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Abstract This paper addresses the representation of lower tropospheric water vapor 
in the meteorological analyses – fully-detailed estimates of atmospheric state – pro-
viding the wide temporal and spatial coverage used in many process studies. Analyses 
are produced in a cycle combining short forecasts from initial conditions with data 
assimilation that optimally estimates the state of the atmosphere from the previous 
forecasts and new observations, providing initial conditions for the next set of fore-
casts. Estimates of water vapor are among the less certain aspects of the state because 
the quantity poses special challenges for data assimilation while being particularly 
sensitive to the details of model parameterizations. Over remote tropical oceans ob-
servations of water vapor come from two sources: passive observations at microwave 
or infrared wavelengths that provide relatively strong constraints over large areas on 
column-integrated moisture but relatively coarse vertical resolution, and occultations 
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of Global Positioning System provide much higher accuracy and vertical resolution 
but are relatively spatially coarse. Over low-latitude oceans, experiences with two 
systems suggest that current analyses reproduce much of the large-scale variabil-
ity in integrated water vapor but have systematic errors in the representation of the 
boundary layer with compensating errors in the free troposphere; these errors intro-
duce errors of order 10% in radiative heating rates through the free troposphere. New 
observations, such as might be obtained by future observing systems, improve the es-
timates of water vapor but this improvement is lost relatively quickly, suggesting that 
exploiting better observations will require targeted improvements to global forecast 
models. 

Keywords Water vapor · satellite · microwave · infrared · radio occultation · data 
assimilation · tropospheric water vapor profling 

1 Tropospheric water vapor over low-latitude oceans 

The vertical distribution of water vapor in the troposphere, through its infuence on 
shallow and deep convection (see Mapes et al., this issue), controls many aspects of 
tropical climate. The distribution is tightly coupled to the processes underlying the 
self-aggregation of convection (Wing et al, 2017). Through its infuence on radiative 
cooling rates the distribution of water vapor largely controls the amount of large-scale 
subsidence and hence the structure of thermal and moisture inversions to which the 
properties of low clouds are so sensitive, so the distribution plays an important role 
in determining low cloud feedbacks on climate change (Klein et al., this issue; Vial 
et al (2017)). 

How can the distribution of water vapor be determined? Observations from feld 
campaigns, including high-density dropsonde deployments (Stevens et al, 2017) or 
results from specialized remote sensing instruments on airborne platforms (Kiemle 
et al., this issue) provide the detail needed to spark and test hypothesis. Many studies, 
however, require observations with more uniform sampling across broader spatial and 
temporal scales (i.e. Lebsock et al., this issue and the studies reviewed by Klein et al., 
this issue). Retrievals based on measurements from microwave or infrared sounding 
instruments provide one possible source of observations for water vapor (see the use 
in Lebsock et al., this issue). An alternative is to include the same observations, or 
a subset thereof, in the construction of meteorological analyses. The two approaches 
are more similar than is immediately obvious (Parker, 2016): both use radiative trans-
fer models and prior knowledge of the likely state of the atmosphere to provide more 
refned estimates of water vapor concentrations. As we will show, analyses can be 
compromised by errors in the model used to produce short-term forecasts, but are 
enhanced by the use of a wide range of observations and by the infuence of recent 
observations on the initial estimate of atmospheric state. 

Here we assess the current state of routine knowledge of lower tropospheric water 
vapor over remote tropical oceans. We describe how observations are synthesized in 
time and space to produce meteorological analyses and discuss the two broad classes 
of observations – multi- or hyper-spectral sounding and radio occultation – that in-
form these estimates in current analysis systems. The representation of water vapor 
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over remote low-latitude oceans in two analysis systems is compared to indepen-
dent observations in regimes spanning a range of convective depth. In both systems 
the representation of boundary layer humidity is biased, resulting in compensating 
errors in the free troposphere; these errors lead to errors of order 10% in radiative 
heating rates in the free troposphere. Data assimilation experiments suggest that even 
substantially richer observational capabilities will need to be paired with systematic 
model improvements in order to realize more accurate estimates of boundary-layer 
humidity. 

2 Integrating observations in space and time: data assimilation and 
(re-)analysis 

2.1 Producing meteorological (re-)analyses 

In the context of this paper an atmospheric analysis is an estimate of the instantaneous 
state of the atmosphere in which all state variables are defned at every location. The 
skill of current analyses is due to their use as initial conditions for numerical weather 
prediction (NWP): accurate forecasts require accurate initial conditions, so NWP cen-
ters invest heavily in all aspect of analysis production including quality control, bias 
correction, and the use of as many observations and observation types as possible. 
Given our focus on lower tropospheric moisture analysis over tropical ocean our dis-
cussion focuses on global systems at operational centers. Examples in section 4.1 are 
drawn from systems at the European Centre for Medium Range Weather Forecasts 
(ECMWF) and the US National Centers for Environmental Prediction (NCEP). 

Meteorological analysis rely on data assimilation, a set of statistical techniques 
developed to make best use of a wide variety of observations that are irregular in time 
and space (see, e.g., Kalnay, 2003). Data assimilation optimally combines short-range 
forecasts with new observations to produce an estimate of the state of the atmosphere 
at a given time (or the evolution of the atmosphere through the assimilation window). 
The skill of an analysis therefore depends on the forecast model, the assimilation sys-
tem, and the available observations. The frst two are discussed below; observations 
relevant to estimates of lower tropospheric water vapor are described in Section 3. 

2.1.1 Global forecast models 

Data assimilation uses a forecast model to propagate the atmospheric state in time 
and provide consistency between variables. Practical constraints, including a require-
ment to deliver timely forecasts, mean that model accuracy must be balanced against 
computational cost. This impacts model spatial resolution and so the maximum time 
step. At this writing operational models using equivalent grid spacing1 of 10 to 20 

1 Grid-point spacing is often equated with resolution but it is well known that, for numerical reasons, 
the true resolution is less. For instance, from a spectral analysis of ocean winds, Abdalla et al (2013) 
conclude that in the ECMWF model, 50% of the real variability is only achieved at scales of 3 to 5 times 
the grid point resolution. 
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km, time steps of around 10 minutes, and 50-150 levels in the vertical, with the high-
est between 0.2 and 0.01 hPa. The density of vertical levels is highest near the surface 
and decreases gradually with height. The vertical discretization especially is relevant 
to estimates of boundary layer humidity: at typical boundary layer inversion heights 
the vertical level spacing varies from 200 to 400 m, so that sharp inversions can not 
be precisely located in the vertical. 

Models must also include parameterizations for processes that are not explicitly 
resolved. In global NWP models the list of parameterized processes might include 
radiation, shallow and deep convection, cloud macro- and micro-physics, boundary 
layer turbulence, the impacts of sub-grid orography and gravity waves, and the evo-
lution of the land surface. Despite substantial progress physical parameterizations 
remain a primary source of model error. 

Model errors, whether arising from discretization, numerics, or parameterization 
defciencies, impact the quality of the analysis both directly and indirectly, by reduc-
ing the effectiveness of observations. Model errors have a larger impact on felds that 
are only indirectly constrained by observations: e.g. moisture, cloud felds, precip-
itation and radiative/turbulent fuxes. Parameterization errors are of particular con-
cern in the analysis of water vapor because the feld is strongly impacted by heavily-
parameterized moist physics. 

2.1.2 Data assimilation systems 

Data assimilation uses observations to update the state of the atmosphere provided 
by a short-range forecast. Operational methods rely on the Kalman flter (Kalman, 
1960; Kalman and Bucy, 1961) which minimizes the scaled root-mean-square differ-
ence between forecasts and all available observations while respecting the uncertainty 
in both. Covariances propagate information between variables and through space and 
time so that, for example, an observation of temperature at a given location location 
can affect temperature, pressure, and winds in the surrounding region. The model-
observation difference is computed in the space of the observations so that many 
observations types, especially the satellite observations described in the next section, 
rely on forward operators to map the model state to a synthetic (predicted) observa-
tion. 

Analyses and forecasts are normally paired, with an analysis used to initialize a 
short (6 to 12 hour) forecast that forms the background feld or initial guess for the 
next analysis. This means that a given analysis is affected by not only the most recent 
observations but by all observations in the recent past. As a result, in most modern 
systems the background forecast, which has the history of all previous observations, 
contains more information about the current state of the atmosphere than do the lat-
est observations, and the difference between forecasts and the resulting analyses is 
subtle. 

Because they rely on forecast models, analyses from continuous forecast/data as-
similation cycling provide a self-consistent representation of the atmosphere in space 
and time. This is convenient; it is also normally more accurate than, for example, es-
timates for a single observing platform because the analysis exploits many different 
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data sources (e.g. SYNOP stations, ships and buoys, radiosondes, aircraft, and satel-
lite observations including the passive infrared and microwave and radio occultation 
described in section 3). The impact of each observation on model state propagates 
in space and time via the forecasts, leading to better initial estimates of atmospheric 
state and an improved ability to use the observations (Eyre et al, 1993). 

The Kalman flter on which analyses are based is optimal when errors are Gaus-
sian, unbiased, and uncorrelated. All these conditions are violated to some extent in 
real systems, with detrimental impacts on the analysis. Operational centers typically 
apply variational bias correction (Dee and Uppala, 2009) to observations, especially 
those from satellite instruments, to ensure that the observations are unbiased with 
respect to the model, but this approach cannot distinguish between (possibly con-
ditional) errors in the underlying observations, the forecast model, and the forward 
operator used to make model state to synthetic observations. Mischaracterization of 
observation and/or forecast errors can also degrade the analysis, as will be evident in 
section 5. 

2.1.3 Challenges in assimilating moisture 

The assimilation of moisture poses special challenges because upper and lower bounds 
on absolute humidity mean that errors are often unlikely to be Gaussian. This is nor-
mally treated by representing humidity in the analysis generation with a specialized 
control variable that is more likely to be Gaussian: relative humidity, the logarithm of 
specifc humidity, or variance scaled relative humidity (Hólm et al, 2002). 

Systematic imbalances between observations and forecast models have histori-
cally been an issue for moisture. The ECMWF 40-year Re-analysis (ERA-40; Uppala 
et al, 2005) reanalysis, for example, contains small systematic positive increments of 
total column water vapor. This was due partly due to sampling bias in the observa-
tions, which were considered only in cloud-free areas, but also refected errors in the 
forecast model and the forward operator as well as biases in the observations. What-
ever the mix of causes, the model could not retain the excess moisture and precipitated 
heavily in the initial 12 hours of each forecast, leading to an over-active hydrologi-
cal cycle and a too-strong Hadley circulation. In more recent systems, which include 
variational bias correction and make greater use of satellite radiances in cloudy and 
precipitating areas (Bauer et al, 2010; Geer et al, 2010), the problem is less acute. 

Humidity observations over remote tropical oceans consist almost entirely of 
satellite data (Andersson et al, 2005) from platforms such as those described in Sec-
tion 3. The observational constraint on total column water vapor provided by passive 
microwave information is fairly accurate but the broad vertical weighting functions 
for passive sensors (see Figure 1) mean that the vertical distribution of water vapor 
in the atmosphere is poorly constrained by observations. As a result the vertical dis-
tribution is very much controlled by the assimilating model. In the sub-tropics and 
stratocumulus areas with subsiding motion, an inversion is maintained as a balance 
between subsidence and boundary layer entrainment, both of which are controlled 
primarily by the model formulation (see section 4.1.1). 
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Table 1 Global re-analyses covering the satellite epoch 

Name Epoch Reference 
ERA-Interim 1979-present Dee et al (2011) 
JRA-55 and variants 1958-present Kobayashi et al (2015) 
MERRA-2 1980-present http://gmao.gsfc.nasa.gov/pubs/tm/docs/Bosilovich803.pdf 
NCEP/DOE Reanalysis II 1979-near present Kanamitsu et al (2002) 

2.2 Analysis and reanalysis 

In operational NWP centers all components of the analysis system including the fore-
cast model, data assimilation system, and data handling (quality control and bias cor-
rection), are improved as opportunities present themselves. This sometimes results 
in systematic changes in analyzed felds. Reanalysis is the process of analyzing his-
toric observations with a consistent system, normally one which has been improved 
since the initial analysis was produced. This removes the analysis system as a source 
of potential discontinuities in analyzed felds although changes in the kind, volume, 
accuracy, and spatial distribution of available observations can still introduce shifts. 

Reanlysis inherits from operational analyses the optimal use of a wide range of 
observations and the convenience of a gridded, complete, self-consistent description 
of the atmosphere. There are several key limitations, however. Crucially for some 
applications is that there is no constraint that energy or mass in a reanalysis be con-
served. More generally, estimates of quantities not directly constrained by observa-
tions, including the vertical distribution of water vapor over remote oceans, as well 
clouds, precipitation, and fuxes at the top and bottom of the atmosphere, are less 
certain and can only be assessed through careful evaluation (Trenberth et al, 2011). 
This issue is particularly relevant to estimates of water vapor in the oceanic boundary 
layer, as we show below. 

An excellent resource for reanalysis is https://reanalyses.org. Some well-
known recent global re-analysis projects are listed in Table 1. This list is likely 
to be out-of-date relatively quickly: ECMWF, for example, has already begun pro-
duction of the ffth-generation reanalysis ERA5 (https://www.ecmwf.int/en/ 
newsletter/147/news/era5-reanalysis-production). 

3 What measurements inform current estimates? 

Meteorological analyses, as described in 2, rely on observations to correct forecast 
errors and produce a more accurate estimate of the state of the atmosphere. In situ 
measurements such as radiosondes anchor the observational network but are few and 
far between over remote low-latitude oceans. Estimates of water vapor in this region 
rely primarily on three sources of information: sounding instruments that probe the 
vertical structure of water vapor using the spectral variation of emission by water 
vapor in the microwave and infrared regions, passive microwave measurements sen-
sitive to column-integrated water vapor, and observations of radio occultation in limb 
geometry that resolve the density (temperature and humidity) structure with very high 
vertical resolution but coarse horizontal resolution. 

https://www.ecmwf.int/en
https://reanalyses.org
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Fig. 1 Water vapor Jacobians for the SEVIRI (a), HIRS (b), and AVHRR (c) infrared and MHS (d) mi-
crowave instruments, calculated with the atmospheric radiative transfer simulator ARTS (Eriksson et al, 
2011) for a tropical atmosphere (mean of radiosonde profles for station Manus at 2.06◦S, 147.42◦E). 
Curves are labeled with the channel number for the respective instrument. The Jacobian is the derivative of 
the measurement with respect to changes in the atmospheric state; the fgure shows brightness temperature 
change for nadir-viewing observations resulting from a fractional change in the water vapor concentra-
tion, normalized by the layer thickness. Jacobians identify the portion of the atmosphere to which the 
measurement is sensitive to changes in water vapor and are closely related to weighting functions. 

3.1 Microwave and infrared sounding 

3.1.1 Principles of measurement 

Measurements from microwave and infrared satellite sounders dominate the obser-
vations informing water vapor in meteorological analyses (see, e.g., Figure 10 in 
Dee et al, 2011), especially over remote oceans. These instruments observe radiation 
emitted by the atmosphere which originates near the altitude where optical depth, 
the integral of the absorption coeffcient calculated from the satellite towards the at-
mosphere, reaches unity. Sounders exploit two facts. First, clear-sky atmospheric ab-
sorption in the troposphere is dominated by water vapor, so that additional moisture 
makes the atmosphere more opaque and shifts the emission level upward, to colder 
temperatures, reducing the measured radiance (see for example Buehler et al, 2004, 
Figure 11). Second, absorption and emission by water vapor depends strongly on fre-
quency, so that measurements made at a range of frequencies with different amounts 
of absorption are sensitive to the moisture in different atmospheric layers and pro-
vide the ability to measure water vapor at different altitudes. This range of altitudes 
is illustrated by Figure 1, which shows water vapor Jacobians for some widely-used 
sensors (SEVIRI, HIRS, AVHRR, and MHS, summarized in Table 2). Each of these 
instruments has fown on multiple platforms; similar “one-off” instruments, such as 
the SAPHIR instrument aboard the Megha-Tropiques satellite (Brogniez et al, 2013), 
provide closely-related information. 
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Table 2 Four widely-used infrared and microwave humidity sensors. IR signifes infrared and MW mi-
crowave; GEO denotes geostationary and LEO for low earth (polar) orbit; Δ t and Δx approximately specify 
the temporal and spatial resolution, respectively. 

Acronym Spectral range Orbit Δ t Δx Full name and reference 
SEVIRI IR GEO 15 min 3 km Spinning Enhanced Visible and Infrared Im-

ager (Schmetz et al, 2002) 
HIRS IR LEO 12 h 10 km High-resolution Infrared Radiation Sounder 

(Klaes et al, 2007) 
AVHRR IR LEO 12 h 1 km Advanced Very-High-Resolution Radiome-

ter (Klaes et al, 2007) 
MHS MW LEO 12 h 16 km Microwave Humidity Sounder (Klaes et al, 

2007) 

Passive satellite sounding with infrared imagers has a long history. Readily avail-
able infrared humidity data start with the HIRS instrument on the TIROS N satellite 
in 1978 (Shi and Bates, 2011). Meteorological microwave satellite measurements 
also have a long history, but water vapor profle measurements (near 183 GHz) only 
became available with the SSM/T2 instrument on the DMSP F11 satellite in 1991, 
with data in the NOAA CLASS archive starting in 1994. 

Legacy instruments have just a few (one to fve) channels dedicated to water va-
por; this provides a strict upper bound on the number of degrees of freedom in the 
vertical profle of water vapor that can be resolved. The strength of these sensors 
lies in their horizontal resolution (1-15 km , see Table 2) and the resulting ability to 
resolve horizontal structures. 

Figure 2 highlights the kind of information available from microwave and infrared 
sounding instruments. Here the image comes from channel 11 of the SEVERI instru-
ment, which is sensitive to water vapor below about 6 km (Fig. 1). The measurement 
is expressed as a brightness temperature Tb i.e. the temperature at which a black body 
would produce the observed channel-integrated intensity. For SEVERI and similar 
instruments (downward-looking viewing geometry, in optically-thick frequency re-
gions dominated by water vapor absorption) Tb can be easily interpreted: because the 
thermal source function for the radiative transfer (the Planck function) depends on 
temperature, while the atmospheric absorption depends on the water vapor content 
which is itself also strongly controlled by the temperature, the measured intensity is 
a good proxy for relative humidity averaged over the layer. High Tb indicate emission 
from lower in the layer, and hence low relative humidity. 

These relationships may be used to develop scalings between observed Tb and 
layer-averaged relative humidity (e.g. Buehler and John, 2005); in this image a 1 K 
change in Tb corresponds to approximately 9% relative difference in relative humid-
ity. In practice, however, data assimilation systems use radiative transfer calculation 
using fast models (also called “forward operators”) to predict the intensity that would 
be observed for a given distribution of temperature and humidity, and the data assimi-
lation system works to minimize the difference between these predicted observations 
and the observations themselves (see section 2.1.2). 
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Fig. 2 Two different snapshots of water vapor brightness temperatures by SEVIRI Channel 11, separated 
by 3 h. The line indicates humidity and cloud structures below roughly 6 km, moving westward; the circle 
indicates an overlying high cold cloud, moving eastward. These images were taken in December 2013 
over the tropical Atlantic. Brightness temperatures below the (somewhat arbitrary) threshold of 240 K are 
shown in white to indicate deep convection. 

3.1.2 Why both microwave and infrared observations are useful 

Figure 2 was obtained from an infrared sounder on a geostationary satellite; instru-
ments on such platforms can provide very high time resolution observations (15 m or 
less). It is not practical to deploy microwave sounders so far from the Earth because 
their spatial resolution would be greatly compromised. Spatial resolution is limited by 
diffraction, thus infrared sensors inherently allow higher spatial resolutions than mi-
crowave sensors, because their apertures are much larger compared to the measured 
wavelength. 

But the fgure also illustrates why microwave sounders provide such a useful com-
plement to infrared observations. Brightness temperatures Tb below some threshold, 
as occur frequently in the image, correspond to relative humidity above saturation. 
This unphysical result indicates the presence of clouds. It is relatively easy to flter 
out the cloud contaminated data, but restricting humidity observations to clear skies 
along can lead to biases in average humidity and even its climatic trend (John et al, 
2011). Microwave sensors are much less affected by clouds, and so continue to be 
central to meteorological analyses despite the relatively low horizontal resolution. 

3.1.3 Prospects 

The Jacobians of passive sensors are broad in the vertical (Fig. 1) because the radi-
ation received at the sensor arises from a range of altitudes. Hyperspectral infrared 
instruments, including AIRS (Aumann et al, 2003) with 2378 channels and IASI 
(Clerbaux et al, 2009) with 8461 channels, offer the possibility of combining many 
high-accuracy channels to achieve higher vertical resolution, analogous to the sharp-
ening of a blurred image in image processing (see for example Osher et al, 2005). 
(Hyperspectral microwave sensors do not yet exist but may be feasible in a few years, 
as discussed in the contribution by Nehrir et al. to this volume.) 
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The true information content from hyperspectral observations, however, is or-
ders of magnitude lower than the number of channels because the measurements in 
individual channels are very highly correlated. Applying the Bayesian information 
content analysis described in more detail in Nehrir et al. to IASI, for example, shows 
that at most 16 independent pieces of information on the water vapor profle are the-
oretically possible, corresponding to a vertical resolution of approximately 1.5 km in 
the troposphere. In practice the information content of IASI is lower, with literature 
estimates ranging from 3 to 10 pieces of independent information (August et al, 2012; 
Herbin et al, 2009; Lacour et al, 2012; Schneider and Hase, 2011). This may be frstly 
because often only a small subset of the channels is used, and secondly because in an 
NWP context better a priori information is available, which reduces the information 
content of the measurement relative to the a priori. 

Ultimately, it is the physics of radiative transfer that limits the ability of passive 
sensors to probe the humidity structure of the lower troposphere. 

3.2 Estimates of precipitable water from microwave observations 

Constraints on total column water vapor come from observations in spectral regions 
where atmospheric absorption is weak enough that the surface is visible from space. 
This works particularly well in the microwave spectral region over ocean, because 
there the surface is radiatively cold and can be accurately modeled (the emissivity is 
around 0.6 and depends mostly on the wind speed). The atmosphere is then observed 
in emission in front of the cold background, and Jacobians are positive, instead of 
negative as in Figure 1. The temperature dependence of the Planck function and the 
temperature control of absolute humidity then combine to make the measurement 
depend strongly on the total column water vapor. 

Mears et al (2015) validated such satellite-borne microwave total column water 
vapor measurements against ground-based GPS observations and found an overall 
bias of only approximately 1 kg/m2 and standard deviations better than approxi-
mately 2 kg/m2. 

3.3 GNSS radio occultation – a global refractometer 

An orthogonal source of water vapor information comes from observations of Global 
Navigation Satellite System (GNSS) radio occultation (RO) using the refraction of 
decimeter-wave GNSS signals near 1.2 GHz and 1.6 GHz received at low Earth orbit 
(LEO) satellites. 

3.3.1 Principles of measurement 

Figure 3a illustrates the GNSS RO observing geometry and summarizes the steps in 
estimating profles of atmospheric state from phase measurements (see also Anthes, 
2011; Kursinski et al, 1997; Steiner et al, 2011). An occultation event occurs when a 
receiver, peering through the atmosphere towards a satellite with a GNSS transmit-
ter in limb sounding geometry, observes the satellite setting behind or rising above 
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the Earth’s horizon. Profles are assigned a horizontal position at point of closest ap-
proach to the Earth’s surface (‘tangent point’) although the information derives from 
an along-path range of roughly 100 km to 200 km around the tangent point in the 
troposphere with across-ray resolution of 1-2 km. 

The fundamental measurement is of time delays of GNSS signals during occul-
tation events, which can be directly related to excess phase paths. Because the mea-
surement is based on time, which is uniquely well measured, RO measurements have 
unique long-term stability and narrow uncertainty. GNSS signals are not attenuated 
by clouds, so that sampling is unbiased. The vertical resolution of RO measurements, 
roughly 200-300 m (Gorbunov et al, 2004; Kursinski et al, 1997), is much higher than 
passive microwave and infrared sensors (Sec. 3.1). The primary disadvantage is that 
data are relatively sparse. The only system exploited to date for GNSS RO measure-
ments is the U.S. Global Positioning System (GPS); with this constellation a single 
RO receiver in LEO acquires 300 to 600 RO events per day with global coverage. 

Interpretation of RO refraction measurements is quite different than for bright-
ness temperatures. Tracking and orbit data are used to compute excess phase profles 
(Anthes, 2011; Hajj et al, 2002; Schreiner et al, 2009) which are converted to Doppler 
shift profles and then bending angle profles (Ho et al, 2012; Steiner et al, 2013, and 
references therein). Bending angle profles may be used in data assimilation or may 
form the basis of retrievals. The latter map bending angle to refractivity and dry-air 
profles and fnally to thermodynamic profles of density, pressure, temperature, and 
tropospheric water vapor (Kursinski and Gebhardt, 2014; Li et al, 2016) . 

3.3.2 Vertical resolution, accuracy, and limitations 

Although meteorological analyses incorporate RO observations using their own for-
ward operators (e.g. Healy and Thepaut, 2006) the accuracy of the underlying ob-
servations is more clearly demonstrated by comparing retrievals of temperature and 
humidity to in situ observations, as in Figure 4. Here the comparison is to Vaisala 
RS92 radiosonde profles from the Global Reference Upper Air Network (GRUAN), 
which undertakes dedicated efforts to provide climate-quality processing of the data 
(Bodeker et al, 2016; Immler et al, 2010). Panels a and b show example profles 
containing layered moisture structures (see also Stevens et al, 2017), illustrating the 
high vertical resolution. The reference radiosonde profles (GRUAN RS92-GDP.2) 
are used at ∼300 m vertical resolution, while the RO profles, taken from the recent 
OPSv5.6 re-processing of all 2001-2016 RO data at the Wegener Center, were not yet 
optimized for water vapor profling and so are only available at ∼800 m vertical res-
olution. Profles from the operational analysis produced at ECMWF are also shown. 
Even at reduced vertical resolution RO captures moisture layering that is smeared out 
in the analysis profles. 

Panels c and d shows difference statistics between RO temperature and humidity 
profles collocated with GRUAN profles. Specifc humidity is consistent between 
the two data sets to within 0.1-0.3 g/kg in the median, consistent with theoretical 
studies of accuracy (e.g. Kursinski and Gebhardt, 2014; Ladstädter et al, 2015; Rieckh 
et al, 2016). Some amount of disagreement between radiosonde and RO profles is 
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Fig. 3 (a) Schematic view of the GNSS RO active limb sounding observation geometry and explanation 
of measurement principles, after Kirchengast et al (2016); the acronyms for RO missions are the common 
names in the RO literature. (b) Number of RO events per day over 2007 to 2022 at low latitudes (30S-
30N), with actual numbers until 2016 and with projected numbers afterwards, where new RO missions 
currently prepared are successively deployed. (c) Coverage by RO events (blue dots) at low latitudes (30S-
30N) during 10-20 December 2013 (NARVAL- South campaign), with showing a zoom also for a cell in 
the Barbados area (red box). Two available tropical GRUAN radiosonde stations are marked (red asterisk 
symbols) 
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Fig. 4 Individual examples profles of specifc humidity (a) and temperature (b) from inter-comparing 
RO and ECMWF to collocated GRUAN data (about 200 km-2 hr space-time difference in the two cases). 
Furthermore, statistics (median deviation and indicative percentiles) of RO specifc humidity (c) and tem-
perature (d) profles are shown relative to GRUAN data, based on the available 300 km’3 hr collocations 
over 2009-2016. The tropical GRUAN stations available are those marked in Fig. 4c. 

expected due to imperfect collocation – sparse sampling by RO requires the use of 
relatively loose criteria for co-location (±300 km, ± 3 h) to obtain enough samples. 

Figure 4 also illustrates an important limitation of RO observations: information 
is available through the free troposphere, including the very valuable RO capacity 
of determining the boundary layer height (e.g. Anthes, 2011; Ho et al, 2015), but 
is lacking within the atmospheric boundary layer. The retrieved RO profles in Fig. 
4a,b stop near the boundary layer top, which in one case is clearly indicated by the 
GRUAN profle. Though efforts are being made to exploit RO observations to deter-
mine boundary later water vapor (e.g. Sokolovskiy et al, 2014; Xie et al, 2012), the 
core strength of existing RO observations is in profling of the free troposphere. 

3.3.3 Prospects 

Radio occultation measurements provide a valuable complement to observations by 
passive microwave and infrared sensors (Sec. 3.1) for characterizing water vapor. The 
observations play an important role in data assimilation systems (Sec. 2) because the 
high accuracy, itself a result of the ability to make the fundamental measurement of 
time with high accuracy, means that they can be incorporated as ‘anchor observations’ 
without bias correction, adding a globally-distributed set of calibration points to the 
radiosonde network. When the measurements are used outside assimilation systems 
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they are able to accurately determine the height of the boundary layer; this capability 
might be especially useful in process studies. 

The record is short compared to passive imagers: limited data is available from 
2001 with the full existing system online only since 2007. Data are also relatively 
sparse horizontally. This sparsity means that RO observations are often more useful 
over the long term, say via their incorporation into (re-)analyses, then for limited-
domain feld campaigns. This is evident in Figure 3c, which shows all low-latitude 
RO event locations during the NARVAL-South campaign between 10 and 20 Decem-
ber 2013 (Stevens et al, 2016). This feld campaign focused on the region around 
Barbados (red 10◦ x 20◦ box). The entire low latitude band received 5759 RO events 
during this 11-day period; just 67 events occurred in the Barbados area. 

The amount of GNSS data is posed to increase rapidly, however. Initial results 
have been obtained from the Chinese BeiDou system (Liao et al, 2016) and use of 
the European Galileo and Russian Glonass systems is expected in the next years. 
This will vastly expand the frequency of RO events. Figure 3b illustrates the total 
numbers available over the last decade at low latitudes within 30◦S to 30◦N, around 
600 events per day, and the projected strong increase by about an order of magnitude 
over the coming years. This leads to more than 8000 events per day as of 2020, which 
corresponds to more than 20000 events per day globally. 

Current observations rely on GNSS radio occultation. One promising technolog-
ical advance is LEO-LEO occultation (Kirchengast and Schweitzer, 2011; Kursinski 
et al, 2002; Liu et al, 2017), described as one of the emerging water vapor observation 
techniques by Nehrir et al. in this issue. 

4 Errors in water vapor distributions and the resulting impacts 

Satellite observations (section 3) are used in analysis systems (section 2) to produce 
estimates of the state of the atmosphere including the distribution of water vapor. The 
accuracy of this estimate over remote oceans, especially in the lower troposphere, has 
implications for the ability to use observations to test and generate hypotheses. In this 
section we use observations to spot-check this distribution in two circumstances. 

4.1 Assessing errors in the analyzed distribution of water vapor 

Because analyses are constructed by minimizing the difference between the state and 
all available observations, the accuracy of an analysis can be assessed only by com-
parison with independent observations. This is harder than it might seem – to produce 
the best possible analysis, forecasting centers go to great lengths to use all available 
high-quality observations, going so far as to facilitate the real-time availability of 
data from feld campaigns. This means that opportunities to assess specifc aspects 
of analysis, such as lower tropospheric water vapor over low-latitude oceans, are few 
and far between. 

Below we exploit two sets of radiosonde measurements made during feld cam-
paigns to assess the accuracy of water vapor analysis. Section 4.1.1 compares ra-
diosonde observations off the coast of Peru to felds in the ERA Interim reanalysis, 
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which did not assimilate these observations. Section 4.1.2 exploits measurements 
made in the equatorial Pacifc to assess a reduced-resolution version of the current 
NCEP data assimilation using data-denial experiments in which the observations 
were deliberately withheld. Both reanalyses make use of the full range of satellite 
observations as described in section 3; the precise observations used will vary from 
day to day. Because the comparisons involve different analysis systems from differ-
ent epochs, assessed in very different meteorological regimes, we do not expect the 
errors identifed here to be consistent with each other, or representative in any broad 
sense. Our intent is rather to highlight similarities in the character and magnitude of 
errors and, in the next section, to ask to what extent these might be ameliorated with 
better observations of lower tropospheric water vapor. 

4.1.1 Assessment in subsiding regions 

The frst example comes from radiosondes launched as part of the EPIC (Eastern Pa-
cifc Investigation of Climate Processes in the Coupled Ocean-Atmosphere System) 
campaign. This experiment took place from 16-21 October 2001 at 20◦S/85◦W in the 
East Pacifc, a little over 800 km off the coast of Peru and Chile (Bretherton et al, 
2004). We use 3-hourly radiosondes launched from the research vessel Ron Brown to 
assess the widely-used ERA Interim reanalysis (ERA-I; Dee et al, 2011). The com-
parison exposes analysis error because the soundings were not used in the reanalysis. 

In the EPIC domain subsidence and relatively cold sea-surface temperatures fre-
quently give rise to stratocumulus clouds under strong thermal and moisture inver-
sions. These clouds are notoriously diffcult to simulate in global models, partly be-
cause the inversions are very sharp and so poorly resolved on a relatively coarse 
numerical grid. Like much of the low-latitude oceans, few in situ observations were 
available for assimilation, so it is of interest to see how an analysis system copes. 

Figure 5a shows the profle of specifc humidity averaged over the entire period. 
A sharp jump in specifc humidity is observed at the top of the boundary layer. ERA-
I reproduces an inversion but it is too low (at 1147 m and 918 m, by about one 
model level) and not sharp enough. The profle of potential temperature (not shown) 
indicates a consistent picture. There are no observations in ERA-I that impose sharp 
temperature and moisture gradients. Instead, the inversion is maintained by the model 
as the result of a subtle balance between weak subsidence and the entrainment process 
in the model physics. 

The evolution of moisture in the observations and the reanalysis is illustrated in 
time-height cross section in Fig. 6. The mixed layer is more moist than observed. This 
is tied quite closely to the overly-shallow boundary layer: since total column water 
vapor is well constrained by satellite microwave observations, the too-low inversion 
is compensated by excess boundary layer moisture. Temporal variability is also more 
muted in the analysis than in the observations, although the diurnal cycle is more 
regular than is observed. The observed variability includes a component of sampling 
or representativeness noise, but much of the observed variability is coherent over a 
period of 3 hours, suggesting that the reanalysis does indeed miss some amount of 
variability. Finally, a moist layer descends from 4000 m on 16 Oct to about 2000 m 
on 20 Oct. Such a structure is related to the large scale fow and ERA-I seems to 



16 Pincus et al. 

0 2 4 6 8 10 12
Spec. Hum. (g/kg)

0

1000

2000

3000

4000

5000
Z

 (
m

)
(a) Mean

Sonde

ERA-I

0 1 2 3 4 5 6
Spec. Hum. (g/kg)

0

1000

2000

3000

4000

5000

Z
 (

m
)

(b) Standard Deviation

Sonde

ERA-I

6 4 2 0 2 4 6
Spec. Hum. (g/kg)

0

1000

2000

3000

4000

5000

Z
 (

m
)

(c) ERA-I-Sonde difference

Mean

S.Dev.

0.2 0.0 0.2 0.4 0.6 0.8 1.0
R (-)

0

1000

2000

3000

4000

5000

Z
 (

m
)

(d) ERA-I to Sonde Corr. Coeff.

Fig. 5 (a) Mean radiosonde and ERA-I humidity profles, (b) Standard Deviation of sonde and ERA-I hu-
midity profles, indicating temporal variability, (c) Mean and standard deviation of difference in humidity 
between ERA-I and sonde, and (d) correlation coeffcient of humidity between ERA-I and sonde. 

capture the large scales of this feature rather well, but the smaller scale variability is 
smeared out. 

The statistics of the variability are summarized in Fig. 5b,c,d. The correlation 
between ERA-I moisture and sonde observations varies strongly with height. The 
relatively low correlation between observations and analysis is due to the narrow 
range of conditions experienced at this single point, lack of variability in the forecast 
model (evident in panel b), and representativeness noise in the observations. The 
correlation drops to zero at a height of 1000 m, but this is due to the mismatch in 
inversion height: the 1000 m level is above the inversion in ERA-I and just below the 
inversion in the observations, so the time series are uncorrelated. 

4.1.2 Assessment in convecting regions 

A second opportunity for assessment, this one focused on regions of deeper convec-
tion, arises from a NOAA feld campaign aimed at studying deep convection associ-
ated with sea surface temperature anomalies. The El Niño Rapid Response feld pro-
gram (ENRR, see https://www.esrl.noaa.gov/psd/enso/rapid_response/) 
included dropsondes from the G4 aircraft and radiosonde launches from the island 
station at Kiribati and the research vessel Ron Brown, which was moving. Here 
we explore the impact of these sondes in a global assimilation with the currently-
operational NCEP hybrid ensemble-variational data assimilation system (Kleist and 
Ide, 2015; Wang et al, 2013) using 80 members. The assimilation is similar to oper-

https://www.esrl.noaa.gov/psd/enso/rapid_response
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Fig. 6 Time height cross section of 3-hourly radio sonde observations of specifc humidity (top panel) and 
3-hourly ERA-I reanalysis data. The time axis covers the EPIC campaign from 11 to 16 Oct 2001 at the 
“stratus buoy” location in the Eastern Pacifc (20◦S/85◦W). 

ational analyses in using all available observations including conventional observa-
tions, GPS radio occultation, satellite radiances, etc. but is run at reduced horizontal 
resolution (T254). 

We assess the representation of lower-tropospheric water vapor by using “data 
denial” experiments in which the ENRR soundings were evaluated (i.e. the error be-
tween forecast and observations was computed) but did not affect the analyzed state. 
(A parallel set of assimilations in which the sondes did contribute to the analysis 
is used in Section 5.1). The forecast/assimilation system was cycled through all of 
February and March 2016. The original observations have quite high vertical reso-
lution (c.f. Stevens et al, 2017) but were introduced into the analysis system, and 
are examined here, at a greatly reduced vertical resolution to prevent over-ftting. We 
restrict our attention to observations made west of 139◦W, which excludes a leg of 
soundings made by the ship much closer to the western coast of North America. 

Figure 7, the analog to Fig. 5, provides an overview of water vapor as observed 
(in blue) and in the analysis (red). Here all soundings are considered independently 
although many more dropsondes were launched from the G4 (529) than from Kiribati 
(54) or from the Ron Brown (69). The domain is deeper than in Fig. 5, extending to 
250 hPa or roughly 10.5 km. No sharp inversion is evident in the mean sounding, 
partly as a result of sampling a much wider range conditions and partly because 
weaker subsidence in this region leads a wider variety of convection. Variability in 
specifc humidity is largest in the layer between roughly 800 and 600 hPa refecting 
variability in shallow and congestus convection; this variability is roughly captured, 
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Fig. 7 As in Fig. 5 but for observations in the Tropical Pacifc obtained during the El Niño Rapid Response 
Campaign. Observations include dropsondes from an aircraft and radiosondes launched at an island sta-
tion and by a ship traversing the domain. Assimilation uses a reduced-resolution version of the operational 
system at the US National Centers for Environmental Prediction. (a) Mean sonde and analyzed specifc 
humidity profles, (b) Standard deviation of sonde and analyzed specifc humidity profles, indicating tem-
poral and spatial variability, (c) Mean and standard deviation of difference in humidity between analysis 
and observations, and (d) correlation coeffcient of humidity between analysis and observations. 

if at somewhat reduced amplitude, in the analysis (upper right). The analysis is too 
dry in the boundary layer and too moist in the free troposphere, with modest values 
in absolute terms (less than 0.5 g/kg) that become large when expressed as relative 
humidity at lower pressures. The relatively high correlation between analysis and 
observations (lower right) indicates that the analysis is able to reproduce regional and 
synoptic variations reasonable well. 

In practice the three platforms from which soundings are available sampled some-
what different environments (Figure 8). Soundings from the fxed station at Kiritimati 
Island in the Republic of Kiribati, just off the equator, are systematically wetter and 
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Fig. 8 Mean (left) and standard deviation of specifc humidity in the El Niño Rapid Response soundings 
available from the G4 dropsondes (red) and from radiosondes launched from the Ron Brown (blue) and 
from Kiritimati Island in Kiribati (green). Solid lines show the observations and dashed lines the colocated 
analyses in experiments neglecting the sondes. Soundings from Kiribati, near the Equator, are systemati-
cally warmer and wetter than those obtained from the traveling platforms. The analysis captures the overall 
differences in the sampling of the large-scale environment but under-represents the variability. 

less variable than soundings from the ship and aircraft, which sampled a much wider 
range of geographic locations as far as 20◦from the equator. Soundings from the Ron 
Brown are systematically moister than from the G4 with the region of maximum 
variability perhaps 50 hPa higher, suggesting greater sampling of congestus convec-
tion; this difference is at least partly the result of the fight paths on the G4 being 
constructed to avoid hazardous large-scale regions of deep convection. 

The analysis captures the broad-brush and synoptic differences among the sources 
of the soundings. Temporal variability is somewhat smaller in the analysis than in the 
soundings (compare the dashed and solid lines in Fig. 8, right panel) although some 
amount of the observed variability arises from sampling noise. 

Because errors are relatively small, however, assessments of error can be sensitive 
to averaging assumptions. Figure 9 shows the analysis bias (left), standard deviation 
(right, dashed lines) , and root-mean-squared error (right, solid lines) in specifc hu-
midity. Estimates from all three platforms suggest that the analysis underestimates 
humidity in the boundary layer. The moist bias in the free troposphere (Fig. 7), how-
ever, is less robust. The bias is positive and largest in magnitude in soundings taken 
by the G4, which avoided regions of organized deep convection. 

This suggests that the contrast in mid-tropospheric water vapor between regions 
of large-scale deep convection and the surrounding environment may be underesti-
mated. To the extent that large-scale organization is infuenced by convective self-
aggregation (Wing et al, 2017) this implies that the observed (Tobin et al, 2012) and 
modeled (e.g. Bretherton et al, 2005) contrast in humidity associated with convective 
organization may not be fully captured in the analysis. 
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Fig. 10 Mean and standard deviation of difference in humidity between analysis and observations, com-
puted using equal weights for soundings from the G4 and Ron Brown (and hence commensurate weights 
for all three sets of soundings). This reduces the impact of sampling biases in the G4 soundings on the 
overall estimate of error. The analysis systematically underestimates boundary layer humidity and overes-
timates humidity in the free troposphere and may underestimate the depth of the boundary layer. 

Soundings from the G4 are far more numerous than from the other sources and 
so dominate the estimates of analysis error in Fig. 7. Figure 10 repeats the lower left 
panel of this fgure giving equal weight to the G4 and Ron Brown soundings. This 
more geographically-representative view makes it clear that the analysis systemati-
cally underestimates boundary layer humidity and overestimates humidity in the free 
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Fig. 11 Errors in longwave (red), shortwave (blue) and net (grey) heating rates arising from analysis errors 
in temperature and humidity. Dashed lines show mean heating rates. 

troposphere. The excursion towards more positive bias at 900 hPa is consistent with 
the boundary layer being deeper in the analysis than in the observations. 

4.2 Assessing impacts 

As described in the introduction, the distribution of water vapor in the troposphere is 
intimately linked to convection and cloudiness because radiative cooling provides the 
destabilization needed to initiate convection and to determine large-scale vertical mo-
tion. Radiative cooling rates throughout the atmosphere are affected by the full ver-
tical distribution of water vapor, so errors in water vapor abundance have non-local 
and non-obvious impacts on cooling rates. Figure 11 shows the impact of analysis er-
rors in specifc humidity on clear-sky radiative cooling rates, computed by applying 
the SOCRATES radiative transfer model (a heavily-revised version of the code de-
scribed in Edwards and Slingo, 1996) to the observed and analyzed temperature and 
humidity felds, then averaging across the heating rate differences. As in Fig. 10, each 
set of soundings is given roughly equal weight. Present-day concentrations of other 
well-mixed greenhouse gases are assumed. Water vapor abundance affects longwave 
(red) and shortwave (blue) fuxes in the opposite sense, i.e. increased humidity leads 
to more effcient longwave radiative cooling but also increased solar absorption. As 
a result net clear-sky cooling rates through the atmosphere are 0.5-1 K/d, with mean 
errors of 0.05-0.1 K/d, or roughly 10%, below 600 hPa, increasing to 0.15 K/d in 
the upper free troposphere where net cooling also increases. 

Analysis errors in the radiative cooling (and resulting subsidence rates) to which 
low clouds are quite sensitive, especially errors that affect the ability of a re-analysis 
to identify regional and/or interannual contrast, can compromise observational stud-
ies of low cloud feedbacks (Klein et al., this issue). 
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Fig. 12 Left: Two views of systematic analysis error in specifc humidity. Solid lines show the mean dif-
ference between withheld observations and analysis for each data source. (The same data are shown, with 
opposite sign, in the left panel of Fig. 9). Dashed lines show the mean analysis increment for specifc 
humidity, i.e. the amount by which the forecast is changed by all observations, in data assimilation experi-
ments in which the soundings are included. Increments are small below 850 hPa even though bias is large 
there, refecting both larger observational uncertainty and more certain but erroneous forecasts. Right: 
Mean forecast error in specifc humidity, evaluated against evenly-weighted sets of sondes, in assimilation 
experiments that include (purple) or neglect (green) the observations. Much of the improvement in the 
analysis of specifc humidity is lost within the 6-hour forecast window, suggesting that analysis quality in 
humidity is strongly affected by model error. 

5 Characterizing water vapor in a more richly observed world 

As described in Sec. 3, present-day systems for routinely observing water vapor over 
remote oceans provide a relatively strong constraint on the vertical integral but a 
blurred view of the vertical distribution. Analyses of specifc humidity that incor-
porate these loose constraints into imperfect models therefore exhibit errors in the 
vertical distribution (Figs. 5, 7). In particular, the lack of an observational constraint 
on boundary-layer humidity allows analysis systems to make compensating errors 
that preserve column-integrated water vapor. In these very limited comparisons the 
ERA-Interim system produces a boundary layer roughly 10% too shallow and 10% 
too moist, while errors in the current NCEP system (too dry in the boundary layer, too 
moist above) result in an artifcially enhanced moisture contrast between the bound-
ary layer and the free troposphere. The analyses do capture the bulk of the large-scale 
variability, although the NCEP system may underestimate the contrast in humidity 
between convective and non-convective regions. 

Far more sophisticated technologies for the remote sensing of water vapor are 
emerging, however, (see Nehrir et al., this volume). Might much better observations 
lead to greatly improved analyses of water vapor? 
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5.1 Limited observations and model error 

Figure 12 explores the impacts of the two most important sources of analysis error, 
namely model error and a lack of constraining observations, in the NCEP system. 
The left panel illustrates the impact of observations on the analysis by comparing the 
bias in specifc humidity (solid lines), computed separately for each set of soundings, 
with the analysis increment in humidity averaged over the same locations in a parallel 
set of assimilations in which the observations do impact the analysis (dashed lines). 
Increments measure the degree to which all available observations change the short-
term forecast; the degree to which increments averaged over time and space are non-
zero refects systematic model errors (Klinker and Sardeshmukh, 1992; Rodwell and 
Palmer, 2007). 

At pressures below roughly 800 hPa the increments track the bias and its varia-
tion among sounding sources, indicating that the observations counteract systematic 
model error. The increments are not as large as the bias because the assimilation 
strikes a balance between the uncertainties in the observations and in the forecast 
(measured here by the ensemble spread). 

Increments are small, however, at pressures above 800 hPa, where bias in hu-
midity is largest. This partly refects the fact that observations are thought to be 
less certain (specifcally, less representative of large-scale conditions) closer to the 
atmosphere-surface interface. But it is also the result of limited variation in humidity 
across the ensemble in the lower troposphere, driven partly by the fact that all mem-
bers of the ensemble see the same sea surface temperature feld. The result is that 
forecasts of lower tropospheric humidity are confdent, so that low relative weight is 
assigned to the observations, but are nonetheless in error. The analysis is therefore 
unable to exploit the detailed information fully, and remains in error despite strong 
observational constraints from the soundings. 

5.2 Exploiting richer observations 

Observations that directly characterize boundary layer humidity, such as those ob-
tained from feld campaigns or from future observing systems, do improve the analy-
sis of humidity throughout the atmosphere. The impact of the observations is limited, 
however, due to systematic model errors, lack of model variability, and errors in the 
background error estimates of global analysis systems. This applies especially to wa-
ter vapor concentration, which is strongly affected by parametrization of processes 
with short time scales. Indeed, the observations collected during the El Niño Rapid 
Response campaign had little impact on even the 6-hour forecasts used as background 
states in the forecast/assimilation cycles. The right panel of Fig. 12 shows the mean 
difference between observed and forecast specifc humidity in that neglect (green) 
or include (purple) the equally-weighted sets of sondes. The forecast departures are 
quite similar in both experiments, indicating that improvements in the humidity anal-
ysis brought by the sondes don’t last even as long as six hours in the deep tropics. 

Analysis systems provide the best currently-available routine view of the distribu-
tion of water vapor over remote oceans, capturing much of the large-scale variability 
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even as the vertical distribution is compromised by model error and observations that 
provide a relatively loose constraint on humidity near the surface. More detailed ob-
servations of the vertical structure of water vapor, especially in the boundary layer, 
would lead to an improved representation, especially if forecast model and assimi-
lation systems are improved to better exploit the new observations. This will require 
better characterization of model error, as well as better characterization of error vari-
ances/covariances to allow analysis systems to represent vertical structures ranging 
from sharp inversions of the subtropics to more blended inversion structures of the 
deep tropics. High resolution observations would, if made routinely, also provide the 
information needed to identify and correct systematic model errors. 

In addition to the vertical structures caused by large scale transport, detailed feld 
observations also show fne scale structures that have the signature of convection (for 
example as described by Stevens et al (2017) and Kiemle et al., this issue). Such a 
mesoscale analysis will require both high frequency and high resolution observations 
as well as new assimilation techniques adapted to structures with a relatively short 
predictability horizon. 
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