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Abstract (150-250 words) 

Many Atmospheric River Detection Tools (ARDTs) have now been developed.  

However, their relative performance is not well documented. This paper compares a diverse set 

of ARDTs by applying them to a single location where a unique 12-year-long time-series from 

an atmospheric river observatory at Bodega Bay, California is available. The study quantifies 

the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the 

choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent 

a range of methods that vary in their use of different variables, fixed vs. percentile-based 

thresholds, geometric shape requirements, Eulerian versus Lagrangian approaches, and 

reanalyses. 

The ARDTs were evaluated first using the datasets documented in their initial 

publication, which found an average annual count of 19±7. Applying the ARDTs to the same 

reanalysis dataset yields an average annual count of 19±4. Applying a single ARDT to three 

reanalyses of varying grid sizes (0.5°, 1.0° to 2.5°) showed little sensitivity to the choice of 

reanalysis. While the annual average AR event count varied by about a factor of two (10-25 per 

year) depending on the ARDT, average AR duration and maximum intensity varied by less than 

±10%, i.e., 24±2 h duration; 458±44 kg m-1 s-1 maximum IVT.  ARDTs that use a much higher 

threshold for integrated vapor transport were compared separately, and yielded just 1-2 ARs 

annually on average. Generally, ARDTs that include either more stringent geometric criteria or 

higher thresholds identified the fewest AR events. 
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1. Introduction 

Atmospheric rivers (ARs) are elongated, narrow regions of enhanced water vapor transport 

and are a major feature in the global hydrologic cycle. They are responsible for nearly 90% of 

poleward water vapor transport in the midlatitudes, while covering only 10% of the zonal 

circumference of the earth (Zhu and Newell, 1998; Ralph et al., 2004, 2017, 2018; Guan and 

Waliser, 2015). At the regional level, they represent an important contribution to precipitation from 

event to annual scales (e.g. Dettinger et al., 2011; Ralph and Dettinger, 2012; Lavers et al., 2015; 

Waliser and Guan, 2017; Young et al., 2017; and many others). The first papers describing ARs 

used perturbations to the mean flow to identify these rivers, where in the midlatitudes the 

perturbations are almost all directed poleward (Newell et al., 1992; Newell and Zhu, 1994; Zhu 

and Newell, 1992). This methodology used European Centre for Medium-Range Weather 

Forecasts (ECMWF) wind and humidity data at seven pressure levels and 12-hour temporal 

resolution. Ralph et al. (2004) pioneered the methodology to detect these features via atmospheric 

water vapor content observed by satellite. Building on these earlier studies, many different 

Atmospheric River Detection Tools (ARDT) applying automated detection methods to various 

datasets have been developed and described in the literature, especially during the past few years. 

However, there has been little assessment of how the catalogs created by these algorithms compare 

with each other. This paper set out to address this gap in the simplest possible way – at a single 

location where unique observations of AR conditions could be used as well. In addition, a 

community effort, organized by an ad-hoc planning committee, began developing an approach to 

perform such a comparison, called the Atmospheric River Tracking Method Intercomparison 

Project (ARTMIP; Shields et al., 2018). These efforts merged in a way such that this paper 
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4 

represents an early-start analysis that helps set the stage for ARTMIP, as will be described through 

the paper. 

In context of the ARTMIP goals, the purpose of this paper is to present a cross section of 

these different methodologies in the specific framework of determining how many ARs strike the 

flood-prone Russian River in northern California each year on average. The number of ARs hitting 

the northern California coast made the difference between four years of severe drought [water 

years (WY) 2012-2015], when a lower than normal number of ARs made landfall, and the wettest 

year on record - WY 2017, when, by our reckoning, over 30 ARs hit the region. This latest period 

is one extreme example of the documented role of ARs in ending drought periods (Dettinger, 

2013). Studies looking at the effect of reanalysis products on AR detection throughout the globe 

have found that there is generally good agreement between reanalysis- and satellite-based datasets 

(Guan and Waliser, 2015; Jackson et al., 2016; Brands et al., 2017). Differences in reanalysis 

datasets in a general sense come from their various resolutions (Guan and Waliser, 2017) as well 

as from different representations of important physical processes, such as the transport of moisture 

and energy (Trenberth et al., 2011). Differences in AR events identified using different reanalysis 

are seen in AR characteristics like landfall location, intensity, and spatial extent (Lavers et al., 

2012; Jackson et al., 2016; Guan and Waliser, 2017; Guan et al., 2018). Jackson et al. (2016), using 

the Wick et al. (2013) algorithm, examined 4 datasets (CFSR, MERRA, ERA-I, and the Twentieth 

Century Reanalysis) during the cool season (October – March) in water years 1998 – 2012, and 

found that in the first three reanalyses, AR landfall detections on the U.S. West Coast (between 

latitudes 15° – 55° N) agreed with satellite-based detections within 5%. Lavers et al. (2012) 

conducted an analysis of 5 reanalysis datasets (CFSR, MERRA, ERAI, the Twentieth Century 

Reanalysis, and NCEP-NCAR) through the cool seasons (October – March) in water years 1980-
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5 

2010 to look for differences in results for ARs affecting Britain. They found these reanalyses to be 

in generally good agreement. Good agreement was also found between ERA-Interim and MERRA-

2 for ARs in the northeastern Pacific (Guan et al., 2018) and over the globe (Guan and Waliser, 

2017), although with NCEP/NCAR being somewhat different from the former two products based 

on their results. Good agreement in the identification of AR features between reanalysis datasets 

was found despite the datasets’ very different characteristics, such as differences in resolution, 

differences in assimilation techniques, and differences in data assimilated. 

The answer to the question of how many ARs hit the Russian River is expected to vary 

depending upon the ARDT and reanalysis or observations used, and, as we quantify this variation 

below, we will elucidate important differences between methods and their application to different 

datasets. The first step towards accurately estimating the number of ARs that will hit this region 

in a given year, and to understand how this number may shift with a changing climate, is to be able 

to quantify this number and understand its sensitivity to identification methods and reanalyses. 

The Russian River Watershed in northern California is targeted herein for two main 

reasons. First, a long-term in-situ dataset that has been collected nearly continuously since 2004 at 

an Atmospheric River Observatory (ARO; White et al., 2013) located at the University of 

California Davis’ Bodega Marine Laboratory (BBY) on the Sonoma County coast, just outside of 

the watershed, is available. The ARO provides essential, previously unavailable observations for 

moisture flux monitoring; its hourly temporal resolution enables highly accurate measurements of 

AR onset, cessation, and peak strength using a method developed by Ralph et al. (2013). However, 

this dataset is limited by periods of missing data that may affect its accuracy in longer term 

statistics. 
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6 

Second, the Russian River watershed has been and continues to be an active region for AR 

related research activities. ARs have been shown to be associated with over half of the annual 

precipitation throughout this region, which has been identified as a hub of AR landfalling activity, 

meaning it is impacted by the most intense ARs, climatologically, along the entire west coast of 

midlatitude North America (Gershunov et al., 2017). While ARs provide essential water supply to 

this watershed (Dettinger et al., 2011; Ralph et al., 2013), they are also the main drivers of floods: 

the seven strongest precipitation events (resulting in flooding) here between 1997-2006 were all 

associated with ARs (Ralph et al., 2006). The Russian River watershed is the focus of studies on 

water management in northern California to leverage increasing knowledge and rapidly improving 

forecasting skill with respect to AR landfalls towards improved water resource management 

including enhanced flood protection for the benefit of agriculture, industry, municipal needs, 

recreation, and ecosystems. 

The main objectives of this study are: 1) determine how many ARs, on average, hit the 

Russian River annually, and understand the variability from year to year and sensitivity to 

detection algorithms; 2) determine when the algorithms agree/disagree with one another; and 3) 

discuss implications of using different ARDTs and different reanalysis datasets. 

This study uses the following language in order to refer to ARs. An AR, or an AR “object”, 

is the coherent AR feature in space tracked throughout its temporal evolution; an AR “event” is 

the presence of AR conditions at a point in space over some continuous length of time (AR objects 

are Lagrangian, while AR events are Eulerian); an AR “timestep” is one temporal step in a given 

dataset (in situ or reanalysis) with AR conditions present; and “AR conditions” signifies that AR 

criteria for a given detection method at a given location are met at a timestep. 
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7 

This paper is arranged as follows: Section 2 describes the datasets and methods used in this 

work; Section 3 presents the results of the ARDTs applied to their original dataset at the grid cell 

containing Bodega Bay; Section 4 repeats this analysis with the ARDTs applied to NASA’s 

Modern Era Retrospective-Analysis for Research and Applications-2 (MERRA-2) reanalysis 

dataset at the grid cell containing BBY; Section 5 uses the ARDT developed by Rutz et al. (2014) 

on three different reanalysis datasets; and Section 6 provides conclusions and discussion. 

2. Data and Methods 

This study uses three sets of AR catalogs. The first of these sets is based on AR detection 

techniques (ARDTs) developed by Ralph et al. (2013), Sellars et al. (2013), Rutz et al. (2014), 

Guan and Waliser (2015), Mundhenk et al. (2016), and Gershunov et al. (2017), applied to the 

observations or reanalyses in their original, respective publications (Native Reanalysis AR 

catalogs hereafter). The second set is based on applying these same ARDTs plus the method of 

Wick et al. (2013) to observations or NASA MERRA-2 Reanalysis (Gelaro et al., 2017) 3-hourly 

data of IVT and/or IWV at the [38.5N, 123.125W] grid cell used to represent the Bodega Bay area 

for the time period of November 2004 – April 2016 (MERRA-2-based AR catalogs hereafter). 

The third set of catalogs are collected using the Rutz et al. (2014) ARDT on three different 

reanalyses, namely MERRA-2, ERA-Interim, and NCEP/NCAR (Rutzetal2014-based AR 

catalogs hereafter). This latter set of catalogs is used to aid in differentiating between uncertainties 

that arise from using different methodologies from those that arise from using different datasets. 

The acronyms for each method, which will be used to identify them throughout the remainder of 

the paper, and parameter and geometry thresholds used for AR identification in each catalog, are 

presented in Table 1. 
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These algorithms are all state-of-the-art methodologies developed to answer specific 

questions – the methods and datasets used vary accordingly. The observational dataset is described 

in detail in Section 2a. Section 2b provides a brief description of each ARDT used in Sections 3-

5. Some of the algorithms were modified from the original published methodology for the purpose 

of this study. Those modifications and the reasons they were made will be discussed in detail 

below. 

2a. Observations and Reanalyses 

The BBY ARO observations, available from NOAA’s Earth System Research Laboratory, 

Physical Science Division website (https://www.esrl.noaa.gov/psd), provide hourly records of AR 

landfalls near California’s Russian River Basin northwest of San Francisco, California, between 

13 November 2004 – present (in this study, data through April 30, 2016 are included). The BBY 

ARO is part of an extended network of observing stations throughout the western U.S. (White et 

al., 2013). The ARO includes a wind profiler to observe a vertical profile of horizontal winds, a 

GPS-Met sensor to record the integrated water vapor (IWV) in the atmosphere, a radio acoustic 

sounding system (RASS) to observe the vertical profile of potential temperature, and surface 

meteorological instrumentation. 

AR events were reconstructed based on currently available data from NOAA ESRL’s 

Hydrometeorology Testbed archive and data available from the catalog provided in Ralph et al. 

(2013). The hourly ARO data records were first compiled in order to maximize the amount of 

available data, due to some missing data in the archives currently available online. First, the hourly 

records were collected from the IWV flux table data output from the ARO. If the flux table data 

were missing, then these data were filled in with raw observations from the profiler and the GPS-

Met. If both of those were missing, the AR catalog provided in Ralph et al. (2013) was used. The 
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Ralph et al. (2013) AR catalog is assumed to contain all of the AR hours from water years 2005 – 

2010. One limitation of the ARO dataset in this paper is the amount of missing data for the period 

of record, during which over 36000 hours are missing, including 77% of October - March hours 

in water year 2013. Outside of 2013, most of the missing data is from water years 2005 – 2010, 

and while there are some differences in the AR criteria used in Ralph et al. (2013) and this study 

(see Section 2b), it is expected that most ARs during those years were counted in that original 

catalog. Excluding periods with ARO missing data reduces each catalog presented in this study by 

24% of all AR time steps and 24% of the event counts, on average across the catalogs used. For 

only much stronger ARs (identified with a much higher IVT threshold, see section 2b), excluding 

these periods reduces AR time steps by 15% and AR event counts by 17%, on average. In spite of 

these missing hours, the observational catalog provides unique and detailed information at high 

temporal resolution regarding landfalling AR onset, cessation and peak strength, which is not 

detectable with any other in situ data at this scale. 

2b. Algorithm Descriptions 

Ralph et al. (2013) – Ralphetal2013 

In this study, AR events in the two observational catalogs (Ralphetal2013-Obs and 

Ralphetal2013-Obs47 in Table 1; see Section 2a for a detailed description of the observational 

dataset) were identified as a period lasting at least 12 hours for which each hourly integrated water 

vapor (IWV) amount was greater than or equal to 2 cm. Additionally, for Ralphetal2013-Obs, each 

IWV flux amount was required to exceed or equal 20 cm m s-1, and for Ralphetal2013-Obs47, each 

IWV flux amount was required to exceed or equal 47 cm m s-1 . These criteria were adapted from 

those used in Ralph et al. (2013) assessing ARs impacting the coastal mountains of northern 
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California (Cazadero). The two main differences in the method used in the current analysis are that 

total IWV flux is used instead of the upslope component directed at Cazadero, and the event 

duration is required to be 12 hours instead of 8. The 20 cm m s-1 value for IWV flux roughly 

corresponds to 250 kg m-1s-1 of integrated vapor transport (IVT), and the 47 cm m s-1 value 

corresponds to 500 kg m-1s-1 . These values are based on 130 radiosonde releases at BBY during 

2016-2017. Using the total flux instead of just one directional component is closer to the concept 

of identifying ARs based on their IVT, which is the method employed by all other ARDTs 

evaluated here. The AR event duration requirement was adjusted in this study so that AR events 

based on ARO observations are comparable with AR events defined based on reanalysis datasets, 

some of which are available at a maximum temporal resolution of 6-hour time steps. 

Sellars et al. (2013) – SGS2013 

An object-oriented detection algorithm was developed by SGS2013 to better understand 

and analyze massive amounts of spatiotemporal data. In the publication, the algorithm was used 

on precipitation data from the Precipitation Estimation from Remotely Sensed Information Using 

Artificial Neural Networks (PERSIANN) dataset (Hsu et al., 1997). Sellars et al. (2017a) adapted 

the algorithm for application to IVT using MERRA-2, with an IVT threshold of 750 kg m-1s-1 . The 

algorithm identifies an ‘object’ as a feature over the selected threshold that is connected in space 

and time and lasts for at least 24 hours. The results are organized in a database of objects and their 

characteristics that are ready for further statistical analysis (Sellars et al., 2017b). In this study, the 

algorithm was applied to MERRA-2 IVT data with an IVT threshold of 500 kg m-1s-1 . 

Wick, Neiman, and Ralph (2013) – WNR2013 

WNR2013 developed a methodology for objective and automated detection and 

characterization of ARs based on the detection originally described in Ralph et al. (2004), using 

10 
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fields of IWV from satellite observations and model outputs, and was verified against results from 

that study. A primary purpose of this ARDT was the validation and comparison of forecast fields 

with observational data as performed in Wick et al. (2013b). The basic objective criteria used in 

this algorithm are: 1) IWV content > 20 mm, 2) length > 2000 km, and 3) width < 1000 km. 

Standard image processing techniques such as thresholding and skeletonization are used to identify 

ARs based on these criteria. This algorithm has been extended for use with IVT (Wick et al. 2014; 

Mahoney et al. 2016) and is used in this study with two IVT thresholds; one including all ARs 

above 250 kg m-1s-1, and the other detecting stronger ARs, with a threshold of 500 kg m-1s-1 . This 

approach was not included in the first set of catalogs as its native application was to satellite IWV 

data which, due to intermittent inter-swath gaps, did not lend itself to detailed comparison with the 

reanalysis products. 

Rutz, Steenburgh, and Ralph (2014) – RSR2014 

RSR2014 has been applied to a number of different reanalysis datasets, including National 

Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR, 

used in Section 3; Kalnay et al., 1996), ERA-Interim (Dee et al., 2011), and MERRA-2. The 

motivation for development of this algorithm was to be able to identify ARs in reanalysis over not 

just the coastal western US but also the interior. They identified ARs as features ≥ 2000 km in 

length (without accounting for curvature of features) with IVT ≥ 250 kg m-1s-1 throughout. They 

imposed no width requirement on these features, and their identified AR events are not dependent 

on duration. 

Guan and Waliser (2015) – GW2015 

GW2015 developed a methodology for global detection of ARs based on ERA-Interim 6-

hourly, 1.5° resolution IVT fields for the period of 1997-2014. The motivation behind GW2015’s 

11 
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development was to assess ARs objectively and consistently on a global scale using IVT and 

geometric characteristics. The thresholds used in this methodology include requiring IVT 

intensities to be higher than the climatological 85th percentile computed for each season and grid 

cell and a fixed minimum limit of 100 kg m-1s-1 , mean IVT direction to be within 45° of the AR 

shape orientation, length of AR features to be longer than 2000 km, and the length to width ratio 

to be greater than 2. Using the percentile method, the threshold at the Bodega Bay grid point ranges 

from 166-254 kg m-1s-1 depending on the season. No minimum duration requirement is considered 

for AR events in this methodology. 

Mundhenk, Barnes, and Maloney (2016) – MBM2016 

MBM2016 used the MERRA-1 reanalysis dataset with 0.5°x0.667° spatial resolution and 

6 hourly temporal resolution (Rienecker et al., 2011) to establish an occurrence-based algorithm 

to detect ARs from 1979-2014. In this study, the catalog was created using MERRA-1 at 1.25° 

resolution, up through the end of the last full water year for which MERRA-1 is available (2015). 

The motivation for development of this algorithm was to enable further investigation of AR 

dynamics and variability over the North Pacific region throughout the year. This algorithm is based 

on fields of anomalous IVT intensities, so that AR features are required to have anomalous IVT 

fields over a given threshold. The published version of the MBM2016 algorithm uses an IVT 

anomaly threshold of 250 kg m-1s-1 for AR detection. The published methodology in MBM2016 

requires at least 25 grid points (~1400 km) along the major axis of the AR and a ratio of 1.6:1 

between the major and minor axis of the AR feature. After this, AR features go through another 

filter to remove weak features with mean anomalous IVT intensities < 305 kg m-1s-1 and the 

features that have west-east direction with center of mass southward of 20 N and orientation off 

the parallel of less than 0.95 radians. Well-developed tropical cyclone features, such as intense 

12 
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circular features or those that include eyelike holes are also removed. After this publication, the 

MBM2016 algorithm was modified in order to make it applicable to a wide variety of reanalysis 

datasets, as opposed to MERRA1 alone. The process of generalizing the algorithm resulted in 

changes to both intensity and geometric criteria, though the modified algorithm retained the ability 

to isolate long, narrow plumes of anomalous water vapor transport. In this study, the intensity 

criteria used is the 94th percentile of IVT anomaly over the entire spatial domain, which is 180.86 

kg m-1s-1 for MERRA-1, in Section 3; and 186.51 kg m-1s-1 for MERRA-2, in Section 4. Geometric 

criteria were modified as follows for this application: 1) the aspect ratio is 1.4:1 instead of 1.6:1; 

2) the latitude threshold was moved from 20 N to 16 N; 3) the weak feature threshold was changed 

from 305 kg m-1s-1 to a threshold based upon the 95th percentile of IVT anomaly (201.73 kg m-1s-

1 for MERRA-1, Section 3; 208.75 kg m-1s-1 for MERRA-2, Section 4); 4) the orientation off the 

parallel of less than 0.95 radians criteria was modified to be a mean IVT orientation between 170° 

and 230° from horizontal, where 0° is pointing to the east; and, 5) multiple intensity peaks are not 

segmented into separate ARs in the version used in this study. 

Gershunov et al. (2017) – GSR2017 

GSR2017 developed an automated algorithm to detect AR landfalls using the 

NCEP/NCAR reanalysis dataset with 2.5º horizontal resolution and 6 hourly temporal resolution 

for the period of 1948-2017. The motivation behind development of their catalog was to include 

both IVT and IWV, to demonstrate the association of ARs with heavy precipitation, and to apply 

their algorithm to a dataset with a long enough record to resolve interdecadal variability. 

According to their methodology, landfalling AR features are required to have minimum IVT 

intensities of 250 kg m-1s-1 and IWV in excess of 15 mm, cross the North America West Coast 

between 20°N-60°N, and be at least 1500 km long. Movement of the center of the AR, which is 

13 
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defined as the grid cell with maximum IVT intensity along the coast, is allowed between each pair 

of time steps, but no more than 5º (north/south). ARs making landfall simultaneously are distinct 

if their centers are at least 7500 km (7.5° north-south) apart from each other. Based on this 

methodology, AR events are required to last for at least 18 hours (3 consecutive analysis time 

steps). In the catalogs created for this study, however, this requirement is adjusted as follows: if 

the required atmospheric conditions are observed at the grid cell used to represent BBY during at 

least 12 of 18 consecutive hours, then an AR event is counted. 

Overall, there is considerable variability between the different algorithms. Some employ 

just a few criteria beyond intensity (e.g. RSR2014) in order not to exclude any relevant events, and 

others are much more complicated, in order to try and constrain the sample to a stricter definition 

of atmospheric river without allowing overlap with other features (e.g. MBM2016). Detection 

techniques also vary in their use of anomalies vs. static thresholds for intensity. The detection 

technique is fundamentally entangled with quantitative algorithm requirements beyond the 

descriptive, qualitative “plume of moisture”, e.g.: How long does it need to be to qualify as a 

plume?; How wide is it before it is something else?; How strong or anomalous does the IVT within 

the plume need to be to separate it from its surroundings? In other words, the algorithms must not 

only define what an AR is, but what it is not, and this scope and specificity is different for each 

algorithm depending upon the science question addressed during its development. 

3. Comparing ARDT Results at Bodega Bay Using Native Reanalyses 

In this section, the ARDTs are applied to the datasets and resolutions used in their original 

publication at the closest grid point to Bodega Bay (Figure 1). All AR events were required to last 
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at least 12 hours in both the ARO (hourly data would require 12 timesteps) and reanalysis datasets 

(3-hourly data would require four timesteps for MERRA-1 and MERRA-2; 6-hourly data would 

require two timesteps for NCEP/NCAR and ERA-Interim). In order to minimize the differences 

between these different time steps, the hourly and 3-hourly datasets were sampled at 0, 6, 12, and 

18 UTC and those instantaneous values were used to determine the presence of an AR event. AR 

events were considered to be distinct if separated by one 6-hour period. Note that without this 

adjustment, the different temporal resolutions of the datasets would cause differences in AR 

characteristics. This could result either from ARs no longer meeting the duration criteria (e.g., one 

of the timesteps falls below the thresholds for a given ARDT), or it could result from multiple 

distinct ARs being reported in a given time period, with below threshold periods separating a 

longer duration AR identified with the lower resolution dataset. Similarly, the different temporal 

resolutions would also affect AR duration and intensity characteristics. 

The period of time considered was November 2004-September 2015, in order to use the 

maximum amount of data where all datasets were available. This will be referred to as water years 

2005-2015; however, water year 2005 is missing the month of October. Water year 2016 was not 

included in this section, because one of the datasets, MERRA-1, was unavailable during part of 

the peak of that year, as it was discontinued in favor of MERRA-2. During water years 2005 – 

2015 an average of 19 ARs of at least weak strength were detected at Bodega Bay each year with 

an average duration of 24 hours (Table 2). For the stronger ARs identified by the three detection 

tools using an IVT threshold of 500 kg m-1 s-1 (see Table 1), the average number per year between 

2005 – 2015 was 2, with an average duration of 17 hours. To investigate ARDT agreement on an 

individual AR basis, one particularly active peak season, Dec-Feb 2006, was further explored 

(Figure 2). During periods of longer lasting and higher IVT and IWV values there is agreement 
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among at least five of the catalogs in most cases, however no extreme event had agreement across 

all seven catalogs. During periods of lower IVT and IWV there is more disagreement among 

ARDTs. One potential reason for this disagreement is that the reanalyses, in particular the coarser 

grids of MERRA-1 (in this study used at 1.25° resolution), ERA-Interim, or NCEP/NCAR, may 

not have recorded the same timing or magnitude of the peak in IVT or IWV that are presented 

from MERRA-2. 

Analysis of individual detected AR timesteps shows relatively large disagreements as well, 

even within strong ARs. For example, several timesteps with IVT greater than 850 kg m-1s-1 were 

identified as ARs by as few as four ARDTs (Figure 3a). This could be due to the difference in 

IVT magnitude in different reanalysis datasets (Figure 3a is presented using MERRA-2 data, 

which may have a different magnitude than the IVT of the reanalysis dataset used for detection), 

as well as the potential for missing data in the observational catalogs. It is also likely that the 

geometric constraints present in some ARDTs play a role in the disagreement between catalogs, 

even when high IVT was observed. However, in general, the agreement between catalogs increases 

during timesteps with higher observed IVT. The IVT in the MERRA-2 appears to exhibit a 

seasonal cycle, with many more timesteps with higher values of IVT observed during the cool 

season, which is when all of the extreme (≥ 1000 kg m-1s-1) and most strong (≥ 750 kg m-1s-1) ARs 

were observed (Figure 3a and b). 

The number of ARs detected per year varies between datasets and annually (Figure 4). The 

average standard deviation, calculated over the different years and then averaged over the different 

methods, between detected ARs per year is 7, which is nearly as large as some of the catalog counts 

(see MBM2016 during years 2014 and 2015). The largest range of detected ARs occurred in 2010, 

where counts range from 13 (MBM2016-MERRA1) – 30 (RSR2014-NCEP) AR events (this 
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excludes the Ralphetal2013-Obs, which counted 5, but may be suffering from missing data). The 

total number of AR events detected by each ARDT during the period ranges from 114 to 279 

(Table 2). Overall, the interannual variability pattern is similar between ARDTs (excluding the 

ARO with missing data). For example, the ARDTs all detect more AR events during 2006 and 

2011, which were relatively wet years, and detect lower AR event counts during the drought period 

2012-2015. These results indicate that very different answers may be found to answer the 

overarching question of how many AR landfalls of what strength were observed at a given location 

per year. In general, the stronger the AR is and the longer duration it is, the more likely it is to be 

identified by all of the ARDTs in all reanalyses or observations. 

Throughout the next two sections of the paper, we will first isolate the differences in the 

detection tools by applying each tool to the MERRA-2 reanalysis, and then, we will isolate 

differences in the reanalysis datasets by applying the RSR2014 method to MERRA-2, ERA-

Interim, and NCEP/NCAR reanalysis datasets. This design will help to pinpoint the reasons behind 

differences in the catalogs. 

4. Comparing ARDT Results at Bodega Bay Using MERRA-2 

To isolate uncertainties in AR occurrence and their characteristics caused by distinct 

attributes of individual ARDTs, in this section we compare AR characteristics in the vicinity of 

the Russian River watershed for the ARs detected by ARDTs as originally designed, but applied 

to the same dataset, the MERRA-2 reanalysis, with either its native grid or an interpolated grid 

required by one of the ARDTs. These MERRA-2-based catalogs are also compared to the 

observational catalogs created using the Bodega Bay ARO. The MERRA-2 dataset is chosen 
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because it is a state of the art, easily accessible dataset, with high spatial and temporal resolution 

(the highest among the reanalysis products used in the native catalogs discussed earlier).  

Accordingly, eight MERRA-2-based and two observational catalogs (Table 3) are 

compared in this section based on their identification of AR activity at the MERRA-2 grid cell 

containing the ARO (38.5N, 123.125W), or directly at the ARO (38.3191N, 123.0728W) for 

observational catalogs. Five of the catalogs were created using the MERRA-2 native grid, which 

is 0.5 x 0.625º. Three of the catalogs, using variations on the WNR2013 algorithm, require a grid 

with equal step sizes in latitude and longitude, and so MERRA-2 was interpolated to a 0.5 x 0.5º 

grid. The last two catalogs were created using the ARO observations. AR events are required to 

last for at least 4 consecutive 3-hourly timesteps (12 hours), and are separated by at least one 3-

hourly timestep below AR conditions. The hourly ARO observations were transformed into 3-

hourly time steps, and only instantaneous 3-hourly records were taken into account. Recall that the 

ARO has a significant amount of missing data that may affect results here. 

During water years 2005 – 2016, the MERRA-2 based and observational catalogs identified 

an average of 18 ARs at Bodega Bay each year with an average duration of 23 hours (Table 3). 

For the stronger ARs identified by the three detection tools using an IVT threshold of 500 kg m-1 

s-1 (see Table 1), the average number per year between 2005 – 2016 was 1, with an average duration 

of 18 hours. Differences in the number of AR events and their characteristics are associated here 

with differences in the methodologies. First, there is a difference between constant and percentile-

based IVT threshold magnitudes used for AR identification. GW2015 applies an IVT threshold 

magnitude that varies with the season and ranges from 166 – 254 kg m-1s-1 (see Table 1 and Section 

2); this allows weaker AR conditions to register, especially during the warm season. Three of the 

catalogs in this section (WNR2013-IVT500; SGS2013; Ralphetal2013-Obs47) are aimed at 
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identifying much stronger ARs and have significantly lower counts than the other 7 catalogs 

throughout this period. It is important to note that these lower counts are also a reflection of the 

requirement for the ARs to consistently keep their higher strength (over 500 kg m-1s-1; see Table 

1 throughout the entire minimum 12-hour AR duration, instead of just reaching that value at the 

peak of the AR. 

Geometric constraints may also account for observed differences in the number of detected 

AR events. While the ARDTs have comparable AR length thresholds, five of the catalogs consider 

other geometric requirements as well, such as length/width ratio, shape, width, and orientation 

(Table 1). The most restrictive geometric criteria are found in WNR2013 and MBM2016 (see 

Section 2), and these consistently identify fewer AR events, a result consistent with the sensitivity 

analysis in Guan and Waliser (2015; their Figure 5). 

Even with the variability in the number of AR events, there is good agreement between all 

catalogs with similar IVT thresholds in terms of average event duration (Table 3). Depending on 

the AR identification methodology, the number of AR events for the period of record varies from 

131 to 268 (for stronger ARs, this range is 13 to 29). Annually, there are 18 AR events per year on 

average at this grid cell, lasting an average of 23 hours. There is on average 1 stronger AR event 

per year at this grid cell, lasting an average of 18 hours. The output of ARDTs with similar 

parameters and geometric characteristics show good agreement with regard to relevant AR 

characteristics such as frequency, duration, and intensity (GSR2017, GW2015, RSR2014; see 

Table 1). The WNR2013-IVT AR catalog is constructed using the same IVT threshold magnitude 

as the four mentioned earlier; however, the number of detected AR events is relatively small and 

the ARs are shorter in duration, which could be a result of the more restrictive geometric criteria 

used in this methodology (Table 1). 

19 



 
 

   

        

        

        

        

  

         

           

    

    

  

    

      

  

   

        

      

       

    

       

       

        

        

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

20 

The 2006 water year peak season (Dec 2005 – Mar 2006) shows increased agreement with 

the MERRA-2 dataset compared to the ARDTs applied to their native datasets (Figure 5 and Figure 

2, respectively). Seven ARDTs are applied to all ARs, and 3 are detecting only stronger ARs, with 

a minimum threshold of 500 kg m-1s-1 (see Table 1). Similar to Figure 2, the stronger and longer 

duration ARs show good agreement across the ARDTs, while weaker and shorter duration events 

that are closer to defined thresholds have much less agreement. Some of the differences between 

Figure 2 and 5 are due to the fact that in Figure 2, ARDTs are applied to different datasets, but 

presented with MERRA-2 reanalysis values for IVT and IWV, whereas in Figure 5 the ARDTs, 

excluding the observational datasets, are both applied to and presented with MERRA-2 reanalysis, 

with two different spatial resolutions. This results in more agreement between the ARDTs in 

Figure 5 than in Figure 2. Due to the higher resolution of the time steps in the ARDTs in Figure 5 

(3-hourly time steps instead of 6-hourly), more distinct events are counted during the end of 

December 2005. 

Over the period analyzed, AR timesteps show a similar pattern to Section 3, where 

agreement increases with IVT intensity (Figure 6). Here, in contrast to Figure 3, there are few 

ARDTs identifying AR timesteps with IVT below 250 kg m-1s-1 (Table 1), due to MERRA-2 being 

the sole reanalysis dataset in use in this section. The reason behind some of these timesteps still 

appearing are the ARO identified timesteps and the WNR2013-IWV presented with associated 

MERRA-2 IVT. As the ARs get stronger, there is more agreement between different methods; for 

example, IVT in 3-hour time steps between 500-549 kg m-1s-1 shows 5 or more (out of 7) methods 

agreeing almost 80% of the time; 700-749 kg m-1s-1 shows 7 or more (out of 10) methods agreeing 

almost 80% of the time. Separating the AR timesteps into cool season (October – April) and warm 
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season (May – September) highlights that the stronger ARs occur almost entirely in the cool 

season, and result in more agreement between ARDTs during this season. (Figure 6b, c). 

In terms of interannual variability, the catalogs in different categories (regular AR strength 

vs. stronger ARs with a minimum threshold of 500 kg m-1s-1 (see Table 1)) follow roughly the 

same patterns (Figure 7). For example, wet years such as 2006 receive higher numbers of ARs 

detected by almost all catalogs. The BBY ARO records less AR activity; but this is due primarily 

to missing periods, in particular in 2013. This shows one particular limitation of the in situ 

observations; however, the agreement between years with no missing data (e.g. 2014-2015) with 

reanalysis datasets also provides some confidence in the reanalysis datasets to capture the features 

observed on the ground. The MBM2016 and WNR2013-IVT catalogs consistently record fewer 

AR events than the others, and this may be related to their stricter geometric requirements, as 

discussed earlier. The WNR2013-IWV catalog includes similar geometric criteria, but does not 

consider IVT and does not employ several related geometric criteria (e.g. the aspect ratio), and this 

may be part of the reason why its AR event counts are higher. 

It is notable that the overall results between Sections 3 and 4 are so similar in terms of AR 

event count. In this section, considering all MERRA-based catalogs (i.e., excluding observational 

catalogs) using the thresholds meant to include all ARs, the average number of AR events per year 

is 19. This value is the same as that found in Section 3. However, the standard deviation is reduced 

from 7 (in Section 3) to 4 (in Section 4) by confining the reanalysis choice to MERRA. 

5. Comparing ARDT Results on Different Reanalyses Using the RSR2014 ARDT 

In this section, we attempt to isolate the effect of using different reanalysis datasets on AR 

detection by applying the RSR2014 algorithm to three reanalysis datasets with different spatial 
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and temporal resolutions; these include NCEP/NCAR (6-hour temporal and 2.5º spatial 

resolution), ERA-Interim (6-hour temporal and 1.5º spatial resolution), and MERRA-2 (3-hour 

temporal and 0.5ºx0.625º spatial resolution, see Figure 1 and Table 4). Since NCEP/NCAR and 

ERA-Interim data are available in 6-hour time steps, this section uses MERRA-2 3-hourly data 

sampled every 6 hours, similar to section 3, to facilitate comparison. The RSR2014 algorithm 

results for ERA-Interim are only available during the cool season, between November – April, and 

so results for this section are presented for this 6-month period of each water year. Statistics 

computed for subperiods within 1990-2015 for NCEP/NCAR and MERRA-2 indicate that over 

70% of all counted ARs per year occur during this part of the year. In addition, most strong ARs 

(750 < IVT < 1000 kg m-1s-1) and all extreme ARs (IVT > 1000 kg m-1s-1) considered during the 

study period of 2005 – 2016 occur during the cool season (Figures 3 and 6). 

Rutzetal2014 catalogs based on different reanalyses show excellent agreement for AR 

event identifications during the peak season of the 2006 water year (Figure 8). Most of the 

disagreements occur at the start and end times of the events. Allowing the time step to be either 

±6 hours from the other catalogs increases the agreement between the reanalysis datasets by about 

18% (Table 4). The IVT time steps identified agree over 80% of the time for MERRA-IVT values 

greater than 400 kg m-1s-1 , and 100% of the time for MERRA-IVT values greater than 700 kg m-

1s-1 (Figure 9). 

Differences between the three reanalyses show that AR time step frequency, number of 

events per year, and event duration decrease slightly with increasing resolution, while higher 

resolution reanalyses observe greater peak IVT. Correlations of AR and non-AR timesteps 

between different catalogs are lowest for MERRA-2 and NCEP, which are the reanalyses with the 

most different resolutions (Table 4). 
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The entire time series for all available reanalyses show that there is substantial agreement 

during the overlapping years (Figure 10). AR events, particularly the stronger and longer events, 

are identified consistently regardless of which reanalysis dataset is used. Differences between the 

reanalysis datasets are primarily in the intensity and in the timing of the AR. These results are 

consistent with other studies that have investigated and compared landfalling ARs in different 

reanalysis datasets (Lavers et al., 2012; Jackson et al., 2016; Guan and Waliser, 2017; Guan et al., 

2018). Here, we can consider what information can be provided by the relative agreement between 

reanalyses. The results from this section provide confidence in the idea that, at least in northern 

California, even coarse-resolution datasets such as NCAR/NCEP are excellent resources for 

understanding AR activity through time, especially as this dataset goes back in time to 1948, much 

further back than the others. In the NCEP/NCAR record, drought years correspond with very low 

AR counts (1977), and record flood years correspond with very high AR counts (1983), with the 

overall range from under 5 ARs to over 30 ARs due to interannual and interdecadal variability. 

While it is true that new data sources (e.g., satellite) became available for assimilation during the 

NCEP/NCAR period of record, Gershunov et al. (2017) validated their catalog with respect to 

possible discontinuities stemming from satellite data assimilation, and found none. 

6. Conclusions and Discussion 

This study set out to answer a specific question: how many ARs per year hit the Russian 

River, a vulnerable coastal watershed in northern California, as well as to assess the sensitivity of 

the answer to different AR detection algorithms and reanalysis datasets. The results highlight the 

benefits and challenges in using specific ARDTs to study ARs. Each method is based on expert-
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developed criteria that must be understood to fully appreciate and compare the AR frequency, 

intensity, and duration results for different ARDT catalogs. 

The importance of ARs in regions throughout the globe has been well documented, and 

understanding the differences in detection methods is essential. Individual ARDTs were produced 

in order to address specific research objectives (e.g., different regions vs. global scale, ocean vs. 

overland), and to take advantage of different data sources (e.g., satellite, reanalysis, in situ 

observations), and these objectives informed the criteria that were applied to detecting ARs. 

Therefore, no single method should be expected to be perfect for every application. This work 

provides additional context when selecting or designing an ARDT for future studies.  It also helps 

set the stage for the recently developed Atmospheric River Tracking Method Intercomparison 

Project (ARTMIP), which aims to quantify uncertainties in AR climatology and impacts on a 

global scale as a result of differences in AR identification and tracking methods, and which is 

described in more detail in Shields et al. (2018). This study begins to address the physical origins 

behind the broad variability in counts found so far in ARTMIP. 

The study presented here focuses the comparison on one geographic location that is a focus 

for land-falling ARs and has a unique, high temporal resolution, long-term in situ observational 

dataset. The ARO dataset generally suffers from too much missing data each year to be a 

completely reliable tool for yearly totals and overall statistics. However, the high temporal 

resolution information it provides on individual storms in real time, while not used in this study 

where the ARO was sub-sampled at the same temporal resolution as the reanalyses, is particularly 

valuable. The hourly observations can better resolve AR onset at the ARO location, evolution to 

peak and through the end of AR conditions, and provide high vertical resolution horizontal wind 

measurements throughout the column. The period compared in this study, WY2005-2016, includes 

24 



 
 

   

      

     

     

  

    

      

     

         

       

      

   

      

     

        

   

   

   

     

    

     

      

     

   

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

25 

4 years of severe drought as well as two anomalously wet years, (2006 and 2011), which are 

representative of California’s volatile hydrology. Identified ARs can be categorized, as in this 

work, by strength measured using IVT intensities and durations, or impacts measured by 

precipitation and streamflow. 

These results provide important information in the context of much foundational work that 

has been completed on ARs, which has shown that a few big ARs in a year can make the difference 

between drought and a wet water year (e.g. Dettinger et al., 2011). Therefore, knowing how many 

ARs to expect on average, and what the variance and range can be, is essential from both water 

management and emergency preparedness standpoints. Previous studies have shown the 

connection between moisture flux or IVT strength and significant precipitation (e.g., Lavers et al., 

2016; Gershunov et al., 2017). Other studies have shown the importance of AR duration on 

impacts, where the duration may matter as much or more than AR intensity (Ralph et al., 2013; 

Lamjiri et al., 2017). Orientation at landfall also drives AR impacts, as recently shown by work 

done in the Russian River watershed (Guirguis et al., in review). While it is out of the scope of this 

paper to directly consider impacts of ARs such as on precipitation and streamflow totals in depth, 

we estimated the contribution of precipitation from ARs detected using different AR tracking 

schemes to total annual precipitation accumulated at BBY. The set of ARDTs with less stringent 

geometric criteria such as RSR2014, GSR2017 and GW2015 ranged from 55-60% of AR 

contribution per year, while WNR2013-IVT250 and MBM2016 ranged from 45-53% per year. 

The ARDTs focused on much stronger ARs, Ralphetal2013-OBS47, SGS2013 and WNR2013-

IVT500 contribute roughly 10% of AR-related precipitation per year. Moreover, more than 40% 

of heavy precipitation and 80% extreme precipitation events are associated with ARs (see 

Appendix I, Fig. AI-2). 
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In Section 3, we first applied each ARDT to the dataset used in original publication, and 

determined the average annual AR count. Excluding those with high-IVT thresholds, the average 

annual count was 19±7. In Section 4, applying these ARDTs to a single reanalysis yielded an 

average annual count of 19±4. Moving to a single reanalysis in this exercise did not change the 

average annual count but did reduce the variability. Including the ARO observations along with 

MERRA-2 produces an average annual count of 18±5. Using a single ARDT (Rutz et al., 2014) 

on three different reanalyses of different resolutions resulted in an average November-April 

(limited season) count of 17±1 ARs (for comparison, the average November-April AR count for 

different ARDTs applied to one reanalysis is 13±3; this excludes the high-IVT ARDTs). Therefore, 

a major conclusion of this work is that the choice of reanalysis has much less of an effect on the 

AR count than does the choice of ARDT. Specifically, analysis of sensitivity of ARs to the 

detection method (Section 4) and the reanalysis datasets (Section 5) shows that AR catalogs based 

on different ARDTs applied to the same reanalysis share 70% of interannual AR variability, 

whereas AR catalogs based on the same detection methodology applied to different reanalyses 

share 84% of AR variability (see Appendix II, Table AII-1, for details). 

When assessing differences between reanalyses, higher temporal resolution generally 

decreased AR event counts overall (see Section 4 results compared to Section 3) because there 

was more opportunity for an AR to fall below threshold or not to meet geometric constraints 

given the same duration requirement. Other studies have reported similar results with respect to 

spatial resolution (Guan and Waliser, 2017; Blamey et al., 2018). In this work, all higher 

resolution timesteps were sub-sampled to be equivalent to the coarsest resolution, meaning that 

the hourly ARO dataset was sampled at every 6 hours in Sections 3 and 5, and every 3 hours in 

Section 4, while the MERRA-2 3-hourly dataset used in Section 4 was sampled at every 6 hours 
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in Sections 3 and 5. While the sub-sampling helps to address different temporal resolutions of the 

datasets, it does not alleviate all of the differences impacting instantaneous AR detections at sub-

sampled timesteps. 

Differences in ARDTs were found predominantly during weaker storms, and in both 

ARDT and reanalysis comparisons there were timing differences at the beginning and ends of 

storms. The differences in AR event counts were much larger as a percentage of the mean than 

differences in overall AR properties such as strength and duration. This study also shows that the 

detection algorithms used here can be broken into groups or clusters, based upon geometric criteria 

and intensity. Focusing on these “clusters” of algorithms within the MERRA-2 based catalogs 

results in average counts of: 21±4 (for those methods with less limiting geometric criteria), 14±3 

(for those methods with strict geometric criteria), or 1±1 (for those methods aiming to identify 

much stronger ARs) (Table 5). The relatively large effect of the geometric constraints has also 

been documented by algorithm developers (Guan and Waliser, 2015). The catalogs also perform 

very well and agree with regard to interannual variability. 

The fact that the largest difference in ARDT catalogs are between those with stricter 

geometric requirements points to fundamental differences in the way that ARs are defined. There 

has been significant discussion in the literature regarding the definition of ARs since the term was 

first introduced by Zhu and Newell (1994). For example, the differences and relations between 

ARs, warm conveyor belts, and tropical moisture exports, are important considerations (Dettinger 

et al., 2015; Ralph et al., 2017). ARs have recently been defined in a general sense in the Glossary 

of Meteorology (AMS, 2017) after an extensive community input process and discussion of the 

aforementioned and other considerations (Ralph et al., 2018). In new studies, the specific research 

question being asked may determine how narrowly one may want to define these features. 
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However, a contextual understanding of how ARs are defined in the literature through the use of 

different types of ARDTs is required in order to understand important and relevant findings such 

as ARs increasing in frequency and/or intensity in future climate (Dettinger, 2011; Lavers et al., 

2013; Warner et al., 2015), or comparing conclusions from studies using various ARDTs over 

different regions of the globe (Baggett et al., 2016; Hagos et al., 2016; Ramos et al., 2016; Lora et 

al., 2017; DeFlorio et al., 2018; many others), is essential. 

To this end, the authors would like to stress that a single ARDT cannot be recommended 

universally. Beyond what is described here, other ARDTs continue to be developed, including 

those based on machine learning, and these techniques should be evaluated as well to understand 

how they compare with other objective methods. Different ARDTs perform differently by design, 

and the ARDT should be selected with thoughtful consideration of the particular application. For 

example, to study changes in the future precipitation regime, it is reasonable to choose ARDTs 

designed to catch landfalling ARs and their geometric characteristics at landfall. Moreover, it is 

preferable to use those ARDTs whose outputs were validated on precipitation over various 

historical periods (e.g. Gershunov et al., 2017; Rutz et al., 2014). If the main focus of the study is 

moisture transport from the tropics to high latitudes, ARDTs developed for global applications 

should be used. Ensemble methods, using either perturbations of ARDT thresholds and/or a range 

of ARDTs, may also be appropriate. 

In terms of climate change, additional analysis of GCM realism with respect to simulated 

AR activity is needed. The authors note that work applying ARDTs to GCMs is ongoing, and that 

the results from using different ARDTs may be used to illuminate details of how ARs may change 

in the future. For example, Lavers et al. (2015) shows that IVT increases everywhere 
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thermodynamically as expected in a warmer climate. This means that qualitatively any of the 

ARDTs will result in the same signal, but details may vary. 

Appendix I. Estimating the Precipitation Contribution from ARs Identified with Different 

ARDTs 

To quantify the impact of AR activity detected using different AR tracking schemes on 

precipitation regime at BBY, the contribution of AR-related precipitation to total annual 

precipitation accumulated at the area (certain grid cell) during the water years of 2005 – 2013 

(Table AI-1) was estimated using Livneh’s (2013) precipitation dataset. Precipitation during AR 

days, defined as days with at least one 3-hour time step associated with AR conditions, and the 

day after an AR day are counted. The set of ARDTs with the least strict criteria such as RSR2014, 

GSR2017 and GW2015 ranged from 55-60% of AR contribution per year, while WNR2013-

IVT250 and MBM2016 ranged from 45-53% per year. The ARDTs focused on much stronger 

ARs, Ralphetal2013-OBS47, SGS2013 and WNR2013-IVT500 contribute roughly 10% of AR-

related precipitation per year. The annual behavior of AR-related precipitation contribution is 

illustrated in Figure AI-1. In particular, during wet years such as 2006 the contribution of AR-

related precipitation was as much as 70% for ARDT outputs with the least strict criteria, whereas 

strict AR detection schemes account for up to 30% of the contribution. During dry years both AR 

activity (Figure 7 from the main text) and AR precipitation contribution (Figure AI-1) are about 

25% lower. 

Proving the statement on the connection of AR strength and precipitation intensity (Section 6) we 

estimated the contribution of AR precipitation to all precipitation summed in the different 

percentile categories (Figure AI-2). The results show that in general moderate to extreme 
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AR data source  Annual  average AR  

 precipitation contribution (%) 

 GSR2017-MERRA2  56 % 

 GW2015-MERRA2  55 % 

MBM2016-MERRA2   45 % 

Ralphetal2013-OBS   39 % 

 RSR2014-MERRA2  60 % 

WNR2013-IVT-

 MERRA2 

 53 % 

WNR2013-IWV-

 MERRA2 

 37 % 

 Summary  49 % 

30 

661 precipitation  accumulations  are  most  likely  to be  associated with AR events. Namely, more  than  

40%  of heavy  precipitation and 80%  extreme precipitation events are  associated with ARs.  The  

catalogs focused on  much  stronger  ARs (SGS2013, WNR2013-IVT500  and Ralphetal2013-

OBS47) tend  to catch predominantly  heavy  and extreme precipitation cases. The  set of ARDT  

outputs based on simpler (or no) geometric  characteristics (GSR2017, RSR2014, GW2015)  cover  

a wider spectrum  of precipitation events.  

662 

663 

664 

665 

666 

667 

668 Table AI-1.  Annual average contribution of AR-related precipitation to all precipitation.  
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Ralphetal2013-OBS47* 7 % 

SGS2013*-MERRA2 15 % 

WNR2013-IVT500*-

MERRA2 

8 % 

Summary* 10 % 

669 

670 

671 

672 Figure  AI-1.  Annual average  contribution of precipitation associated with AR events counted  by  

each MERRA2-based AR catalog  at the  grid cell containing  BBY during  water  years 2005-2013.  673 

674 

675 
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Figure AI-2. Contribution of precipitation associated with AR days in different daily precipitation 

percentile categories counted by each MERRA2-based AR catalog at the BBY grid cell during 

water years 2005-2013. 

Appendix II. Quantification of the Difference between Choice of ARDT and Choice of 

Reanalysis 

Sensitivity of AR frequency, duration and intensity to the detection methodology (the reanalysis 

datasets) is quantified by the amount of shared variance in AR catalogs obtained from applying 

different (the same) detection algorithms to the same (different) reanalysis dataset. The percentage 

of shared variance represented by square of average correlation coefficient between pairs of AR 

catalogs shows the amount overlap variation of those catalogs. Two sets of catalogs are considered: 

six MERRA2-based AR catalogs developed using GSR2017, GW2015, RSR2014, MBM2016, 

WNR2013-IVT and WNR2013-IWV with solid/percentile-based IVT/IWV thresholds and 
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 Shared Variance in AR  Seasonal  number  of Seasonal  average Seasonal average of   AR 

 catalogs from:   AR events  duration of AR event   event MERRA2-IVT  
Different   methods to   70 %  71 %  25 % 
single Reanalysis  

 Single method to   84 %  85 %  46 % 
Different reanalysis  
Difference in shared   14 %  14 %  20 % 

 variance 
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690 with/without  geometry  characteristics at AR detection schemes (see  Section 4), and three  AR 

catalogs obtained  from  applying RSR2014 algorithm  to  NCEP/NCAR, ERA-Interim  and  

MERRA-2 reanalysis datasets (see Section 5) with different spatial and temporal resolutions. The  

number  of AR events, their  average  duration and IVT intensity  were  computed from November  

through April  during  2005-2010 water  years according  to data availability  in considered AR  

catalogs. The  results (Table AII-1) show that the AR catalogs based on different ARDTs applied  

to the same reanalysis  share  70%  of interannual AR  variability, whereas AR  catalogs based on the  

same detection method applied to different reanalyses share  84%  of AR variability.  This illustrates 

that the choice  of reanalysis  has about 14%  less of an effect on AR frequency  than does the choice  

of ARDT.  Shared variations in average  duration and IVT  intensity  of different reanalysis  based  

ARs are 14%  and 20% higher, respectively.  

 
Table AII-1. Shared  variance  in AR catalogs obtained from applying GSR2017, GW2015, 

RSR2014, MBM2016 and WNR2013-IVT  AR detection algorithms to MERRA2 Reanalysis  

dataset and  RSR2014 algorithm  to NCEP/NCAR, ERA-Interim  and MERRA-2 reanalysis  

datasets.  
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 ARDT  Detection 
parameter  

AR detection thresholds  

 IVT, IWV Spatial, 
temporal  

a)  

 b) 

Ralphetal2013-
 Obs* 

Ralphetal2013-
 Obs47* 

Ralph., F.M. 
et al., 2013  

IWV, IWV  
 flux  

a)   WVF  ≥ 20 cm m/s, 
IWV ≥ 20 mm  

  b) WVF ≥ 47 cm m/s, 
IWV ≥ 20 mm  

 12 hours 

 SGS2013* Sellars, S. 
 al., 2013  

et IVT  IVT ≥ 500 kg/m/s   24 hours 

a)  WNR2013-IVT*  Wick, G.  et IVT  a)  IVT ≥ 250 kg/m/s   ≥ 1500 km 
 b) WNR2013- al., 2013   b) IVT ≥ 500 kg/m/s    width < 1000 km 

IVT500*   length/width ≥ 
 1.4 

WNR2013-IWV  Wick, G. 
al., 2013  

 et IWV  IWV ≥ 20 mm   ≥ 2000 km 
  width < 1000 km 

 RSR2014  Rutz, J. et al., 
2014  

IVT  IVT ≥ 250 kg/m/s   ≥ 2000 km 
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TABLES  

 

Table 1. The  variables and geometric  thresholds used in each AR detection method considered  

throughout the  study.  In  methods 1 and  6 (Gershunov et al. 2017; Sellars et al. 2013), the AR 

object must persist for 24 hours, but may  not last that long in an individual grid  cell. Starred lines  

indicate that the method was modified for use in this study. Please see the text for details.  
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GW2015 Guan, B. and 
D. Waliser, 
2015 

IVT Monthly IVT ≥ 85th 
percentile 
(~ 166-254 kg/m/s) 

≥ 2000 km, 
Length/width > 
2 

MBM2016* Mundhenk, 
B. et al., 2016 

IVT 
anomaly 

IVT anomaly ≥ 94th 
percentile 
(IVT ~ 209-283 
kg/m/s) 

≥ 1400 km 
length/width ≥ 
1.6 

GSR2017 Gershunov, 
A. et al., 2017 

IVT, IWV IVT ≥ 250 kg/m/s 
IWV ≥ 15 mm 

≥ 1500 km 
18 hours 

883 

884 Table 2. Statistics for  each of the AR catalogs on their native  datasets, water years 2005-2015. The  

baseline  AR threshold is separated from those methods  that identify  ARs beginning  at moderate  

strength(*).  Summary statistics for native reanalysis IVT  are not presented  as IVT is  not a default  

output  in  some of the ARDTs.  

885 

886 

887 

AR data 
source 

Number 
of 

AR 
events 

Annual 
average
number 
of AR 
events 

Average 
duration 

of AR 
event (hr)

± σ 

Average of
AR event 

Native-IVT 
average
(kg/m/s) 

per 6-hour 
time step

± σ 

Average of
AR event 

MERRA2-
IVT 

average
(kg/m/s) 

per 6-hour 
time step

± σ 

Average of
AR event 

Native-IVT 
maximum 
(kg/m/s) 

per 6-hour 
time step 

± σ 

Average of
AR event 

MERRA2-
IVT 

maximum 
(kg/m/s) per 
6-hour time 

step 
± σ 

Average of
AR event 

MERRA2-
IWV 

average
(mm) per 6-
hour time 

step 
± σ 

Average of
AR event 

MERRA2-
IWV 

maximum 
(mm) per 6-
hour time 
step ± σ 

GSR2017-
NCEP 

244 22±4 25±3 342±59 343±79 407±115 447±154 22±5 25±6 

GW2015-
ERAI 

264 24±4 25±3 299±81 316±90 376±146 408±155 22±4 26±5 

MBM2016-
MERRA1 

152 14±5 21±2 430±81 429±89 507±140 519±148 25±4 27±5 

Ralphetal201 
3-OBS 

114 10±4 24±2 389±126 389±126 485±175 485±175 25±4 28±5 

RSR2014-
NCEP 

279 25±5 25±3 336±58 328±81 398±115 429±154 21±5 25±6 

Summary 210±73 19±7 24±2 - 361±47 - 458±44 23±2 26±1 

Ralphetal201 
3-OBS47* 

13 1±1 16±1 621±164 621±164 706±191 706±191 27±4 29±4 

SGS2013*-
MERRA2 

34 3±2 18±1 646±98 646±98 721±147 721±147 30±4 32±5 
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44 

Summary* 24±15 2±1 17±1 633±18 633±18 714±11 714±11 29±2 31±2 

888 

889 

890 

891 

892 Table 3. Statistics for  each of the AR catalogs through the 2005-2016 water  years, using  the  

ERRA-2 reanalysis  dataset.  The  baseline  AR threshold is separated from those methods that  

dentify ARs beginning at moderate strength(*).  

893 M

894 i

AR data source Number of 
AR events 
(Summary
includes ± 

σ) 

Annual 
average

number of 
AR events 
(Summary

includes ± σ) 

Average 
duration 

of AR 
event 

(hr) ± σ 

Average of
AR event 

MERRA2-
IVT average 
(kg/m/s) per 
3-hour time 

step
± σ 

Average of
AR event 

MERRA2-
IVT 

maximum 
(kg/m/s) 

per 3-hour 
time step 

± σ 

Average of
AR event 

MERRA2-
IWV 

average
(mm) per 

3-hour 
time step 

± σ 

Average 
of AR 
event 

MERRA2-
IWV 

maximum 
(mm) per 

3-hour 
time step 

± σ 

GSR2017-
MERRA2 

257 21 ± 4 24 ± 5 372 ± 74 485 ± 154 23 ± 4 27 ± 5 

GW2015-
MERRA2 

238 20 ± 3 24 ± 5 344 ± 88 455 ± 166 23 ± 4 27 ± 5 

MBM2016-
MERRA2 

152 13 ± 4 22 ± 5 442 ± 80 553 ± 153 25 ± 4 28 ± 5 

Ralphetal2013-
OBS 

131 11 ± 5 23 ± 4 385 ± 120 503 ± 179 25 ± 4 28 ± 5 

RSR2014-
MERRA2 

268 22 ± 5 25 ± 5 369 ± 75 480 ± 154 23 ± 4 27 ± 5 

WNR2013-IVT-
MERRA2 

185 15 ± 3 20 ± 4 394 ± 96 500 ± 155 24 ± 5 27 ± 5 

WNR2013-
IWV-MERRA2 

261 22 ± 6 20 ± 3 299 ± 159 378 ± 202 26 ± 3 28 ± 4 

Summary 213 ± 56 18 ± 5 23 ± 2 372 ± 44 479 ± 54 24 ± 1 27 ± 0.5 

Ralphetal2013-
OBS47* 

13 1 ± 1 16 ± 2 613 ± 159 733 ± 205 27 ± 4 30 ± 4 
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45 

SGS2013*-
MERRA2 

29 2 ± 1 19 ± 3 654 ± 75 778 ± 137 31 ± 4 33 ± 4 

WNR2013-
IVT500*-
MERRA2 

14 1 ± 1 20 ± 4 678 ± 124 784 ± 155 31 ± 4 34 ± 5 

Summary* 19 ± 9 1 ± 1 18 ± 2 660 ± 16 765 ± 28 30 ± 2 32 ± 2 

895 

896 

897 Table 4. (Rows 2–9) Statistics for each of the RSR2014 AR catalogs, using the different 

reanalysis datasets during Nov-Apr 1990-2010. Resolution for each reanalysis is in parentheses. 

Linear correlations are based on AR timesteps identified in each reanalysis. See Figure 1 for grid 

points containing Bodega Bay. The 1436 value of  maximum IVT  on ERA-Interim  and MERRA-

2 is fro m 1200 UTC, 12 December 1995.  (Rows 11–17) Overlap in identified AR steps using  

various time windows for each of the RSR2014 AR catalogs, using the different reanalysis  

datasets.  
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46 

NCEP (2.5) ERA-Interim (1.5) MERRA-2 (0.5) 

Max IVT 1088 1436 1436 

AR Timestep Frequency 10.6% 10.0% 8.5% 

AR Events/Nov-Apr * 17.9 17.2 14.8 

AR Duration (hr) 25.9 25.4 24.8 

Linear Correlations NCEP ERA-Interim MERRA-2 

NCEP .76 .75 

ERA-Interim .76 .81 

MERRA-2 .75 .81 

AR Step Overlap Exact +/- 6 hr +/- 12 hr 

NCEP Only 16.4% 9.2% 7.7% 

ERAI Only 7.8% 3.7% 3.5% 

MERRA-2 Only 2.8% 1.2% 0.9% 

NCEP and ERAI 62.4% 80.0% 83.4% 

NCEP and MERRA-2 58.6% 74.6% 78.6% 

ERAI and MERRA-2 69.4% 82.4% 84.2% 

All 3 Datasets 49.9% 68.2% 73.3% 

905 

906 *To compare with Table 3, add 4/year (May - Oct storms) 

907 

908 

909 

910 
911 

Table 5. AR event counts with ARDT characteristics. ARDTs are sorted by criteria. * indicates 

those catalogs that are designed to identify only stronger storms; ** indicates observational 

catalogs with significant missing data during some years; *** indicates catalogs using IWV 

alone. 

ARDT Avg
Annual 
AR 
Events 

IVT 
Threshold 
(kg/m/s) 

IWV 
Threshold 
(mm) 

Geometric 
(Length, 
km) 

Geometric 
(Width km,
or ratio) 

Geometric/
Duration 
(Other) 
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RSR2014-
NCEP 

22±5 250 No >2000 No No 

GSR2017 21±4 250 15 >1500 No No 
GW2015-
ERAI 

20±3 166-254 No >2000 L/W > 2 Yes 

WNR2013-
IVT* (Section 
4) 

15±3 250 No >2000 <1000; L/W 
> 1.4 

Yes 

MBM2016 13±3 209-283 No >1400 L/W > 1.6 Yes 
Based on much higher IVT threshold 
SGS2013* 2±1 500 No No No Yes 
WNR2013-
IVT500* 

1±1 500 No >1500 <1000 Yes 

Not based on IVT 
WNR2013-
IWV*** 

22±6 No 20 >1500 <1000 Yes 

Ralphetal2013-
Obs** 

11±5 250 (20 cm 
m/s) 

20 No No Yes 

Ralphetal-
Obs47*,** 

1±1 500 (47 cm 
m/s) 

20 No No Yes 
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919 FIGURES 
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924

48 

Figure 1. Map of the study region with the Bodega Bay ARO location marked in yellow. Grid 

center points and boxes for all of the reanalyses used in this study are presented in solid markers 

and shading (colored according to scale). Terrain represented by gray shading. 
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925 

926 Figure  2.  Time series of  IVT (black line)  and IWV  (gray  line) from MERRA-2 reanalysis  during  

the peak of the cool season during  water year 2006.  Color bars at the top indicate how many  of the  

seven  considered catalogs  on their  native  reanalysis  identified an AR at  a  specific  time. All catalogs  

besides the Wick catalogs are  represented  here  (see  items 1-6 in Table 1). Gray  shading  indicates  

agreement of five  or more  AR catalogs. Two  of the seven  catalogs are  designed to identify  

moderate and stronger ARs.  
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944 

945 Figure  3.  Agreement  of native  reanalysis-based AR  catalogs expressed in terms of frequency  and  

MERRA2-IVT  intensity  of 6-hour time steps associated with AR conditions in  Bodega  Bay  

during  (a) 2005-2015  water years, (b)  the cool (October –  April) seasons of 2004-2015  and (c) the 

warm (May  - September)  seasons of 2005-2015. The  number  of  6-hour  AR time steps is displayed  

on the top of each bin. The  colors represent the number  of AR catalogs that shared the AR time 

steps. P ercentage is expressed in terms of the number of total identified time steps in a  given  IVT  

bin.   

946 

947 

948 

949 

950 

951 

952 

953 

954 Figure 4. Number of distinct AR events counted by  each native reanalysis-based AR catalog  at 

the grid cell containing  BBY (see  Figure 1) during water  years 2005-2015. Dashed lines(*)  

indicate methods that identify ARs that persist for  at least 12 hours with moderate AR strength 

thresholds.  
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960 

961 Figure  5. As in  Figure  2,  except for  all  ten  ARDTs  (see  Table  1)  as applied to MERRA-2. Three  

of the catalogs are  designed to identify  only  moderate and stronger ARs. Gray  shading  represents 

agreement of at least seven  catalogs.  
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54 

965 Figure  6. Agreement of MERRA-2-based AR catalogs expressed in terms of frequency  and IVT-

intensity  of 3-hour time steps associated with AR conditions in Bodega  Bay during  (a) 2005-2016  

water  years, (b) the cool (October  –  April) seasons of 2004-2016 and (c) the warm (May  - 

September)  seasons of 2005-2015. The  number  of 3-hour AR time steps is displayed on the top of  

each bin. The  colors represent the number of AR catalogs that shared the AR time steps.  
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971 

972 Figure 7. As in Figure 4, but with each ARDT applied to the MERRA-2 dataset.  
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975 

976 

977 

Figure  8. As in  Figure  2, except for  RSR2014  ARDT applied to 3 different reanalyses  (ERA-

Interim; NCEP; MERRA-2). Gr ay shading is present when all three catalogs agree.   

978 

979 Figure 9. Agreement of Reanalysis-based AR catalogs expressed in terms of frequency and 

MERRA2-IVT  intensity of 6-hour time steps associated with AR conditions in Bodega  Bay  

during the cool (November –  April) seasons of 2004-2010. The number of 6-hour AR time steps 

is displayed on the top of each bin. The  colors represent the number of AR catalogs that shared 

the AR time steps.  
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56 

Figure 10. As in Figure 4, except with only RSR2014 applied to different reanalysis datasets 

during (a) all November  –  April for all available  water  years for each reanalysis and (b)  

November  - April during water  years 1990-2010, when all three datasets are available.  
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