasts from
sources that include the World Meteorological Organization Global Producing Centres
(https://www.wmolc.org/). A percentile rank for a given month is calculated against all like
months in the entire ensemble of CESM1. For example, the percentile rank for any given March
is calculated against all 4000 Marchs (the product of 40 realizations each 100 years in length).
Conditions are above or below average when they rank in the upper and lower thirds of the

record.

4. Results

4.1 Drought Characteristics and Variability

The behavior of 1-m soil moisture in each of the CESM1 realizations (Fig. 8) highlights
the potential variability of the region’s hydroclimate and emphasizes that agricultural droughts
with a variety of characteristics are possible (Fig. 9). Given the differences in 1-m soil moisture
variability among the 40 realizations, one could gain quite different perceptions of Amu Darya
watershed drought, since each of the realizations is equally likely to occur. This also applies to
the interpretation of an observed time series since that time series is analogous to a single
model realization. In support of these points, behaviors of 1-m soil moisture are illustrated
using the Lower Amu Darya region in Fig. 8. Similar features and the interpretation of those
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features are gleaned from Upper Amu Darya region, which is not shown here in the interest of

brevity.

Two examples of how 1-m soil moisture can vary in time in the Lower Amu Darya region
are highlighted by pink and orange traces in Fig. 8. These two realizations of CESM1 were
chosen because they have the greatest and fewest number of years in drought of the 40
simulations and they demonstrate a variety of 1-m soil moisture variability across time scales.
The pink trace stands out as having high 1-m soil moisture percentiles throughout much of the
100-year period. Extended pluvial periods prevail, most notably during the 1920s, the 15-year
period beginning in 1935, the 1960s and late 1990s. The post-2005 period was the driest time
for the pink trace, as several one-year droughts emerged and quickly decayed. By contrast, the
orange trace stands out as having low 1-m soil moisture percentiles throughout much of the
100-year period. Extended drought periods prevail, most notably during the 1930s, early 1940s,
early 1960s and the post-2000 period. The orange trace was not without pluvial periods,

however, as the late 1950s, early 1960s and early 1990s were a wet time in this realization.

Another key feature of 1-m soil moisture in the Lower Amu Darya region is the lack of
long-term trend in the CESM1 ensemble average (Fig. 8, black line), which suggests that
anthropogenic influences does not force aridification or wetting of the Amu Darya watershed in
the earth system model for 1920-2019. The same result is found in Upper Amu Darya region.
The average 1-m soil moisture across all simulations mutes the transient variability in each
realization, thereby isolating the common feature among the simulations, which is the change
in atmospheric composition and aerosols based on the CMIP5 protocol that is meant to

replicate human influences. This result should not be interpreted as anthropogenic influences
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cannot affect aspects of Amu Darya hydroclimate, but if there are effects, they are not manifest

in terms of changes in 1-m soil moisture in this ensemble of simulations.

Given the differences in 1-m soil moisture variability between each of the 40 CESM1
realizations (Fig. 8), we explore the possibilities in agricultural drought prevalence during 100-
year periods in the Amu Darya watershed (Fig. 9a). We find that both the Upper and Lower
regions demonstrate similarly large possibilities in the prevalence of drought in 100-year
periods, ranging from just a couple of years to as many as four decades . The large spread in
possible drought prevalence suggests potential pitfalls in anticipating drought prevalence at
future time horizons. Though not likely outcomes, droughts can prevail for as few as 8 years or
as many as 40 years in a 100-year period over the Lower Amu Darya. Likewise, droughts can
prevail for a few as 9 years or as many as 36 years in a 100-year period over the Upper Amu
Darya. While the unlikely tail values paint an extremely variable picture of drought prevalence
over the Amu Darya Watershed, there is still appreciable spread in the more likely outcomes.
The interquartile range of drought prevalence in 100-year periods for the Upper and Lower
regions spans approximately 18-27 years, a 9-year range that is about 40% of the median value

of 22 years.

We also probe the likelihood of drought length based on the 1200 and 851 droughts in
the Amu Darya watershed, respectively (Fig. 9b). There is a clear preference for short droughts
over the region, as 50% of droughts in both the Upper and Lower regions persist for less than
six and nine months, respectively. Continuing this preference, 75% of droughts in the Upper
and Lower regions persist for 12 months and 14 months, respectively. These results suggest

that droughts are rather frequent in the region and most are ameliorated in the rainy season
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following drought onset. Despite this preference for droughts lasting a calendar year or less,
CESM1 indicates that Amu Darya droughts in the upper quintile of the distribution can last for
upwards of two years, as the top quintile of droughts in the Upper and Lower regions persist for
1.5 and 2 years, respectively. Most strikingly, the maximum drought length in the Upper and

Lower regions in the earth system model simulations is 5 and 10 years, respectively.

4.2 Drought Seasonality, Precursors, and Potential Predictability

The occurrence of drought onset in the Upper and Lower Amu Darya regions, based on
the median and interdecile range of occurrence from the 40 CESM1 realizations, demonstrates
a distinct seasonality and a notable spread around the central value (Fig. 10). The seasonality of
drought onset occurrence coincides with the precipitation seasonal cycle, but with some
notable differences, and can vary greatly from one 100-year realization of the earth system
model to the next. The variability among the realizations, obtained via the interdecile range,
indicates that a single 100-year time series may not accurately reflect the most likely

seasonality of drought onset occurrence.

In the Upper Amu Darya, drought onset occurrence is largest during the beginning of the
rainy season, in November and December, and during the end of the rainy season, in March-
May (Fig. 10a). While January and February make up the midst of the rainy season of the Upper
region, the occurrence of onset during these months is about half as during the core months
and is on par with the occurrence of drought onset during the June-October dry season. In the

Lower Amu Darya, the occurrence of drought onset is approximately the same across all
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months of the November-April rainy season, though it should be noted that the occurrence is
higher during December than the other months (Fig. 10c). The occurrence of drought onset
during the May-October dry season is rather low and is approximately a third of the occurrence

as during the rainy season.

Likewise, the occurrence of drought demise in the Upper and Lower Amu Darya regions
demonstrates a distinct seasonality that coincides with the precipitation seasonal cycle and a
notable spread around the central value (Fig. 10b,d). In the Upper Amu Darya, drought demise
occurrence is bimodal, with peaks during the beginning of the rainy season (October-
December) and the end of the rainy season (March-April). While January makes up the midst of
the rainy season in the Upper region, the occurrence of drought demise is less than half as in
fall and spring and is on par with some summertime months. In the Lower Amu Darya, the
occurrence of drought onset is approximately the same across all months of the November-
April rainy season, with a slight peak in November and December. The occurrence of drought
demise during summer is very low over the Lower Amu Darya, as indicated by a median value of
zero for June-September, though it is possible since the interdecile range peaks at

approximately 1%.

To gain a better understanding of the conditions that precede drought onset over the
Amu Darya watershed, we explore the likelihood of above and below average 1-m soil
moisture, precipitation and 2-m temperature in the CESM simulations as a function of onset
month and lead time (Fig. 11). We find that the drought onset precursors in the Upper and
Lower Amu Darya regions, and the lead times over which these precursors occur, are similar

and vary according to the seasonal cycle. Droughts that begin during October-December are
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related to high likelihoods of below average precipitation during the onset month and the
month prior to onset. This suggests that droughts beginning early in the rainy season may
materialize quicker than the other times of the year. Surprisingly, the Upper and Lower regions
diverge in terms of 2-m temperatures, as the Upper and Lower regions are related to 40%
probabilities of above and below average temperatures, respectively. Droughts the begin
during January-April are related to below average precipitation for up to three months prior to
drought onset, suggesting that drought onset during the latter part of the rainy season is a
comparably slow process. Warm temperatures accompany drought onset over the Upper
region during the month of onset and the month prior during January-April while warm
temperatures accompany onset over the Lower region during March-May. Drought onset
during the warm and dry season, nominally May-October, is related to different conditions than
during the cool wet season. Onset during the warm season is related to high probabilities of
below average soil moisture in the five months leading up to drought, below average
precipitation, and warm temperatures during the month of onset. These conditions suggest
that warm season drought onset is not primarily caused by a failure of rains, but rather

antecedent soil moisture conditions and warm temperatures.

Conditions related to drought demise are less complex than those related to drought
onset over the Amu Darya watershed in CESM. Drought demise requires up to just two months
of above average precipitation over both regions of the watershed and is not consistently
related to above or below average 2-m temperatures (Fig. 12). During the November-April rainy
season, drought demise in both regions is related to a greater than 40% probability that

precipitation is above average during the month of demise and the month preceding demise.
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For the Upper region, there is a slightly elevated probability of below average temperatures
during the beginning of the rainy season, but a slightly elevated probability of above average
temperatures during the end of the rainy season. For the Lower region, temperatures are not

consistently above or below average across the rainy season when drought ends.

While infrequent, drought demise can occur during the May-October dry season (Fig.
10) despite the climatologically meager precipitation that falls during this time of year (Figs. 2-
3). Two interesting aspects of dry season drought demise over both Amu Darya regions are a
high likelihood that soil moisture remains below average and demise is only related to a 40%
probability of above average precipitation during the month of demise (Fig. 12). Drought ends
by our definition when soil moisture exceeds the 30th percentile, so it is possible to endure
below average soil moisture, defined at less than the 33rd percentile, after drought demise.
This is more prominent over the Lower region than the Upper region, but regardless, it calls

into question whether a drought can truly end during a dry season.

Since ENSO is a primary driver of rainy season precipitation over the Amu Darya
watershed, we explore whether drought phase changes are potentially predictable via
knowledge of ENSO state. Indeed, drought phase changes are potentially predictable according
to CESM1, as drought onset in the Amu Darya watershed is related to statistically significant
increases and decreases in the occurrence of La Nifia and El Nifio, respectively (Fig. 13).
Moreover, the prospects for onset predictability are bolstered by the preferred seasonality in
the relationship between drought onset and ENSO occurrence that spans the November-April
rainy season over both Upper and Lower regions. In the Upper region, drought onset is related

to statistically significant decreases in the occurrence of El Nifio during November-April,
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consistent with the relationship between El Nifio and above average precipitation over the
region. By contrast, drought onset over the Upper region is related to statistically significant
increases in the occurrence of La Nifla during the same extended cold season, which is again
consistent with the relationship between La Nifia and below average precipitation over the
region. Drought onset in the Lower region is similarly related to ENSO, insofar as onset is
related to a decreased occurrence of El Nifio and an increased occurrence of La Nifia during the

November-April rainy season.

Drought demise in the Amu Darya watershed is related to a more complicated
seasonality of statistically significant changes in the occurrence of El Nifio and La Nifia (Fig. 14)
than drought onset (Fig. 13) in CESM1. Nonetheless, the earth system model simulations
suggest that drought demise is potentially predictable via knowledge of the ENSO state;
however, the nuances in seasonality must be considered if these relationships are to be applied
successfully to prediction. The less regular seasonality in the relationship between drought
demise and ENSO occurrence, when compared to onset, is perhaps attributable to the demise
and onset time scales. In the earth system model, it takes up to two months of above average
precipitation for drought demise (Fig. 12) while it takes up to four months of below average
precipitation for drought onset (Fig. 11). Two months of above average precipitation is easier to
attain, through processes internal to the atmosphere, than four months of below average
precipitation without systematic precipitation forcing from phenomena like ENSO. Further

research into the relationship between drought demise and ENSO is needed.

Over the Upper region, drought demise is related to statistically significant increases in

the occurrence of El Nifio during November and December, no change in the occurrence of El
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Nifio during January and February, and significant decreases in the occurrence of El Nifio during
March-June (Fig. 14). Drought demise over the Upper region is related to significant decreases
in La Nifia during November-February and significant increases in La Nifia in August and
September, though drought demise during these months is rather unlikely (Fig. 10). Over the
Lower region, drought demise is related to increases in the occurrence of El Nifio during
October-February and decreases in the occurrence of La Nifia during November-January and

April.

Given the links between decadal variations in Pacific SST (e.g. PDO) and Central and
Southwest Asia precipitation (Hoell et al. 2015b; Rana et al. 2019), we conclude the results
section with an assessment of whether 10-year spans in which Amu Darya drought is most
prevalent are related to an elevated likelihood of below average eastern Pacific SST (Fig. 15).
Indeed, CESM1 indicates that decades in which Upper Amu Darya drought is most prevalent are
related to a 40-50% likelihood of an SST pattern that is like persistent La Nifia-like SST or the
cool phase of the PDO (Figs. 15a,b). However, it is important to note that according to CESM1
the most prevalent drought decades are only related to a La Nifia-like SST pattern upwards of
50% of the time, thereby suggesting that the majority of prevalent drought periods are related
to variability that cannot be explained by persistent SST anomalies. While prevalent Upper Amu
Darya drought is related to Pacific SST, the same is not found for the Lower Amu Darya region

(Figs. 15c¢,d).

5. Summary and Discussion
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We illustrated characteristics, precursors, and potential predictability of agricultural
drought in the Amu Darya watershed that covers the food insecure Central Asia Republics of
Afghanistan, Tajikistan, Turkmenistan, and Uzbekistan. Drought, defined by 1-m soil moisture
deficits lasting three or more months, was diagnosed in 40 realizations of a fully coupled earth
system model spanning 1920-2019 under observed radiative forcing before 2005 and RCP8.5
forcing thereafter. The model realizations were based on the CESM large ensemble version 1,
which we found realistically reproduces the variability and seasonal cycles of key hydroclimatic
variables estimated by widely used gridded datasets of observed conditions. CESM1 also
captures a realistic relationship between Amu Darya weather and climate and ENSO during the
region’s wintertime rainy season. The 4000 simulated years from CESM1 provides a large
sample from which to probe drought behavior than is possible using the existent short and

spatially incomplete observed records over Central Asia.

Motivated by the variability of Amu Darya hydroclimate based on traces of 1-m soil
moisture in each of the earth system model realizations, we explored characteristics of drought
over the region: the prevalence of drought in 100-year periods and the length of individual
droughts. In terms of drought prevalence, the Upper and Lower regions demonstrated similarly
large possibilities, ranging from just eight years to as many as four decades in drought for every
100 years. In terms of drought length, there is a clear preference for short droughts over the
region, as 50% of the droughts in both the Upper and Lower regions persist for less than six and
nine months, respectively. However, it must be noted that despite this preference for short
droughts, long droughts are a possibility. 5% of droughts last for 2 and 2.75 years over the

Upper and Lower regions, respectively, while the longest droughts can last upwards of 8 years.
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We next explored characteristics of drought onset and demise over the Upper and
Lower Amu Darya regions, including seasonality, precursor conditions like precipitation and 2-m
temperature, and potential predictability based on ENSO phase. There is a distinct seasonality
to drought onset and demise in the Amu Darya watershed. The seasonality of onset and demise
does not entirely follow the precipitation seasonal cycle, and consistent with the hydroclimatic
variability of the region, the seasonality can vary from one 100-year period to the next. The
occurrence of drought onset in the Upper Amu Darya is greatest during November and
December, the beginning of the rainy season, and March-May, the end of the rainy season. The
occurrence of drought onset in the Lower Amu Darya is similarly high across all months of the
November-April rainy season, with a slightly higher occurrence during December than the other
months. The occurrence of drought onset during summertime dry season is low for both Upper
and Lower regions but is nonetheless possible. The occurrence of drought demise in the Upper
Amu Darya is displays a bimodal seasonality, with symmetrical peaks during the beginning of
the rainy season (October-December) and the end of the rainy season (March-May). The
occurrence of drought demise in the Lower Amu Darya is approximately the same across all
months of the rainy season, with a slight peak in November and December. The occurrence of
drought demise is low during summertime over both Upper and Lower Amu Darya, given that

precipitation during the dry season is generally unable to ameliorate drought.

Conditions related to drought onset, and the lead times over which these conditions
occur, vary according to the seasonal cycle and are similar for the Upper and Lower Amu Darya
regions. Droughts beginning in the early wintertime rainy season, October-December,

materialize quicker than other times of the year, as drought onset is related to increased
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likelihoods of below average precipitation during the month of onset and the month prior.
Droughts beginning during the core of the rainy season, January-April, materialize more slowly,
as increased likelihoods of below average precipitation are found up to three months prior to
onset. Droughts beginning in the warm and dry season are related to different conditions that
during the cool wet season. Onset during this time is not related to failed rains, but rather

antecedent soil moisture conditions and warm 2-m temperatures.

Conditions related to drought demise are comparably simple, as demise during the cool
wet season is related to just two months of above average precipitation. While infrequent, our
definition of drought allows for drought demise during the summertime dry season, and we
find that demise during this time of year may not lead to drought recovery. Drought demise
during this time of year is related to high likelihoods of below average soil moisture, which sits
at the cusp for the threshold of drought demise. A question raised here is whether drought can

truly end during a dry season.

Drought onset and demise are potentially predictable via knowledge of the ENSO state,
given that drought phase changes are related to statistically significant changes in the
occurrence of El Nifio and La Nifia. However, for knowledge of the ENSO state to be applied
successfully to prediction, one must consider the seasonality in the relationships between ENSO
and drought phase changes. Drought onset is related to significant changes in ENSO occurrence
during the entire November-April rainy season over both Upper and Lower regions, where
onset is related to increased (decreased) occurrence of La Nifia (El Nifio). By contrast, there a
complex seasonality to the relationship between drought demise and significant changes in

ENSO occurrence. For the Upper region, drought demise is related to significant increases in the

29



609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

occurrence of El Nifio during November and December and decreases in the occurrence of El
Nifio during March-June. For the Lower region, drought demise is related to increases in the
occurrence of El Nifio during October-February. Given the complex seasonality of the
relationships between drought demise and La Nifia, the results suggest that onset is more

predictable than demise based on ENSO phase.

Here we focus on agricultural drought for the practical purpose of building a predictive
understanding that may be applied to drought early warning over a region in which rainfed and
irrigated agriculture play a vital role in socioeconomic stability and food security. However, our
current study does not address other facets of drought, principally hydrological drought, taken
here as the availability of water in the Amu Darya river. Amu Darya river flows are critical to
water security over the region, as water from the river is used for consumption, irrigating
agriculture, and replenishing the diminishing Aral Sea (e.g. Micklin 1988; Micklin 2007). Like
analyses of agricultural drought in the Amu Darya watershed, analyses of hydrological drought
are lacking, with just a handful of studies having been performed (e.g., Barlow et al. 2008; Apel
et al. 2018; Dixon and Wilby 2019). Given that data scarcity over Central Asia in space and time
inhibits robust studies of all kinds, it is important that the community creatively and responsibly
create new data sources, like Zhou et al. (2018), and appropriately use simulations from models
that are deemed fit for purpose to develop a more holistic understanding of drought over the

region.
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Table Captions

Table 1: The 37 CMIP5 models considered.
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Table 1: The 37 CMIP5 models considered.

Model Institution
INM-CM4 Institute for Numerical Mathematics
BCC-CSM1.1 Beijing Climate Center
BCC-CSM1.1(m) Beijing Climate Center
NorESM1-M Norwegian Climate Centre
NorESM1-ME Norwegian Climate Centre
MRI-CGCM3 Meteorological Research Institute
MPI-ESM-LR Max Planck Institute for Meteorology
MPI-ESM-MR Max Planck Institute for Meteorology
MPI-ESM-P Max Planck Institute for Meteorology
Atmosphere and Ocean Research Institute (The University of Tokyo),
MIROC5 National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology
Atmosphere and Ocean Research Institute (The University of Tokyo),
MIROC-ESM National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology

MIROC-ESM-CHEM

Atmosphere and Ocean Research Institute (The University of Tokyo),
National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

IPSL-CM5A-LR Institut Pierre-Simon Laplace

IPSL-CM5A-MR Institut Pierre-Simon Laplace

IPSL-CM5B-LR Institut Pierre-Simon Laplace

HadGEM2-A Met Office Hadley Centre

HadGEM2-CC Met Office Hadley Centre

HadGEM?2-ES Met Office Hadley Centre

GISS-E2-H NASA Goddard Institute for Space Studies

GISS-E2-R NASA Goddard Institute for Space Studies

GFDL-CM3 Geophysical Fluid Dynamics Laboratory

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory

FIO-ESM The First Institute of Oceanography, SOA, China

FGOALS-g2 LASG, Institu.te of Atmc_)sph(-_:‘ric Physics, Chinese Academy of Sciences;
and CESS, Tsinghua University

FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences

CanESM2 Canadian Centre for Climate Modelling and Analysis
Commonwealth Scientific and Industrial Research Organisation in

CSIRO-Mk3.6.0 collaboration with the Queensland Climate Change Centre of
Excellence

CNRM-CMS Centre National de Recherches Meteorologiques / Centre Europeen de

Recherche et Formation Avancees en Calcul Scientifique
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820

CMCC-CM Centro Euro-Mediterraneo per | Cambiamenti Climatici

CMCC-CMS Centro Euro-Mediterraneo per | Cambiamenti Climatici

CESM1(CAMS) National Scien?e Foundation, Department of Energy, National Center
for Atmospheric Research

CESM1(BGC) National Scien?e Foundation, Department of Energy, National Center
for Atmospheric Research

CCSM4 National Center for Atmospheric Research

BNU-ESM CoI.Iege .of Global Change and Earth System Science, Beijing Normal
University
CSIRO (Commonwealth Scientific and Industrial Research Organisation,

ACCESS1.0 i .
Australia), and BOM (Bureau of Meteorology, Australia)

ACCESS1 3 CSIRO (Commonwealth Scientific and Industrial Research Organisation,

Australia), and BOM (Bureau of Meteorology, Australia)
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Figure Captions

Figure 1: (a) The four countries in pink — Tajikistan, Afghanistan, Uzbekistan and Turkmenistan —
that contain most of the land area in the Amu Darya watershed. (b) Elevation above
mean sea level (km) and representation of the Amu Darya watershed. The perimeter of
the heavy polygon is the HydroBASINS Level 3 representation of the Amu Darya
watershed while the light polygons are the HydroBASINS Level 4 representation of the
sub-basins that make up the Amu Darya. The heavy pink and blue polygons represent

the Upper and Lower Amu Darya regions, respectively.

Figure 2: (a) Average count of stations reporting per grid point in the GPCC precipitation dataset
for 1920-2016 in the Upper (pink) and Lower (orange) Amu Darya regions. Number of
stations reporting in the GPCC precipitation dataset in (b) January 1950 and (c) January

1980.

Figure 3: 1920-2019 monthly average precipitation for a single realization of 37 CMIP5 models
shown in Table 1 (gray), 40 CESM realizations (light pink), the average of the 40 CESM
realizations (dark pink) and GPCC (blue) for the (a) Upper and (b) Lower Amu Darya

regions. CMIP5 models are not individually identified for clarity.

Figure 4: Boxplots of monthly (top row) precipitation, (center row) 2-m air temperature and
(bottom row) 1-m soil moisture for the (left column) Upper and (right column) Lower
Amu Darya regions in 40 CESM realizations (pink) and observed estimates (orange).
Precipitation and 2-m temperature are based on data from 1920-2019 and 1-m soil

moisture draws on data from 1979-2018. For the boxplots, whiskers denote the
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interdecile range, the boxes the interquartile range, and the horizonal line inside the

box the median.

Figure 5: Annual average precipitation (mm) for (a) GPCC and (b) CESM. The pink and orange

polygons represent the Upper and Lower Amu Darya regions, respectively.

Figure 6: For the (a) Upper and (b) Lower Amu Darya regions, 30-year end point correlations
between precipitation and the Nifio3.4 index. Plotted are the observed estimate based
on GPCC (pink line), 40 CESM realizations (gray lines) and the CESM realization (orange)
that is most like the observed estimate, the correlation with the lowest root mean

square difference from the observed estimate since 1970.

Figure 7: Time series of 1-m soil moisture percentiles in the Lower Amu Darya region from the
second ensemble member of CESM, as an illustration of the drought definition. Drought

begins in March 1982 and ends in December 1983.

Figure 8: Time series of Lower Amu Darya 1-m soil moisture percentiles from the CESM
simulations. All 40 ensemble members are shown in gray, ensemble member 37
(wettest) is shown in pink, ensemble member 39 (driest) is shown in orange and the

ensemble average is shown in black.

Figure 9: Box plots of (a) drought prevalence in years and (b) drought length in years based on

the 40 CESM realizations in the Upper and Lower Amu Darya regions.

Figure 10: Monthly occurrence of drought (left column) onset and (right column) demise in the

(top row) Upper and (bottom row) Lower Amu Darya regions. The bars represent the
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median occurrence and the whiskers the interdecile range. The median and the deciles
are obtained from the drought occurrence across each of the 40 100-year CESM

realizations.

Figure 11: The probability of above or below average (left column) 1-m soil moisture, (center
column) precipitation and (right column) 2-m air temperature for the (top row) Upper
and (bottom row) Lower Amu Darya regions related to drought onset in the CESM
realizations. 0 months prior indicates the month of drought onset and 5 months prior
indicates five months prior to drought onset. The most likely category is plotted when it

exceeds 40%.

Figure 12: The probability of above or below average (left column) 1-m soil moisture, (center
column) precipitation and (right column) 2-m air temperature for the (top row) Upper
and (bottom row) Lower Amu Darya regions related to drought demise in the CESM
realizations. 0 months prior indicates the month of drought demise and 5 months prior
indicates five months prior to drought demise. The most likely category is plotted when

it exceeds 40%.

Figure 13: Occurrence of El Nifio (left column) and (right column) La Nifia in the (top row) Upper
and (bottom row) Lower Amu Darya regions related to drought onset in the CESM
realizations. Red (blue) bars indicate statistically significant increases (decreases) in
occurrence at p<0.05 based on resampling. The gray shading indicates the range of

values at p>0.05. El Nifio and La Nifia occur when the Nifio3.4 index exceeds 0.5°C and -
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0.5°C, respectively. The Nifio3.4 index is defined as the area averaged SST anomaly over

the region 5°S-5°N, 170°W-120°W.

Figure 14: Occurrence of El Nifio (left column) and (right column) La Nifia in the (top row) Upper
and (bottom row) Lower Amu Darya regions related to drought demise in the CESM
realizations. Red (blue) bars indicate statistically significant increases (decreases) in
occurrence at p<0.05 based on resampling. The gray shading indicates the range of
values at p>0.05. El Nifio and La Nifia occur when the Nifio3.4 index exceeds 0.5°C and -
0.5°C, respectively. The Nifio3.4 index is defined as the area averaged SST anomaly over

the region 5°S-5°N, 170°W-120°W.

Figure 15: The probability of above or below average (left column) 1-m soil moisture and (right
column) SST for the (top row) Upper and (bottom row) Lower Amu Darya regions during
10-year periods in which drought was most prevalent in the CESM realizations. The most
likely category is plotted when it exceeds 40%. Most prevalent drought decades are

defined as the top decile of drought occurrence in non-overlapping 120-month periods.
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Figure 1: (a) The four countries in pink — Tajikistan , Afghanistan , Uzbekistan and
Turkmenistan — that contain most of the land area in the Amu Darya watershed. (b) Elevation
above mean sea level (km) and representation of the Amu Darya watershed. The perimeter
of the heavy polygon is the HydroBASINS Level 3 representation of the Amu Darya watershed
while the light polygons are the HydroBASINS Level 4 representation of the sub-basins that
make up the Amu Darya. The heavy pink and blue polygons represent the Upper and Lower
Amu Darya regions, respectively.
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Figure 2: (a) Average count of stations reporting per grid point in the GPCC precipitation dataset
for 1920-2016 in the Upper (pink) and Lower (orange) Amu Darya regions. Number of stations

reporting in the GPCC precipitation dataset in (b) January 1950 and (c) January 1980.
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(a) Upper Amu Darya Average Precipitation
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Figure 3: 1920-2019 monthly average precipitation for a single realization of 37 CMIP5

models shown in Table 1 (gray), 40 CESM realizations (light pink), the average of the 40 CESM

realizations (dark pink) and GPCC (blue) for the (a) Upper and (b) Lower Amu Darya regions.
CMIP5 models are not individually identified for clarity.
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Figure 4: Boxplots of monthly (top row) precipitation, (center row) 2-m air temperature and
(bottom row) 1-m soil moisture for the (left column) Upper and (right column) Lower Amu
Darya regions in 40 CESM realizations (pink) and observed estimates (orange). Precipitation
and 2-m temperature are based on data from 1920-2019 and 1-m soil moisture draws on
data from 1979-2018. For the boxplots, whiskers denote the interdecile range, the boxes the
interquartile range, and the horizonal line inside the box the median.
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(a) GPCC Annual Average (b) CESM Annual Average
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Figure 5: Annual average precipitation (mm) for (a) GPCC and (b) CESM. The pink and orange
polygons represent the Upper and Lower Amu Darya regions, respectively.
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(a) Upper Amu Darya 30-yr Precipitation and Nino3.4 Correlation
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(b) Lower Amu Darya 30-yr Precipitation and Nino3.4 Correlation
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Figure 6: For the (a) Upper and (b) Lower Amu Darya regions, 30-year end point correlations
between precipitation and the Nifio3.4 index. Plotted are the observed estimate based on GPCC
(pink line), 40 CESM realizations (gray lines) and the CESM realization (orange) that is most like
the observed estimate, the correlation with the lowest root mean square difference from the
observed estimate since 1970.
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Drought Definition lllustration
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Figure 7: Time series of 1-m soil moisture percentiles in the Lower Amu Darya region from
the second ensemble member of CESM, as an illustration of the drought definition. Drought
begins in March 1982 and ends in December 1983.
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Figure 8: Time series of Lower Amu Darya 1-m soil moisture percentiles from the CESM
simulations. All 40 ensemble members are shown in gray, ensemble member 37 (wettest) is
shown in pink, ensemble member 39 (driest) is shown in orange and the ensemble average is
shown in black.
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Figure 9: Box plots of (a) drought prevalence in years and (b) drought length in years based

on the 40 CESM realizations in the Upper and Lower Amu Darya regions.
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Figure 10: Monthly occurrence of drought (left column) onset and (right column) demise in
the (top row) Upper and (bottom row) Lower Amu Darya regions. The bars represent the
median occurrence and the whiskers the interdecile range. The median and the deciles are
obtained from the drought occurrence across each of the 40 100-year CESM realizations.
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Figure 11: The probability of above or below average (left column) 1-m soil moisture, (center
column) precipitation and (right column) 2-m air temperature for the (top row) Upper and
(bottom row) Lower Amu Darya regions related to drought onset in the CESM realizations. 0
months prior indicates the month of drought onset and 5 months prior indicates five months
prior to drought onset. The most likely category is plotted when it exceeds 40%.
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Figure 12: The probability of above or below average (left column) 1-m soil moisture, (center
column) precipitation and (right column) 2-m air temperature for the (top row) Upper and

(bottom row) Lower Amu Darya regions related to drought demise in the CESM realizations. 0

months prior indicates the month of drought demise and 5 months prior indicates five
months prior to drought demise. The most likely category is plotted when it exceeds 40%.
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Figure 13: Occurrence of El Nifio (left column) and (right column) La Nifia in the (top row)
Upper and (bottom row) Lower Amu Darya regions related to drought onset in the CESM
realizations. Red (blue) bars indicate statistically significant increases (decreases) in
occurrence at p<0.05 based on resampling. The gray shading indicates the range of values at
p>0.05. El Nifio and La Nina occur when the Nifio3.4 index exceeds 0.5°C and -0.5°C,
respectively. The Nifio3.4 index is defined as the area averaged SST anomaly over the region
5°S-5°N, 170°W-120°W.
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Figure 14: Occurrence of El Nifio (left column) and (right column) La Nifia in the (top row)
Upper and (bottom row) Lower Amu Darya regions related to drought demise in the CESM
realizations. Red (blue) bars indicate statistically significant increases (decreases) in
occurrence at p<0.05 based on resampling. The gray shading indicates the range of values at
p>0.05. El Nifio and La Nina occur when the Nifio3.4 index exceeds 0.5°C and -0.5°C,
respectively. The Nifio3.4 index is defined as the area averaged SST anomaly over the region
5°S-5°N, 170°W-120°W.
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Figure 15: The probability of above or below average (left column) 1-m soil moisture and

(right column) SST for the (top row) Upper and (bottom row) Lower Amu Darya regions

during 10-year periods in which drought was most prevalent in the CESM realizations. The

most likely category is plotted when it exceeds 40%. Most prevalent drought decades are

defined as the top decile of drought occurrence in non-overlapping 120-month periods.
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