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Abstract  Surface  turbulent fluxes provide  a  key  boundary  condition for  the  prediction of  

weather,  hydrology, and atmospheric  carbon dioxide. The  turbulence  cospectrum  is  

assumed to typically  follow a  −7/3  power-law scaling,  which is  used for  the high-

frequency  spectral correction of eddy-covariance  data. The  derivation of this scaling  is 

mostly  grounded on dimensional analysis. The  dimensional analysis  or cospectral  budget 

analyses, however,  can lead to alternative  cospectral scaling. Here  we  examine  the shape  

of turbulence  cospectra  at high Reynolds  number  and high wavenumbers based on  

extensive field measurements of wind velocity  and temperature  in various stably stratified  

atmospheric  conditions. We  show that the cospectral scaling  deviates from the −7/3  

scaling  at high wavenumbers in the  inertial  subrange  of the stable atmospheric  boundary  

layer,  and  appears to follow a  −2  power-law  scaling.  We  suggest  that −2  power-law  
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scaling is a better alternative for cospectral corrections for eddy-covariance measurements 

of the stable boundary layer. 

Keywords Eddy covariance • Stable boundary layer • Surface fluxes • Turbulence 

cospectra 

1 Introduction 

Turbulence cospectra of surface fluxes are typically assumed to follow a −7/3 power-law 

scaling in the isotropic inertial subrange (Kolmogorov 1941) according to derivations 

based on dimensional analysis (Lumley 1964; Lumley 1967). The −7/3 power-law scaling 

has been validated with laboratory experiments (Saddoughi and Veeravalli 1994) and field 

measurements in the atmospheric boundary layer (e.g., the Kansas experiment) (Kaimal et 

al. 1972; Wyngaard and Coté 1972). The exact shape of the cospectra is important for field 

observations as well as theoretical modeling. Indeed, in eddy-covariance (EC) 

measurements of turbulent fluxes in the atmospheric surface layer (ASL), an assumed 

cospectral shape is used for the spectral correction of momentum, heat, water vapour and 

CO2 fluxes (Moore 1986; Leuning and Moncrieff 1990; Horst 1997; Moncrieff et al. 1997; 

Aubinet et al. 1999; Massman 2000). Recently, Mamadou et al. (2016) showed that the 

calculated long-term CO2 fluxes from EC observation are particularly sensitive to the 

assumed cospectral shape, and a change of the assumed cospectral correction scaling can 

even reverse a net terrestrial carbon sink into a source. 

Monin and Yaglom (1975) pointed out that Lumley’s derivation of the −7/3 power-

law scaling (Lumley 1964; Lumley 1967) was not sufficiently rigorous and accurate as it 

relied on the rough approximation (Kovasznay 1948) that the spectral energy transfer rate 

is only related to the turbulent energy spectrum and wavenumber. In recent years, other 

slopes of the turbulence cospectra have been reported. In a wind tunnel experiment, an 

asymptotic −2 power-law scaling was observed for the heat-flux cospectrum (Mydlarski 

and Warhaft 1998) in stably stratified turbulence at 𝑅𝜆 = 582, where 𝑅𝜆 is the Taylor-

microscale-based Reynolds number. Mydlarski (2003) also found a −2 power-law scaling 

for heat flux by analyzing both the cospectrum and the heat flux structure function at 𝑅𝜆 = 

407 when a temperature gradient was imposed in the transverse direction, although the 
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study suggested that the slope might increase toward −7/3 as Reynolds number increases. 

Sakai et al. (2008) showed a −2 power-law for radial velocity-concentration cospectrum 

in a turbulent jet at 𝑅𝜆 = 263. These observations are still at lower Reynolds numbers than 

turbulence in the ABL where 𝑅𝜆 typically exceeds 1000 (Table 1) and therefore this raises 

the question of the exact cospectral shape in the stably stratified atmospheric boundary 

layer. 

Among numerical studies, O'Gorman and Pullin (2005) found a power-law scaling 

close to −2 in the velocity-scalar cospectrum in a direct numerical simulation (DNS) of 

homogeneous and isotropic velocity field with a mean scalar gradient at 𝑅𝜆 = 265 . 

Watanabe and Gotoh (2007) observed a −2 power-law scaling regime to the right side of 

the −7/3 power-law scaling regime in the cospectrum of scalar flux with a high-resolution 

DNS of isotropic turbulence at 𝑅𝜆 = 585. In fact, figure 2 in their paper clearly shows that 

the −2 power-law scaling has a larger plateau compared to the −7/3 power-law scaling in 

the compensated cospectra. Bos et al. (2004) also found a clear −2 power-law scaling in 

velocity-scalar cospectrum in large eddy simulations (LES) of isotropic turbulence with a 

mean scalar gradient. Bos et al. (2004) further suggested that the velocity-scalar 

cospectrum in the direction of mean scalar gradient can in fact have any slope between 

−7/3 and −5/3 based on a cospectral budget analysis. Cava and Katul (2012) showed, 

using a cospectral budget, that different velocity-scalar scaling laws can be observed in the 

canopy sublayer above tall forests when the flux transfer term becomes important (Li et al. 

2015). Recently, Li and Katul (2017) used a cospectral budget model to show that the −7/3 

cospectrum scaling can be modified depending on the relative importance of flux transfer 

and pressure decorrelation terms. These new theoretical developments motivate us to 

revisit the cospectral scaling in the atmospheric boundary layer (ABL) based on 

observational data. A specific question to be addressed in this paper is whether the power-

law scaling for turbulence cospectra under stable conditions deviates significantly from 

−7/3 at high wavenumbers, and whether it is closer to −2 scaling. As the −7/3 scaling 

was first derived for the stably stratified turbulence by Lumley (1964), here we focus on 

the stable condition. 
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81 2 Dimensional Analysis  

According  to Kaimal and Finnigan (1994), a cospectrum is the real part of the Fourier  

transform of cross-covariance. Here  we  focus on the  momentum  flux and the  sensible  heat  

flux but other scalar fluxes  (not shown)  such as water vapor and  CO2  are  assumed to have  

the same scaling as the  heat flux  in the inertial subrange.  For sensible  heat flux, we  have  

(Kaimal and Finnigan 1994)  

 ∞
〈𝑤′𝜃′〉 = ∫ 𝐸 (1)    

0 𝑤𝜃(𝑘)𝑑𝑘, 

where  𝐸𝑤𝜃  is the cospectrum  of 〈𝑤′𝜃′〉, 𝑘  the wavenumber, 𝑤  the vertical velocity,  𝜃  the 

potential temperature, 𝑤′  the  vertical velocity  fluctuation, 𝜃′  the fluctuation of  potential 

temperature  and 〈𝑎〉  denotes  the Reynolds  averaging.  Assuming  that the cospectrum of 

𝜕Θ 
heat flux  is only  related to the  gradient of  the mean potential temperature  , the  turbulent 

𝜕𝑧 

kinetic energy  (TKE) dissipation rate 𝜖  and the wavenumber  𝑘  for  isotropic  turbulence,  

Lumley  (1964)  obtained the  following  form  for  the  cospectrum  using  dimensional analysis  

 𝜕Θ 
𝐸 = −𝑐 𝜖1/3 𝑘−7/3 (2)  

𝑤𝜃 1 , 
𝜕𝑧 

where  𝑐1  is a  dimensionless  parameter. Similarly, Lumley  (1967)  suggested cospectrum of  

the momentum  to have  the following  form:  

  
 −𝑐 𝜖1/3 𝜕𝑈

𝐸 = 𝑘−7/3 (3)   
𝑤𝑢 2 ,  

𝜕𝑧 

where  𝑐2  is a  dimensionless parameter,  𝑢  the streamwise  velocity  and  𝑈  the mean 

streamwise velocity.  

However, the  above  dimensional analysis  does not yield a unique cospectral scaling  

𝑔 𝜕Θ 
law. Assuming that 𝐸𝑤𝜃  is only  related to  (𝑔  is the gravitational acceleration rate), 𝜖,  

Θ 𝜕𝑧 

and 𝑘, based on dimensional analysis, we  get:  

 1−3𝑎 
 

 
𝑔 𝜕Θ  𝜕Θ (4)  

𝐸𝑤𝜃 = −𝑐  2 𝑎
 𝜖  𝑘2𝑎−3 

3 ( ) , 
Θ 𝜕𝑧 𝜕𝑧 

 𝑐3  and 𝑎 
1 

where  are dimensionless parameters. When 𝑎 = , this recovers Eq. (2), whic h is 
3 

2 
the limit of the Boussinesq approximation where  𝑔  is absent.  When 𝑎 = , this leads to a  

3 

−5/3  scaling, which is the scaling  of velocity  spectra  and is regarded as another  limit  in  
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103 
1 

Bos et al. (2004). On the  other  hand, when 𝑎 = , Eq. (4)  yields a  −2  power-law  scaling 
2

for  𝐸𝑤𝜃, as follows:  

 −1/4

 
𝑔 𝜕Θ 

  𝜕Θ 1/2 −2 (5)   𝐸𝑤𝜃 = −𝑐3 ( ) 𝜖 𝑘 . 
Θ 𝜕𝑧 𝜕𝑧 

𝜕𝑈 
Similarly,  assuming that  𝐸𝑤𝑢  is only  related to 𝜖 ,  and 𝑘 , we  have  (Cava  and  Katul  

𝜕𝑧 

2012):  

 2−3𝑏  
𝐸 = −𝑐 𝜖𝑏 𝜕𝑈

 𝑏 (6)   ( 𝑘2 −3
𝑤𝑢 4 ) , 

𝜕𝑧

1 
where  𝑐4  and 𝑏  are  dimensionless parameters. Again,  when 𝑏 = , this recovers Eq. (3). 

3

1 
However, when 𝑏 = , a −2  power-law scaling  for  𝐸𝑤𝑢  emerges, as follows:  

2

 1/2𝜕𝑈 1 −2 (7)   𝐸 /2 
𝑤𝑢 = −𝑐4𝜖 ( ) 𝑘 . 

𝜕𝑧 

In  summary, a  −2  scaling  as reported by  many  previous studies (Mydlarski and Warhaft 

1998; Sakai et al. 2008)  is also possible  based on dimensional analysis.  

We  emphasize  that the above  dimensional analysis is only  strictly  applicable for  

isotropic  turbulence  (Kolmogorov 1941). It is  generally  believed  that the  Dougherty-

1 
𝜖 2 

Ozmidov scale (Dougherty  1961;  Ozmidov 1965)  𝐿𝑂 = 2𝜋 ( 3)  characterizes  the  largest 
𝑁

scale of isotropic  turbulence  in stably  stratified fluid  (Gargett  et  al. 1984; Waite  2011;  

Grachev et al. 2015; Li et al. 2016), where  𝑁  is Brunt-Väisälä  frequency, which 

2𝜋 
corresponds to  the  Dougherty-Ozmidov wavenumber  𝑘𝑂 = . Owing  to wall  effects 

𝐿𝑂 

(Townsend 1976; Katul  et al. 2014)  in the  ASL, the  wavenumber  𝑘𝑎 = 1/𝑧  will  also 

constrain the existence  of isotropic  turbulence,  where  𝑧  is the height above  ground. 

Therefore, we  expect the previously  derived  power-law  scaling  for  turbulence  cospectra  to  

be valid only for wavenumbers  𝑘 > max( 𝑘𝑂, 𝑘𝑎).  
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124 3.1 Observations of the stable atmospheric boundary layer  

An eddy-covariance  (EC) system over Lake  Geneva  was set up to measure  high-

frequency (20 Hz) velocity and temperature at 4 different heights (1.66 m, 2.31 m, 2.96 m  

and 3.61 m above  water level) during  August-October 2006 (Bou-Zeid et al. 2008). Four  

sonic  anemometers (Campbell  Scientific  CSAT3) and open-path gas analyzers (LICOR LI-

7500)  were  used in the experiment. The  resolution of the wind velocity  was 0.001 m s -1  

and that of  temperature  was 0.002 ℃. 18 representative  15-minute periods of EC  data  at  

1.66 m were  selected to  calculate turbulence  cospectra  of heat and momentum  fluxes, 

where  𝑧/𝐿  ranged  from 0.037 to 0.145  (Table  1), 𝑧  is the measurement height above  water  

𝑧 
surface,  and 𝐿  is the Obukhov length  (Obukhov 1946). The  18 periods (0.037 ≤ ≤ 

𝐿 

0.145) in the  lake  experiment are  more  stable  with larger  𝑧/𝐿  in 36  available stable  periods  

𝑧 
during August-October 2006 (Bou-Zeid  et al. 2008), while the  rest datasets (e.g., ~0.01)

𝐿 

are  closer  to neutral conditions. In the manuscript, we  would like  to focus on relatively  

more  stable  conditions. Besides, the cospectral slopes from all  36 periods (not shown)  do 

not differ from the results from the 18 periods.  By estimating  the  Taylor-microscale-based  

2 1/2 
20 𝑞

Reynolds  number  through  𝑅𝜆 = ( ) , where  𝑞  is turbulent kinetic energy  and 𝜈  is 
3 𝜖𝜈

kinetic viscosity, as in Pope  (2000),  we  find that  𝑅𝜆  ranged  from 657 to 3236 in the 18  

periods.  The  reader is referred to  previous  studies  (Bou-Zeid et al. 2008; Vercauteren et al.  

2008; Li and  Bou-Zeid 2011; Li et al. 2018)  for  detailed descriptions  of the experiment 

setup and data.  

An EC system at  Dome  C, Antarctica  was set up  to measure  the  high-frequency  (10  

Hz) velocity  and temperature  using  an ultrasonic  anemometer  (Metek USA-1) at 3.5 m  

above  ground (Vignon et al. 2017a; Vignon et al. 2017b). Balloon sounding  measurements  

provided temperature  gradient  (Petenko et al. 2018). The  accuracy  of wind speed was 0.05  

m s-1  and that of  temperature  was 0.01 ℃. 70  representative 30-minute stable  periods in 9-

12  January  2015 were  selected,  where  𝑧/𝐿  ranged  from 0.182 to 5.891  (Table 1).  The  

Taylor-microscale-based  Reynolds number  𝑅𝜆  ranged from 313  to 2091  in the 70 periods. 

The reader is referred to Vignon et al. (2017a)  for  details on the  experiment setup.  

An EC system over an Arctic  ice  pack during  the Surface  Heat Budget of the Arctic  

Ocean  experiment (SHEBA)  was set up  to measure  high-frequency  (10 Hz) velocity  and 
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temperature using ATI (Applied Technologies, Inc) three-axis sonic anemometer at 2 

heights (2.2 m and 3.2 m) from October 1997 through September 1998 (Andreas et al. 

2006; Grachev et al. 2013). The resolution of the wind velocity was 0.01 m s-1 and that of 

temperature was 0.01 ℃. 10 representative 60-minute periods of EC data from 8 nights at 

3.2 m were selected for analyzing the cospectra of heat and momentum fluxes, where 𝑧/𝐿 

ranged from 0.040 to 2.538 (Table 1). The cospectra were calculated from overlapping 

13.65-minute blocks (corresponding to 213 data points) and then averaged over 1-hour 

periods following (Persson et al. 2002). The experimental setup and data have been 

extensively discussed elsewhere (Grachev et al. 2005; Andreas et al. 2006; Andreas et al. 

2010a; Andreas et al. 2010b; Grachev et al. 2013). 

A sonic and hot-film anemometer dyad (Kit et al. 2017) was installed at the Granite 

Mountain Atmospheric Sciences Testbed (GMAST) of the US army Dugway Proving 

Ground (DPG), Utah, as part of the field measurements of the Mountain Terrain 

Atmospheric Modeling and Observations (MATERHORN) program during September-

October 2012 (Fernando et al. 2015) to capture fine-scale turbulence in the ABL. Wind 

velocity was measured at a height of 2 m with a temporal frequency of 2000 Hz. The spatial 

resolution of the composite probe was ~0.7 mm, and the measurement resolution of the 

hot-film X-wire probes was ~1mm. 6 representative 30-minute periods on 9 October 2012 

were selected for analyzing the momentum cospectrum, where 𝑧/𝐿 ranged from 0.027 to 

0.647 (Table 1). The reader is referred to details on the instrument setup and measurement 

methods elsewhere (Fernando et al. 2015; Kit and Liberzon 2016; Kit et al. 2017; 

Sukoriansky et al. 2018). 
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207 3.2 Turbulence  Cospectra  

The  stability parameter 𝑧/𝐿  was calculated to characterize the stability  of the  ABL, where  

𝑧 
𝑢3

  is the measurement height above  the  surface,  𝐿 = − ∗
𝜅𝑔 ′ ′

 the  Obukhov length  
〈𝑤 𝜃 〉  

𝜃0 

(Obukhov 1946), 𝑢∗  the friction velocity,  𝜅  the von Kármán constant, 𝜃0  the mean  

potential temperature  and 𝜃′  the fluctuation.  Note that we  use  air temperature  to  

approximate potential temperature  as our measurements were  all  below  3.5 m above  the  

surface.  Rather than directly measuring  the  cospectra in wavenumber space, we converted 

the frequency  cospectra  into wavenumber cospectra, invoking  Taylor’s frozen turbulence  

hypothesis  (Taylor 1938). Wavelet transform (Torrence  and  Compo 1998)  was used to  

calculate turbulence  cospectra  (software was provided by C. Torrence and G. Compo, and 

is available at:  http://paos.colorado.edu/research/wavelets/)  for  observations at  Lake  

Geneva  and Dome  C. The  fast Fourier transform (Frigo and Johnson 1998)  was used to  

calculate turbulence  cospectra  for observations of the SHEBA and MATERHORN 

experiments.  Both wavelet and Fourier transform are  used in this  study  to eliminate  

possible effects of the cospectra  calculation method on cospectral  slopes, while both  

methods were  routinely  applied in calculating  turbulence  cospectra  in the  ABL  (Hudgins  

et al. 1993; Cornish et al. 2006; Li et al. 2015).  

Both frequency  and cospectra  (based  on wavelets) were  normalized in a  similar  way  to 

Kaimal et al. (1972). Four examples from the lake  experiment are  shown in Fig. 1.  A few  

cospectra  at the  highest wavenumbers are  seen due  to the limitation of the instrument  

temporal sampling. At low wavenumbers, the cospectral  slope is shallower than −2, and 

even approaches zero  in some cases  (Fig. 1). This is because  internal  gravity  waves 

(Lumley  1964; Caughey and Readings 1975; Smedman 1988) a nd wall  effects (Townsend 

1976; Katul  et al. 2014)  have  stronger impacts on larger  eddies. Hence  turbulence  deviates 

more  from isotropic  condition at lower wavenumbers (Lienhard and Van  Atta 1990), as 

expected.  
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Fig.1 (a)~(d): Normalized cospectrum of the heat flux in 4 representative 15-minute periods of EC 

measurements over Lake Geneva. 𝐸𝑤𝑇 is the wavelet cospectrum of the vertical velocity fluctuations 𝑤′ and 

temperature fluctuation 𝑇′ in time, 𝑈 the mean streamwise wind velocity, 𝑧 the measurement height above 

the lake, 𝑢∗ the friction velocity, 𝑇∗ the scaling temperature, 𝑘 the wavenumber, and 𝐿 the Obukhov length. 

E denotes the normalized heat flux cospectrum. 𝑘𝑂 and 𝑘𝑎 denote the Dougherty-Ozmidov wavenumber and 

the wavenumber 𝑘𝑎 for the distance to the wall, respectively. Note that the units in 𝑦 axis are not necessarily 

non-dimensional. 

10 



  

 
Fig.  2  (a) The median  of  the normalized  cospectrum  of  heat flux  (denoted  by  𝐸𝑤𝑇 /(𝑢∗𝑇∗)  or  𝐸) across  18  

 representative 15-minute periods  over  Lake Geneva.  (b) 𝐸 2 𝑤𝑇 /(𝑢∗𝑇∗)  in  (a)  multiplied  by  𝑓 .  (c)  𝐸𝑤𝑇 /(𝑢∗𝑇∗)  
in  (a)  multiplied  by  𝑓7/3. (d) The median  of  normalized  cospectrum  of  momentum  flux  (denoted  by  𝐸𝑤𝑢 /𝑢2

∗  

 𝐸    or ).  ( ) 𝐸 /𝑢2 in  ( )  multiplied  by   𝑓2.  ( ) 𝐸 /𝑢2 in  ( )  multiplied  by  𝑓7/3e 𝑤𝑢 ∗ d f 𝑤𝑢 ∗ d .  Empty  circles (blue for  

𝑓7/3𝐸  and  red  for  𝑓2𝐸)  denote the 25th  and  75th  percentiles  of  cospectrum  at each  frequency.  𝑝  is  an  

exponent equal to  7/3  or  2,  𝑓  is  the sampling  frequency  in  Hz,  and  the other  variables have the same meaning  

as those in  Fig  1.  

 
 
 
 
 
 
 
 

 

To further  examine  whether  the −2  or  the  −7/3  slope better captures the  observed  

cospectral scaling  at high wavenumbers, the median cospectrum of 18  different  stable  

periods for each frequency  is  shown (Fig.  2a)  for the lake experiment. The  −2  slope starts 

matching  the cospectrum  at around  1.5  Hz,  which is lower compared to that of  the −7/3  

slope.  The  −7/3  slope seems to match the  cospectrum  at frequencies higher than 5  Hz. In  

fact, the  slope at frequencies higher than  5 Hz  is even steeper than −7/3. However, Bos  et  

al. (2004)  showed that the  asymptotic  slope should be  between −5/3  and −7/3   using  a  

cospectral budget analysis, and  thus a slope steeper than −7/3  is likely  caused by  

instrument temporal sampling cutoff.  

To better  assess  the exact slope, we  then  evaluate the  compensated cospectra  and 

𝑓2 𝑓7/3multiply the  median  cospectra  by   and , re spectively  (Fig. 2b  and Fig. 2c), where  𝑓  

is the sampling  frequency  in Hz, to better distinguish the two slopes. At frequencies 1.5  
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263  2Hz  < 𝑓 <  4  Hz,  there  is a  plateau for  𝑓 𝐸𝑤𝑇. However, there  is a  positive  slope before  

7/3approximately  4.5 Hz  and a  negative  slope after 4.5 Hz  for  𝑓 𝐸𝑤𝑇. It is possible that 

𝑓7/3𝐸𝑤𝑇  might reach a  plateau at higher frequencies but this cannot be  observed due  to the  

instrument sampling  cutoff. Besides, the  25th and  75th percentiles of cospectrum denoted  

𝑓2𝐸 7/3by  empty  circles at each frequency  also show a  larger plateau in   compared to  𝑓 𝐸.  

7/3In  Dome  C  observations, it  is harder  to observe  a  plateau for  𝑓 𝐸𝑤𝑇  but a  small plateau  

exists for 𝑓2 𝐸𝑤𝑇  at around  2 Hz  (Fig. 3a  and Fig. 3b) for the heat flux. In the SHEBA  

7/3 2campaign, the median  of 𝑓 𝐸𝑤𝑇  shows a  positive  slope from 2 to 4 Hz  but 𝑓 𝐸𝑤𝑇  has a  

plateau in the  same  frequency  regime  (Fig. 4a  and  Fig. 4b). The  cospectrum jump after  4 

Hz  is possibly  due  to  instrumental noise.  These  atmospheric  observations of the  

compensated cospectra  therefore  suggest that −2  better characterizes the  cospectral 

scaling of sensible heat flux at high frequencies (>  2 Hz ) compared to −7/3.  

264 
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276  Fig.  3  The median  of  normalized  cospectra  of  (a)  heat flux  (denoted  by  𝐸𝑤𝑇/(𝑢∗𝑇∗)  or  𝐸)  multiplied  by  𝑓2 

 (b)  heat flux  (denoted  by  𝐸𝑤𝑇/(𝑢∗𝑇∗)  or  𝐸)  multiplied  by  𝑓7/3 (c)  momentum  flux  (denoted  by  𝐸𝑤𝑢/𝑢2
∗  or  

𝐸     )  multiplied by or  𝑓2  (d)  momentum  flux  (denoted  by  𝐸𝑤𝑢/𝑢2
∗  or  𝐸 ) multiplied  by  or  𝑓7/3  across  70  

representative 30-minute periods  at Dome C.  Empty  circles (blue for  𝑓7/3𝐸  and  red  for  𝑓2𝐸)  denote the 25th  

and  75th  percentiles  of  cospectrum  at each  frequency.   𝑝  is  an  exponent equal to  7/3  or  2, 𝑓  is  the sampling  

frequency  in  Hz,  and  the other  variables have the same meaning  as  those in  Fig.  1.  
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Fig.  4  The median  of  normalized  cospectra  of  (a)  heat flux  (denoted  by  𝐸𝑤𝑇 /(𝑢∗𝑇∗)  or  𝐸)  multiplied  by  𝑓2 

(b)  heat flux  (denoted  by  𝐸𝑤𝑇/(𝑢∗𝑇 )   or  𝐸)  multiplied  by  7/3
∗  𝑓  (c)  momentum  flux  (denoted  by  𝐸𝑤𝑢/𝑢2

∗  or  

𝐸 )  multiplied  by  or  𝑓2  (d)  momentum  flux  (denoted  by  𝐸𝑤𝑢/𝑢2  or  𝐸 )  multiplied  by  or  𝑓7/3 
∗  across  10  

representative averaged  13.65-minute periods  from  the SHEBA  experiment. Empty  circles (blue for  𝑓7/3𝐸  
and  red  for  𝑓2𝐸)  denote the 25th  and  75th  percentiles  of  cospectrum  at each  frequency.  𝑝  is  an  exponent  

equal to  7/3  or  2,  𝑓  is  sampling  frequency  in  Hz and  the other  variables have the same meaning  as those in  

Fig.  1.  

 

For the momentum  flux cospectrum (Fig. 2d, Fig. 2e  and Fig. 2f), the  difference  

between  the  −2  and −7/3  slopes is  smaller  than that  of heat flux  cospectrum  in the  lake  

2experiment.  In the Dome  C  observation, a  plateau is observed for 𝑓 𝐸𝑤𝑢  at 1.5~2.5 Hz  

(Fig. 3c) but not for  𝑓7/3𝐸𝑤𝑢  (Fig. 3d), which keeps increasing  with frequency.  In the 

2 7/3SHEBA campaign, a  slightly  larger plateau is seen in 𝑓 𝐸𝑤𝑢  compared to 𝑓 𝐸𝑤𝑢  in high-

frequency  parts (Fig.  4c  and Fig. 4d). In the MATERHORN campaign,  the median of  

𝑓7/3𝐸 2
𝑤𝑢  shows a  positive  slope from 10 Hz  to 300 Hz  while  𝑓 𝐸𝑤𝑢  is flat in the same 

frequency  regime (Fig. 5).  Again, the cospectral scaling  of momentum  flux better matches  

−2  than −7/3  in these field observations.  
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Fig.  5  The median  of  normalized  cospectrum  of  momentum  flux  (denoted  by  𝐸𝑤𝑢 /𝑢2

∗  or  𝐸)  multiplied  by  

𝑓7/3   (blue lines)  or  𝑓2  (red  lines) across  6  representative 30-minute periods  from  the MATERHORN 

experiment. 𝑝  is  an  exponent equal to  7/3  or  2  and  𝑓  is  the sampling  frequency  in  Hz and  other  variables have  

the same meaning  as those in  Fig.  1.  

 

In  addition  to these  analyses,  we  further fitted  a  slope for  the  heat flux  cospectrum  

between 1.6  Hz  and 3.4  Hz  in each period (e.g.,  the frequency  domain in Fig.  2b) and  

obtained a  mean slope of  −2.03  and a  standard deviation of 0.22  for  18 periods (Table  1)  

in the lake  experiment. The  frequency  domain was selected to ensure  that the  cospectrum  

started to match a  power-law  at the  lower  limit and was not influenced by  instrumental  

cutoff  at the higher limit. We  extended the frequency  range  by  33.3%, within  1.3 Hz  < 

𝑓 <  3.7 Hz,  and found  a  slope of −2.02, which is  very  close  to the initial −2.03  slope 

estimate. We  performed  similar sensitivity  test of the slope fitting  the  slopes of the  

cospectra  in other  datasets. The  fitted slope  for  the  heat flux  cospectra  in  the Dome  C  and  

SHEBA campaigns  are  −2.07  and −1.93, with a standard deviation of 0.25  and 0.41, 

respectively  (Table 1). Therefore,  based on our data, a  −2  scaling  appears to be  more  likely  

observed than the −7/3  (−2.33) cospectrum  for the heat flux.  For the cospectrum  of  

momentum flux, the  fitted slope in t he 4 campaigns are  −2.00, −2.11, −1.99  and −2.02, 

respectively  (Table 1), again close to a  −2  slope.  It is worth noting  that the  standard  

deviation of the momentum cospectra  is generally  larger than that of heat cospectra  (Table  

1),  which is consistent with the larger  ratio of the  25th to 75th percentiles of c ospectrum in 
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323 momentum flux (Fig. 2b and Fig. 2e) due to the more variable nature of momentum 

324 compared to scalars. 

325 A −7/3 power-law scaling would indicate that 𝐸𝑤𝑇 ∝ 𝜖1/3 according to Eq. (2), while 

326 a −2 power-law scaling would suggest that 𝐸𝑤𝑇 ∝ 𝜖1/2 according to Eq. (5). Similarly, a 

327 −7/3 scaling would indicate that 𝐸𝑤𝑢 ∝ 𝜖1/3 according to Eq. (3), while a −2 scaling 

328 would suggest that 𝐸𝑤𝑢 ∝ 𝜖1/2 according to Eq. (7). It is thus helpful to examine the 

329 power-law relation of 𝐸𝑤𝑇 (𝐸𝑤𝑢) with 𝜖 to further determine the cospectra slope. We fitted 

330 a linear relationship between normalized 𝐸𝑤𝑇 and 𝜖1/3 in a log-log plot (Fig. 6a) for the 

331 18 periods of observations (minimizing the sum of squared errors) in the lake experiment 

332 and obtained a coefficient of determination 𝑅2 = 0.55. We also fitted a linear relationship 

333 between normalized 𝐸𝑤𝑇 and 𝜖1/2 in the log-log plot (Fig. 6b) and obtained 𝑅2 = 0.73, 

334 suggesting that 𝐸𝑤𝑇 ∝ 𝜖1/2 is a better approximation and thus further confirming that the 

335 −2 scaling better captures the heat flux cospectrum. In addition, we fitted a linear 

336 regression between normalized 𝐸𝑤𝑢 and 𝜖 in a similar way as Fig. 6a and obtained 𝑅2 = 

337 0.56 (see Fig. 7a). We fitted a linear regression between the normalized 𝐸𝑤𝑢 and 𝜖 in a 

338 way similar to Fig. 6b and obtained 𝑅2 = 0.74 (see Fig. 7b). This also suggests that 𝐸𝑤𝑢 ∝ 

339 𝜖1/2 is a better approximation, and thus −2 scaling better captures the momentum flux 

340 cospectrum than the −7/3 scaling. 

341 
342 Fig. 6 Normalized cospectrum of heat flux plotted against the mean turbulent kinetic energy dissipation rate 

−1 𝜕𝑇0343 (𝜖) in 18 representative 15-minute periods collected over Lake Geneva. (a) 𝑓7/3𝐸𝑤𝑇 ( ) according to Eq. 
𝜕𝑧 
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344 
−3/4 

(2).  (b) 𝑓2𝐸𝑤𝑇 ( 
𝜕𝑇0)  according  to  Eq.  (5).  𝑇0  is  mean  temperature in  time,  𝜖  is  mean  turbulent energy  
𝜕𝑧 

 dissipation  rate,  𝑅2 is  the coefficient of  determination  and  the other  variables have the same meaning  as  those 

in  Fig.  1.  

 

345 
346 
347 

348 
349 Fig.  7  Normalized  cospectrum  of  momentum  flux  plotted  against the mean  turbulent kinetic energy  

−1 𝜕𝑈 
dissipation  rate (𝜖)  in  18  representative 15-minute periods  collected  over  Lake Geneva.  ( ) 7/3a 𝑓 𝐸𝑤𝑢 ( )  

𝜕𝑧 
−1/2 𝜕𝑈 

𝑓2𝐸 ( ) 𝑅2 according  to  Eq.  (3).  (b) 𝑤𝑢  according  to  Eq.  (7).   is  the coefficient of  determination  and  the  
𝜕𝑧 

other  variables have the same meaning  as those in  Fig.  1.  
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To further  conclude  our analysis, we  examine  the “structure  function” of the  

temperature flux  (Mydlarski 2003),  

 
𝐷 =  〈Δ𝑤Δ𝑇〉 (8)  

𝑤𝑇 ,  

where  Δ𝑤 ≡ 𝑤(𝑥 + 𝑟) − 𝑤(𝑥),  Δ𝑇 ≡ 𝑇(𝑥 + 𝑟) − 𝑇(𝑥), 𝑥  is spatial coordinate and 𝑟  is  

the spatial separation between two points.  We  also defined  the higher-order functions 

𝐷𝑤2𝑇2 =  〈(Δ𝑤Δ𝑇)2〉 4 and 𝐷𝑤4  𝑇4 =  〈(Δ𝑤Δ𝑇) 〉 . Similarly, 𝐷𝑤𝑢 =  〈Δ𝑤Δ𝑢〉  denotes the  

structure  function of momentum flux,  and 𝐷𝑤2𝑢2 =  〈(Δ𝑤Δ𝑢)2〉  4and 𝐷𝑤4𝑢4 =  〈(Δ𝑤Δ𝑢) 〉.  

Following Antonia and  Van Atta (1978), the  temporal measurements  were  used  to 

represent the spatial structure  functions by  invoking  Taylor’s frozen turbulence  hypothesis  

(Taylor 1938).  The  −7/3  scaling  of cospectrum would indicate 𝐷𝑤𝑇 ∝ 𝑟4/3  (𝐷𝑤2𝑇2 ∝ 

𝑟8/3  and 𝐷𝑤4𝑇4 ∝ 𝑟16/3  respectively) in the inertial subrange  (Mydlarski 2003), while the  

−2 2 a 𝐷 4  scaling would indic te  𝑤𝑇 ∝ 𝑟  ( 𝐷  4 𝑤2𝑇2 ∝ 𝑟 and 𝐷𝑤4𝑇 ∝ 𝑟  respectively).  The  

−4/3 −1 structure function 𝐷𝑤𝑇  is therefore  multiplied by  𝑟  and 𝑟 , respectively (Fig. 8a), for 
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the lake data. At scales smaller than 0.5 m, 𝑟−1𝐷𝑤𝑇 exhibits a plateau, while 𝑟−4/3𝐷𝑤𝑇 has 

a steeper, positive, slope (Fig. 8a). For the momentum structure function, a flat region for 

𝑟−1𝐷𝑤𝑢 at 0.7 m < 𝑟 < 1.5 m can be observed, while there is only a much smaller plateau 

for 𝑟−4/3𝐷𝑤𝑢 (Fig. 8b). The flat region of 𝑟−1𝐷𝑤𝑇 (𝑟
−1𝐷𝑤𝑢) corresponds to the relation 

𝐷𝑤𝑇 ∝ 𝑟 (𝐷𝑤𝑢 ∝ 𝑟) and a −2 scaling of the cospectrum. The abrupt change of slope at 𝑟 < 

0.3 m for the compensated 𝐷𝑤𝑇 (Fig. 8a) and at 𝑟 < 0.6 m for the compensated 𝐷𝑤𝑢 (Fig. 

8b) suggests smaller amplitude of 𝐷𝑤𝑇 and 𝐷𝑤𝑢, which could be due to relatively larger 

instrument noise at small spatial separation. This noise effect is reduced for even-order 

functions, such as 𝐷𝑤2𝑇2 (Fig. 8c) and 𝐷𝑤4𝑇4 (Fig. 8e) since they are more stable. The 

normalized higher-order functions 𝑟−2𝐷𝑤2𝑇2 , 𝑟−2𝐷𝑤2𝑢2 , and 𝑟−4𝐷𝑤4𝑇4 and 𝑟−4𝐷𝑤4𝑢4 

thus approach a plateau at the smallest scales (Figs. 8c, 8d, 8e & 8f ), while there is still an 

obvious negative slope at the smallest scales for 𝑟−8/3𝐷𝑤2𝑇2 , 𝑟−8/3𝐷𝑤2𝑢2 , 𝑟−16/3𝐷𝑤4𝑇4 

and 𝑟−16/3𝐷𝑤4𝑢4. These results suggest that the relationships 𝐷𝑤2𝑇2 ∝ 𝑟2 and 𝐷𝑤4𝑇4 ∝ 𝑟4 

are better approximations of the structure functions. Similar results are seen at the Dome 

C observations (Fig. 9). It is worth noting that the plateau occurs at larger scales (i.e., a 

larger inertial subrange) for low-order functions 𝑟−1𝐷𝑤𝑇 and 𝑟−1𝐷𝑤𝑢 than higher-order 

functions 𝑟−2𝐷𝑤2𝑇2 , 𝑟−2𝐷𝑤2𝑢2 , and 𝑟−4𝐷𝑤4𝑇4 and 𝑟−4𝐷𝑤4𝑢4 , which is consistent with 

the finding that higher-order structure functions (Kolmogorov 1941) produce narrower 

inertial subrange (Van Atta and Chen 1970; Anselmet et al. 1984). Therefore, the structure 

functions of the fluxes suggest that the −2 scaling is a better approximation for turbulence 

cospectra than −7/3 scaling across a wide range of observed stable conditions. 
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387 
388 Fig.  8  The median  of  normalized  structure function  of  (a) 𝐷    (c)  𝐷 2 2 𝑤𝑇 (b) 𝐷𝑤𝑢 𝑤 𝑇 , (d)  𝐷 2 2𝑤 𝑢 , (e) 𝐷 4 4 𝑤 𝑇  and  

(f) 𝐷 4 4 𝑤 𝑇  across  18  representative 15-minute periods  over  Lake Geneva.  𝑟  is  the spatial separation.  389 
390 

391 
392 Fig. 9 The median of normalized structure function of (a) 𝐷𝑤𝑇 (b) 𝐷𝑤𝑢 (c) 𝐷𝑤2𝑇2 , (d) 𝐷𝑤2𝑢2, (e) 𝐷𝑤4𝑇4 and 

393 (f) 𝐷𝑤4𝑇4 across 70 representative 30-minute periods at Dome C. 
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3.3 Discussion 

Our field observations (with the highest Taylor-microscale-based Reynolds number of 

𝑅𝜆 = 3236) are consistent with previous laboratory experiments (Mydlarski and Warhaft 

1998; Mydlarski 2003; Sakai et al. 2008), which reported a −2 spectral scaling for 

turbulence cospectra at Taylor-microscale-based Reynolds number below 582. Previous 

numerical simulations (Bos et al. 2004; O'Gorman and Pullin 2005) also showed a −2 

scaling in homogeneous and isotropic turbulence with a mean scalar gradient. It is worth 

noting that some studies (Kaimal et al. 1972; Saddoughi and Veeravalli 1994; Bos 2014) 

suggested a −7/3 scaling for the cospectra but did not compare their results with other 

scaling exponents, in particular to the −2 scaling proposed here. Therefore, it is reasonable 

to infer that −7/3 scaling has not been firmly established as the proper scaling for 

cospectra of heat, momentum and scalar fluxes at moderate Reynolds numbers (𝑅𝜆~103). 

In terms of theoretical analyses, O’Gorman and Pullin (2003) proposed that both a 

−5/3 scaling leading term and a next-order −7/3 scaling term contribute to the 

cospectrum of velocity and scalar based on a stretched-spiral vortex model. Bos et al. 

(2005) showed using eddy-damped quasi-normal Markovian (EDQNM) (Orszag 1970) 

closure that the −7/3 scaling for velocity-scalar cospectrum could only be observed at 

very high Taylor-microscale Reynolds number (𝑅𝜆 = 107 ) while a smaller cospectral 

scaling exponent could be observed at lower Reynolds numbers. Li and Katul (2017) 

showed that deviations from −7/3 are related to the flux transfer and pressure 

decorrelation terms for momentum flux budget, while the exact value of the scaling cannot 

be determined from this model. In other words, these theoretical models imply the 

possibility of −2 scaling at moderate Reynolds numbers (𝑅𝜆~103) such as in the stable 

ABL (Bradley et al. 1981; Gulitski et al. 2007). Recent studies (Stiperski and Calaf 2018; 

Stiperski et al. 2019) suggested that the anisotropy of the Reynolds stress tensor are linked 

to the turbulence similarity scaling. Although our observations do not demonstrate how the 

anisotropy of the Reynolds stress tensor directly influences the cospectral scaling, it might 

still be of interest to explore the effects of the anisotropy in future studies with high-

resolution numerical simulations free from measurement errors. 

As for the application of the cospectral scaling in spectral corrections of EC 

observations in the ABL, equation (33) in Kaimal et al. (1972) suggested a −2.1 power-
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law scaling for the cospectra of heat and momentum fluxes at high wavenumbers, while 

they suggested −7/3 slope as the asymptotic cospectral scaling. The −2.1 slope was then 

adopted in the spectral correction method by Moore (1986). Yet, Horst (1997) assumed a 

−2 scaling for scalar cospectrum as it better approximated to his observations, as well as 

considering the ease of analytical computations. Similarly, Massman (2000) and Massman 

and Lee (2002) applied a −2 scaling for cospectral correction of EC measurements. 

Massman (2000) further suggested that the corrections for EC measurements are sensitive 

to the exact shape of turbulence cospectra in stable conditions. As such, the −2 scaling has 

already been applied in some earlier spectral correction methods of EC measurements, yet 

without strong justification. In this paper, we provided evidence from multiple 

observational field campaigns that the cospectra might follow the −2 spectral scaling in 

the stable ABL rather than a −7/3 scaling typically assumed. 

However, there remains open questions. The asymptotic cospectral scaling at infinite 

Reynolds number is still unknown. The cospectral scaling at 𝑅𝜆~103 in the stable ABL 

may not be directly extendable to higher Reynolds numbers, for example 𝑅𝜆~107 (Bos et 

al. (2005). While such larger Reynolds numbers are of theoretical interest, our study covers 

some typical Reynolds numbers of natural stable ABLs and hence of immediate utility. 

4 Conclusion 

Our field observations in the stable ABL suggest that −7/3 may not accurately describe 

the cospectral scaling when the compensated cospectrum, the relation between cospectrum 

and turbulent kinetic energy dissipation rate and the “structure function” of fluxes are 

carefully examined. The observations are consistent with moderate Reynolds number 

(𝑅𝜆 ≤ 103) results of laboratory experiments (Mydlarski and Warhaft 1998; Mydlarski 

2003; Sakai et al. 2008), DNS (O'Gorman and Pullin 2005; Watanabe and Gotoh 2007) 

and LES (Bos et al. 2004) studies, which compared the −2 power-law scaling with the 

−7/3 power-law scaling. Although whether asymptotic cospectral scaling exists at infinite 

Reynolds numbers is yet unknown, our observations suggest that −2 might be a better 

approximation for cospectral scaling for stably stratified ABL at field Reynolds numbers. 

Therefore, the −2 power-law scaling is recommended for spectral corrections of eddy-

covariance measurements in the stable ABL. 
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