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Abstract 

Differences between two types of prediction skill estimates over Southern Africa are 

illustrated to better inform the users of seasonal precipitation forecasts over the region who 

desire assessments of forecast accuracy. Both seasonal precipitation prediction skill estimates for 

the African continent south of 15˚S during the December-March rainy season are derived from 

the perfect-model method. The perfect-model method is based on a 40-member ensemble of 

Community Atmosphere Model version 5 simulations forced by observed time-evolving 

boundary conditions during 1920-2016. 

The first skill estimate is based on the verification of an ensemble mean forecast spanning 

many seasons and therefore unconditional on a single boundary forcing. The second skill 

estimate is based on the verification of an ensemble mean forecast for a single season and is 

therefore conditional on that year’s boundary forcing. Unconditional prediction skill calculated 

in 30-year increments for each of the 40 possible forecasts reveals: i) large spread in skill among 

the individual forecasts for any given year and ii) temporal variations in skill for each forecast. 

The magnitude of conditional prediction skill varies greatly from one year to the next, revealing 

that the boundary conditions offer little prediction skill during some years and comparably large 

skill during others. The simultaneous behaviors of the El Niño-Southern Oscillation and the 

subtropical Indian Ocean Dipole are related to the largest conditional precipitation prediction 

skill years. Unconditional skill estimates may therefore mislead users of forecasts who desire 

assessments of forecast accuracy. Unconditional skill may be temporally unstable, and unlike 

conditional skill, is not representative of the skill for a given season. 
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1. Introduction 

1.1 Motivation 

The economic productivity of Southern Africa, defined herein as the African continent 

south of 15˚S (Fig.1), is closely related to weather and climate. Jury et al. (2002) estimated that 

48% of the Southern Africa gross domestic product variance is explained by precipitation during 

the Austral summer rainy season. Rainfed agriculture is especially important to the Southern 

Africa economy, as it accounts for approximately 25% of the gross domestic product and 

employs nearly 70% of the labor force (Dixon et al. 2001). Large year-to-year precipitation 

variations during December-March (Fig. 1c), the core of the Southern Africa rainy season (Fig. 

1b see also Mason and Jury 1997 and Hoell et al. 2017), can therefore shock the regional 

economy. Meager precipitation can lead to reduced agricultural production and reduced 

hydroelectric power generation while abundant precipitation can lead to flooding and damage to 

infrastructure (Conway et al. 2015). 

Decision makers utilize predictions of December-March precipitation to better define, 

quantify and reduce the risk of future economic shocks over Southern Africa. Decision makers 

utilize outlooks issued by forecasters at many institutions, including National Meteorological and 

Hydrological Services, Regional Climate Outlook Forums, Drought Early Warning Systems and 

Famine Early Warning Systems (e.g. Hansen et al. 2011, Sheffield et al. 2014). Precipitation 

outlooks issued by these institutions are based on both statistical and dynamical forecasts. 

Statistical models have long been used to forecast Southern Africa precipitation, and generally 

leverage historical relationships between precipitation and variables elsewhere in the climate 

system (e.g. Hastenrath et al. 1995, Thiaw et al. 1999). Use of simulations from dynamical 

models have grown from a research activity to an operational pursuit over the past 30 years 
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68 (Weisheimer and Palmer 2014; Graham et  al. 2011) to include forecast frameworks comprised of  

many different models; examples include, the North American Multi-model Ensemble (Kirtman 

et al. 2014), Copernicus Climate Service2, Global Producing Centres for Long-Range Forecasts 3  

and WMO Lead Center for Long-Range Forecasts Multi-Model Ensembles4.  

However, seasonal predictions alone do not provide enough information for decision  

makers, forecasters or forecast system developers.  All three require an awareness of prediction 

accuracy, also known as prediction skill, in order to contextualize the prediction. Decision 

makers use prediction skill to establish if, when and where a seasonal prediction should be  

incorporated into practice across different economic sectors (Sarewitz et al. 2000, Hartmann et  

al. 2002). Forecasters use prediction skill in order to communicate the confidence in a given 

forecast. Forecast system developers use prediction skill to help guide possible forecast system  

improvements.  

 

1.2 Prediction Skill Estimates  

Two types of prediction skill estimates have been developed to address user needs (e.g. 

Kumar 2007). One type is based on the verification of a series of predictions spanning many   

seasons. This type  is  an unconditional  skill estimate since it is not specific to any boundary    

forcing. The other type is based on the verification of a single season. This type  is  a conditional  

skill estimate since it is dependent on the boundary forcing of a season.    

Unconditional precipitation prediction skill is commonly expressed as the correlation of a  

series of forecasts with observations. An example of such a calculation is shown in Fig. 2a for  

January-March NMME forecasts made the previous December. The unconditional correlations    
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between forecasts and observations during 1982-2009 of less than 0.10 suggest that the NMME 

forecast system has little skill in predicting Southern Africa precipitation during January-March 

at one-month lead. 

There are a variety of ways to estimate conditional precipitation prediction skill, and we 

will show later that conditional skill is related to the occurrence probability of above, near and 

below average precipitation for a single season (e.g. Kumar 2007). In this construct, the 

proportion of individual forecasts from a prediction system that fall into above, near and below 

average bins constitute as the probability of that precipitation outcome. An example of such a 

calculation is shown in Fig. 2b for the January-March 2019 NMME precipitation forecast made 

the previous December. Below average precipitation probabilities between 40-50% over 

Southern Africa would lead one to believe that there is some confidence in the forecast of below 

average precipitation beyond chance. However, the confidence demonstrated by the probabilistic 

forecast in Fig. 2b is undermined by the low unconditional skill estimate shown in Fig. 2a. 

To better inform Southern Africa decision makers and forecasters, we illustrate 

differences in unconditional and conditional seasonal precipitation prediction skill estimates over 

the region during December-March. Our methodology follows that of Kumar (2007). 

Unconditional and conditional prediction skill estimates are illustrated using a perfect-model 

experiment based on a 40-member ensemble of atmospheric model simulations forced by 1920-

2016 observed time-evolving boundary conditions. The atmospheric model simulations are based 

on the Community Atmosphere Model version 5 (CAM5). We employ an atmospheric model 

instead of initialized coupled ocean-atmosphere forecast systems for two reasons. First, the 

atmospheric model isolates the prediction skill offered by SST. Second, the atmospheric model 

provides a long time series from which to evaluate prediction skill. In this application of the 
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perfect-model, each ensemble member is selected as a proxy for observations while the average 

of the remaining members serves as the forecast for that observed proxy. This method generates 

many observed and forecast pairs for each of the 97 years examined. 

The benefits of this analysis go beyond the interpretation of seasonal precipitation 

prediction skill estimates over Southern Africa. First, the use of atmospheric model simulations 

forced by the same boundary conditions enables an assessment of potential prediction skill, given 

that SSTs largely serve as the basis for seasonal prediction (e.g. Palmer and Anderson 1994). 

Second, the nearly 100-year focus period enables an assessment of whether precipitation 

prediction skill has changed in time, as suggested by Lawal et al. (2015) for the country of South 

Africa. Third, this analysis compliments assessments of the Southern Africa prediction skill in 

operational forecast systems (Landman and Beraki 2010, Yuan et al. 2014, Beraki et al. 2016, 

Landman et al. 2019). The hindcast periods and ensemble sizes of operational forecast systems 

tend to be much shorter and smaller, respectively, than the atmospheric model simulations that 

serves as the basis for the perfect-model method used here. 

1.3 Sources of Precipitation Prediction Skill 

We also use the conditional skill estimates based on the perfect-model method to 

objectively identify potential sources of December-March precipitation prediction skill and the 

mechanisms by which these sources drive Southern Africa precipitation. These conditional skill 

estimates can be used to establish how aspects of the boundary conditions may govern seasonal 

prediction skill without making prior assumptions on the sources of prediction skill. 

Prior studies have largely isolated known modes of ocean-atmosphere variability and 

identified their relationships with Southern Africa precipitation. Most studies have focused on El 
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Niño-Southern Oscillation (ENSO) as a predictor (e.g. Hastenrath et al. 1995, Goddard and 

Dilley 2005, Manatsa et al. 2015), and to a lesser extent on predictors originating in the Indian 

Ocean, which include the Subtropical Indian Ocean Dipole (SIOD; e.g. Behera and Yamagata, 

Reason 2001, Washington and Preston 2006). Even fewer studies have focused on the combined 

effects of both ENSO and SIOD on Southern Africa precipitation (Hoell et al. 2016, 2017). 

Research on the relationship between ENSO and Austral summer Southern Africa 

precipitation spans three decades (e.g. Nicholson and Entekhabi 1986, Ropelewski and Halpert 

1987, 1989, Lindesay 1988). The two phases of ENSO, El Niño and La Niña, generally have 

opposing effects on Southern Africa climate (e.g. Jury et al. 1994; Rocha and Simmonds 1997; 

Nicholson and Kim 1997; Reason et al. 2000; Misra 2003). El Niño is related with below 

average precipitation due to high pressure, anomalous downward motion and reduced moisture 

fluxes into Southern Africa. By contrast, La Niña is related with above average precipitation due 

to low pressure, anomalous upward motion and enhanced moisture fluxes into Southern Africa. 

More recent research has examined the relationships between aspects of ENSO and Southern 

Africa precipitation. Different SST patterns associated with ENSO (e.g. Wyrtki 1975, Capotondi 

et al. 2014) are related with different atmospheric circulations over Southern Africa (Ratnam et 

al. 2014, Hoell et al. 2015). Also, stronger ENSO events are on average related with greater 

precipitation anomalies over Southern Africa (Pomposi et al. 2018). 

The southwest-to-northeast oriented SST anomaly dipole over the Indian Ocean that is 

characteristic of the SIOD has been related with summertime Southern Africa precipitation 

(Behera and Yamagata, Reason 2001, Washington and Preston 2006). These SST anomalies 

have been found to modify the regional circulations over the southwestern Indian Ocean thereby 

affecting regional moisture fluxes that directly impact Southern Africa precipitation. The 
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behavior of SIOD can complement or disrupt the Southern Africa precipitation relationship with 

ENSO (Hoell et al. 2016, 2017). When ENSO and SIOD are out of phase (e.g. El Niño and a 

negative SIOD or La Niña and a positive SIOD), Southern Africa on average experiences larger 

precipitation anomalies than if ENSO acted alone. When ENSO and SIOD are in phase (e.g. El 

Niño and a positive SIOD or La Niña and a negative SIOD), Southern Africa on average 

experiences lesser precipitation anomalies than if ENSO acted alone. 

1.4 Paper Organization 

The organization of the paper is as follows. In section 2, the atmospheric model 

simulations and skill estimates derived from the perfect-model method are described. In section 

3, we describe the behavior of seasonal conditional and unconditional prediction skill throughout 

the 20th and 21st centuries and discuss the sources of seasonal precipitation skill based on the 

conditional skill estimates. In section 4, we interpret differences in the prediction skill estimates 

and make recommendations for which skill estimate is most relevant to user needs. 

2. Tools and Methods 

2.1 Atmospheric Model Simulations 

The 40-member ensemble of atmospheric model simulations forced by an estimate of the 

observed time-evolving boundary conditions for 1920-2016 is based on CAM5 (Neale et al. 

2012). The simulations utilize a finite volume dynamical core with horizontal resolution of 288 

by 192 grid points in longitude and latitude, respectively, and 25 vertical levels. The boundary 

conditions that force each ensemble member include SSTs and sea-ice concentration from the 

merged Hadley (Rayner et al. 2003) -- NOAA Optimum Interpolation (Reynolds et al. 2007) data 
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set constructed by Hurrell et al. (2008), greenhouse gases (Meinshausen et al. 2011), ozone 

(Lamarque et al. 2012) and aerosols (Tanre et al. 1984). While all ensemble members utilize 

analyzed SST, the weather for each member is different owing to their initializations from 

different atmospheric states in 1901. The simulations and further documentation can be obtained 

from http://www.esrl.noaa.gov/psd/repository/alias/facts/. 

CAM5 simulates key features of the Global Precipitation Climatology Centre (GPCC, 

Schneider et al. 2014) observed estimate of areally averaged Southern Africa temporal 

precipitation variability south of 15˚S during December-March (Fig. 3). Another precipitation 

estimate, from the Climate Research Unit (CRU; Harris et al. 2014), is like GPCC over Southern 

Africa (Pomposi et al. 2018). The CAM5 ensemble mean precipitation appears to be correlated 

with the observed precipitation over prolonged periods (i.e. 1970s, 1990s and 2000s). The 

correlation between the two is 0.56 for the entire period of record. The ensemble mean filters 

atmospheric noise in each of the ensemble members, thereby reinforcing the ability of CAM5 to 

simulate relationships between the boundary conditions and Southern Africa precipitation 

highlighted by previous studies (Funk et al. 2018, Pomposi et al. 2018). 

2.2 Prediction Skill Estimates Derived from the Perfect-Model Method 

The perfect-model method as applied here is a three-step process over which proxies of 

observed areally averaged Southern Africa precipitation time series and their forecasts during 

December-March are constructed from the atmospheric model simulations. The schematic of the 

atmospheric model simulations in Fig. 4, which is adapted from Kumar (2007), is used to 

describe the application of the perfect-model method. First, precipitation from a single member 

of the simulated ensemble is selected to proxy a time series of observations (columns in Fig. 4). 
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A single ensemble member and observations  are conceptually similar since both are forced by a    

combination of internal weather/climate variations and the boundary conditions. Second, the  

remaining 39 ensemble members are averaged for each December-March season (rows in Fig. 4) 

to provide a simulated forecast of that observed time series. The averaging of the 39 members  

mutes the contribution of internal variability, and thereby reduces the temporal variations of   each 

ensemble member. This makes clearer the effect of the prescribed boundary forcing in the     

atmospheric model. It is this boundary forcing that serves as the primary basis for seasonal   

prediction (e.g. Palmer and Anderson 1994). Third, steps one and two are repeated 40 times so 

every ensemble member serves as an observed proxy, resulting in 40 pairs of observed and  

forecast December-March Southern Africa time series for 1920-2016.  

The proxies of observed and forecast December-March Southern Africa precipitation are  

used to calculate unconditional and  conditional prediction skill. Anomaly correlation is the  

metric used to calculate skill though a variety of other skill measures could also be used. The  

skill calculations are based on the mathematical formulation outlined by Kumar (2007), which is  

repeated in the following.  

December-March precipitation anomalies  for each year and ensemble member  in the  

atmospheric model simulations are obtained prior to calculating unconditional and conditional  

skill. Let  !!"  denote precipitation for ensemble member "  and year #. Precipitation anomalies for 

year #  are calculated relative to a climatology. The climatology, < !">, which depends on the  

year, is obtained from the average of the remaining years,    

1< !"  >	= .. !  )(+ − 1) #$
# $%" 
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227 where  N=40 is the number of ensemble members and M=97 is the number of years. The  

anomaly for !!" 	is then defined as  

!& !" = !!"−< !" >. 

 (2)  

This process is repeated until the precipitation anomaly for each year, 	#,  and ensemble member, 

",  is obtained.  

Unconditional prediction skill is defined as the verification of one of 40 December-March 

forecast anomaly proxy time series, 1& !". For a randomly selected observed anomaly proxy time  

series, 2 = ",  

1& '" = 3& '" . 

 (3)  

The corresponding forecast proxy, 4& , of the observed anomaly proxy, 1& '" '", is obtained 

from the mean of the remaining 39 ensemble members,  

& 14 & 
'" = . 3 . ) − 1 #"

#%' 

 (4)  

Unconditional skill in terms of anomaly correlation between the randomly selected 

observed and forecast proxy time series is defined by  

∑ 4& &
	 '"1567869":"86;<  = '" =>'  ( ) . @' @'

  (5)  

where  @)' and @( 
'  are the standard deviations of the observed and forecast time series, 

respectively.  
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248 The unconditional skill calculation is repeated so each of the 40 ensemble members  

serves as a proxy for observations. We express unconditional skill in 30-year increments, for 30   

years serve as the World Meteorological Organization recommendation for climate normals5. 

This allows for an assessment of how unconditional prediction skill may vary in time for the  

many possible evolutions of observed Southern Africa precipitation time series proxies.  

Conditional prediction skill is defined as the verification of the many forecast proxies for 

a single December-March season. For a given year,  # = =, a randomly chosen observed 

anomaly proxy is represented by   

1& = 3& !* !*. 

 (6)  

The corresponding forecast proxy, 4& !*, of the observed anomaly proxy, 1& !*, is obtained 

from the mean of the remaining 39 ensemble members   

& 14!* = . 3& ) − 1 #*. 
#%' 

 (7)  

This process is repeated 40 times to create pairs of observed and forecast precipitation   

proxies for each year. The conditional skill in terms of anomaly correlatio n for a given year is   

therefore  

∑ >869":"86;< ! 4& 	 !*1&!* =>* = ( . @(* @*
 (8)  
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5 http://www.wmo.int/pages/prog/wcp/ccl/guide/documents/Normals-Guide-to-Climate-

190116_en.pdf 
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The conditional skill calculation is repeated for each of the 97 December-March seasons. 

The magnitude of conditional prediction skill based on anomaly correlation is proportional to the 

magnitude of the signal-to-noise ratio, a common metric for assessing prediction skill 

conditioned on a specific boundary forcing (Fig. 5; see also Kumar and Hoerling 2000, 

Sardeshmukh et al. 2000). Signal-to-noise ratio is defined here as the ratio of the ensemble mean 

anomaly and the standard deviation of the ensemble.  

Conditional skill is related to the probability of above, near and below average 

precipitation for a given season (e.g. Fig. 2), where each of those three categories refer to the 

upper, middle and lower terciles of the historical distribution of the model, respectively (Kumar 

2009). The probabilities are obtained by binning Southern Africa precipitation in the CAM5 

simulations. Tercile-based categorical probabilities are sometimes estimated using a Gaussian 

fitting method (e.g. Min et al. 2009). Such a method is not adopted here because we do not 

assume that Southern Africa precipitation follows a distribution. 

2.3 Sources of Conditional Precipitation Prediction Skill 

Composites of SSTs, precipitation, 850 and 200 hPa winds and 500 hPa pressure vertical 

velocity based on discrete levels of conditional skill are used to objectively identify sources of 

December-March precipitation prediction skill and the mechanisms by which these sources drive 

Southern Africa precipitation. Four classes of conditional precipitation prediction skill are 

considered, when anomaly correlation skill falls between 0.25-0.50 and 0.50-1.0, for both above-

and below-average precipitation forecasts. These conditional skill classes are chosen to align 

with signal-to-noise ratios of 0.5-1.0 and greater than 1.0 (Fig. 5). Signal-to-noise ratios of 

greater than 1.0 are often considered to be skillful since the ensemble mean anomaly exceeds one 
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standard deviation (e.g. Kumar and Chen 2016). Above- and below-average forecast 

precipitation for a given December-March season are defined by the sign of the ensemble 

average precipitation anomaly of the model simulations. 

3. Results 

3.1 Unconditional Precipitation Prediction Skill 

The December-March Southern Africa seasonal unconditional precipitation prediction 

skill time series reveal two key characteristics of this skill type over the region (Fig. 6). First, the 

temporal characteristics of each of the 40 December-March forecast verifications are different, 

which highlights the combined effects of internal atmospheric behaviors and differences in the 

boundary forcing on 30-yr sequences of unconditional precipitation prediction skill (Kumar 

2009). These variations in Southern Africa unconditional precipitation prediction skill through 

time could also lead to very different perceptions on the regional forecast skill, considering that 

such skill estimates of operational forecast models are based on a single observed trace of the 

climate. 

Three examples of how unconditional precipitation prediction skill can vary in time are 

highlighted in Fig. 6: the verification based on GPCC in black, and two simulated verifications in 

pink and green. The forecast verification against GPCC tends to follow the behavior of many of 

the 40 members of the simulated proxies, with lower skill prior to 1970 and comparably higher 

skill thereafter. The green trace stands out among the members of the simulated ensemble, as the 

unconditional precipitation prediction skill with this chosen member as the proxy for verification 

is consistently much lower than all other ensemble members. The pink trace also stands out and 

is noteworthy for its exceptional decline in unconditional precipitation prediction skill from 
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among the highest of the verifications around 2000 to among the lowest of the verifications in 

2016. 

The temporal variations across the 40 individual traces of unconditional precipitation 

prediction skill time series, as well as the verification based on GPCC, suggest a systematic 

increase in the magnitude of this skill estimate during 1920-2016. This increase is most evident 

in mean changes of 40 unconditional precipitation prediction skill estimates (Fig. 6 bold blue 

line), from about 0.40 anomaly correlation in the 1960s to about 0.55 anomaly correlation in 

2016, after a maximum of near 0.65 anomaly correlation in 1990. Temporal variations in 

prediction skill across the 40 members is likely tied to changes in the behavior of the boundary 

forcing, given that the boundary forcing is the same across each of the members for the 30-year 

verifications. However, it is unclear whether such changes in unconditional skill are related to 

sustained or fleeting changes in the boundary forcing. It must be reiterated, however, that from 

the perspective of verification against an individual trace, year-to-year changes in unconditional 

precipitation prediction skill can be different from most of the other traces, an example of which 

was described by the green trace in Fig. 6. 

For the second key characteristic, the spread among the 40 forecast verifications for any 

given year is large. The large spread highlights the effect of internal atmospheric variability on 

unconditional precipitation prediction skill, given that each observed proxy uses the same 

boundary conditions over the 30-year verification periods (Kumar 2009). This spread could 

therefore lead to very different perceptions of Southern Africa prediction skill and raises the 

question on how one should interpret unconditional precipitation prediction skill estimates. 

The spread in unconditional precipitation prediction skill for given years is considered in 

the following examples. For the 30-year period ending in 1960, the average unconditional 
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prediction skill for the 40 forecast verifications is 0.33 while the spread across the verifications is 

almost twice as large at 0.65 (Kumar 2009). Appreciable spread is also present during all other 

years, even 2000, the year during which the unconditional precipitation prediction skill spread 

was lowest and the mean skill highest. As pointed out by Kumar (2007), since correlation can 

only achieve a maximum value of 1, the spread and means of many unconditional skill estimates 

for a given year are inversely related. Also noteworthy is how the verification of a forecast based 

on GPCC always falls within the verification of model-based forecasts (Fig. 6 black line), which 

again suggests that the CAM5 atmospheric model with prescribed boundary conditions simulates 

realistic domain-average climate and prediction skill estimates over Southern Africa. 

3.2 Conditional Precipitation Prediction Skill 

Large interannual variability is the key characteristic of a seasonal December-March 

Southern Africa conditional precipitation prediction skill time series (Fig. 7), thus revealing the 

important effect of specific boundary forcing on the regional prediction skill for a given year. 

During some years the boundary conditions simply offer no precipitation prediction skill while 

during other years the boundary conditions offer comparably large precipitation prediction skill. 

Interannual variability of the December-March Southern Africa conditional precipitation 

prediction skill can be drastic due to the amplitude of the predicted ensemble mean (Fig. 7). 

Examples of extreme year-to-year variations in which conditional skill moved from a bottom-5 

to a top-5 season include 1972/73 to 1973/74, 1981/82 to 1982/83 and 1991/92 to 1992/93. The 

lack of year-to-year persistence in conditional precipitation prediction skill is further highlighted 

by the 0.01 lag-1 autocorrelation of the time series during 1920-2016. The sign alone of the 

precipitation anomaly forecast has no bearing on conditional precipitation prediction skill. The 
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Kolmogorov-Smirnov two-sample test indicates that distributions of forecast above and forecast 

below average precipitation are not statistically significant, with a p-value of 0.62. Above and 

below average forecast precipitation for a given December-March season are defined by the sign 

of the ensemble average precipitation anomaly of the model simulations. 

The decade-to-decade variations in Southern Africa conditional precipitation prediction 

skill are also large (Fig. 7). This suggests that some knowledge of the boundary conditions over a 

sequence many years could provide an indication of the magnitude of precipitation prediction 

skill during that time. This compliments previous works that identified decadal variability in the 

time series of Southern Africa precipitation and its links to SSTs (e.g. Reason and Rouault 2002, 

Zhang et al. 2015, Dieppois et al. 2016). Conditional skill in these perfect-model simulations was 

comparably high during some decades, which include the 1960s, 1970s, 1980s and post-2000. 

By contrast, conditional skill was comparably low during other decades, which include the 

1930s, 1940s, 1950s and 1990s. Interestingly, two standout conditional skill years did occur 

during those low skill decades; for example, 1938/39 and 1991/92. 

The two decades spanning the 1960s and 1970s saw the largest magnitudes of December-

March conditional precipitation prediction skill (Fig. 7). Above average precipitation forecasts 

prevailed during this span (Figs. 3 and 7), as the ensemble mean of the simulations was above 

average for 16 of those 20 years. Also, four of those above average forecast years ranked in the 

top 10 highest conditional precipitation prediction skill during 1920-2016. 

The epoch spanning 1981/82 and 1991/92 also saw comparably high conditional 

precipitation prediction skill, but in contrast to the preceding two decades, the forecast during 

seven of those ten years was for below average precipitation (Figs. 3 and 7). The high skill 

during this epoch was bolstered by 3 of the top 11 skill years on record. While conditional skill 
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during the post 2000 period lagged 1960-1990, 5 of the top 15 skill years showed up during that 

period associated with a below average precipitation forecast. 

Larger magnitudes of December-March Southern Africa conditional precipitation 

prediction skill calculated via anomaly correlation are related to greater changes of the regional 

forecast precipitation distributions from climatology (Figs. 8 and 9). This underscores how 

particular configurations of the boundary conditions shape the probabilities of below, near and 

above average forecast seasonal precipitation in the presence of atmospheric noise (see also Fig. 

2b). During instances of high conditional prediction skill, the boundary conditions provide an 

indication that forecast precipitation probabilities will differ from climatological probabilities 

(i.e. 33% for each below, near and above average seasonal precipitation) while during others the 

boundary conditions provide no such guidance. 

Drastic shifts in the distributions of forecast December-March Southern Africa 

precipitation are related to conditional precipitation prediction skill that exceed 0.5 anomaly 

correlation (Fig. 9). While these instances are relatively uncommon, occurring just 15 times in 97 

seasons, the forecasts reveal large changes in the odds of below or above average forecast 

precipitation outcomes. For the seven seasons during which the ensemble average is below 

average, the forecast distribution shifts appreciably to negative values, resulting in an 81% 

probability that precipitation is below average and just a 5% probability that precipitation is 

above average. For the eight seasons during which the ensemble average is above average, the 

forecast distribution shifts appreciably to positive values and narrows, resulting in a 73% 

probability that precipitation is above average and just a 3% probability that precipitation is 

below average. 
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Shifts in the distributions of forecast Southern Africa precipitation are also related to 

conditional precipitation prediction skill that fall between 0.25 and 0.5 (Fig. 9). These instances 

happen more often, occurring 23 times in 97 December-March seasons, and reveal important 

changes in the odds of either below or above average forecast precipitation outcomes. For the 12 

seasons during which the ensemble average is below average, the distribution shifts to negative 

values, resulting in a 63% probability of below average precipitation and an 11% probability of 

above average precipitation. For the 11 seasons during which the ensemble average is above 

average, the distribution shifts to positive values and narrows, resulting in a 57% probability of 

above average precipitation and a 10% probability of below average precipitation. 

3.3 Sources of Conditional Precipitation Prediction Skill 

SST anomalies consistent with ENSO and SIOD are related to conditional precipitation 

prediction skill that exceed 0.5 anomaly correlation (c.f. Fig. 10a,b and Fig. 1 in Hoell et al. 

2017), thus demonstrating that the greatest December-March Southern Africa precipitation 

prediction skill is obtained from simultaneous ENSO and SIOD events. The SST related to above 

and below average Southern Africa precipitation that meet the conditional skill criteria are mirror 

images. SST anomalies associated with above average Southern Africa precipitation are like El 

Niño and a negative SIOD (Fig. 10a) while SST anomalies associated with below average 

Southern Africa precipitation are like La Niña and a positive SIOD (Fig. 10b). The linearity in 

the SST relationships with Southern Africa precipitation is supported by Hoell et al. (2017, 2018) 

who showed that simultaneous ENSO and SIOD events are related to the greatest Southern 

Africa precipitation anomalies. 
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Southern Africa precipitation anomalies associated with high December-March 

conditional precipitation prediction skill are related to strong anomalies in the regional 

atmospheric circulation (Figs. 11a,b; 12a,b). Like the SST anomalies, anomalous atmospheric 

circulations related to above and below average Southern Africa precipitation that meet the 

conditional skill criteria are mirror images. Above average Southern Africa precipitation is 

related to anomalous low-level high pressure east of Madagascar, upper-level low pressure east 

of South Africa, anomalous onshore low-level winds, convergent low-level winds over land and 

anomalous mid-tropospheric downward motions over Southern Africa. Below average Southern 

Africa precipitation is related to anomalous low-level low pressure east of Madagascar, upper-

level high pressure east of South Africa, anomalous offshore low-level winds, divergent low-

level winds over land and anomalous mid-tropospheric downward motions over Southern Africa. 

SST anomalies consistent with the SIOD are related to conditional precipitation 

prediction skill that falls between 0.25 and 0.50 anomaly correlation (c.f. Fig. 10c,d and Fig. 1 in 

Hoell et al. 2017), thus demonstrating December-March Southern Africa precipitation prediction 

skill is obtained from the SIOD alone. The SST related to above and below average Southern 

Africa precipitation that meet the conditional skill criteria are nearly mirror images, with SST 

dipoles in the southwest and central Indian Ocean (Fig. 10c,d). The southwestern Indian Ocean 

SST associated with below average Southern Africa precipitation is not clearly defined, likely as 

a result of warming SST over that region throughout the 1920-2016 period of record. 

Southern Africa precipitation anomalies associated with December-March conditional 

precipitation prediction skill falling between 0.25 and 0.50 anomaly correlation are also related 

to anomalies in the atmospheric circulation (Figs. 11c,d; 12c,d). The anomalous atmospheric 
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circulations follow similar patterns as the high conditional skill case described previously, but 

the magnitudes of the anomalies are not as strong. 

4. Summary and Interpretation 

4.1 Summary 

We illustrated herein the characteristics of unconditional and conditional seasonal 

precipitation prediction skill for Southern Africa during December-March, the core of the 

region’s rainy season. Unconditional and conditional prediction skill were derived from the 

perfect-model method based on a 40-member ensemble of CAM5 simulations forced by 

observed time-evolving boundary conditions during 1920-2016. The perfect-model method was 

used to generate proxies of observed and forecast precipitation pairs from which forecast 

verifications using anomaly correlation were calculated. 

The time series of Southern Africa conditional precipitation prediction skill varies 

strongly from one year to the next (Fig. 7), thus revealing the important effect of specific 

boundary forcing on the seasonal prediction skill for a given year. During some years the 

boundary conditions simply offer no precipitation prediction skill while during other years the 

boundary conditions offer comparably large precipitation prediction skill. Additionally, it was 

found that the magnitude of conditional precipitation prediction skill is related to changes in the 

distribution of forecast Southern Africa precipitation relative to a climatology, indicating that 

conditional skill estimates are implied by probabilistic seasonal forecasts (Fig. 9). 

Time series of Southern Africa seasonal unconditional precipitation prediction skill 

reveal two key characteristics of this skill type over the region (Fig. 6). First, sequences of 30-

year unconditional precipitation prediction skill verifications for each of the 40 individual traces 
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of the climate vary differently in time. This temporal instability, also highlighted by Landman 

and Goddard (2002), underscores the combined effects of internal atmospheric behaviors and 

differences in the boundary forcing between verification periods. Second, the spread among each 

of the 40 forecast verifications during a given year is large, which underscores the effect of 

internal atmospheric variability on this skill type, given that each observed proxy is exposed to 

the same boundary conditions over the verification period. 

We also used the conditional precipitation prediction skill estimates to objectively 

identify sources of seasonal precipitation prediction skill and the mechanisms by which those 

sources drive December-March Southern Africa precipitation (Figs. 10-12). Our methodology 

compliments many previous studies that isolated known modes of climate variability and 

identified links between those modes and Southern Africa. The simultaneous behaviors of ENSO 

and the SIOD offer the greatest conditional skill while a second tier of conditional skill is 

afforded by the SIOD alone. 

4.2 Interpretation 

The primary motivation for this analysis is to inform those interested in seasonal 

Southern Africa precipitation forecasts on the characteristics, strengths and weaknesses of two 

classes of widely-used prediction skill estimates. We hope that users will consider this 

information as they strive to make more informed decisions based on seasonal forecasts. We also 

hope that forecasters consider this information as they strive to express confidence, or lack 

thereof, in seasonal forecasts. 

Unfortunately, the interpretation of prediction skill estimates by forecasters and decision 

makers is influenced by model biases. Model-based skill estimates rely on a model’s rendition of 
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how simulated interannual variability is separated into unpredictable and predictable 

components. For a single model like CAM5, the unpredictable component is dictated by the 

spread among the ensemble members, while the predictable component is dictated by the 

ensemble mean. Nonetheless, CAM5 has been found to simulate Southern Africa summertime 

precipitation adequately and we use it to diagnose the attributes of conditional and unconditional 

skill estimates. 

We believe that the benefits of using conditional precipitation prediction skill estimates 

over Southern Africa overshadow the drawbacks. The primary feature of conditional skill is that 

it can distinguish between seasons during which there is no prediction skill and seasons during 

which there is comparably high prediction skill. This is a key attribute for a prediction skill 

estimate over a region like Southern Africa where the sources of the regional precipitation skill 

(i.e. ENSO and SIOD) are not active during some seasons. The inactivity of precipitation 

prediction skill sources during some seasons reduces the overall reliability of the forecast system, 

thereby making forecasts of opportunity as identified by conditional skill that much more 

important. Decision makers and forecasters can thereby decide as to whether a prediction for a 

given December-March season is meaningful and advise their audiences accordingly. 

Conditional precipitation prediction skill has the attribute of being closely related to the 

probability distribution of forecast December-March Southern Africa precipitation. Greater shifts 

in the forecast precipitation anomaly distribution, resulting in changes to the probabilities of 

above or below average precipitation, are related to higher magnitudes of conditional skill. For 

an ensemble forecast system like NMME, where probabilistic forecasts are standard outputs (e.g. 

Fig. 2b), Southern Africa conditional precipitation prediction skill is implied. These shifts in 
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probabilities can be used directly by users and forecasters to express confidence levels in a given 

seasonal forecast. 

We believe that the drawbacks of using unconditional precipitation prediction skill over 

Southern Africa overshadow the benefits. The analysis of conditional skill strongly indicates 

important year-by-year variations in precipitation prediction skill that, by construct, 

unconditional precipitation prediction skill cannot distinguish since unconditional skill is based 

on a mixture of years with high and low conditional skill. Unconditional skill will in turn 

underestimate the prediction skill during seasons in which conditional skill is high and 

overestimate the prediction skill during seasons in which conditional skill is low. Unconditional 

skill therefore cannot provide guidance as to whether a skillful seasonal forecast during a given 

December-March season is expected. 

Consider the following anecdote based on Fig. 2 that highlights how unconditional skill 

could undermine a rather confident probabilistic, or conditional, seasonal forecast. The 

verification of a history of past January-March forecasts made the preceding December suggests 

that NMME has little unconditional precipitation prediction skill over Southern Africa for that 

season (Fig. 2a). If a user were to ignore NMME forecasts entirely as a result of the 

unconditional skill estimate, they would also ignore that precipitation during some January-

March seasons over Southern Africa are predictable. They would ignore that the January-March 

2019 forecast is an example of such a season with prediction skill due to El Niño conditions, as 

evidenced by upwards of 50% probabilities of precipitation falling into the upper 33% of a 

historical distribution (Fig. 2b). 

Also, unconditional precipitation prediction skill can be difficult to interpret for two 

reasons. First, there is large temporal instability of sequences of 30-year verifications for 40 
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individual traces of the climate. Second, the spread of unconditional prediction skill among the 

40 traces of the climate for individual years is large. The pink and green traces in Fig. 6 are 

indicative of how a single evolution of the climate may greatly alter our perception the 

unconditional precipitation prediction skill. We oftentimes do not appreciate these possible 

variations in unconditional skill, since verifications of this type are typically made against a 

single observed time series for a temporally-limited hindcast period of an operational forecast 

model (e.g. 1982 and onward in Fig. 2a for NMME). This raises the question of whether the 

unconditional skill based on a single trace of the climate is suggestive of the true unconditional 

skill or is merely an outlier. 
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Figure 1: For GPCC during 1920-2016, (a) average monthly precipitation (mm/day), (b) 

December-March annual precipitation contribution (percent) and (c) December-March 

precipitation coefficient of variation. 

Figure 2: Precipitation prediction skill of the NMME forecast system available from 

http://www.cpc.ncep.noaa.gov/products/international/nmme/nmme.shtml. (a) Unconditional 

prediction skill of December-initialized January-March forecasts calculated through the 

correlation (times 100) of the forecast with observed precipitation during 1982-2009. (b) An 

approximation of conditional prediction skill for January-March 2019 forecasts initialized the 

previous December. These estimates are calculated by identifying the proportion of forecast 

members that fall into the above, near and below average terciles of the distribution of the 

forecast system. 

Figure 3: Time series of December-March Southern Africa precipitation anomaly (mm/day). 

GPCC precipitation is shown in red, individual simulated ensemble members are shown in light 

blue and the simulated ensemble average is shown in dark blue. The correlation between GPCC 

and the simulated ensemble average is 0.56 (p<0.01). 

Figure 4: Schematic diagram of the CAM5 simulations. The columns represent the different 

CAM5 ensemble members and the rows represent the December-March seasons. The schematic 

is adapted from Kumar (2007). 
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Figure 5: Scatter diagram of conditional skill (vertical axis) and signal-to-noise ratio (horizontal 

axis). 

Figure 6: Time series of December-March Southern Africa 30-year end point unconditional 

precipitation prediction skill. Individual simulated ensemble members are shown in light blue, 

focus simulated ensemble members are shown in pink and green, the average of the 40 simulated 

ensemble members is shown in dark blue and GPCC precipitation is shown in black. 

Figure 7: Time series of December-March Southern Africa conditional precipitation prediction 

skill. Green and brown bars indicate above and below average forecast precipitation. Above and 

below average precipitation are defined by the sign of the simulated ensemble average anomaly 

for a given season. 

Figure 8: Scatter diagram of forecast December-March Southern Africa precipitation as a 

function of conditional precipitation prediction skill and the sign of the forecast ensemble 

average precipitation anomaly. The green and brown horizontal lines denote the thresholds for 

above and below average precipitation, respectively. 

Figure 9: Box plot and the probability of forecast December-March Southern Africa precipitation 

falling below (brown), near (gray) and above (green) average as a function of conditional 

precipitation prediction skill and the sign of the forecast ensemble average precipitation 

33 



 

 

 

   

    

  

   

 

  

  

  

   

  

   

 

  

  

  

  

 

  

 

   

  

  

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

anomaly. Above and below average precipitation are defined by the sign of the simulated 

ensemble average anomaly for a given season. The tercile probabilities in the All category are 

33.3%, but are shown here as 33% for clarity. 

Figure 10: SST anomaly composite related to December-March Southern Africa conditional 

precipitation prediction skill and the sign of the ensemble average forecast precipitation. n 

denotes the number of seasons that qualify. SST is significant at the p<0.05 level based on a two-

sided t-test. 

Figure 11: Precipitation anomaly (mm/day) and 850 hPa wind anomaly (m/s) composites related 

to December-March Southern Africa conditional precipitation prediction skill and the sign of the 

ensemble average forecast precipitation. n denotes the number of forecasts included in the 

composite, equivalent to the number of qualifying seasons (see Figs. 8 and 9) over the 40 

members of the ensemble. Precipitation is significant at the p<0.05 level based on a two-sided t-

test. 

Figure 12: 500 hPa pressure vertical velocity anomaly (hPa/day) and 200 hPa wind anomaly 

(m/s) composites related to December-March Southern Africa conditional precipitation 

prediction skill and the sign of the ensemble average forecast precipitation. n denotes the number 

of forecasts included in the composite, equivalent to the number of qualifying seasons (see Figs. 

8 and 9) over the 40 members of the ensemble. Vertical velocity is significant at the p<0.05 level 

based on a two-sided t-test. 
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Figure 1: For GPCC during 1920-2016, (a) average monthly precipitation (mm/day), (b) December-March annual precipitation 

contribution (percent) and (c) December-March precipitation coefficient of variation. 
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Figure 2: (a) Unconditional prediction skill of December-initialized January-March NMME 
forecasts calculated through the anomaly correlation (times 100) of the forecast with observed 
precipitation during 1982-2009. (b) Probabilistic forecasts of January-March 2019 precipitation 
initialized the previous December from NMME. These probabilistic forecasts are calculated by 
identifying the proportion of forecast members that fall into the above, near and below average 
terciles of the distribution of the prediction system. Both images were obtained from 
http://www.cpc.ncep.noaa.gov/products/international/nmme/nmme.shtml 
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Figure 3: Time series of December-March Southern Africa precipitation anomaly (mm/day). GPCC precipitation is shown in red, 
individual simulated ensemble members are shown in light blue and the simulated ensemble average is shown in dark blue. The 
correlation between GPCC and the simulated ensemble average is 0.56 (p<0.01). 
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Figure 4: Schematic diagram of the CAM5 simulations. The columns represent the different 
CAM5 ensemble members and the rows represent the December-March seasons. The schematic 
is adapted from Kumar (2007). 
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Figure 5: Scatter diagram of conditional skill (vertical axis) and signal-to-noise ratio (horizontal 
axis). 
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Figure 6: Time series of December-March Southern Africa 30-year end point unconditional precipitation prediction skill. Individual 
simulated ensemble members are shown in light blue, focus simulated ensemble members are shown in pink and green, the average of 
the 40 simulated ensemble members is shown in dark blue and the forecast verification against GPCC precipitation is shown in black. 
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Figure 7: Time series of December-March Southern Africa conditional precipitation prediction skill. Green and brown bars indicate 
above and below average forecast precipitation. Above and below average precipitation are defined by the sign of the simulated 
ensemble average anomaly for a given season. 
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Figure 8: Scatter diagram of forecast December-March Southern Africa precipitation as a function of conditional precipitation 
prediction skill and the sign of the forecast ensemble average precipitation anomaly. The green and brown horizontal lines denote the 
thresholds for above and below average precipitation, respectively. 
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Figure 9: Box plot and the probability of forecast December-March Southern Africa precipitation falling below (brown), near (gray) 
and above (green) average as a function of conditional precipitation prediction skill and the sign of the forecast ensemble average 
precipitation anomaly. Above and below average precipitation are defined by the sign of the simulated ensemble average anomaly for 
a given season. The tercile probabilities in the All category are 33.3%, but are shown here as 33% for clarity. 
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Figure 10: SST anomaly composite related to December-March Southern Africa conditional 
precipitation prediction skill and the sign of the ensemble average forecast precipitation. n 
denotes the number of seasons that qualify. SST is significant at the p<0.05 level based on a two-
sided t-test. 
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Figure 11: Precipitation anomaly (mm/day) and 850 hPa wind anomaly (m/s) composites related 
to December-March Southern Africa conditional precipitation prediction skill and the sign of the 
ensemble average forecast precipitation. n denotes the number of forecasts included in the 
composite, equivalent to the number of qualifying seasons (see Figs. 8 and 9) over the 40 
members of the ensemble. Precipitation is significant at the p<0.05 level based on a two-sided t-
test. 
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Figure 12: 500 hPa pressure vertical velocity anomaly (hPa/day) and 200 hPa wind anomaly 
(m/s) composites related to December-March Southern Africa conditional precipitation 
prediction skill and the sign of the ensemble average forecast precipitation. n denotes the number 
of forecasts included in the composite, equivalent to the number of qualifying seasons (see Figs. 
8 and 9) over the 40 members of the ensemble. Vertical velocity is significant at the p<0.05 level 
based on a two-sided t-test. 
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