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Abstract 

This observational study compares seasonal variations of surface fluxes (turbulent, radiative, and 

soil heat) and other ancillary atmospheric/surface/permafrost data based on in-situ measurements 

made at terrestrial research observatories located near the coast of the Arctic Ocean. Hourly-

averaged multiyear data sets collected at Eureka (Nunavut, Canada) and Tiksi (East Siberia, 

Russia) are analyzed in more detail to elucidate similarities and differences in the seasonal cycles 

at these two Arctic stations, which are situated at significantly different latitudes (80.0°N and 

71.6°N, respectively). While significant gross similarities exist in the annual cycles of various 

meteorological parameters and fluxes, the differences in latitude, local topography, cloud cover, 

snowfall, and soil characteristics produce noticeable differences in fluxes and in the structures of 

the atmospheric boundary layer and upper soil temperature profiles. An important factor is that 

even though higher latitude sites (in this case Eureka) generally receive less annual incoming 

solar radiation but more total daily incoming solar radiation throughout the summer months than 

lower latitude sites (in this case Tiksi). This leads to a counter-intuitive state where the average 

active layer (or thaw line) is deeper and the topsoil temperature in midsummer are higher in 

Eureka which is located almost 10 degrees north of Tiksi. The study further highlights the 

differences in the seasonal and latitudinal variations of the incoming shortwave and net radiation 

as well as the moderating cloudiness effects that lead to temporal and spatial differences in the 

structure of the atmospheric boundary layer and the uppermost ground layer. Specifically the 

warm season (Arctic summer) is shorter and mid-summer amplitude of the surface fluxes near 

solar noon is generally less in Eureka than in Tiksi. During the dark Polar night and cold seasons 

(Arctic winter) when the ground is covered with snow and air temperatures are sufficiently 
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below freezing, the near-surface environment is generally stably stratified and the hourly 

averaged turbulent fluxes are quite small and irregular with on average small downward sensible 

heat fluxes and upward latent heat and carbon dioxide fluxes. The magnitude of the turbulent 

fluxes increases rapidly when surface snow disappears and the air temperatures rise above 

freezing during spring melt and eventually reaches a summer maximum. Throughout the summer 

months strong upward sensible and latent heat fluxes and downward carbon dioxide (uptake by 

the surface) are typically observed indicating persistent unstable (convective) stratification. Due 

to the combined effects of day length and solar zenith angle, the convective boundary layer 

forms in the High Arctic (e.g., in Eureka) and can reach long-lived quasi-stationary states in 

summer. During late summer and early autumn all turbulent fluxes rapidly decrease in magnitude 

when the air temperature decreases and falls below freezing. Unlike Eureka, a pronounced zero-

curtain effect consisting of a sustained surface temperature hiatus at the freezing point is 

observed in Tiksi during fall due to wetter and/or water saturated soils. 

Keywords Arctic • Carbon dioxide • Latitudinal variations • Radiative fluxes • Turbulent 

fluxes 
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1 Introduction 

The Arctic region is experiencing unprecedented changes associated with increasing average 

temperatures (faster than the pace of the globally-averaged increase) and significant decreases in 

both the areal extent and thickness of the Arctic pack ice (e.g., McBean et al. 2005; Serreze et al. 

2007; Stroeve et al. 2007; Overland et al. 2008; Kaufman et al. 2009; Walsh et al. 2011; 

Polyakov et al. 2012 and references therein). Regional Arctic temperature changes show foci of 

annual warming along the coast of northeastern Siberia and the Canadian Archipelago (Overland 

et al. 2011), while numerous studies show a recent wintertime "warm Arctic – cold continent" 

pattern; that is, warming foci along the Siberian Coast and the Canadian Archipelago and strong 

cooling over the Siberian interior (e.g., Overland et al 2011; Kug et al. 2015; Sun, et al. 2016). 

Terrestrial permafrost temperatures at long-term permafrost monitoring sites in the high 

Canadian Arctic have increased since 2000 at a rate of +0.4° to +1.2°C/decade, though slight 

cooling has been seen at a few sites during recent years (Romanovsky et al. 2016). Thickening of 

the summertime active layer in northern Siberia has been continuous from 1999 to 2012, with 

little change or small thinning in the three most recent years (Romanovsky et al. 2016). The 

increase in atmospheric carbon dioxide, an important greenhouse gas, has raised concerns about 

global impacts of Arctic climate change (e.g., Oechel et al. 2000, 2014; Baldocchi et al. 2001; 

Laurila et al. 2001; Harazono et al 2003; Kwon et al. 2006; Mbufong et al. 2014 and references 

therein). Some studies suggest that huge stores of carbon dioxide (and other climate relevant 

compounds) locked up in Arctic soils could be released due to permafrost thawing, and would 

act as a positive feedback to climate change (e.g., Oechel et al. 2000; Mbufong et al. 2014). 
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These and other changes suggest shifts in the global climate system that justifies increased 

scientific focus on this region. 

Observational evidence suggests that atmospheric energy fluxes are a major contributor 

to the decrease of the Arctic pack ice, seasonal land snow cover and the warming of the 

surrounding land areas and permafrost layers (e.g., Stone 1997; Stone et al. 2002; Laxon et al. 

2003; Francis et al. 2005; Persson 2012). To better understand the atmosphere-surface exchange 

mechanisms, improve models, and to diagnose climate variability in the Arctic, accurate 

measurements are required of all components of the surface energy budget (SEB) and the carbon 

dioxide cycle over representative areas and over multiple years. Knowing which flux 

components are the major contributors to the observed changes allows us to attribute the changes 

to specific physical processes, and possibly determine the role, if any, of anthropogenic effects 

(Serreze et al. 2007). Once the fundamental processes are quantified and understood, we can 

evaluate current model performance and improve key parameterizations needed to predict future 

climate change. 

This study presents cross-disciplinary, multi-year observations of the surface energy 

fluxes at two long-term Arctic observatories, providing understanding of key processes 

producing the annual energy cycle at each site and also of those producing clear differences 

between these two high-latitude sites. The two sites, located at different latitudes and in different 

ecosystems, are Eureka (80.0°N) on Ellesmere Island, Nunavut, Canada (Fig. 1a) and Tiksi, 

Russia (71.6°N) located on the coast of the Laptev Sea (Fig. 2a). Both sites are in areas recording 

significant warming of near-surface air and permafrost temperature over the past decades, and 

changes in active-layer depth. In addition, Tiksi is located in the zone of large gradient in the 

wintertime temperature change associated with the "warm Arctic – cold continent" pattern. 
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Furthermore, the location of Tiksi is also associated with summer Arctic frontal zone, a narrow 

band of strong horizontal temperature gradients spanning the coastlines of Siberia, Alaska, and 

western Canada that extends through a considerable depth of the troposphere (Crawford and 

Serreze, 2015). Hourly averaged turbulent and radiative near-surface energy fluxes and 

conductive ground fluxes are examined, in addition to the thermal evolution in the atmospheric 

boundary layer and within the soil. Hence, the evolution of the soil active layer and permafrost 

characteristics are linked to soil and atmospheric energy fluxes and to key processes and 

environmental characteristics throughout the annual cycle, including effects of clouds, snow 

cover, soil moisture and soil characteristics. The carbon dioxide fluxes measured at both sites are 

used for establishing baseline measurements of fluxes of this greenhouse gas for future use in 

documenting potential changes associated with permafrost changes, and for linking CO2 fluxes 

to physical processes associated with the energy fluxes. 

2 Observation Sites and Instrumentation 

To monitor and better understand causes for observed changes in the Arctic regions, a number of 

agencies and institutions in the Arctic countries (Canada, Russia, U.S., Finland, Denmark, 

Norway) often in collaboration with other non-Arctic countries (China, Japan, Germany, and 

others) have established a number of long-term, intensive, atmospheric observatories around the 

Arctic Basin. Primary long-term observation sites are Alert and Eureka, Canada; Barrow, USA; 

Tiksi, Russia; Ny-Ålesund (Svalbard), Norway; and Summit (Greenland), Denmark; these 

observatories are members of a consortium (International Arctic Systems for Observing the 

Atmosphere (IASOA), http://www.iasoa.org) that coordinates observing strategies, data sharing 
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and support for science collaboratories (Uttal et al. 2016). Here we analyze observations from 

Eureka and Tiksi to investigate the annual cycle of the surface fluxes and their link to 

atmospheric processes. Although some measurements made at these sites were analyzed 

previously (see references below), the turbulent fluxes and other data collected at these sites are 

reported here for the first time. Original data used in the current study are publicly available. 

Access to the datasets ('raw data' and 'final products') and time series of various variables (data 

browser) are available through the IASOA Data Portal for Arctic atmospheric measurements 

(https://www.esrl.noaa.gov/psd/iasoa/dataataglance) (Starkweather and Uttal 2016) and/or the 

NSF Arctic Data Center (https://arcticdata.io/) and/or the NOAA Earth Systems Research 

Laboratory Physical Science Division Arctic data archives 

(https://www.esrl.noaa.gov/psd/arctic/observatories/index.html). Results have been also 

disseminated to education community through the outreach activities to bring relevant Arctic 

climate research into classrooms for high school students (Gold et al. 2015). Below we provide 

relevant information about these observation sites, instrumentation, measurements, and data 

processing (see also Uttal et al. 2013, 2016 for further details). 

2.1 Eureka Observatory 

Eureka (80.05°N, 86.42°W) is a long-term research observatory on the Fosheim Peninsula of 

Ellesmere Island, the northernmost island in the Canadian Arctic Archipelago in the territory of 

Nunavut (Fig. 1). The facility is operated by a consortium of Canadian university and 

government researchers operating under the umbrella of the Canadian Network for Detection of 

Atmospheric Change (http://www.candac.ca) with support from Environment Canada. It is 
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located about 150 km inland from the Arctic Ocean within a complex network of fjords and 

mountains. The local area near the Eureka Station and the flux tower (see Fig. 1b) consists of the 

Slidre Fjord oriented WNW-ESE, a ~ 6-8 km broad valley extending northward with significant 

stream-carved topography of ~ 50-100 m in the valley floor, and two major ridges with tops at 

600-900 m (Fig. 1b). Some taller mountains to the north, east and west of Eureka at a distance of 

100-200 km are encased in ice caps. Eureka is well north of the treeline, and its main biome is 

tundra with significant amounts of flora and fauna compared to neighboring areas in the High 

Arctic. Eureka was established in 1947 as part of an Arctic weather station network, is one of 

two research stations on Ellesmere Island (Alert being the other), and weather observations have 

been archived since 1953. Lesins et al. (2010) use surface and sounding observations from the 

Eureka Station site along the shore of the Slidre Fjord to discuss some of the climatological 

conditions and trends, showing that a 0.9°C per decade warming has occurred since 1972. 

In the last 15 years, instrumentation at the site has been enhanced to monitor the changing 

Arctic climate. Beginning in 2004, remote sensors and other in-situ scientific instrumentation 

were installed at various locations near Eureka, including the Canadian Polar Environment 

Atmospheric Research Laboratory (PEARL) at 600 m elevation (on the western ridge in Fig. 1b) 

and a cloud radar, a lidar and microwave radiometer at the main Eureka Station. These data have 

been used to examine tropospheric cloud macro and microphysical properties at Eureka, as well 

as their radiative effects (Ishii et al., 1999; de Boer et al. 2008, 2009; Shupe 2011; Shupe et al. 

2011; Mariani et al. 2012; Cox et al. 2012, 2014, 2015; and Blanchard et al. 2017) and to show 

that moisture intrusion events into the High Arctic from lower latitudes impact the surface 

downwelling longwave radiation (Doyle et al. 2011). 
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In 2007, the NOAA Earth System Research Laboratory (Physical Sciences Division) 

team and Environment Canada erected a 10.5-m flux tower and downwelling radiation sensors 

about 700 m apart at two sites (labelled "T" and "S", respectively, in Fig. 1b) 200 m north of the 

runway at ~ 80 m altitude and ~ 2 km from the Slidre Fjord (see Fig. 1b). The instruments 

include, but are not limited to, surface flux instruments, a tropospheric ozone lidar and 

radiometric sensors. Downwelling shortwave and longwave radiometers at the Canadian Surface 

and Atmospheric Flux, Irradiance and Radiation Extension (SAFIRE, site "S" in Fig. 1b; also see 

Fig. 4 of Matsui et al. 2012) were part of the global Baseline Surface Radiation Network (BSRN) 

during the study period. Upwelling/downwelling shortwave and longwave radiation instruments 

are also located at the top of the flux tower (~ 10.5 m AGL); upwelling radiation was also 

measured for a time at a separate "albedo mast" between "T" and "S". The flux tower instruments 

include measurements of the following quantities: atmospheric pressure; profiles of temperature, 

humidity, and wind over the height of the tower; covariance turbulent fluxes of momentum, 

sensible heat, latent heat, and CO2; surface snow depth and temperature; soil heat flux at two 

locations ("grass area" and "raised mud"); and temperature within the soil to a depth of 1.2 m. A 

complete list of instrumentation near the flux tower is given in Table 1. Figure 3a shows the 

instrumentation on the Eureka flux tower, while Figure 4a shows the area near the base and to 

the NNW of the tower. The tower is oriented at about 350° (true north is 0°) so the sonic 

anemometer booms at 3.07 m and 7.54 m are oriented towards 256° and 79°, respectively. With 

these orientations and the boom lengths, useful data is obtained simultaneously from both sonic 

anemometers for airflow from all directions except 79°–123° and 215°–259°, which only occurs 

18% of the time (Fig. 5a). Given the configuration of the anemometer and the observed wind 

rose, useful wind and turbulence profiles are available 82% of the time at the Eureka flux tower. 

9 



 
 

   

   

      

   

      

 

     

          

        

     

      

    

  

   

    

     

    

       

     

       

    

      

      

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

These tower-based eddy covariance measurements provide a long-term near continuous temporal 

record of hourly average mass and energy fluxes. 

The mean wind speed and wind direction were derived from the sonic anemometers, with 

rotation of the anemometer axes needed to place the measured wind components in a streamline 

coordinate system based on one-hour averaged 10-Hz data. We used the most common method, 

which is a double rotation of the anemometer coordinate system, to compute the longitudinal, 

lateral, and vertical velocity components in real time (Kaimal and Finnigan 1994, Sect. 6.6). The 

'fast' 10-Hz raw data collected by a sonic anemometer were first edited to remove spikes from 

the data stream. Turbulent covariance and variance values were then derived through frequency 

integration of the appropriate cospectra and spectra computed from 54.61-min data blocks 

(corresponding to 215 data points) from the original 60-min data files. Sonic anemometers 

measure the so-called 'sonic' temperature, which is close to the virtual temperature (e.g., Grachev 

et al. 2005, p. 205). A moisture correction is necessary to convert the sonic temperature to 

thermodynamic temperature in order to calculate sensible heat flux. Here this correction was 

performed following Schotanus et al. (1983). A fast-response (10 Hz) open path infrared gas 

analyzer LI-7500 (LI-COR Inc.) mounted on a boom at an intermediate level (about 6.75 m) just 

below the upper sonic anemometer is used for direct measurements of water vapor and carbon 

dioxide turbulent fluxes and other relevant turbulent statistics (see Table 1). Turbulent flux of 

carbon dioxide were computed based on the instantaneous mixing ratio of the trace gas relative 

to dry air according to the density correction theory of Webb et al. (1980, their Eq. 20). In the 

case of "fast" mixing ratio-based flux (i.e., converting the raw data point-by-point to mixing 

ratios), the true turbulent flux of carbon dioxide can be expressed in pure eddy covariance form 

(see Grachev et al. 2011 and Nakai et al. 2011 for discussion). 
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Several data-quality indicators based on objective and subjective methods have been 

applied to the original flux data in order to remove spurious or low-quality records. In particular, 

turbulent data have been edited for unfavorable relative wind directions, non-stationarity, mean 

wind vector tilt, and minimum or/and maximum thresholds for the turbulent statistics. Based on 

established criteria (see Grachev et al. 2013, 2015, 2016 and references therein for discussion), 

the following thresholds were used for this study to reject suspect data: To avoid a possible flux 

loss caused by inadequate frequency response and sensor separations, we omitted data with a 

local wind speed less than 0.2 m s-1 . We set minimum and/or maximum thresholds for the 

kinematic momentum flux (> 0.0002 m2 s-2), vertical and along-slope temperature fluxes (< – 

0.0002 K m s-1), standard deviation of each wind speed component (> 0.01 m s-1), standard 

deviation of air temperature (> 0.01 K), vertical gradients of mean velocity (< –0.001 s−1), 

dissipation rate of turbulent kinetic energy (0.00002 < ε < 0.1 m2 s-3) and the dissipation 

(destruction) rate for half the temperature variance (0.00002 < Nt < 0.01 K2 s-1). Points with 

excessive standard deviation of wind direction (>30°), steadiness (trend) of the non-rotated wind 

speed components ( ∆u /U < 1, ∆v /U < 1), and sonic temperature (> 2°C) were also removed to 

avoid non-stationary conditions during a 1-hr record. In addition, sonic anemometer angle of 

attack was limited by 10°. 

Figure 5a shows the limited airflow regimes at the Eureka tower site. During winter, 

winds from 110°–160° occur most frequently and are associated with a downfjord flow along the 

Slidre Fjord from the ice-capped mountains to the ESE (see Fig. 1). These downfjord flows also 

occur in summer, as well as upfjord flow from the west after the snow has melted that represents 

a "sea-breeze" from the ice-covered Arctic Ocean 150 km to the NW. Occasionally during all 

seasons, there is also a drainage flow along a gully ~ 200 m to the NNW of the tower (see Figs. 
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1b and 4a). Large-scale synoptic forcing likely modulates these airflow regimes, though no 

studies have been conducted to show the linkage. An overview of climate statistics at Eureka for 

the period from 1954 to 2007 can be found in Lesins et al. (2010). A comparison of the 

atmospheric conditions at Eureka and Barrow is given in Cox et al. (2012). Radiation 

measurements at Alert, Barrow, and Eureka in comparison with Boulder Atmospheric 

Observatory (Colorado) for 2008 are provided by Matsui et al. (2012). Other measurement of 

interest made at Eureka are described by Whyte et al. (2001), Lesins et al. (2009, 2012), Fast et 

al. (2011), and Cox et al. (2014). 

2.2 Tiksi Observatory 

The Russian weather station at Tiksi, located in East Siberia (71.6°N, 128.9°E), was established 

at the Polyarka settlement on August 12, 1932 by the Russian Chief Management of the Northern 

Sea Route. The "Polyarka" observatory is located seven kilometres south of the town Tiksi, and 

is now the location of a new Hydrometeorolgical Observatory developed through a partnership 

between the Russian Federal Service for Hydrometeorology and Environmental Monitoring 

(Roshydromet), the U.S. National Oceanic and Atmospheric Administration (NOAA), the 

Finnish Meteorological Institute, and the U.S National Science Foundation (NSF). This facility 

supports the research needs of the International community, is interdisciplinary, and includes 

Global Atmosphere Watch measurements as well as other climate observations (Uttal et al. 

2013). 

The site is located less than a kilometre from Tiksi Bay, which is a bay of the Laptev Sea 

SSW of the New Siberian Islands, and ~ 10 kilometres from a range of hills 200–400 m high to 
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its WSW (Fig. 2). The main flux tower (see Fig. 3b) is 20 m in height and was erected and 

instrumented in summer 2010; regular turbulent measurements at the tower were started in April 

2011 (Fig. 3b and Table 2). 'Slow' mean wind speed/direction, temperature, and humidity are 

measured at several heights between 1.8 m and 21 m with various instrument types (see Fig. 3b 

and Table 2 for details). Atmospheric pressure is measured at 5 m above the surface, surface 

(skin) temperature is measured by infrared sensor from 3.3 m, and snow depth is measured by a 

sonic sensor, the last two mounted at ~ 3.3 m height. Measurements of soil temperature in the 

active layer and permafrost are made by resistance temperature probes at 10 depths between the 

surface and 1.2 m. For measurements of soil heat flux at the surface in the vicinity of the soil 

temperature probes, two heat flux plates are buried at about 5 cm depth approximately 6 m north 

of the tower. Near-surface soil temperature around the heat flux plates is measured by averaging 

thermocouple probes. An additional heat flux plate is buried in the vicinity of the albedo rack. 

Upwelling longwave radiation is measured at the flux tower and also at a separate 

radiation mast ("albedo rack") located NE of Polyarka weather station (W in Fig. 2b) (refer to 

Table 2). Upwelling shortwave radiation is only measured at the latter site. Downwelling 

longwave radiation is measured at the top of the flux tower and by the BSRN suite of 

instruments mounted on the roof of the Clean Air Facility (CAF) located approximately 315 m 

NW of the tower. Downwelling shortwave total, direct, and diffuse radiation are measured by a 

suite of radiometers and tracker on the CAF that are part of the BSRN. 

Turbulent measurements at the tower are made by the identical three-axis ATI sonic 

anemometer/thermometers and a LI-COR open path infrared gas analyzer, all sampling at 10 Hz. 

Three sonic anemometers were originally mounted at levels 3.3, 9.5, and 15.5 m, though only the 

two lower sonic anemometers are currently used. All sonic anemometers are oriented at about 
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197° (SSW) relative to true north. The gas analyzer is located at 9.3 m height, 0.2 m below the 

9.5 m sonic anemometer. Data processing and data-quality control of the hourly averaged 

turbulent fluxes and other turbulent statistics are identical to the procedure described in the 

Section 2.1 for Eureka flux tower. One-minute 'slow'-response data is averaged over an hour to 

be used together with the hourly turbulent fluxes. Because the two dominant wind directions are 

~ 180° apart, the turbulent flux sensors positioned on one side of the tower are able to cleanly 

obtain profiles in all of the WSW flow and nearly all of the ENE flow (Fig. 5b). No turbulence 

data is obtained when winds are from 0°–35°, which only occurs 3.6% of the time. 

At the Tiksi tower site, the wind regimes are dominated by an offshore flow from 200°-

270° that is particularly persistent in winter (75% of time) as a cold, dry "land-breeze" effect 

(Fig. 5b). In summer (June 1–September 1), an ENE onshore flow occurs about as frequently as 

the offshore flow (~ 38% of time each), and represents a relatively cold, moist sea-breeze effect 

as the soil surface warms after the snow has melted. Long-term variability (1932–2007) of 

climate characteristics in the area of Tiksi Hydrometeorological Observatory is analyzed by 

Ivanov et al. (2009a, b), and Ivanov and Makshtas (2012). A detailed review of meteorological 

and permafrost conditions at Tiksi can be found in Romanovsky et al. (2007). Information of 

horizons of active layer, soil water regime, vegetation, and soil temperatures in tundra near Tiksi 

are available from Watanabe et al. (2000, 2003). 

2.3 Error Assessment 

Error estimates for the various parameters and fluxes are needed to determine the validity of the 

interpretation of processes at each site and differences between the sites. While an error analysis 
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based on multiple in-lab calibrations of the various instruments and on-site intercomparisons, 

such as that obtained for the SHEBA field program (Persson et al. 2002), is ideal, the availability 

of such calibrations and intercomparisons is limited for the Eureka and Tiksi deployments. The 

error estimates described below focus on Eureka, but they should be similar for Tiksi. 

For the Eureka instruments, in-lab calibrations were done prior to deployment for some 

sensors, and the manufacturers' settings were used for others. For several sensors, the error 

estimates are just the manufacturers' specifications. Comparisons of on-site measurements from 

identical instruments provide some quantification of instrument performance. Comparing vertical 

temperature differences from the Vaisala HMT337 probes with the occurrence of near-zero 

turbulent heat fluxes from the independent 7.54 m sonic anemometer indicates that the 

manufacturer's specifications are correct, with small biases of ~0.05°C, and random errors of 

±0.2°C (Table 3). Errors for the RTD temperature sensors are larger (not shown), making them 

less useful for providing vertical temperature profiles. Comparisons are also made of the sensible 

heat flux and friction velocity from the two sonic anemometers located at 3.07 m and 7.54 m 

height on the flux tower. Classically, the constant flux layer of the atmospheric boundary layer is 

assumed to be the lowest 10% of the boundary layer; hence, all hours during 4 years (primarily 

summers of 2008, 2011-2014) were identified for which coincident good values were available 

from both sonic anemometers and for which the boundary layer was at least 100 m deep. The 

latter assessment used the classical Rossby-Montgomery formula (e.g., Appendix 3, Garratt 

1992) which utilizes the measured friction velocity and the local Coriolis parameter and shown 

to be reasonable for Arctic conditions (Brooks et al. 2017), while the determination of "good" 

values includes restricting the wind direction to be outside the sectors impacted by airflow 

through the tower (see Fig. 5a). For these hours, the sensible heat flux and the momentum flux 
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should theoretically be the same at both heights, so any differences are ascribed to either biases 

or random errors. Table 3 shows that the biases are small, consistent with the results from the 

SHEBA calibrations (Persson et al. 2002), though the random errors of the hourly sensible heat 

flux are estimated at 10 W m-2, more than twice as large as at the SHEBA site. However, for 

longer timescales, the random errors are substantially less, estimated to be less than 2 W m-2 for 

monthly means and even smaller for annual means of the sensible heat flux. Since only one level 

of latent heat flux is measured, errors in these cannot be estimated in the same manner. Using 

specifications of errors for the sonic anemometer vertical wind component and the Licor 7500 

moisture, a theoretical error in the latent heat flux of 4-10% is obtained. 

On-site comparisons for the Eureka downwelling radiation is also possible, as this study 

only uses the radiation measurements at the flux tower. Coincident downwelling radiation 

measurements are available from the BSRN site at the SAFIRE location for 2009-2011 (see 

Table 1), and these were used to estimate potential biases and random errors. Because hourly 

averages are used, impacts of spatial differences caused by the 700 m separation should be small. 

Results suggest that biases are less than 1 W m-2, while random hourly errors are 10.8 W m-2 for 

downwelling longwave radiation and 15.7 W m-2 (14%) for downwelling shortwave radiation 

(for downwelling shortwave, only scenes with at least 50 W m-2 irradiance measured at the flux 

tower were included in the analysis). Random errors for monthly means should be a factor of 

~5.5 less, assuming independent daily radiative conditions. The estimates of the random 

radiation errors are larger at Eureka than for SHEBA, and may reflect greater impacts of riming 

on the sensors as the site receives daily rather than hourly maintenance as was the case at 

SHEBA. As for the temperature and turbulence error estimates above, these radiation error 

estimates are based on on-site instrument comparisons of two sensors, so errors in either or both 
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instruments are included in these estimates. Comparisons between the upwelling longwave and 

shortwave radiation at the flux tower with upwelling radiation at the albedo rack is not possible 

because there was no overlap in time between the measurements. Error estimates of upwelling 

longwave at sites at Alert and Barrow from similar instruments are ~0.2-0.9 ± 6.2 W m-2, which 

are shown in Table 3. 

The instrument specifications suggest that the flux plate accuracy is ± 3%, which is about 

1.5 W m-2, though some studies suggest the errors might be substantially greater (e.g., up to 

50%) due to issues of placement, soil thermal conductivity, contact between the soil and flux 

plate, etc. (e.g., Halliwell and Rouse, 1987; Wang and Bou-Zeid, 2012). The two flux plates that 

were within 5 m of each other near the base of the Eureka tower were intentionally placed in 

different soil types, with vegetation present for one and not for the other. This resulted in 

significant differences in the amplitudes and especially phasing of the diurnal soil flux signals in 

summer, with a July root-mean-square (RMS) difference of 17 W m-2 between the two. Despite 

this large difference in the hourly signal, the monthly mean difference was only ~1.5 W m-2. In 

April, while snow cover was still present and vegetation was not yet active (the flux signals of 

the two plates should be very similar), the diurnal amplitude and phase differences were much 

muted and the RMS difference between the two plates was less than 1 W m-2, similar to the mean 

difference.  Hence, we estimate that the bias in the flux plate measurements is ~1 W m-2, with 

additional random errors of no more than the manufacturer's specifications of ±3% (~1.5 W m-2). 

Significantly greater differences between summer flux plate measurements likely represent 

spatial heterogeneity in the actual ground flux rather than measurement errors, though errors 

from plate placement mentioned above can't be ruled out. 
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3 Annual Cycles of the Surface Fluxes and Surface Meteorology 

The annual cycles of basic meteorological parameters and key SEB components at Eureka are 

plotted in Figs. 6-8. Figures 6-7 show a typical annual cycle of the 'slow' data: wind speed, air 

and soil temperature, soil heat flux, shortwave (SW) and longwave (LW) radiation (downwelling 

and upwelling), net radiation, Rnet , and the surface albedo observed at Eureka during 2011. By 

convention, radiative fluxes are positive when directed toward the surface and fluxes away from 

the surface are negative. The net radiation is defined as the balance between downwelling 

(incoming) and upwelling (outgoing) SW and LW radiation: 

Rnet = SWdown − SWup + LWdown − LWup . 

The surface albedo (reflectivity of a surface) in Fig. 7c is derived from the ratio of the upwelling 

SW radiation (i.e., reflected from the surface) to the downwelling SW radiation for a solar zenith 

angle (the angle between zenith and the Sun) < 85°. The seasonal cycles of the turbulent fluxes 

of the sensible heat, latent heat, and carbon dioxide at Eureka during 2009-2012 and 2014 are 

shown in Fig. 8a-c. Figure 8d also shows difference of air virtual potential temperature between 

two levels to illustrate climatological (5 year) stratification of the atmospheric boundary layer 

(ABL) at Eureka, which plays an important role in the turbulent transfer of energy (cf. Figs. 8a-

c). The data in Fig. 8 are based on 1-hour (cyan x-symbols) and 5-day (blue solid lines) 

averaging of measurements. Similar time-series plots for Tiksi are shown in Figs. 9-11 

respectively. Note that the individual 1-hour averaged points in Figs. 8 and 11 give an estimate 

of the available good data and the typical scatter of the data. 

The annual cycles of the slow-response variables at the sites are plotted for a single year 

because they are very similar between the years that are analysed (see also plots in Section 4). 
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Figures 6 and 7 (Eureka) and Figs. 9 and 10 (Tiksi) show time series for 2011 and 2012, 

respectively, because these years have fewer data gaps compared to other years. Unlike 'slow' 

data, time series of post-processed turbulent fluxes are more intermittent (have more and longer 

data gaps) and have relatively large scatter in the measured values. Most loss of turbulence data 

are related to instrument malfunctions and the eddy-covariance quality filters described in 

Section 2. The winter period had much lower turbulence data retention due to the harsh 

conditions. The large scatter of the turbulent flux data is generally associated with the non-

deterministic nature of turbulence. For this reason, Figs. 8a-c and Figs. 11a-c comprise the 

turbulent fluxes collected during several years that allow filling out gaps and reducing the scatter 

because the annual patterns of the fluxes for different years are very similar in a climatological 

sense. An annual cycle of turbulent fluxes calculated using eddy-covariance methodology 

collected at Eureka and Tiksi for a single year (2014) can be found in Uttal et al. (2016, their Fig. 

7). Note that only direct eddy-covariance flux measurements are used in Figs. 8a-c and Figs. 11a-

c; that is, we have not filled missing turbulent flux data with semi-empirical bulk or gradients 

flux estimates derived from the 'slow' data. 

Although Eureka and Tiksi are located on different continents and at different latitudes, 

the annual cycle of the surface meteorology (e.g., air and soil temperatures) and surface fluxes 

are qualitatively very similar (cf. Figs. 6-8 and Figs. 9-11). The annual cycles of near-surface air 

temperature (SAT) display mid-winter (February) minima between –50°C and –40°C and mid-

summer (July) maxima between +15°C and +25°C (Figs. 6b, c and 9b, c). Large variability of 

wintertime SAT are seen at both sites, with sudden magnitude changes of up to 20°C noted. 

Variability of summertime SAT is larger at Tiksi than at Eureka. The SAT rises above freezing 

near June 1 at Eureka and slightly earlier at Tiksi, and falls below freezing at the two sites near 
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September 1 and October 1, respectively. While the dates of the soil temperature minima and 

maxima are similar for the two sites, the amplitude of the annual cycle of soil temperature is 

significantly larger at Eureka than at Tiksi. The 10-cm soil temperature at Eureka varies from ~ – 

35°C to –30°C in February to from +12°C to +15°C in July, while at Tiksi it varies from ~ –22°C 

to –18°C in February to from +1°C to +4°C in July. The temperature gradient within the upper 

soil is larger at Eureka than at Tiksi, especially during summer. The soil conductive heat flux 

(Figs. 6d and 9d) is negative (upward heat flux or soil cooling) from early September to late 

March through early May at Eureka and from early-mid October to early April at Tiksi, with 

weak or slightly positive heat flux occurring during wintertime warming episodes. The 

magnitude of the wintertime negative heat flux is larger at Tiksi than at Eureka despite the 

warmer soil temperatures at Tiksi in late winter. While the magnitudes of the soil heating 

(positive soil heat flux) in summer are similar between the two sites, the diurnal variability is 

much greater at Eureka than at Tiksi. The brief warming event that occurred at Tiksi on May 5-7, 

2012 (day of year (DOY) 126-128), and impacted the soil thermal structure and soil conductive 

flux, does not occur every year. 

The annual cycle of the downwelling SW radiation, SWdown , at hourly resolution shows 

daily maximum flux values in mid-summer of about 520 to 560 W/m2 at Eureka (Fig. 7a) and 

much larger values of 700 to 760 W/m2 at Tiksi (Fig. 10a), with SWdown beginning and ending 

about 30 days earlier and later, respectively, at Tiksi than at Eureka. These differences are 

consistent with the lower latitude of Tiksi. However, daily mean values of SWdown during mid-

summer (blue line) are noticeably larger at Eureka than at Tiksi. This difference is due to greater 

“nighttime” insolation and less clouds at Eureka, and will be discussed later in this section. 

Downwelling longwave radiation, LWdown , reaches a minimum in late February and a maximum 
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in July at both sites (Figs. 7b and 10b) in close correspondence with the temperature of the 

lower-troposphere. A net longwave radiation loss (difference between blue and red curves) 

occurs throughout the year at both sites. Hence, the net radiation, Rnet , is weakly negative from 

September to May at Eureka and late-October to May at Tiksi (Figs. 7c and 10c). During 

summer at both sites, the peak in Rnet occurs between early- and mid-June when the snow melts 

and the surface albedo reaches the low summertime values (Figs. 7c, d and 10c, d), and SWdown is 

near the annual peak. The net radiation decreases gradually and nearly linearly through the rest 

of the summer, primarily from the decrease in SWdown , becoming negative when the albedo 

increases suddenly with the first snowfall. Hence, the peak in Rnet precedes the summer peak in 

SAT by about 1 month at both sites. 

It has been long understood that the climatological annual cycle in SAT over land is 

largely controlled by solar forcing, and that observations of the annual cycle of air temperature 

could be approximated by a sinusoidal function (e.g., McKinnon et al. 2013 and references 

therein). At these high-latitude sites, the annual cycle in the envelope of daily maximum SWdown 

is only a partial sinusoid with a constant value (= 0 W m-2) for the remaining 3.5-5 months 

during the polar night; the annual cycle of daily mean SWdown is a weaker match to a sinusoid, 

especially at Tiksi where summer clouds impact the fit. The annual cycle of SAT, as well as the 

soil temperature, does have a sinusoidal appearance during the time of the year when SWdown is 

significant, with a lag of about 30 days to the daily peak SWdown . During the remaining winter 

parts of the year, the SAT is approximately constant, though with large transitions likely related 

to cloud events and longwave radiative forcing (see below). The net surface radiative forcing 

( Rnet ) does not have a sinusoidal shape. It is nearly constant (weakly negative) for 8-9 months of 
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the year, with a sudden peak in forcing in June followed by a near-linear summertime decline. 

Clearly, the annual cycle of the radiative forcing of the surface involves processes other than just 

the annual cycle of downwelling solar radiation; however, the SAT is surprisingly well 

correlated with the envelope of daily peak SWdown rather than with Rnet . The air and soil 

temperatures, as well as ground flux, at each site are also highly correlated to one another on 

daily to weekly time scales. For instance, during the period of the year when the sun is above the 

horizon, diurnal variations of the air and soil temperatures associated with the diurnal cycles in 

SWdown are generally observed. The variations in the soil tend to be larger at Eureka than at Tiksi, 

while the SAT variations (and perhaps also wind speed variations) are larger at Tiksi (see Figs. 6 

and 9). 

During the dark polar night, air and ground temperatures are strongly controlled by LW 

radiation generally associated with cloud cover (e.g., Stone 1997; Intrieri et al. 2002; Persson et 

al. 2002; Shupe and Intieri 2004; Persson et al. 2016). Figures 6b,c and 7b for Eureka and Figs. 

9b,c and 10b for Tiksi show a strong correlation between LWdown and SAT, soil temperature, and 

soil heat flux. Clouds associated with synoptic or mesoscale atmospheric events and located 

within warmer air aloft produce significant increases in LWdown , forcing changes in the other 

near-surface parameters (e.g., Doyle et al. 2011). Increases in LWdown at Eureka may even at 

times be produced by snow blowing off nearby mountain peaks (Lesins et al 2012) and other 

low-level clouds (Mariani et al. 2012). LW radiation absorbed at the surface raises the snow skin 

temperature, enhancing LW upwelling radiation and reducing the upward conductive heat flux in 

the snowpack and soil below (Persson et al. 2016). Turbulent heat fluxes are also impacted by 

these events (Persson et al. 1999, 2016), as implied by the associated increases in SAT, though 

the recovery of covariance turbulence data during winter is too poor at Eureka and Tiksi to show 
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this clearly. The perturbations in LWdown vary in intensity depending on cloud cover and opacity, 

but behave similarly in all cases. Increases in LWdown of 50 W m-2 are common, such as for a 

warm event at Eureka between approximately 9 and 19 February 2011 (DOY 40–50), but 

increases up to 100 W m-2 can occur if clouds are optically thick (Fig. 7b). For the 9–19 February 

Eureka case, the air temperature increased by ≈ 30°C (Fig. 6b) and ground temperature at 10 cm 

depth increased by ≈ 12°C (Fig. 6c). Often, such as for this event, the ground flux (Fig. 6d) and 

net longwave, LWdown − LWup , (Fig. 7c) go to zero or become slightly positive, implying that 

these events can warm the permafrost even during winter. Such "warm" events associated with 

cloud radiative forcing and (likely) long-distance heat and moisture advection were common 

over the study period at both sites from autumn through spring; e.g., they were observed at 

Eureka during 2011 around DOY 84, 307 (Figs. 6-7) and at Tiksi during 2012 around DOY 31, 

47, 68, and 332 (Figs. 9-10). While these radiatively-forced variations seem to dominate, ground 

temperature variability during winter can also be due to local thermal advection from nearby 

surface features with different energy balances, such as leads in coastal sea ice or land with 

thicker or thinner snow cover. 

The seasonal patterns of the air temperature at the both sites (Figs. 6b and 9b) are highly 

correlated with soil thaw and freeze (Figs. 6c and 9c). Several dates are particularly notable in 

the annual time series plotted in Figs. 6-11. Frozen ground started warming when the surface 

heat flux crossed the zero-point around days 115–121 (25 April–1 May) at Eureka (Fig. 6d) and 

days 103–104 (12–13 April) at Tiksi (Fig. 9d), and correspondingly, a change in the sign of the 

vertical gradient of subsurface temperature (Figs. 6c and 9c) was observed around days 120–122 

(30 April–May 2) at Eureka (Fig. 6c) and days 103–105 (12–14 April) at Tiksi (Fig. 9c), 

consistent with the above zero-flux estimates. The timing of snow melt is evidenced by the large 
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reduction in albedo that occurs on days 154–155 (3–4 June) in the vicinity of Eureka (Fig. 7d) 

and days 146–147 (May 26-27) in the vicinity of Tiksi (Fig. 10d) for the two years shown. 

Examination of other years show an inter-annual variability of ~ 5-10 days in the occurrence of 

the snow-free date, which is relatively small compared to variability in snow melt observed at 

Barrow, Alaska (of similar latitude to Tiksi) over the same time period (Cox et al. 2017). This 

snow-free date is determined radiometrically as the date when the surface albedo first drops 

below 30%, i.e., when the snow cover essentially disappears and is replaced by bare tundra 

(Stone et al. 2002). The last few days of snow melt are characterised by a rapid decrease in the 

upwelling (reflected) SW solar radiation (see Figs. 7a and 10a). As the ground becomes bare the 

uppermost layer of soil thaws, as occurs on days 154–157 (3–6 June) at Eureka (Fig. 6b, c) and 

on days 144–147 (23–26 May) at Tiksi (Fig. 9b, c). Finally, soils refreeze in the autumn on about 

days 247–250 (4–7 September) at Eureka (Fig. 6b, c) and on days 275–288 (1-14 October) at 

Tiksi (Fig. 9b, c). Long-term trends of some of these dates, such as the change in sign of the 

surface heat flux that occurs in spring or the dates of soil thaw and refreeze, can be used for 

monitoring Arctic climate change (e.g., Stone et al 2002; Cox et al. 2017) and understand the 

physical processes and ecological responses associated with these changes. This is not done here, 

though, as the time series of these dates from this data set are currently too short to draw any 

conclusions regarding trends. 

The larger amplitudes of the annual cycle of soil temperature and diurnal cycle of soil 

heat fluxes at Eureka were noted above. These differences are likely due to the much wetter soil 

and greater amounts of vegetation at Tiksi as compared to Eureka.  This difference is visually 

illustrated by Fig. 4. Another marked difference between the two sites is a well pronounced zero-

curtain effect (e.g., Sumgin et al. 1940; Outcalt et al. 1990; Osterkamp and Romanovsky 1997; 
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Barry and Gan 2011) observed in Tiksi in autumn on dates 275–296 (1-22 October) in the soil 

temperature time series (Fig. 9c, for 30cm level) and on dates 275–287 in the ground heat flux 

records (Fig. 9d, for plate A). The autumn zero-curtain effect is associated with the phase 

transition of water to ice. As the summer active layer cools from the top, a freezing front 

propagates from the surface downward. Release of latent heat during the freezing of pore water 

results in the maintenance of isothermal temperatures at or just below 0°C within the freezing 

active-layer over extended periods (Fig. 9c). The zero curtain decouples the permafrost from the 

atmosphere preventing cooling in the underlying ground layer (zero ground heat flux) for its 

duration (Fig. 9c), thereby protecting the ground from severe freezing. The lack of a pronounced 

zero-curtain effect at Eureka on dates 245–250 (Figs. 6c, d) is due to drier soils at this location, 

as discussed earlier. While there is no zero-curtain effect during spring thaw, the additional heat 

required to melt the frozen soil moisture at Tiksi delays and suppresses the warming and 

downward growth of the summer active layer, producing a clear contrast in Tiksi summer soil 

temperatures and active-layer depth with those at Eureka, where most of the heat goes to 

warming the soil. 

Note the apparent contradictory results for the summer thaw depth (also known as active 

layer or thaw line) and the topsoil temperature observed at Eureka and Tiksi (Figs. 6 and 9). 

Specifically, the active layer is deeper and the topsoil temperature is higher at Eureka located 

about 9° north of the Tiksi observatory. The typical active layer thickness (ALT) is about 85 cm 

and the soil temperature is about 16°C at 10 cm depth (≈18°C at 5 cm depth) at the Eureka site 

(Fig. 6c) whereas the active layer is only ≈43 cm thick and the soil temperature is about 4°C at 

10 cm depth (≈7°C at 5 cm depth) around the Tiksi flux tower (Fig. 9c). Similar ALT and the 

soil temperatures have been obtained at Eureka and Tiksi during other years (not shown). The 
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different values of the ALT and soil temperature at these locations are perhaps due to the 

different regional environment as well as because of different latitudes (see a discussion in 

Section 4). Drier soils in Eureka are linked to thaw depth; that is, the surface soil moisture 

content (to a depth of 30 cm or so) decreases with increasing thaw depth (negative correlation). 

A thicker active layer increases the soil's water-holding capacity and surface water may drain 

away to deeper soil layers, leaving the topsoil dry (e.g., Yang et al. 2013). In turn, dry soils are 

generally heated more and faster than wet soils because water increases to heat capacity of the 

soil matrix. 

Figures 8a-c and 11a-c show the seasonal cycles of the turbulent fluxes of the sensible 

heat, latent heat, and carbon dioxide at hourly and 5-day resolution observed in Eureka (during 

2009-2012, 2014) and in Tiksi (during 2012-2014), respectively. The few wintertime turbulent 

flux data points that passed the QC algorithms suggest that all turbulent fluxes were small and 

mostly irregular during the polar night. In spring when solar radiation allows daytime heating of 

the surface, the turbulent fluxes start increasing, with a sudden increase near the time of the end 

of snow melt when the bare ground starts warming substantially. Maximum turbulent fluxes are 

reached in mid-June for latent heat fluxes, late June to mid-July for sensible heat fluxes, and July 

into early August for CO2. This offset in the times of the peaks are likely due to the larger 

surface moisture just after snow melt enhancing the latent heat flux, greater surface heating from 

incoming radiation as opposed to drier surface conditions enhancing the sensible heat flux, and 

greater vegetation mass later in summer suppressing the CO2 fluxes. On average, the turbulent 

CO2 flux was mostly negative (uptake by the surface) during the short Arctic summer indicating 

that the Arctic tundra is a natural carbon sink during the growing season when surface is 

extensively covered with vegetation (see Figs. 3 and 4). During late summer and early autumn all 
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turbulent fluxes rapidly decrease in magnitude, with daily mean fluxes of sensible heat and CO2 

reaching zero near the end of August at both sites and the daily-mean latent heat flux reaching 

zero 2-6 weeks later. 

Figures 8d and 11d show the difference in virtual potential temperature between two 

atmospheric levels, ∆θv , based on 1-hour (symbols) and 5-day (solid lines) averaging of 

measurements made at the Eureka and Tiksi flux towers, respectively. The difference in virtual 

potential temperature is positive when the atmospheric surface layer is stably stratified. The data 

show that the surface layer is generally unstable ( ∆θv < 0°) throughout the summer months, 

whereas during the winter cold season when the air temperature falls below freezing, surface 

radiative heat loss cools the atmosphere from below and the near-surface environment is 

generally stably stratified ( ∆θv > 0°). At Eureka, the surface layer is almost never neutral or 

unstable during polar winter, so the stable surface layer may last several months (see Fig. 8d) and 

the temperature inversions can be strong. While strong inversions can also occur in winter at 

Tiksi, episodes of unstable surface layers do occur so the stable surface layers may not be as 

long-lived as at Eureka. 

4 Latitudinal Variations in the Surface Fluxes and Surface Meteorology 

While section 3 showed that the seasonal cycles of various meteorological parameters and fluxes 

at Eureka and Tiksi (Figs. 6-11) are qualitatively similar, significant differences in a number of 

parameters between these sites were noted. These differences appear to be due to several factors, 

including differences in latitude, cloud characteristics, the annual cycle of snow cover, and soil 

type/moisture. 
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4.1 Solar Radiation 

The primary driver of latitudinal and seasonal variations in temperature and other parameters is 

the seasonally varying pattern of incident sunlight. Due to the fact that the solar radiation at the 

top of the atmosphere (TOA) is a function of latitude, time of year, and time of day (i.e., solar 

zenith angle), and the higher latitudes generally receive less cumulative amount of net solar 

radiation over the entire year (annual mean) than lower latitudes. Thus, the length of the warm 

season ("Arctic summer") is shorter at Eureka than at Tiksi as noted for our data above. 

Figure 12 illustrates the above reasoning comparing daily variations and total daily 

amount of the TOA incident solar radiation (or insolation) over the entire year for Eureka (Fig. 

12a) and Tiksi (Fig. 12b). Plots in Fig. 12 are based on solar ephemeris calculations described by 

Reda and Andreas (2003). At the peak of summer in Eureka, the sun revolves around the 

horizon, rising no higher than about 33° (42° in Tiksi) above the horizon at local noon, and 

dipping to about 14° (5° in Tiksi) above the horizon at local midnight. For this reason, the mid-

summer amplitude (values near solar noon) in the incoming solar radiation is generally less at 

Eureka than at Tiksi (cf. Figs. 7a with 10a and 12a with 12b). Although the noon maximum of 

the downwelling SW radiation in summer is larger at Tiksi, the midnight minimum is larger at 

Eureka (cf. Figs. 12a and 12b). Consequently, the total daily amount of incoming solar radiation 

is larger at high-latitudes than at low-latitudes during the summer (e.g., Pidwirny, 2006). For 

example, the daily mean TOA insolation at the North Pole on the summer solstice is about 522 

W m-2, compared to a value of only 383 W m-2 at the equator (Serreze and Barry, 2005). Thus, 

because of the combined effects of day length and solar zenith angle, Eureka receives more the 
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incoming solar radiation at the TOA than Tiksi in the middle of Arctic summer between April 28 

(DOY 118) and August 6 (DOY 218), while Tiksi receives more cumulative amount of the 

incoming solar radiation over the entire year. Otherwise stated, the annual mean incoming solar 

radiation at the TOA is larger at Tiksi whereas the daily mean in summer is larger at Eureka (Fig. 

12c). Hence, the latitudinal difference is the main reason that the envelope of the maximum mid-

summer incoming surface solar radiation is generally less at Eureka than at Tiksi (cf. Figs. 7a 

with 10a and 12a with 12b). On the other hand, the greater nighttime solar elevation angle at 

Eureka is one reason that the daily mean solar radiation is greater at Eureka than at Tiksi 

(compare blue lines in Figs. 7a and 10a). 

Figure 13 shows the annual cycle of the mean SW downwelling radiation (Fig. 13a) and 

the net radiation (Fig. 13b) measured at the surface at Eureka in 2009-2011 and Tiksi in 2012-

2014 (only these years contain all four components of the solar radiation flux without long gaps). 

The data are based on 5-day averages of the 1-hr averaged radiation measurements. These 3-yr 

averages show that the surface at Eureka receives more incoming SW solar radiation than Tiksi 

between April 24 (DOY 114) and August 14 (DOY 226), roughly consistent with the period that 

the daily-mean TOA solar radiation is greater at Eureka. However, the insolation difference is 

between 40 W m-2 and 160 W m-2, which is 3-10 times as large as the 15 W m-2 expected from 

the latitudinal effect. Hence, the likely reason for the majority of the difference in incoming 

surface solar radiation between the two sites is a significant enhancement of solar attenuation by 

clouds at Tiksi compared to Eureka, likely due to a greater cloud fraction (cloud frequency) at 

Tiksi though also possibly impacted by differences in cloud optical depth. 

According to Fig. 13b, the net surface radiation, Rnet , is greater at Eureka for a brief 

period from late April through most of May and again from June 5 until August 6 (DOY 218), 
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though only by 20-60 W m-2. This difference in Rnet is primarily due to the difference in SWdown , 

though the lack of difference for a week or so near June 1 is likely due to the earlier date of bare 

ground (lower albedo and greater net SW radiation) at Tiksi. The reduction in the magnitude of 

the difference in Rnet (Fig. 13b) compared to the difference in SWdown (Fig. 13a) is likely due to 

the enhanced outgoing LW radiation (because of warmer surface temperature – compare Figs. 6b 

with 9b and Figs. 7b with 10b) and SW radiation (because of larger summer albedo – compare 

Figs. 7d and 10d) at Eureka compared to Tiksi. 

4.2 Turbulent Fluxes and Atmospheric Stratification 

Figures 8 and 11 show that the turbulent fluxes are consistent with the greater Rnet values at solar 

noon at Tiksi than at Eureka (cf. Figs. 7c and 10c), as the former have daily maxima at Tiksi that 

are greater than those at Eureka. However, the 5-day averaged turbulent flux values are not very 

different from each other. According to Figs. 8 and 11, the summertime daily maximum sensible 

heat flux is about 150-200 W m-2 at Eureka (Fig. 8a) and about 200-250 W m-2 at Tiksi (Fig. 

11a) and that for latent heat flux is about 100-150 W m-2 at Eureka (Fig. 8b) and about 150-175 

W m-2 at Tiksi (Fig. 11b). For the both sites, typical values of the 5-day averaged turbulent fluxes 

in the summer season are 50-60 W m-2 for the sensible heat flux and 40-50 W m-2 for the latent 

heat flux, although 5-day averaged values of the turbulent fluxes at Eureka are somewhat lower 

than at Tiksi. 

Arctic locations with 24-hr sunlight during summer months (Figs. 12 and 13) can 

maintain a long-lived convective boundary layer (CBL) which, at lower latitudes, would be 

interrupted by stable nocturnal surface layers. Furthermore, high-latitude Arctic sites such as 
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Eureka that have greater "nocturnal" insolation than other Arctic sites have even greater potential 

for maintaining such long-lived instability. Long-lived CBLs are associated with almost 

continuous unstable stratification, upward sensible heat flux, and downward carbon dioxide 

turbulent flux. A closer examination of the summertime vertical difference in virtual potential 

temperature, ∆θv , at Eureka (Fig. 8d) shows that the nocturnal stability generally becomes near 

neutral ( ∆θv ≈ 0°) for a few hours and even sometimes stable ( ∆θv > 0°) every few nights. An 

examination of the hourly Rnet values shows that the longwave cooling for a few nighttime hours 

is sufficient to compensate for shortwave heating for most of the summer, producing a near-zero 

or negative Rnet value for a few hours each night. However, for the time period between 7 June 

and 8 July (DOY 158 – DOY 189), the LWnet loss at Eureka often does not completely 

compensate for the SWnet gain, and Rnet is positive for all hours (minimum values of +15 to +30 

W m-2). This is the time period when long-lived CBLs ( ∆θv < 0°) are possible at Eureka and do 

primarily occur and can last for several weeks. Clouds on some nights, however, reduce the SW 

gain more than decrease the LW loss (negative cloud radiative forcing), resulting in negative 

Rnet values even during this time period. Thus, there is a threshold of the net radiation below 

which the CBL cannot be maintained even within the Arctic Circle where it is 24 hours of 

continuous daylight in summer. At Tiksi (Fig. 11d), the nocturnal stability in the summertime is 

greater and the number of consecutive nights with neutral or unstable stratification are fewer. 

Examination of the hourly Rnet values at Tiksi shows that the LW loss is more than sufficient to 

compensate for the SW gain for some hours of most nights, even near the date of the summer 

solstice. Only on a few nights with no LW loss (due to clouds) is Rnet positive, but then only 

marginally so (+10 to +20 W m-2). 
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Note, that the long-lasting shallow CBLs are commonly observed over warm tropical 

oceans. The depth of the convective mixed layer (also referred to as the sub-cloud layer, a major 

part of the tropical marine atmospheric boundary layer) is quite variable, for example, ranging 

from 176 to 720 m (the mean is 539 m) over the western North Pacific (Geng et al. 2013). 

During the dark Polar night, according to our data in Figs. 8d and 11d, the near-surface 

environment is generally stably stratified ( ∆θv > 0°). However, at Eureka, the surface layer is 

almost never neutral or unstable during winter, so long-lived stable boundary layers (SBL) can 

last several months (Fig. 8d) and air/ground temperatures are strongly controlled by LW 

radiation associated generally with cloud cover. While strong inversions can also occur in winter 

at Tiksi, episodes of unstable surface layers do occur so the stable surface layers may not be as 

long-lived as at Eureka (Fig. 11d). However, the detailed discussion of the long-lived CBL and 

SBL is beyond the scope of this paper and will be considered separately from the main topic. 

4.3 Active Layer Thickness (ALT) and Topsoil Temperature 

The fact that Eureka receives more daily incoming solar radiation than Tiksi throughout the 

summer months leads to summer differences in the ABL structure (see Subsection 4.2), and can 

explain differences in the uppermost ground layer at these two Arctic stations. As discussed in 

Section 3, the active layer is deeper and the soil temperature is greater at Eureka than at Tiksi. 

Physically, it makes sense that this summertime difference is at least partly associated with the 

difference in incoming SW and net radiation at these locations before mid-August, as shown in 

Fig 13. In other words, this difference is associated with latitudinal and cloud effects. 

Differences in soil moisture and soil type can also lead to similar differences in ALT and soil 
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temperature, with the greater soil moisture at Tiksi leading to a greater soil heat capacity and 

hence a reduction in the warming produced by a given amount of heat. A quantitative analysis of 

the soil moisture at each site and the associated distribution of the net energy flux is necessary to 

fully understand the relative importance of the cloud/latitude effects or the soil moisture effect, 

but the necessary measurements are not currently available at these sites. Some other studies (see 

below) also generally confirm our findings that an average active layer (thaw) depth and topsoil 

temperature increases with increasing latitude in the range from around 70°N (Siberia and 

Alaska) to around 80°N (Canadian Archipelago and Svalbard). 

Our estimates of the summer thaw depth in Tiksi (0.43 m) are close to the previous multi-

year measurements of the ALT in this region. According to measurements by Watanabe et al. 

(2003, their Table 1) near Tiksi from 1997 to 2000, the averaged maximum thaw depth, which 

was observed at the end of August, was 0.4 ± 0.15 m (ranged from 1.2 to 0.2 m). Our 

measurements of the thaw depth in Tiksi are also consistent with the ALT ≈ 0.3–0.5 m by 

Shiklomanov et al. (2010, their Fig. 7 and Table 1) at Barrow, Alaska (71.3°N, 156.5°W) located 

at the same latitude as Tiksi. ALT measurements at the NOAA site in Barrow give the averaged 

thaw depth of 60 cm in 2013 and 2014 and 66 cm in 2015 (not shown) while average ALT 

measured across 20 sites on the Alaska North Slope from 1995-2014 was found to be 0.47 m 

(Romanovsky et al. 2014). Moreover, midsummer topsoil temperatures (≈ 3-5°C at 10 cm depth) 

observed in Tiksi (Fig. 6c) are consistent with similar measurements in Barrow (Shiklomanov et 

al. 2010, their Fig. 2) and Fish Creek, Alaska North Slope (Urban and Clow 2014, Fig. 6). 

Ground temperatures below the active layer in summer are reflective of longer term (annual and 

multi-annual time scales) conditions including previous year air temperature and previous winter 

snow cover ("memory effect"), e.g., Urban and Clow (2014). 

33 



 
 

       

     

   

     

    

      

      

   

    

  

   

  

   

  

  

  

  

  

    

   

   

   

  

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

The ALT (0.85 m) and the mid-summer topsoil temperature (≈ 16°C at 10 cm depth) 

observed at Eureka is close to our estimates of the ALT (≈ 0.8–0.9 m) and the maximum soil 

temperature (≈ 14°C at 10 cm depth) measured near the NOAA flux scaffolding and radiation 

mast at Alert (82.5°N, 62.3°W), located on Ellesmere Island in Canada about 400 km north of 

the Eureka observatory. The Alert data are available through the IASOA Data Portal 

(Starkweather and Uttal 2016) and the NSF Arctic Data Center mentioned in Section 2. Similar 

results were observed at Adventdalen, located 10 m above sea level in central Spitsbergen, 

Svalbard (78°N, 15°E) during 2000 and 2001. According to Oht (2003), the ALT in Adventdalen 

varied from 95 to 99 cm and the topsoil temperature was ≈ 17°C. 

These studies show differences in soil ALT and soil temperature similar to that noted at 

our two sites. However, the similar environments and limited number of sites used for these 

studies, the lack of cloud and detailed radiative data, and/or the lack of soil moisture and soil 

characterization in these studies make it difficult to discriminate and evaluate the relative 

impacts of latitude, clouds, snow cover, and soil characteristics on the summer ALT and soil 

temperature. Our study does have sufficient data to show that latitude and primarily clouds at 

least contribute to the differences in ALT and summer soil temperature between our two sites, 

though the lack of soil moisture data prevents us from making a quantitative assessment of the 

importance of soil moisture and soil type differences relative to the impacts of latitude and 

clouds. Furthermore, the spatial variability of the ABL processes may be strongly influenced by 

the complex topography. In several modelling and observation studies, for example Kilpeläinen 

et al. (2011), Kral et al. (2014) and references therein, was found that near-surface variables and 

turbulent surface fluxes had notable spatial variations due to the highly variable geography of 

Arctic fjords in Svalbard. 
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In this study we linked the total daily amount of the incoming solar radiation throughout 

the summer months with properties of the uppermost ground layer at the peak of summer 

observed at several Arctic sites. We argue that on average the active layer (thaw) is deeper and 

the topsoil temperature is higher at sites located around latitude 80°N (Canadian Archipelago and 

Svalbard) than at sites located around latitude 70°N (Siberia and Alaska). At first sight, this 

result contradicts to the traditional point view that the ALT decreases with increasing latitude 

(e.g., Barry and Gan 2011). However, our findings are consistent with non-monotonic 

dependence of the ALT versus latitude, e.g., the ALT decreases with increasing latitude up to ≈ 

70-75°N (or so) and then the ALT begins to increase with further increasing latitude. The non-

monotonic behavior of the ALT versus latitude is also supported by ALT estimates derived from 

satellite microwave remote sensing and ERA-Interim temperatures (Park et al. 2016, their Fig. 

4). We have shown that latitude indeed contributes to this behavior in ALT and soil temperature, 

though we have also shown that cloud cover contributes more for Tiksi and Eureka. At Tiksi and 

Eureka, soil moisture undoubtedly also contributes but we don’t have the data necessary to 

quantify its relative importance. 

5 Summary and Discussion 

Multi-year measurements of surface fluxes (turbulent, radiative, and soil ground heat), surface 

meteorology, and basic surface/snow/permafrost parameters made at several near-coastal climate 

observatories located around the Arctic Ocean are used to investigate the annual cycle of the 

fluxes and its linkage to atmospheric and surface processes. In this multi-disciplinary 

synthesizing research, the data collected at Eureka (Canadian Arctic Archipelago) and Tiksi 

35 



 
 

       

   

  

      

    

  

  

      

     

     

   

     

      

   

       

  

  

     

   

   

   

 

  

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

(Russia, East Siberia) located at two quite different latitudes (80.0°N and 71.6°N respectively) are 

analyzed in more detail. We compare annual cycles of the surface fluxes and other ancillary data 

to elucidate gross similarities expected of the pan-Arctic region but also significant regional 

differences in some seasonal cycles including spring onset of melt and autumn onset of freezing 

at the two Arctic stations. The differences can be attributed to both steep gradients in solar 

radiation as a function of latitude and local soil and local meteorological conditions force by 

topography and mean long-range transports. 

Although Eureka and Tiksi are located in different geographic zones, the annual course of 

the surface meteorology and the surface fluxes are qualitatively very similar. The air and soil 

temperatures display the familiar strong annual cycle with maximum of measured temperatures 

in midsummer and minimum during winter. The annual cycle of the turbulent fluxes is clearly 

evident with maximum flux magnitudes in mid-summer and fluxes that drop to small and mostly 

irregular values during the cold seasons when the ground is covered with snow, air temperatures 

are low, the surface layer is stable, and surface energy forcing is primarily through longwave 

radiation. Throughout the winter months, sensible heat flux on average is directed downward to 

the surface whereas both latent heat and carbon dioxide turbulent fluxes are upward. According 

to our data, during the polar night in the high Arctic regions, long-lived stable boundary layers 

can last several months. During summer months, strong upward sensible and latent heat fluxes 

and downward carbon dioxide (uptake by the surface) are observed, indicating unstable 

(convective) stratification on average. 

The primary driver of latitudinal and seasonal variations in temperature, surface fluxes, 

and other parameters is the seasonally varying pattern of incident sunlight, which is modulated 

by clouds. The solar radiation at the top of the atmosphere (TOA) is determined by well-known 
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orbital parameters, including latitude and time of year. Noon TOA maximum of the downwelling 

SW radiation in summer is larger at Tiksi, but the midnight minimum is larger at Eureka. 

Because of the combined effects of day length and solar zenith angle, the TOA daily mean 

insolation at Eureka is greater than at Tiksi in the middle of Arctic summer. In other words, 

annual mean of the TOA incoming short-wave and net radiation is larger at Tiksi whereas a daily 

mean in summer is larger at Eureka for approximately a 3-month period. However, the difference 

in surface SW radiation between the two sites is 3-10 times greater than expected from the 

difference in TOA SW radiation, suggesting that clouds greatly enhance the SW radiation 

difference between the sites and that they are less frequent and perhaps less optically thick at 

Eureka than at Tiksi. 

The differences in the variations of the incoming short-wave and net radiation lead to 

temporal and spatial differences in the structure of the atmospheric boundary layer and the 

temperature structure of the uppermost ground layer as follows: 

(i) The length of the warm season ("Arctic summer"), when average air temperatures are 

above freezing, is shorter at Eureka than at Tiksi because the higher latitudes generally receive 

the least cumulative amount of net solar radiation over the entire year (annual mean) than lower 

latitudes. 

(ii) The amplitude of hourly averaged surface fluxes near solar noon is generally less in 

Eureka than in Tiksi because the turbulent energy fluxes are highly correlated with the net 

radiation (e.g., Persson et al. 2016, Eq. 1). In Tiksi the sun rises higher in the sky at local noon in 

the summer than at Eureka and, therefore, the mid-summer amplitude (values near solar noon) in 

the incoming 1-hr average solar radiation is generally less at Eureka than at Tiksi. 
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(iii) In this study, we also linked the total daily amount of the incoming solar radiation 

throughout the summer months with the active layer thickness (ALT) and the topsoil temperature 

observed at the peak of summer. Our study shows that on average the active layer (or thaw line) 

is about twice as deep and topsoil temperatures in midsummer are about 10°C higher for the sites 

located at latitudes around 80°N (Canadian Archipelago and Svalbard) than at around 70°N 

(Alaska and Siberia). The latitudinal, cloud, and surface-characteristic effects on net radiation 

found at Eureka and Tiksi in summer months qualitatively explain the observed ALT and the 

topsoil temperatures at these sites. 

(iv) According to our observations, a convective boundary layer (CBL) in Eureka can 

reach long-lived quasi-stationary states for about one month centered on the summer solstice, 

though the observed maximum length was for 16 days in summer 2009 and typical lengths other 

years were 4-5 days. Such long-lived CBL are not observed at Tiksi, despite the fact that Tiksi is 

also located within the Arctic Circle where there is 24 hours of continuous daylight in summer. 

This is because the "nighttime" summer insolation in Tiksi is generally not large enough to 

overcome the longwave radiative cooling. The longwave radiation provides the minimum 

threshold value for the net nighttime solar radiation needed to produce long-lived CBL in the 

Arctic. 

Another marked difference between the two sites is a well pronounced zero-curtain effect 

observed in Tiksi at fall. The fall zero-curtain effect is associated with the phase transition of 

water to ice in wetter or/and water saturated soils. Soils in Eureka appear to be drier than in 

Tiksi. This fact can also explain the different behavior of the ground heat flux observed in 

Eureka and in Tiksi. We speculate in Section 3 that drier/wetter soils are linked to the thaw depth 

which, in turn, is mainly radiation driven. 

38 



 
 

 It is plausible that the  latitudinal gradient  of the total daily  amount  of the  incoming  

shortwave and net  radiation  during  summer  may contribute  in part  to  Arctic  (or polar) 

amplification  in the summer period. For example,  according  to Lesins  et al. (2012), the annually  

averaged  surface temperature amplification factors  exhibit a strong latitudinal dependence  

varying f rom 2.6 to 5.2 as the latitude  increases from 50° to 80°N. Obviously, the  latitudinal 

variations  of the solar radiation  should also lead to increase in the melt rate of sea ice with  

increasing latitude  during  summer.  
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Flux Tower: Instrument Description Parameters Height (m)a Sampling Rate b Time Period of Available Data
R.M. Young Wind Sentry Set (03001-L) WS/WD 10.5 1 min Sep 2007 - present 
Eppley PIR w ventilator LWd 10 1 min Sep 2007 - Jun 2012 
Eppley PIR w ventilator LWu 10 1 min Sep 2008 - present 
Kipp & Zonen high precision pyranometer (CM22) w ventilator SWd 10 1 min Sep 2007 - Jun 2012 
Kipp & Zonen high precision pyranometer (CM22) w ventilator SWu 10 1 min Sep 2008 - present 
Väisälä HMT337 T/RH probes - split T, hum probes, aspirated T, RH 2, 6, 10 1 min Sep 2007 - present 
RTD aspirated resistance temperature sensors T 2, 6,10 1 min Sep 2008 - present 
Aspirated differential temperature thermocouples (CS ASPTC-L) DT 2, 6, 6, 10 1 min Sep 2007 - present 
ATI Sonic anemometers - K-style with heaters u',v',w',T' 3.07, 7.54 10 Hz Sep 2007 - present 
Licor LI-7500 open-path IR gas analyzer q', CO2 ' 6.75 10 Hz Sep 2007 - present 
Campbell ultrasonic distance (snowdepth) sensor (SR50-L100) Hsn 2.3 1 min Sep 2007 - present 
Väisälä PTB110 barometer (CS105) P 2 1 min Sep 2007 - present 
Apogee IR Thermocouple Sfc T sensor (CS IRTS-P) Ts 3.2 1 min Sep 2007 - present 
Averaging soil thermocouple probes (TCAV-L)  Ts -0.05 1 min Sep 2007 - present 
Two Hukseflux soil heat flux plates (HFT3-L) G -0.05 1 min Sep 2007 - present 
Thermistor string (PT100) Tss -0.05 to -1.2 1 min Sep 2007 - present 
GPS-for time synchronization t - not recorded Sep 2007 - present 

Tracker: Instrument Description Parameters Height (m) Sampling Rate b Time Period of Available Data
Eppley PIR w ventilator LWd 3 1 min Mar 2008 - present 
Kipp & Zonen high precision pyranometer (CM22) w ventilator SWd 3 1 min Mar 2008 - present 

Albedo Rack: Instrument Description Parameters Height (m) Sampling Rate b Time Period of Available Data
Eppley PIR w ventilator LWu 3 1 min Jul 2012 - present 
Kipp & Zonen high precision pyranometer (CM22) w ventilator SWu 3 1 min Jul 2012 - present 

a Height relative to local soil surface 
b Time period of data for analysis: 'data start date' - Dec 2014   

  

 

1172 Tables  

Table 1:  Instrumentation at Eureka  1173 
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Flux Tower: Instrument Description Parameters Height (m)a Sampling Rate b Time Period of Available Data
R.M. Young Wind Sentry Set (03001-L) WS/WD 4, 9, 15, 21 1 min Oct 2010 - present 
Eppley PIR w ventilator LWd 21 1 min May 2011 - present 
Eppley PIR w ventilator LWu 21 1 min May 2011 - present 

2, 6, 10 1 min Oct 2010 - present Väisälä HMT337/HMP155 T/RH probes - split T, hum probes, aspirated T, RH 
RTD aspirated resistance temperature sensors T 4, 8, 12, 14, 16, 20 1 min Oct 2010 - present 
ATI Sonic anemometers - K-style with heaters u',v',w',T' 3, 9 10 Hz Apr 2011 - present 
Licor LI-7500 open-path IR gas analyzer q', CO2 ' 9 10 Hz Apr 2011 - present 
Campbell ultrasonic distance (snowdepth) sensor (SR50A-L100) Hsn 3.3 1 min Oct 2010 - present 
Väisälä PTB110 barometer (PTB-110) P 5 1 min Oct 2010 - present 
Apogee IR Sfc T sensor (SI-111) Ts 3.3 1 min Oct 2010 - present 
Averaging soil thermocouple probes (TCAV-L)  Ts -0.05 1 min Oct 2010 - present 
Two Hukseflux soil heat flux plates (HFP-01) G -0.05 1 min Oct 2010 - present 
Thermistor string (PT100) Tss -0.05 to -1.2 1 min Oct 2010 - present 
GPS-for time synchronization t not recorded Oct 2010 - present 

Tracker: Instrument Description Parameters Height (m) Sampling Rate b Time Period of Available Data
Eppley PIR w ventilator LWd 3 1 min Jun 2010 - present 
Kipp & Zonen high precision pyranometer (CM22) w ventilator SWd 3 1 min Jun 2010 - present 

Albedo Rack: Instrument Description Parameters Height (m) Sampling Rate b Time Period of Available Data
Eppley PIR w ventilator LWu 2 1 min Apr 2011 - present 
Eppley PSP w ventilator SWu 2 1 min Apr 2011 - present 

a Height relative to local soil surface 
b Time period of data for analysis: 'data start date' - Dec 2014   

  

 

1178 Table 2: Instrumentation  at Tiksi  
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Parameter Random Errors Random Errors Bias 
(Hourly) (Monthly) 

T (HMT337) ±0.2° C ±0.04° C ±0.05° C 
specs ±0.20 -0.40° C 

RH specs ±1.8 -3.0% 
Wind Speed specs ±0.5 m/s, threshold 1.1 m/s 
Wind Dir specs ±5 deg 
SWdown 

2 ±15.7 W/m 2 ±2.9 W/m 2 ±0.8 W/m

specs ±5% 
LWdown 

2 ±10.8 W/m 2 ±2.0 W/m 2 ±0.3 W/m

specs 2 ±5 W/m
SWup 

2 ±5.0-8.6 W/m 2 ±0.9-1.5 W/m 2 ±1.3-3.1 W/m

LWup 
2 ±6.2 W/m 2 ±1.1 W/m 2 ±0.2-0.9 W/m

HS 
2 ±10.1 W/m 2 ±1.8 W/m 2 ±0.3 W/m

HL specs 4-10% n/a n/a 

u* 0.042 m/s 0.008 m/s ±0.015 m/s 

G 2 ±1-17 W/m 2 ±0.8-1.5 W/m 2 ±1 W/m

 

specs ±3%   

 

 

1183 Table 3:  Eureka site error analysis. Estimates of biases and random (hourly  and monthly) errors  

for selected parameters  and fluxes.  The specifications (specs) for some parameters indicated n/a 

mean  "not available".  
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Figure Captions 

Figure 1. Maps showing the Eureka region: (a) Ellesmere Island and the surrounding area, 

including the few development sites. Eureka is marked by a red "X". White areas primarily show 

ice caps, which have altitudes of 1000-2000 m. Coastal white shows permanent ice shelves 

(adapted from Google Maps); (b) Topographic map of the region near the long-term Eureka 

Station, located on the shore of the Slidre Fjord. Symbols "T" and "S" show the locations of the 

flux tower and downwelling radiation site (Sapphire), respectively, both located ~200 m north of 

the gravel runway (green line). Terrain contours are in meters, and altitudes > 200 m are shaded. 

Figure 2. Maps showing the Tiksi region: (a) The Lena River Delta and the surrounding area. 

Tiksi city is marked by a red "X" (adapted from Google Maps); (b) the Tiksi tower location is 

marked by the red, encircled "T" ~ 700 m from Tiksi Bay and at ~5-10 m altitude. Symbols "W" 

and "CRN" show the long-term Tiksi weather station and the Climate Research Network site, 

respectively, both located ~1.5 km SE of the tower. Terrain contours are in meters, and altitudes 

> 200 m are shaded. 

Figure 3. Instrumentation and late summer conditions at the (a) Eureka flux tower (5 September 

2008) and (b) the Tiksi flux tower (28 August 2012). Photo credits: (a) Robert Albee, NOAA, 

and (b) Vasily Kustov, Arctic and Antarctic Research Institute, St. Petersburg, Russia. 

Figure 4. Photographs illustrating soil and vegetation conditions near the flux towers at (a) 

Eureka and (b) Tiksi. Both photographs show late summer conditions. Vegetation is evident at 

both sites, but is more lush with greater soil moisture at Tiksi. Photo credits: (a) Ola Persson and 

(b) Dmitry Apartsev. 

Figure 5. Number of hourly mean wind speeds as a function of wind direction using all annual 

data at (a) Eureka for 2010 and (b) Tiksi for 2014. Wind speed and direction bins of 1 m/s and 

10° were used. Wind directions for which sonic anemometers are blocked are delineated by the 

dashed black lines. 
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Figure 6. Annual cycle of (a) wind speed at 3, ~8 (sonic anemometers), and 11 m (wind vane), 

(b) air temperature at 2, 6, and 10 m (RTD sensors), (c) soil temperature at 10, 20, 30, 45, 70, 

and 120 cm, and (d) soil heat flux (plates A and B) observed at Eureka in 2011. The data are 

based on 1-hour averaging. 

Figure 7. Annual cycle of (a) short-wave (SW) downwelling and upwelling radiation, (b) long-

wave (LW) downwelling and upwelling radiation, (c) SW balance, LW balance, and net 

radiation, and (d) albedo (reflectivity of a surface) observed at Eureka in 2011. The data are 

based on 1-hour (symbols) and 1-day (solid lines) averaging of 1-min radiation measurements 

made at the Flux Tower. 

Figure 8. Seasonal cycles of turbulent fluxes (eddy-covariance) of (a) sensible heat at 3 and ~8 

m, (b) latent heat (water vapor), (c) carbon dioxide, and (d) difference of air virtual potential 

temperature between 10 m and 6 m levels observed at Eureka in 2009-2012, 2014 (year 2013 is 

missing). The data are based on 1-hour (cyan x-symbols) and 5-day (blue solid lines) averaging 

of measurements made at the Eureka Flux Tower during the five years. 

Figure 9. Annual cycle of (a) wind speed at 3.7, 9.2, 15.5 m (wind vanes), (b) air temperature at 

3.8, 8, 11.8, 19.9 m (RTD sensors), (c) soil temperature at 10, 20, 30, 45, 70, and 120 cm, (d) soil 

heat flux (plates A and B) observed at Tiksi in 2012. The data are based on 1-hour averaging. 

Figure 10. Annual cycle of (a) short-wave (SW) downwelling and upwelling radiation, (b) long-

wave (LW) downwelling and upwelling radiation, (c) SW balance, LW balance, and net 

radiation, and (d) albedo (reflectivity of a surface) observed at Tiksi in 2012. The data are based 

on 1-hour (symbols) and 1-day (solid lines) averaging of 1-min radiation measurements made at 

the BSRN tracker and albedo rack. 

Figure 11. Seasonal cycles of turbulent fluxes (eddy-covariance) of (a) sensible heat at 3.5 and 

9.5 m, (b) latent heat (water vapor), (c) carbon dioxide, and (d) difference of air virtual potential 

temperature between 9.8 m and 5.8 m levels observed at Tiksi in 2012-2014. The data are based 
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on 1-hour (cyan x-symbols) and 5-day (blue solid lines) averaging of measurements made at the 

Tiksi Flux Tower during the three years. 

Figure 12. Annual cycle of the solar radiation at the 'top' of the atmosphere (TOA) at (a) Eureka 

(1-min and 1-day averaged), (b) Tiksi (1-min and 1-day averaged), and (c) Eureka and Tiksi 

(daily mean TOA flux). Plots are based on the algorithm by Reda and Andreas (2003). 

Figure 13. Annual cycle of (a) short-wave (SW) downwelling radiation and (b) net radiation 

observed at Eureka in 2009-2011 and Tiksi in 2012-2014. The net radiation is defined as the 

balance between downwelling (incoming) and upwelling (outgoing) SW and LW radiation. The 

data are based on 5-day averaging of 1-hr radiation measurements. 
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Figure 1. Maps showing the Eureka region: (a) Ellesmere Island and the surrounding area, 

including the few development sites. Eureka is marked by a red "X". White areas primarily show 

ice caps, which have altitudes of 1000-2000 m. Coastal white shows permanent ice shelves 

(adapted from Google Maps); (b) Topographic map of the region near the long-term Eureka 

Station, located on the shore of the Slidre Fjord. Symbols "T" and "S" show the locations of the 

flux tower and downwelling radiation site (Sapphire), respectively, both located ~200 m north of 

the gravel runway (green line). Terrain contours are in meters, and altitudes > 200 m are shaded. 
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Figure 2. Maps showing the Tiksi region: (a) The Lena River Delta and the surrounding area. 
Tiksi city is marked by a red "X" (adapted from Google Maps); (b) the Tiksi tower location is 
marked by the red, encircled "T" ~ 700 m from Tiksi Bay and at ~5-10 m altitude. Symbols "W" 
and "CRN" show the long-term Tiksi weather station and the Climate Research Network site, 
respectively, both located ~1.5 km SE of the tower. Terrain contours are in meters, and altitudes 
> 200 m are shaded. 
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Figure 3. Instrumentation and late summer conditions at the (a) Eureka flux tower (5 September 

2008) and (b) the Tiksi flux tower (28 August 2012). Photo credits: (a) Robert Albee, NOAA, 

and (b) Vasily Kustov, Arctic and Antarctic Research Institute, St. Petersburg, Russia. 
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Figure 4. Photographs illustrating soil and vegetation conditions near the flux towers at (a) 

Eureka and (b) Tiksi. Both photographs show late summer conditions. Vegetation is evident at 

both sites, but is more lush with greater soil moisture at Tiksi. Photo credits: (a) Ola Persson and 

(b) Dmitry Apartsev. 
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Figure 5. Number of hourly mean wind speeds as a function of wind direction using all annual 

data at (a) Eureka for 2010 and (b) Tiksi for 2014. Wind speed and direction bins of 1 m/s and 

10° were used. Wind directions for which sonic anemometers are blocked are delineated by the 

dashed black lines. 
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Figure 6. Annual cycle  of  (a) wind speed at 3, ~8 (sonic anemometers), and  11 m  (wind vane), 
(b) air temperature at  2, 6, and 10  m (RTD  sensors), (c) soil temperature  at  10, 20, 30, 45, 70, 
and 120 cm, and (d) soil heat flux (plates A  and  B)  observed at Eureka in 2011. The data are 
based on 1-hour averaging.  
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Figure 7. Annual cycle of (a) short-wave (SW) downwelling and upwelling radiation, (b) long-
wave (LW) downwelling and upwelling radiation, (c) SW balance, LW balance, and net 
radiation, and (d) albedo (reflectivity of a surface) observed at Eureka in 2011. The data are 
based on 1-hour (symbols) and 1-day (solid lines) averaging of 1-min radiation measurements 
made at the Flux Tower. 

64 



 
 

  
  

        
   

       
        

      
  

1316
1317
1318
1319
1320
1321
1322
1323

Figure 8. Seasonal cycles of turbulent fluxes (eddy-covariance) of (a) sensible heat at 3 and ~8 
m, (b) latent heat (water vapor), (c) carbon dioxide, and (d) difference of air virtual potential 
temperature between 10 m and 6 m levels observed at Eureka in 2009-2012, 2014 (year 2013 is 
missing). The data are based on 1-hour (cyan x-symbols) and 5-day (blue solid lines) averaging 
of measurements made at the Eureka Flux Tower during the five years. 
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Figure 9. Annual cycle of (a) wind speed at 3.7, 9.2, 15.5 m (wind vanes), (b) air temperature at 
3.8, 8, 11.8, 19.9 m (RTD sensors), (c) soil temperature at 10, 20, 30, 45, 70, and 120 cm, (d) soil 
heat flux (plates A and B) observed at Tiksi in 2012. The data are based on 1-hour averaging. 
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Figure  10. Annual cycle  of  (a)  short-wave (SW) downwelling a nd upwelling  radiation, (b) long-
wave (LW)  downwelling a nd upwelling r adiation, (c) SW balance,  LW  balance, and  net  
radiation, and (d) albedo (reflectivity  of a surface)  observed at Tiksi in 2012. The data are based  
on 1-hour  (symbols) and  1-day  (solid lines)  averaging  of 1-min radiation measurements made at  
the BSRN  tracker and  albedo rack.  
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Figure  11. Seasonal cycles of  turbulent fluxes  (eddy-covariance)  of (a) sensible heat at 3.5  and  
9.5 m, (b) latent heat  (water vapor), (c)  carbon dioxide, and (d) difference of air  virtual potential 
temperature b etween  9.8  m and  5.8 m   levels observed at Tiksi in 2012-2014. The data are based  
on 1-hour  (cyan x-symbols)  and  5-day  (blue solid lines)  averaging  of measurements made at the 
Tiksi Flux Tower  during t he three  years.  
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Figure  12. Annual cycle of the solar radiation at the 'top' of the atmosphere (TOA) at  (a) Eureka 
(1-min and 1-day  averaged), (b) Tiksi (1-min and 1-day averaged), and (c) Eureka and Tiksi  
(daily mean TOA  flux).  Plots are based on the algorithm  by  Reda and  Andreas (2003).  
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Figure  13. Annual cycle  of  (a)  short-wave (SW) downwelling  radiation  and  (b) net radiation  
observed at Eureka in 2009-2011 and Tiksi in 2012-2014. The net radiation is defined as the  
balance between  downwelling (incoming) and upwelling (outgoing) SW and LW radiation.  The 
data are based  on 5-day  averaging  of 1-hr radiation measurements.  
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