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Abstract

Differences between two types of prediction skill estimates over Southern Africa are
illustrated to better inform the users of seasonal precipitation forecasts over the region who
desire assessments of forecast accuracy. Both seasonal precipitation prediction skill estimates for
the African continent south of 15°S during the December-March rainy season are derived from
the perfect-model method. The perfect-model method is based on a 40-member ensemble of
Community Atmosphere Model version 5 simulations forced by observed time-evolving
boundary conditions during 1920-2016.

The first skill estimate is based on the verification of an ensemble mean forecast spanning
many seasons and therefore unconditional on a single boundary forcing. The second skill
estimate is based on the verification of an ensemble mean forecast for a single season and is
therefore conditional on that year’s boundary forcing. Unconditional prediction skill calculated
in 30-year increments for each of the 40 possible forecasts reveals: 1) large spread in skill among
the individual forecasts for any given year and ii) temporal variations in skill for each forecast.
The magnitude of conditional prediction skill varies greatly from one year to the next, revealing
that the boundary conditions offer little prediction skill during some years and comparably large
skill during others. The simultaneous behaviors of the El Nifio-Southern Oscillation and the
subtropical Indian Ocean Dipole are related to the largest conditional precipitation prediction
skill years. Unconditional skill estimates may therefore mislead users of forecasts who desire
assessments of forecast accuracy. Unconditional skill may be temporally unstable, and unlike

conditional skill, is not representative of the skill for a given season.
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1. Introduction
1.1 Motivation

The economic productivity of Southern Africa, defined herein as the African continent
south of 15°S (Fig.1), is closely related to weather and climate. Jury et al. (2002) estimated that
48% of the Southern Africa gross domestic product variance is explained by precipitation during
the Austral summer rainy season. Rainfed agriculture is especially important to the Southern
Africa economy, as it accounts for approximately 25% of the gross domestic product and
employs nearly 70% of the labor force (Dixon et al. 2001). Large year-to-year precipitation
variations during December-March (Fig. 1c¢), the core of the Southern Africa rainy season (Fig.
1b see also Mason and Jury 1997 and Hoell et al. 2017), can therefore shock the regional
economy. Meager precipitation can lead to reduced agricultural production and reduced
hydroelectric power generation while abundant precipitation can lead to flooding and damage to
infrastructure (Conway et al. 2015).

Decision makers utilize predictions of December-March precipitation to better define,
quantify and reduce the risk of future economic shocks over Southern Africa. Decision makers
utilize outlooks issued by forecasters at many institutions, including National Meteorological and
Hydrological Services, Regional Climate Outlook Forums, Drought Early Warning Systems and
Famine Early Warning Systems (e.g. Hansen et al. 2011, Sheffield et al. 2014). Precipitation
outlooks issued by these institutions are based on both statistical and dynamical forecasts.
Statistical models have long been used to forecast Southern Africa precipitation, and generally
leverage historical relationships between precipitation and variables elsewhere in the climate
system (e.g. Hastenrath et al. 1995, Thiaw et al. 1999). Use of simulations from dynamical

models have grown from a research activity to an operational pursuit over the past 30 years
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(Weisheimer and Palmer 2014; Graham et al. 2011) to include forecast frameworks comprised of
many different models; examples include, the North American Multi-model Ensemble (Kirtman
et al. 2014), Copernicus Climate Service?, Global Producing Centres for Long-Range Forecasts?
and WMO Lead Center for Long-Range Forecasts Multi-Model Ensembles®.

However, seasonal predictions alone do not provide enough information for decision
makers, forecasters or forecast system developers. All three require an awareness of prediction
accuracy, also known as prediction skill, in order to contextualize the prediction. Decision
makers use prediction skill to establish if, when and where a seasonal prediction should be
incorporated into practice across different economic sectors (Sarewitz et al. 2000, Hartmann et
al. 2002). Forecasters use prediction skill in order to communicate the confidence in a given
forecast. Forecast system developers use prediction skill to help guide possible forecast system

improvements.

1.2 Prediction Skill Estimates

Two types of prediction skill estimates have been developed to address user needs (e.g.
Kumar 2007). One type is based on the verification of a series of predictions spanning many
seasons. This type is an unconditional skill estimate since it is not specific to any boundary
forcing. The other type is based on the verification of a single season. This type is a conditional
skill estimate since it is dependent on the boundary forcing of a season.

Unconditional precipitation prediction skill is commonly expressed as the correlation of a
series of forecasts with observations. An example of such a calculation is shown in Fig. 2a for

January-March NMME forecasts made the previous December. The unconditional correlations

2 https://climate.copernicus.eu/seasonal-forecasts
® http://www.wmo.int/pages/prog/wcp/wcasp/gpc/gpe.php
4 https://www.wmolc.org/
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between forecasts and observations during 1982-2009 of less than 0.10 suggest that the NMME
forecast system has little skill in predicting Southern Africa precipitation during January-March
at one-month lead.

There are a variety of ways to estimate conditional precipitation prediction skill, and we
will show later that conditional skill is related to the occurrence probability of above, near and
below average precipitation for a single season (e.g. Kumar 2007). In this construct, the
proportion of individual forecasts from a prediction system that fall into above, near and below
average bins constitute as the probability of that precipitation outcome. An example of such a
calculation is shown in Fig. 2b for the January-March 2019 NMME precipitation forecast made
the previous December. Below average precipitation probabilities between 40-50% over
Southern Africa would lead one to believe that there is some confidence in the forecast of below
average precipitation beyond chance. However, the confidence demonstrated by the probabilistic
forecast in Fig. 2b is undermined by the low unconditional skill estimate shown in Fig. 2a.

To better inform Southern Africa decision makers and forecasters, we illustrate
differences in unconditional and conditional seasonal precipitation prediction skill estimates over
the region during December-March. Our methodology follows that of Kumar (2007).
Unconditional and conditional prediction skill estimates are illustrated using a perfect-model
experiment based on a 40-member ensemble of atmospheric model simulations forced by 1920-
2016 observed time-evolving boundary conditions. The atmospheric model simulations are based
on the Community Atmosphere Model version 5 (CAMS). We employ an atmospheric model
instead of initialized coupled ocean-atmosphere forecast systems for two reasons. First, the
atmospheric model isolates the prediction skill offered by SST. Second, the atmospheric model

provides a long time series from which to evaluate prediction skill. In this application of the
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perfect-model, each ensemble member is selected as a proxy for observations while the average
of the remaining members serves as the forecast for that observed proxy. This method generates
many observed and forecast pairs for each of the 97 years examined.

The benefits of this analysis go beyond the interpretation of seasonal precipitation
prediction skill estimates over Southern Africa. First, the use of atmospheric model simulations
forced by the same boundary conditions enables an assessment of potential prediction skill, given
that SSTs largely serve as the basis for seasonal prediction (e.g. Palmer and Anderson 1994).
Second, the nearly 100-year focus period enables an assessment of whether precipitation
prediction skill has changed in time, as suggested by Lawal et al. (2015) for the country of South
Africa. Third, this analysis compliments assessments of the Southern Africa prediction skill in
operational forecast systems (Landman and Beraki 2010, Yuan et al. 2014, Beraki et al. 2016,
Landman et al. 2019). The hindcast periods and ensemble sizes of operational forecast systems
tend to be much shorter and smaller, respectively, than the atmospheric model simulations that

serves as the basis for the perfect-model method used here.

1.3 Sources of Precipitation Prediction Skill

We also use the conditional skill estimates based on the perfect-model method to
objectively identify potential sources of December-March precipitation prediction skill and the
mechanisms by which these sources drive Southern Africa precipitation. These conditional skill
estimates can be used to establish how aspects of the boundary conditions may govern seasonal
prediction skill without making prior assumptions on the sources of prediction skill.

Prior studies have largely isolated known modes of ocean-atmosphere variability and

identified their relationships with Southern Africa precipitation. Most studies have focused on El
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Nifio-Southern Oscillation (ENSO) as a predictor (e.g. Hastenrath et al. 1995, Goddard and
Dilley 2005, Manatsa et al. 2015), and to a lesser extent on predictors originating in the Indian
Ocean, which include the Subtropical Indian Ocean Dipole (SIOD; e.g. Behera and Yamagata,
Reason 2001, Washington and Preston 2006). Even fewer studies have focused on the combined
effects of both ENSO and SIOD on Southern Africa precipitation (Hoell et al. 2016, 2017).

Research on the relationship between ENSO and Austral summer Southern Africa
precipitation spans three decades (e.g. Nicholson and Entekhabi 1986, Ropelewski and Halpert
1987, 1989, Lindesay 1988). The two phases of ENSO, El Nifio and La Nifa, generally have
opposing effects on Southern Africa climate (e.g. Jury et al. 1994; Rocha and Simmonds 1997;
Nicholson and Kim 1997; Reason et al. 2000; Misra 2003). El Nifo is related with below
average precipitation due to high pressure, anomalous downward motion and reduced moisture
fluxes into Southern Africa. By contrast, La Nifia is related with above average precipitation due
to low pressure, anomalous upward motion and enhanced moisture fluxes into Southern Africa.
More recent research has examined the relationships between aspects of ENSO and Southern
Africa precipitation. Different SST patterns associated with ENSO (e.g. Wyrtki 1975, Capotondi
et al. 2014) are related with different atmospheric circulations over Southern Africa (Ratnam et
al. 2014, Hoell et al. 2015). Also, stronger ENSO events are on average related with greater
precipitation anomalies over Southern Africa (Pomposi et al. 2018).

The southwest-to-northeast oriented SST anomaly dipole over the Indian Ocean that is
characteristic of the SIOD has been related with summertime Southern Africa precipitation
(Behera and Yamagata, Reason 2001, Washington and Preston 2006). These SST anomalies
have been found to modify the regional circulations over the southwestern Indian Ocean thereby

affecting regional moisture fluxes that directly impact Southern Africa precipitation. The
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behavior of SIOD can complement or disrupt the Southern Africa precipitation relationship with
ENSO (Hoell et al. 2016, 2017). When ENSO and SIOD are out of phase (e.g. El Nifio and a
negative SIOD or La Nifia and a positive SIOD), Southern Africa on average experiences larger
precipitation anomalies than if ENSO acted alone. When ENSO and SIOD are in phase (e.g. El
Nifio and a positive SIOD or La Nifia and a negative SIOD), Southern Africa on average

experiences lesser precipitation anomalies than if ENSO acted alone.

1.4 Paper Organization

The organization of the paper is as follows. In section 2, the atmospheric model
simulations and skill estimates derived from the perfect-model method are described. In section
3, we describe the behavior of seasonal conditional and unconditional prediction skill throughout
the 20th and 21st centuries and discuss the sources of seasonal precipitation skill based on the
conditional skill estimates. In section 4, we interpret differences in the prediction skill estimates

and make recommendations for which skill estimate is most relevant to user needs.

2. Tools and Methods
2.1 Atmospheric Model Simulations

The 40-member ensemble of atmospheric model simulations forced by an estimate of the
observed time-evolving boundary conditions for 1920-2016 is based on CAMS5 (Neale et al.
2012). The simulations utilize a finite volume dynamical core with horizontal resolution of 288
by 192 grid points in longitude and latitude, respectively, and 25 vertical levels. The boundary
conditions that force each ensemble member include SSTs and sea-ice concentration from the

merged Hadley (Rayner et al. 2003) -- NOAA Optimum Interpolation (Reynolds et al. 2007) data
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set constructed by Hurrell et al. (2008), greenhouse gases (Meinshausen et al. 2011), ozone
(Lamarque et al. 2012) and aerosols (Tanre et al. 1984). While all ensemble members utilize
analyzed SST, the weather for each member is different owing to their initializations from
different atmospheric states in 1901. The simulations and further documentation can be obtained

from http://www.esrl.noaa.gov/psd/repository/alias/facts/.

CAMS simulates key features of the Global Precipitation Climatology Centre (GPCC,
Schneider et al. 2014) observed estimate of areally averaged Southern Africa temporal
precipitation variability south of 15°S during December-March (Fig. 3). Another precipitation
estimate, from the Climate Research Unit (CRU; Harris et al. 2014), is like GPCC over Southern
Africa (Pomposi et al. 2018). The CAMS5 ensemble mean precipitation appears to be correlated
with the observed precipitation over prolonged periods (i.e. 1970s, 1990s and 2000s). The
correlation between the two is 0.56 for the entire period of record. The ensemble mean filters
atmospheric noise in each of the ensemble members, thereby reinforcing the ability of CAMS to
simulate relationships between the boundary conditions and Southern Africa precipitation

highlighted by previous studies (Funk et al. 2018, Pomposi et al. 2018).

2.2 Prediction Skill Estimates Derived from the Perfect-Model Method

The perfect-model method as applied here is a three-step process over which proxies of
observed areally averaged Southern Africa precipitation time series and their forecasts during
December-March are constructed from the atmospheric model simulations. The schematic of the
atmospheric model simulations in Fig. 4, which is adapted from Kumar (2007), is used to
describe the application of the perfect-model method. First, precipitation from a single member

of the simulated ensemble is selected to proxy a time series of observations (columns in Fig. 4).
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A single ensemble member and observations are conceptually similar since both are forced by a
combination of internal weather/climate variations and the boundary conditions. Second, the
remaining 39 ensemble members are averaged for each December-March season (rows in Fig. 4)
to provide a simulated forecast of that observed time series. The averaging of the 39 members
mutes the contribution of internal variability, and thereby reduces the temporal variations of each
ensemble member. This makes clearer the effect of the prescribed boundary forcing in the
atmospheric model. It is this boundary forcing that serves as the primary basis for seasonal
prediction (e.g. Palmer and Anderson 1994). Third, steps one and two are repeated 40 times so
every ensemble member serves as an observed proxy, resulting in 40 pairs of observed and
forecast December-March Southern Africa time series for 1920-2016.

The proxies of observed and forecast December-March Southern Africa precipitation are
used to calculate unconditional and conditional prediction skill. Anomaly correlation is the
metric used to calculate skill though a variety of other skill measures could also be used. The
skill calculations are based on the mathematical formulation outlined by Kumar (2007), which is
repeated in the following.

December-March precipitation anomalies for each year and ensemble member in the
atmospheric model simulations are obtained prior to calculating unconditional and conditional
skill. Let P;, denote precipitation for ensemble member i and year a. Precipitation anomalies for
year a are calculated relative to a climatology. The climatology, < P,>, which depends on the

year, is obtained from the average of the remaining years,

1
P >=— P.
<fa> N(M—1)zz iB
7 Bra

10

(1
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where N=40 is the number of ensemble members and M=97 is the number of years. The
anomaly for P;, is then defined as
P/, = P{y,—< P, >.
()
This process is repeated until the precipitation anomaly for each year, a, and ensemble member,
i, is obtained.

Unconditional prediction skill is defined as the verification of one of 40 December-March
forecast anomaly proxy time series, O;,. For a randomly selected observed anomaly proxy time
series, | = i,

Ore = X
3)
The corresponding forecast proxy, Fy,, of the observed anomaly proxy, 0y, is obtained
from the mean of the remaining 39 ensemble members,
1
Fjq = mz Xj,a'
j#I
4
Unconditional skill in terms of anomaly correlation between the randomly selected

observed and forecast proxy time series is defined by

Z FIIaOI’a

F 0 °
0; 0

Unconditional AC; =

(5)
where g?and o/ are the standard deviations of the observed and forecast time series,

respectively.
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The unconditional skill calculation is repeated so each of the 40 ensemble members
serves as a proxy for observations. We express unconditional skill in 30-year increments, for 30
years serve as the World Meteorological Organization recommendation for climate normals®.
This allows for an assessment of how unconditional prediction skill may vary in time for the
many possible evolutions of observed Southern Africa precipitation time series proxies.
Conditional prediction skill is defined as the verification of the many forecast proxies for
a single December-March season. For a given year, @ = A, a randomly chosen observed
anomaly proxy is represented by
0is = Xis-
(6)
The corresponding forecast proxy, F;,, of the observed anomaly proxy, 0;,, is obtained
from the mean of the remaining 39 ensemble members
F! = Lz X!
AT N_q jA-
j#
(7)
This process is repeated 40 times to create pairs of observed and forecast precipitation
proxies for each year. The conditional skill in terms of anomaly correlation for a given year is

therefore

2i FiaOiy

F

Conditional AC, = G
0404

®)

> http://www.wmo.int/pages/prog/wcp/ccl/guide/documents/Normals-Guide-to-Climate-
190116 en.pdf

12
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The conditional skill calculation is repeated for each of the 97 December-March seasons.
The magnitude of conditional prediction skill based on anomaly correlation is proportional to the
magnitude of the signal-to-noise ratio, a common metric for assessing prediction skill
conditioned on a specific boundary forcing (Fig. 5; see also Kumar and Hoerling 2000,
Sardeshmukh et al. 2000). Signal-to-noise ratio is defined here as the ratio of the ensemble mean
anomaly and the standard deviation of the ensemble.

Conditional skill is related to the probability of above, near and below average
precipitation for a given season (e.g. Fig. 2), where each of those three categories refer to the
upper, middle and lower terciles of the historical distribution of the model, respectively (Kumar
2009). The probabilities are obtained by binning Southern Africa precipitation in the CAMS5
simulations. Tercile-based categorical probabilities are sometimes estimated using a Gaussian
fitting method (e.g. Min et al. 2009). Such a method is not adopted here because we do not

assume that Southern Africa precipitation follows a distribution.

2.3 Sources of Conditional Precipitation Prediction Skill

Composites of SSTs, precipitation, 850 and 200 hPa winds and 500 hPa pressure vertical
velocity based on discrete levels of conditional skill are used to objectively identify sources of
December-March precipitation prediction skill and the mechanisms by which these sources drive
Southern Africa precipitation. Four classes of conditional precipitation prediction skill are
considered, when anomaly correlation skill falls between 0.25-0.50 and 0.50-1.0, for both above-
and below-average precipitation forecasts. These conditional skill classes are chosen to align
with signal-to-noise ratios of 0.5-1.0 and greater than 1.0 (Fig. 5). Signal-to-noise ratios of

greater than 1.0 are often considered to be skillful since the ensemble mean anomaly exceeds one

13
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standard deviation (e.g. Kumar and Chen 2016). Above- and below-average forecast
precipitation for a given December-March season are defined by the sign of the ensemble

average precipitation anomaly of the model simulations.

3. Results
3.1 Unconditional Precipitation Prediction Skill

The December-March Southern Africa seasonal unconditional precipitation prediction
skill time series reveal two key characteristics of this skill type over the region (Fig. 6). First, the
temporal characteristics of each of the 40 December-March forecast verifications are different,
which highlights the combined effects of internal atmospheric behaviors and differences in the
boundary forcing on 30-yr sequences of unconditional precipitation prediction skill (Kumar
2009). These variations in Southern Africa unconditional precipitation prediction skill through
time could also lead to very different perceptions on the regional forecast skill, considering that
such skill estimates of operational forecast models are based on a single observed trace of the
climate.

Three examples of how unconditional precipitation prediction skill can vary in time are
highlighted in Fig. 6: the verification based on GPCC in black, and two simulated verifications in
pink and green. The forecast verification against GPCC tends to follow the behavior of many of
the 40 members of the simulated proxies, with lower skill prior to 1970 and comparably higher
skill thereafter. The green trace stands out among the members of the simulated ensemble, as the
unconditional precipitation prediction skill with this chosen member as the proxy for verification
is consistently much lower than all other ensemble members. The pink trace also stands out and

is noteworthy for its exceptional decline in unconditional precipitation prediction skill from
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among the highest of the verifications around 2000 to among the lowest of the verifications in
2016.

The temporal variations across the 40 individual traces of unconditional precipitation
prediction skill time series, as well as the verification based on GPCC, suggest a systematic
increase in the magnitude of this skill estimate during 1920-2016. This increase is most evident
in mean changes of 40 unconditional precipitation prediction skill estimates (Fig. 6 bold blue
line), from about 0.40 anomaly correlation in the 1960s to about 0.55 anomaly correlation in
2016, after a maximum of near 0.65 anomaly correlation in 1990. Temporal variations in
prediction skill across the 40 members is likely tied to changes in the behavior of the boundary
forcing, given that the boundary forcing is the same across each of the members for the 30-year
verifications. However, it is unclear whether such changes in unconditional skill are related to
sustained or fleeting changes in the boundary forcing. It must be reiterated, however, that from
the perspective of verification against an individual trace, year-to-year changes in unconditional
precipitation prediction skill can be different from most of the other traces, an example of which
was described by the green trace in Fig. 6.

For the second key characteristic, the spread among the 40 forecast verifications for any
given year is large. The large spread highlights the effect of internal atmospheric variability on
unconditional precipitation prediction skill, given that each observed proxy uses the same
boundary conditions over the 30-year verification periods (Kumar 2009). This spread could
therefore lead to very different perceptions of Southern Africa prediction skill and raises the
question on how one should interpret unconditional precipitation prediction skill estimates.

The spread in unconditional precipitation prediction skill for given years is considered in

the following examples. For the 30-year period ending in 1960, the average unconditional
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prediction skill for the 40 forecast verifications is 0.33 while the spread across the verifications is
almost twice as large at 0.65 (Kumar 2009). Appreciable spread is also present during all other
years, even 2000, the year during which the unconditional precipitation prediction skill spread
was lowest and the mean skill highest. As pointed out by Kumar (2007), since correlation can
only achieve a maximum value of 1, the spread and means of many unconditional skill estimates
for a given year are inversely related. Also noteworthy is how the verification of a forecast based
on GPCC always falls within the verification of model-based forecasts (Fig. 6 black line), which
again suggests that the CAMS atmospheric model with prescribed boundary conditions simulates

realistic domain-average climate and prediction skill estimates over Southern Africa.

3.2 Conditional Precipitation Prediction Skill

Large interannual variability is the key characteristic of a seasonal December-March
Southern Africa conditional precipitation prediction skill time series (Fig. 7), thus revealing the
important effect of specific boundary forcing on the regional prediction skill for a given year.
During some years the boundary conditions simply offer no precipitation prediction skill while
during other years the boundary conditions offer comparably large precipitation prediction skill.

Interannual variability of the December-March Southern Africa conditional precipitation
prediction skill can be drastic due to the amplitude of the predicted ensemble mean (Fig. 7).
Examples of extreme year-to-year variations in which conditional skill moved from a bottom-5
to a top-5 season include 1972/73 to 1973/74, 1981/82 to 1982/83 and 1991/92 to 1992/93. The
lack of year-to-year persistence in conditional precipitation prediction skill is further highlighted
by the 0.01 lag-1 autocorrelation of the time series during 1920-2016. The sign alone of the

precipitation anomaly forecast has no bearing on conditional precipitation prediction skill. The
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Kolmogorov-Smirnov two-sample test indicates that distributions of forecast above and forecast
below average precipitation are not statistically significant, with a p-value of 0.62. Above and
below average forecast precipitation for a given December-March season are defined by the sign
of the ensemble average precipitation anomaly of the model simulations.

The decade-to-decade variations in Southern Africa conditional precipitation prediction
skill are also large (Fig. 7). This suggests that some knowledge of the boundary conditions over a
sequence many years could provide an indication of the magnitude of precipitation prediction
skill during that time. This compliments previous works that identified decadal variability in the
time series of Southern Africa precipitation and its links to SSTs (e.g. Reason and Rouault 2002,
Zhang et al. 2015, Dieppois et al. 2016). Conditional skill in these perfect-model simulations was
comparably high during some decades, which include the 1960s, 1970s, 1980s and post-2000.
By contrast, conditional skill was comparably low during other decades, which include the
1930s, 1940s, 1950s and 1990s. Interestingly, two standout conditional skill years did occur
during those low skill decades; for example, 1938/39 and 1991/92.

The two decades spanning the 1960s and 1970s saw the largest magnitudes of December-
March conditional precipitation prediction skill (Fig. 7). Above average precipitation forecasts
prevailed during this span (Figs. 3 and 7), as the ensemble mean of the simulations was above
average for 16 of those 20 years. Also, four of those above average forecast years ranked in the
top 10 highest conditional precipitation prediction skill during 1920-2016.

The epoch spanning 1981/82 and 1991/92 also saw comparably high conditional
precipitation prediction skill, but in contrast to the preceding two decades, the forecast during
seven of those ten years was for below average precipitation (Figs. 3 and 7). The high skill

during this epoch was bolstered by 3 of the top 11 skill years on record. While conditional skill
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during the post 2000 period lagged 1960-1990, 5 of the top 15 skill years showed up during that
period associated with a below average precipitation forecast.

Larger magnitudes of December-March Southern Africa conditional precipitation
prediction skill calculated via anomaly correlation are related to greater changes of the regional
forecast precipitation distributions from climatology (Figs. 8 and 9). This underscores how
particular configurations of the boundary conditions shape the probabilities of below, near and
above average forecast seasonal precipitation in the presence of atmospheric noise (see also Fig.
2b). During instances of high conditional prediction skill, the boundary conditions provide an
indication that forecast precipitation probabilities will differ from climatological probabilities
(i.e. 33% for each below, near and above average seasonal precipitation) while during others the
boundary conditions provide no such guidance.

Drastic shifts in the distributions of forecast December-March Southern Africa
precipitation are related to conditional precipitation prediction skill that exceed 0.5 anomaly
correlation (Fig. 9). While these instances are relatively uncommon, occurring just 15 times in 97
seasons, the forecasts reveal large changes in the odds of below or above average forecast
precipitation outcomes. For the seven seasons during which the ensemble average is below
average, the forecast distribution shifts appreciably to negative values, resulting in an 81%
probability that precipitation is below average and just a 5% probability that precipitation is
above average. For the eight seasons during which the ensemble average is above average, the
forecast distribution shifts appreciably to positive values and narrows, resulting in a 73%
probability that precipitation is above average and just a 3% probability that precipitation is

below average.
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Shifts in the distributions of forecast Southern Africa precipitation are also related to
conditional precipitation prediction skill that fall between 0.25 and 0.5 (Fig. 9). These instances
happen more often, occurring 23 times in 97 December-March seasons, and reveal important
changes in the odds of either below or above average forecast precipitation outcomes. For the 12
seasons during which the ensemble average is below average, the distribution shifts to negative
values, resulting in a 63% probability of below average precipitation and an 11% probability of
above average precipitation. For the 11 seasons during which the ensemble average is above
average, the distribution shifts to positive values and narrows, resulting in a 57% probability of

above average precipitation and a 10% probability of below average precipitation.

3.3 Sources of Conditional Precipitation Prediction Skill

SST anomalies consistent with ENSO and SIOD are related to conditional precipitation
prediction skill that exceed 0.5 anomaly correlation (c.f. Fig. 10a,b and Fig. 1 in Hoell et al.
2017), thus demonstrating that the greatest December-March Southern Africa precipitation
prediction skill is obtained from simultaneous ENSO and SIOD events. The SST related to above
and below average Southern Africa precipitation that meet the conditional skill criteria are mirror
images. SST anomalies associated with above average Southern Africa precipitation are like El
Nifio and a negative SIOD (Fig. 10a) while SST anomalies associated with below average
Southern Africa precipitation are like La Nifa and a positive SIOD (Fig. 10b). The linearity in
the SST relationships with Southern Africa precipitation is supported by Hoell et al. (2017, 2018)
who showed that simultaneous ENSO and SIOD events are related to the greatest Southern

Africa precipitation anomalies.
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Southern Africa precipitation anomalies associated with high December-March
conditional precipitation prediction skill are related to strong anomalies in the regional
atmospheric circulation (Figs. 11a,b; 12a,b). Like the SST anomalies, anomalous atmospheric
circulations related to above and below average Southern Africa precipitation that meet the
conditional skill criteria are mirror images. Above average Southern Africa precipitation is
related to anomalous low-level high pressure east of Madagascar, upper-level low pressure east
of South Africa, anomalous onshore low-level winds, convergent low-level winds over land and
anomalous mid-tropospheric downward motions over Southern Africa. Below average Southern
Africa precipitation is related to anomalous low-level low pressure east of Madagascar, upper-
level high pressure east of South Africa, anomalous offshore low-level winds, divergent low-
level winds over land and anomalous mid-tropospheric downward motions over Southern Africa.

SST anomalies consistent with the SIOD are related to conditional precipitation
prediction skill that falls between 0.25 and 0.50 anomaly correlation (c.f. Fig. 10c,d and Fig. 1 in
Hoell et al. 2017), thus demonstrating December-March Southern Africa precipitation prediction
skill is obtained from the SIOD alone. The SST related to above and below average Southern
Africa precipitation that meet the conditional skill criteria are nearly mirror images, with SST
dipoles in the southwest and central Indian Ocean (Fig. 10c,d). The southwestern Indian Ocean
SST associated with below average Southern Africa precipitation is not clearly defined, likely as
a result of warming SST over that region throughout the 1920-2016 period of record.

Southern Africa precipitation anomalies associated with December-March conditional
precipitation prediction skill falling between 0.25 and 0.50 anomaly correlation are also related

to anomalies in the atmospheric circulation (Figs. 11c,d; 12¢,d). The anomalous atmospheric
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circulations follow similar patterns as the high conditional skill case described previously, but

the magnitudes of the anomalies are not as strong.

4. Summary and Interpretation
4.1 Summary

We illustrated herein the characteristics of unconditional and conditional seasonal
precipitation prediction skill for Southern Africa during December-March, the core of the
region’s rainy season. Unconditional and conditional prediction skill were derived from the
perfect-model method based on a 40-member ensemble of CAMS simulations forced by
observed time-evolving boundary conditions during 1920-2016. The perfect-model method was
used to generate proxies of observed and forecast precipitation pairs from which forecast
verifications using anomaly correlation were calculated.

The time series of Southern Africa conditional precipitation prediction skill varies
strongly from one year to the next (Fig. 7), thus revealing the important effect of specific
boundary forcing on the seasonal prediction skill for a given year. During some years the
boundary conditions simply offer no precipitation prediction skill while during other years the
boundary conditions offer comparably large precipitation prediction skill. Additionally, it was
found that the magnitude of conditional precipitation prediction skill is related to changes in the
distribution of forecast Southern Africa precipitation relative to a climatology, indicating that
conditional skill estimates are implied by probabilistic seasonal forecasts (Fig. 9).

Time series of Southern Africa seasonal unconditional precipitation prediction skill
reveal two key characteristics of this skill type over the region (Fig. 6). First, sequences of 30-

year unconditional precipitation prediction skill verifications for each of the 40 individual traces
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of the climate vary differently in time. This temporal instability, also highlighted by Landman
and Goddard (2002), underscores the combined effects of internal atmospheric behaviors and
differences in the boundary forcing between verification periods. Second, the spread among each
of the 40 forecast verifications during a given year is large, which underscores the effect of
internal atmospheric variability on this skill type, given that each observed proxy is exposed to
the same boundary conditions over the verification period.

We also used the conditional precipitation prediction skill estimates to objectively
identify sources of seasonal precipitation prediction skill and the mechanisms by which those
sources drive December-March Southern Africa precipitation (Figs. 10-12). Our methodology
compliments many previous studies that isolated known modes of climate variability and
identified links between those modes and Southern Africa. The simultaneous behaviors of ENSO
and the SIOD offer the greatest conditional skill while a second tier of conditional skill is

afforded by the SIOD alone.

4.2 Interpretation

The primary motivation for this analysis is to inform those interested in seasonal
Southern Africa precipitation forecasts on the characteristics, strengths and weaknesses of two
classes of widely-used prediction skill estimates. We hope that users will consider this
information as they strive to make more informed decisions based on seasonal forecasts. We also
hope that forecasters consider this information as they strive to express confidence, or lack
thereof, in seasonal forecasts.

Unfortunately, the interpretation of prediction skill estimates by forecasters and decision

makers is influenced by model biases. Model-based skill estimates rely on a model’s rendition of
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how simulated interannual variability is separated into unpredictable and predictable
components. For a single model like CAMS, the unpredictable component is dictated by the
spread among the ensemble members, while the predictable component is dictated by the
ensemble mean. Nonetheless, CAMS5 has been found to simulate Southern Africa summertime
precipitation adequately and we use it to diagnose the attributes of conditional and unconditional
skill estimates.

We believe that the benefits of using conditional precipitation prediction skill estimates
over Southern Africa overshadow the drawbacks. The primary feature of conditional skill is that
it can distinguish between seasons during which there is no prediction skill and seasons during
which there is comparably high prediction skill. This is a key attribute for a prediction skill
estimate over a region like Southern Africa where the sources of the regional precipitation skill
(i.e. ENSO and SIOD) are not active during some seasons. The inactivity of precipitation
prediction skill sources during some seasons reduces the overall reliability of the forecast system,
thereby making forecasts of opportunity as identified by conditional skill that much more
important. Decision makers and forecasters can thereby decide as to whether a prediction for a
given December-March season is meaningful and advise their audiences accordingly.

Conditional precipitation prediction skill has the attribute of being closely related to the
probability distribution of forecast December-March Southern Africa precipitation. Greater shifts
in the forecast precipitation anomaly distribution, resulting in changes to the probabilities of
above or below average precipitation, are related to higher magnitudes of conditional skill. For
an ensemble forecast system like NMME, where probabilistic forecasts are standard outputs (e.g.

Fig. 2b), Southern Africa conditional precipitation prediction skill is implied. These shifts in

23



516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

probabilities can be used directly by users and forecasters to express confidence levels in a given
seasonal forecast.

We believe that the drawbacks of using unconditional precipitation prediction skill over
Southern Africa overshadow the benefits. The analysis of conditional skill strongly indicates
important year-by-year variations in precipitation prediction skill that, by construct,
unconditional precipitation prediction skill cannot distinguish since unconditional skill is based
on a mixture of years with high and low conditional skill. Unconditional skill will in turn
underestimate the prediction skill during seasons in which conditional skill is high and
overestimate the prediction skill during seasons in which conditional skill is low. Unconditional
skill therefore cannot provide guidance as to whether a skillful seasonal forecast during a given
December-March season is expected.

Consider the following anecdote based on Fig. 2 that highlights how unconditional skill
could undermine a rather confident probabilistic, or conditional, seasonal forecast. The
verification of a history of past January-March forecasts made the preceding December suggests
that NMME has little unconditional precipitation prediction skill over Southern Africa for that
season (Fig. 2a). If a user were to ignore NMME forecasts entirely as a result of the
unconditional skill estimate, they would also ignore that precipitation during some January-
March seasons over Southern Africa are predictable. They would ignore that the January-March
2019 forecast is an example of such a season with prediction skill due to El Nifio conditions, as
evidenced by upwards of 50% probabilities of precipitation falling into the upper 33% of a
historical distribution (Fig. 2b).

Also, unconditional precipitation prediction skill can be difficult to interpret for two

reasons. First, there is large temporal instability of sequences of 30-year verifications for 40
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individual traces of the climate. Second, the spread of unconditional prediction skill among the
40 traces of the climate for individual years is large. The pink and green traces in Fig. 6 are
indicative of how a single evolution of the climate may greatly alter our perception the
unconditional precipitation prediction skill. We oftentimes do not appreciate these possible
variations in unconditional skill, since verifications of this type are typically made against a
single observed time series for a temporally-limited hindcast period of an operational forecast
model (e.g. 1982 and onward in Fig. 2a for NMME). This raises the question of whether the
unconditional skill based on a single trace of the climate is suggestive of the true unconditional

skill or is merely an outlier.
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List of Figures

Figure 1: For GPCC during 1920-2016, (a) average monthly precipitation (mm/day), (b)
December-March annual precipitation contribution (percent) and (¢) December-March

precipitation coefficient of variation.

Figure 2: Precipitation prediction skill of the NMME forecast system available from

http://www.cpc.ncep.noaa.gov/products/international/nmme/nmme.shtml. (a) Unconditional

prediction skill of December-initialized January-March forecasts calculated through the
correlation (times 100) of the forecast with observed precipitation during 1982-2009. (b) An
approximation of conditional prediction skill for January-March 2019 forecasts initialized the
previous December. These estimates are calculated by identifying the proportion of forecast
members that fall into the above, near and below average terciles of the distribution of the

forecast system.

Figure 3: Time series of December-March Southern Africa precipitation anomaly (mm/day).
GPCC precipitation is shown in red, individual simulated ensemble members are shown in light
blue and the simulated ensemble average is shown in dark blue. The correlation between GPCC

and the simulated ensemble average is 0.56 (p<0.01).

Figure 4: Schematic diagram of the CAMS simulations. The columns represent the different
CAMS ensemble members and the rows represent the December-March seasons. The schematic

is adapted from Kumar (2007).
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Figure 5: Scatter diagram of conditional skill (vertical axis) and signal-to-noise ratio (horizontal

axis).

Figure 6: Time series of December-March Southern Africa 30-year end point unconditional
precipitation prediction skill. Individual simulated ensemble members are shown in light blue,
focus simulated ensemble members are shown in pink and green, the average of the 40 simulated

ensemble members is shown in dark blue and GPCC precipitation is shown in black.

Figure 7: Time series of December-March Southern Africa conditional precipitation prediction
skill. Green and brown bars indicate above and below average forecast precipitation. Above and
below average precipitation are defined by the sign of the simulated ensemble average anomaly

for a given season.

Figure 8: Scatter diagram of forecast December-March Southern Africa precipitation as a
function of conditional precipitation prediction skill and the sign of the forecast ensemble
average precipitation anomaly. The green and brown horizontal lines denote the thresholds for

above and below average precipitation, respectively.

Figure 9: Box plot and the probability of forecast December-March Southern Africa precipitation
falling below (brown), near (gray) and above (green) average as a function of conditional

precipitation prediction skill and the sign of the forecast ensemble average precipitation
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anomaly. Above and below average precipitation are defined by the sign of the simulated
ensemble average anomaly for a given season. The tercile probabilities in the All category are

33.3%, but are shown here as 33% for clarity.

Figure 10: SST anomaly composite related to December-March Southern Africa conditional
precipitation prediction skill and the sign of the ensemble average forecast precipitation. n
denotes the number of seasons that qualify. SST is significant at the p<0.05 level based on a two-

sided #-test.

Figure 11: Precipitation anomaly (mm/day) and 850 hPa wind anomaly (m/s) composites related
to December-March Southern Africa conditional precipitation prediction skill and the sign of the
ensemble average forecast precipitation. n denotes the number of forecasts included in the
composite, equivalent to the number of qualifying seasons (see Figs. 8 and 9) over the 40
members of the ensemble. Precipitation is significant at the p<0.05 level based on a two-sided ¢-

test.

Figure 12: 500 hPa pressure vertical velocity anomaly (hPa/day) and 200 hPa wind anomaly
(m/s) composites related to December-March Southern Africa conditional precipitation
prediction skill and the sign of the ensemble average forecast precipitation. n denotes the number
of forecasts included in the composite, equivalent to the number of qualifying seasons (see Figs.
8 and 9) over the 40 members of the ensemble. Vertical velocity is significant at the p<0.05 level

based on a two-sided #-test.
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Figure 1: For GPCC during 1920-2016, (a) average monthly precipitation (mm/day), (b) December-March annual precipitation
contribution (percent) and (¢) December-March precipitation coefficient of variation.
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Figure 2: (a) Unconditional prediction skill of December-initialized January-March NMME
forecasts calculated through the anomaly correlation (times 100) of the forecast with observed
precipitation during 1982-2009. (b) Probabilistic forecasts of January-March 2019 precipitation
initialized the previous December from NMME. These probabilistic forecasts are calculated by
identifying the proportion of forecast members that fall into the above, near and below average
terciles of the distribution of the prediction system. Both images were obtained from
http://www.cpc.ncep.noaa.gov/products/international/nmme/nmme.shtml
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December-March Southern Africa Precipitation
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Figure 3: Time series of December-March Southern Africa precipitation anomaly (mm/day). GPCC precipitation is shown in red,
individual simulated ensemble members are shown in light blue and the simulated ensemble average is shown in dark blue. The
correlation between GPCC and the simulated ensemble average is 0.56 (p<0.01).
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Figure 4: Schematic diagram of the CAMS simulations. The columns represent the different

CAMS ensemble members and the rows represent the December-March seasons. The schematic

is adapted from Kumar (2007).
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Conditional Skill vs. Signal-to-Noise Ratio

1.0 ‘ ;
: | .
075 fmmmmm e ]
= ] . |
n ] L $® |
T ] ' |
5§05 & R
S ] S |
S ] / | |
) ] | |
0.25 —/-+ 777777777777 o
0.0 ?/l T T i T T T i T T T
0 1 2 3

Signal-to-Noise Ratio

Figure 5: Scatter diagram of conditional skill (vertical axis) and signal-to-noise ratio (horizontal
axis).
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Figure 6: Time series of December-March Southern Africa 30-year end point unconditional precipitation prediction skill. Individual
simulated ensemble members are shown in light blue, focus simulated ensemble members are shown in pink and green, the average of
the 40 simulated ensemble members is shown in dark blue and the forecast verification against GPCC precipitation is shown in black.
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December-March Conditional Skill
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Figure 7: Time series of December-March Southern Africa conditional precipitation prediction skill. Green and brown bars indicate
above and below average forecast precipitation. Above and below average precipitation are defined by the sign of the simulated
ensemble average anomaly for a given season.
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December-March Precipitation and Conditional Skill
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Figure 8: Scatter diagram of forecast December-March Southern Africa precipitation as a function of conditional precipitation
prediction skill and the sign of the forecast ensemble average precipitation anomaly. The green and brown horizontal lines denote the
thresholds for above and below average precipitation, respectively.
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December-March Precipitation Distribution and Conditional Skill
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Figure 9: Box plot and the probability of forecast December-March Southern Africa precipitation falling below (brown), near (gray)
and above (green) average as a function of conditional precipitation prediction skill and the sign of the forecast ensemble average
precipitation anomaly. Above and below average precipitation are defined by the sign of the simulated ensemble average anomaly for
a given season. The tercile probabilities in the All category are 33.3%, but are shown here as 33% for clarity.

43



Negative Ensemble Average Positive Ensemble Average

a) 0.5-1.0 (n=7) b) 0.5—1.0 (n=8)

S

c) 0.25-0.5 (n=12) d) 0.25-0.5 (n=11)

°C

-1 -0.5 0.5 1

Figure 10: SST anomaly composite related to December-March Southern Africa conditional
precipitation prediction skill and the sign of the ensemble average forecast precipitation. n
denotes the number of seasons that qualify. SST is significant at the p<0.05 level based on a two-
sided #-test.
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Figure 11: Precipitation anomaly (mm/day) and 850 hPa wind anomaly (m/s) composites related
to December-March Southern Africa conditional precipitation prediction skill and the sign of the
ensemble average forecast precipitation. n denotes the number of forecasts included in the
composite, equivalent to the number of qualifying seasons (see Figs. 8 and 9) over the 40
members of the ensemble. Precipitation is significant at the p<0.05 level based on a two-sided ¢-

test.
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Figure 12: 500 hPa pressure vertical velocity anomaly (hPa/day) and 200 hPa wind anomaly

(m/s) composites related to December-March Southern Africa conditional precipitation

prediction skill and the sign of the ensemble average forecast precipitation. n denotes the number

equivalent to the number of qualifying seasons (see Figs.

b

of forecasts included in the composite

8 and 9) over the 40 members of the ensemble. Vertical velocity is significant at the p<0.05 level

based on a two-sided #-test.
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