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Abstract 

This paper examines the frequency, distribution tails, and peak-over-threshold (POT) of extreme floods 

through analysis that centers on the October 2015 flooding in North Carolina (NC) and South Carolina 

(SC), United States (US). The most striking features of the October 2015 flooding were a short time to 

peak (Tp) and a multi-hour continuous flood peak which caused intensive and widespread damages to 

human lives, properties, and infrastructure. The 2015 flooding was produced by a sequence of intense 

rainfall events which originated from category 4 hurricane Joaquin over a period of four days. Here, the 

probability distribution and distribution parameters (i.e., location, scale, and shape) of floods were 

investigated by comparing the upper part of empirical distributions of the annual maximum flood (AMF) 

and POT with light- to heavy- theoretical tails: Fréchet, Pareto, Gumbel, Weibull, Beta, and Exponential. 

Specifically, four sets of U.S. Geological Survey (USGS) gauging data from the central Carolinas with 

record lengths from approximately 65 to 125 years were used. Analysis suggests that heavier-tailed 

distributions are in better agreement with the POT and somewhat AMF data than more often used 

exponential (light) tailed probability distributions. Further, the threshold selection and record length affect 

the heaviness of the tail and fluctuations of the parent distributions. The shape parameter and its evolution 

in the period of record play a critical and poorly understood role in determining the scaling of flood 

response to intense rainfall. 
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1. Introduction 

The October 3-5, 2015 historic rains caused by hurricane Joaquin released more than 500 mm of rain in 

South Carolina (SC) and North Carolina (NC), United States (US). The flood peak of many U.S. 

Geological Survey (USGS) gauges, including those located in the center of SC, were almost twice the 

previous maximum from a record of over 65 years. The spatial extent of flooding in this portion was also 

unprecedented, with more record flood peaks at USGS stream gauging stations in urban areas such as 

Columbia, the capital of SC, than for any other rural catchments. 

 

Such an extraordinary flood lies within the fundamental issue of infrastructure safety and raises the 

crucial question of how to proceed if this event is not visible for a given dataset and if it is too rare for 

design applications. Although recently significant progress has been made to predict short-term flood for 

operational purposes (e.g., Pourreza-Bilondi et al., 2017), long-term prediction, on which infrastructure 

design is based, is difficult in deterministic terms (e.g., Papalexiou and Koutsoyiannis, 2013). Thus, it is 

common to treat this event in a probabilistic manner (i.e., as a random variable) that is governed by a 

distribution law. Such a distribution enables the modeler to capture the probability of exceedance and 

assign a return period to any flood event, the procedure called flood frequency analysis (FFA) in design 

hydrology. 

 

Assessment of flood probability has been an active research topic, yet a less understood concept. 

However, the analysis is well rooted in an extensive literature dating back to the work of Nicolaus 

Bernoulli three centuries ago (mentioned in Gumbel, 1958). Extreme value theory (EVT) was the first and 

widely accepted method for FFA that has rapidly evolved and found applications in engineering 

hydrology. Fuller’s 1914 study was probably the first application of extreme value distributions. Some 
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recent studies, such as Papalexiou and Koutsoyiannis, 2013 and Serinaldi and Kilsby, 2014, 2015, 

expanded the EVT concepts for hydrological design applications. Specifically, EVT has stimulated an 

extensive investigation to estimate the parent distribution (e.g., Michele and Rosso, 2001; Bernardara et 

al., 2008) and (upper) tail behaviors of flood properties (Papalexiou and Koutsoyiannis, 2013; Serinaldi 

and Kilsby, 2015), just to mention a few recent studies. 

 

Focusing on EVT and referring to Renard et al., 2013 and Martinkova, 2013 for a recent review of the 

EVT applications in hydrology, this theory captures the asymptotic distributional behavior of two types of 

data, namely, the so-called block maxima (BM) and peak-over-threshold (POT). BM extracts the 

maximum values from subsets (i.e., blocks) of observations, whilst POT performs observations exceeding 

a certain threshold. When the size of the blocks approaches infinity, the distribution of BM converges to 

three types of extreme value distribution families (Gumbel, Fréchet, and reverse Weibull (Fisher and 

Tippett, 1928; Gnedenko, 1943)) where the parameters scale with the information dimension. These three 

types of extreme families can be described by the so-called generalized extreme value (GEV) distribution 

with the location, scale, and shape parameters (e.g., Coles, 2001) as defined by the unified von Mises-

Jenkinson parameterization (Jenkinson, 1955). 

 

If the threshold of exceedance increases, the GEV then converges to the so-called generalized Pareto (GP) 

distribution as described by the Pickands-Balkema-de Haan theorem (Pickands III, 1975; Balkema and de 

Haan, 1974). In many cases, GP yields a more accurate approximation to the distribution of absolute and 

relative excesses, as well as distribution tails. In addition, it represents distribution tails obliquely, but 

rigorously, by “letting the data decide the function”. In practice, a way to verify the validity of GP is to 

check whether the estimates of the shape parameter are stable when the model is fitted to excesses over a 

range of thresholds. From a theoretical point of view, absence of the stability can be explained by a slow 

rate of convergence in the Pickands–Balkema–de Haan theorem. The fitted model can then be used to 

compute any tail-related risk measure, such as tail probabilities, tail quantiles (or value-at-risk), etc. There 
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is an established link between GP and GEV in the EVT modeling. In practice, if block maxima follow a 

GEV distribution, then the threshold excesses have a corresponding approximate distribution within the 

GP family (e.g., Coles, 2001) and vice versa GEV parameterization can be estimated using GP such as 

Poisson distribution for the occurrence frequency of the POT (e.g., Goda, 2011). 

 

Recently, the probabilistic fitting of these extreme distributions to hydrological variables signifies major 

progress in design hydrology as it quantifies risk and disputes arbitrary notions (e.g., Koutsoyiannis, 

2004). Although, in spite of the extensive literature on EVA model fitting and goodness-of-fit testing, 

only few studies have recently tackled the practical problems of flood frequency analysis facing real time 

application and uncertainty (e.g., Vogel et al., 2011; Stedinger and Griffis, 2011; Rootzén and Katz, 2013; 

Papalexiou and Koutsoyiannis, 2013; Obeysekera and Salas, 2014; Serinaldi and Kilsby, 2015; Mondal 

and Mujumdar, 2015).  The application of extreme theory on various real-world applications is essential 

for risk assessment and water resources planning, which demand long time horizons with no other rational 

scientific basis than probability. Therefore, the aim of this paper is to compute FFA and return periods for 

annual and instantaneous floods in the center of the Carolinas with special attention to the POT approach 

and to place the October 2015 flood in a flood frequency analysis context. An important class of questions 

addressed in this study concerns the impact of peak rates and thresholds on the upper tails of flood 

distributions. The goal was to investigate the distribution fitting model and the upper- tail distribution of 

maxima and to provide a better answer to the question of “how extreme was the October 2015 flood in the 

Carolinas?” 

 

To address aforementioned question, four different applications across the Carolinas were used to infer 

various procedures and to relate these analyses to properties of the October 2015 flooding. Spatial and 

temporal variability of flood events and the uncertainty associated with flood properties were also 

addressed during the period of analysis. The underlying parent distributions were also re-assessed with 

the inclusion of the 2015 flood event in order to characterize distributional changes associated with the 
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fitting parameters. This study quantified the sampling uncertainty via confidence intervals (CIs) in the 

EVT framework to highlight its fundamental role for a fair comparison between models and a fair 

assessment of the output reliability. 

This paper is organized as follows. In Section 2, the study region and flood data used in this study are 

explained. The theoretical concept and mathematical structures of probability distributions, distribution 

parameters, and POT are explained in Section 3. These methodologies were then examined in four 

different case studies explained in Section 4. Each application/example has its own merit, emphasizing 

particular aspects of extreme analysis. Conclusions are provided in Section 5 as critical guidelines to 

address the limitation and criticism in judging the magnitude and frequency of floods. 

 

2. Study Area and Data 

The study area is located in the eastern US, covering portions of the mountain and piedmont regions of 

NC and SC. The area is comprised of the Wateree, the Upper and the Lower Broad, the Upper and the 

Lower Catawba, the South Fork Catawba, the Congaree, the Tyger, the Saluda, and the Enoree sub-

basins. Two metropolitan cities, Charlotte and Columbia, are located in the study region (see Figure 1).  

 

Flood data were analyzed to determine appropriate USGS gauges that exhibited a long-term period of 

record, as well as a consistent hourly/sub-hourly record of the October 2015 flood event. Due to limited 

data availability and large missing values, this approach limited the analysis to four USGS monitoring 

gauges. The flood data of USGS 02147500 Rocky Creek at Great Falls, SC, USGS 02160700 Enoree 

River at Whitmire, SC, USGS 02167000 Saluda River at Chappells, SC, and USGS 02169500 Congaree 

River at Columbia, SC were used (Figure 1). Historical instantaneous floods data for each of the USGS 

gauging stations were also collected from October 2, 2015 to October 10, 2015, as well as the period of 

record data for observed instantaneous flows and peak annual maximum flows.  
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Figure 1. The October 02-05, 2015 total rainfall (inches) in the study area along with four USGS 

monitoring gages: (i) Rocky Creek at Great Falls, SC, USGS 02147500; (ii) Enoree River at Whitmire, 

SC, USGS 02160700; (iii) Saluda River at Chappells, SC, USGS 02167000; and (iv) Congaree River at 

Columbia, SC, USGS 02169500.  

 

Although the rainfall event produced from the hurricane event lasted approximately 3 days, the flood 

hydrograph spanned for several days as the drainage system responded to intense rainfall for a longer 

period. Further, the October 2015 intense rainfall produced different runoff volumes, although the time to 

peak and flood duration are approximately the same among the four hydrographs (Figure 2).  It should be 

noted that all four hydrographs presented in Figure 2 have a short time to peak (Tp) and a continuous peak 

rate which caused intensive and widespread damages to human lives, properties, and infrastructure. Here, 

flood data analysis placed emphasis on the concept of “water year,” which is often designated as the 

hydrological year beginning on October 1
st
 and ending on September 30

th
. Accordingly, two alternative 

approaches of data are selected: (i) annual maximum flood (AMF) series spanning from 1892 to 2015 
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with no missing values and (ii) daily maximum flood (DMF) or POT series spanning from October 01, 

1984 to September 30, 2015 with less than 3% of missing values.  

 

  

(a) (b) 

  

(c) (d) 

Figure 2. Flood hydrographs resulting from the October 2015 hurricane event for: (a) Rocky Creek; (b) 

Enoree River; (c) Saluda River; and (d) Congaree River. 

 

3. Methodology 

The data sets described in the previous section were employed to fit different distribution functions. This 

study tested: (i) the significance of lag-1 correlation for two subsequent values by the Kendall correlation 

coefficient (K-ACF); (ii) possible monotonic trends by the Mann- Kendall (M-K) test; and (iii) 

distributional hypotheses by goodness of fit and ad hoc diagnostics. Specifically, the suitability of a 

probability distribution is assessed by four goodness of fit tests, namely, Kolmogorov-Smirnov (K-S), 
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Cramer-von Mises (C-vM), Anderson-Darling (A-D), and the Pearson product moment correlation 

coefficient (PPMCC; Kottegoda and Rosso, 2008). K-ACF and M-K tests are necessary to compute the 

temporal dependence and monotonic trends in data. These trends can also affect the outcome of the 

goodness of fit tests, which rely on the hypothesis of independent observations (Serinaldi and Kilsby, 

2014). In addition to a hypothesis-based goodness-of-fit, information-based criteria (also known as 

Bayesian statistics) for probability model selection (Laio et al., 2009) was used, which has shown to aid 

modeler in identifying the best probability distribution for hypothesis testing (e.g., Di Baldassarre et al., 

2009; Chen et al., 2017). More specifically, the Akaike Information Criterion (AIC) and Bayes 

Information Criterion (BIC) were adopted as the information-based criterions. BIC and AIC reward a 

model for a higher likelihood and penalize a model for overfitting; lower AIC and BIC indicate a better 

fit. These techniques were implemented using continuous to discrete distributions explained in the next 

section. 

 

3.1. Theoretical Concept of Probability Distribution  

Continuous to more skewed distributions were employed to capture flood characteristics over time. 

Gumbel is tested as a continuous probability distribution, whereas extreme value theory was used to 

implement discrete probability distributions. Continuous distributions have been widely applied in 

hydrology, so we refer the readers to Vogel and Wilson, 1996, Koutsoyiannis, 2005, McMahon et al., 

2007, and El Adlouni et al., 2008, among others. 

  

In the classical extreme value theory, if a random variable (RV) X follows the distribution FX(x), the 

distribution function of the maximum of n is independent and identically distributed (iid) that can be 

described by 

 

��� =	���	
�. (1) 
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If n → ∞, the distribution of n can converge to three limiting laws of the Gumbel, the Fréchet, or the 

reversed Weibull, which can be described by the unified von Mises-Jenkinson parameterization 

(Jenkinson, 1955) of the so-called GEV distribution (Coles, 2001) 

 

��
 = 	exp �− �1 + � � − �� ���� �� �, (2) 

 

where {z: 1+ξ(z-µ)/σ > 0}, µ ∈ (-∞, ∞)} is the location parameter, σ > 0 is the scale parameter, and µ ∈ (-

∞, ∞) is the shape parameter. Depending on the sign of the shape parameter, GEV can envelop three types 

of distribution functions: i) ξ > 0 the heavy-tailed Fréchet; ii) ξ < 0 the upper bounded Weibull; and iii) 

ξ→0 the Gumbel distribution function. 

 

Based on the Pickands-Balkema-de Haan theorem (Pickands III, 1975; Balkema and de Haan, 1974), a 

GEV distribution coverages to a GP distribution if the extreme threshold increases over time (Coles, 

2001), which is given as 

 

 �!
 = 1 − �1 + � "#$��� �� , (3) 

 

where {y: y > 0 and 1+ξy/σ>0} and �% = σ + ξ(u-µ). ξ determines three types of distribution functions 

(with the same interpretation as for GEV); heavy tail when ξ > 0 (i.e., Pareto), upper bound when ξ < 0 

(i.e., Beta), and exponential in the limit as ξ→∞. Among three parameters in the EVA theory, ξ plays a 

key role in hydrological frequency analysis since it determines the upper tail behavior of floods that is 

important for the design of hydraulic structures. 
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The point process (PP) model is applied to the distribution of discharge excess following that of the GEV 

parameterization as outlined by Coles, 2001 and approximated by the GP distribution. PP treats the data 

points as the occurrence of extreme events and marks their associated size. Briefly, if the parent 

distribution does not evolve over time (i.e., stationary) and satisfies an asymptotic lack of clustering 

condition for values that exceed a high threshold, then the distribution’s limiting form is non-

homogeneous Poisson. It is noted that GEV, PP, GP, and Gumbel distributions were fitted to the AMF 

data, while only GP and PP models were tested for the POT dataset.  

 

Application of the GP and PP distributions to AMF data is not typically applied in engineering practice or 

research, but have found merit in previous studies (Mohssen, 2009; Papalexiou et al., 2013). As a result, 

this study incorporated the distributions as an exploratory case to better understand if the October 2015 

flood shifted the tail behavior of maxima towards a heavier tail distribution. In the case where the limiting 

form is an excess distribution, such as the GP or PP, comparative annual design quantiles were estimated 

by considering the threshold exceedance rate and number of raw observations per year (Coles, 2001) and 

therefore can be practically applied in the infrastructure design setting. The supporting parameterization 

of the cumulative distribution and their inherent parameters implemented within the study are provided in 

Table 1.  
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Table 1. Probability distributions used in this study. 

Model Cumulative Distribution Function (CDF) Parameters Reference 

 GEV ��	
 	= 	
&'(
')exp �−�1 + � �	 − �� ���� �� � , � ≠ 0

exp/−exp �� − 	� �0 , � = 0 1 µ = location 

σ = scale 

ξ = shape 

Jenkinson, 1955; 

von Mises, 1936; 

Gumbel, 1958 

Gumbel ��	
 	= 	exp /−exp �� − 	� �0 
µ = location 

σ = scale 

Jenkinson, 1955; 

von Mises, 1936; 

Gumbel, 1958 

 GP ��!
 	= 	21 − �1 + � !�$��� �� , � ≠ 0
1 − exp�−!�$ � , � = 0 1 

y = x – u 

(threshold 
excess) �% = modified 

scale 

ξ = shape 

Pickands III, 1975; 

Balkema and de 

Haan, 1974; Coles, 

2001 

 PP 3�4
 = �56 − 5�
 �1 + � �	 − �� ���� �⁄
 

µ = location 

σ = scale 

ξ = shape 

Leadbetter et al., 

1983; Resnick, 

1987; Smith, 1989; 

Davison and Smith, 

1990; Coles, 2001 

  

 

A fair comparison between various fitting models requires the assessment of the uncertainty of 

probabilities, return periods, and design quantiles. Indeed, when evaluating design properties, the 

differences of modeling estimates should be significant for operational use. In this respect, there are 

several methodologies that have recently been applied to various extreme fitting models including the 

delta method (Obeysekera and Salas, 2014), the bootstrap resampling method (Efron and Tibshirani, 

1993; Samadi, et al., 2013), and the profile likelihood function method (Obeysekera and Salas, 2014).  

 

The delta method relies on the asymptotic properties of the maximum likelihood estimates of the model 

parameters and their covariance matrix (e.g., Serinaldi and Kilsby, 2014; Obeysekera and Salas, 2014). It 

calculates symmetric CIs under the hypothesis that the distribution of the quantiles is reasonably 

described by a Gaussian distribution. The bootstrap method resamples the observed series using 

nonparametric bootstrapping or parametric bootstrapping (also so-called Monte Carlo simulation) to 
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simulate iid realizations of a random variable Y and to draw a suitable standardized distribution. The 

bootstrap method provides an assessment of the sampling and parameter estimation uncertainties by 

realistic asymmetric CIs (Serinaldi and Kilsby, 2014). Unlike the bootstrap method, the profile likelihood 

function relies on the asymptotic properties of maximum likelihood estimators, although this method is 

difficult to implement and can be quite computationally burdensome (e.g., Obeysekera and Salas, 2014). 

In this study, the bootstrap method is used to calculate the uncertainty of CIs because it is independent of 

the probability estimation method and provides more reliable simulation of iid realization.  

 

3.2. Parameter Estimation 

The method of moments and method of L-moments have been traditionally employed to estimate 

distribution parameters in hydrological datasets (Hosking et al., 1985; Maidment, 1993; Gubareva and 

Gartsman, 2010). In recent years, due to advancements in computing, the method of maximum likelihood 

estimation (MLE) and generalized MLE (GMLE) (Martins and Stedinger, 2000, 2001) have a growing 

interest. These methods provide unbiased parameter estimates compared to the method of moments, thus 

the MLE method was adopted for the estimation of distribution parameters for the results presented 

herein. 
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Table 2. Model likelihood functions. 

Model Likelihood Function Condition 

GEV 

ℓ��, �, �
 = -9log �
−	�1 + 1 �⁄ 
=log �1 + � �> − �� ��?

>@�−=�1 + � �> − �� ���� ��?
>@�  

1 + � �> − �� � > 0, BCD	E= 1,… ,9 

Gumbel G��, �
 	= 	−9 log� −=�> − �� �?
>@� −= exp H−�> − �� �I?

>@�  � = 0 

GP 

 

G��%, �
 = 	−J log �% − �1 + 1 �⁄ 
= log�1 + � !> �%⁄ 
K
>@�

G��%
 = 	−J log�% − �%��=!>K
>@�

 
1 + �$���!> > 0	BCD	E = 1,… , J� = 0  

PP 
 

G��, �, �
 	= 	− log�− L1
+ 1�M= log �1 + � �	> − �� ��−N"�O

>@� log �1
+ � �	> − �� �� 

1 + � �	> − �� � > 0, BCD	E= 1,… , NP 

 

For the case where the random variable, x, has probability density function, f�x;θ0
, the likelihood 

function is given as 

 

T�U
 =VB�	>; U
�
>@� . (4) 

 

Equation (4) represents the likelihood function of a set of independent realization of the random variable, 

x, given a set of parameters, θ, which describes the underlying nature of the probability density function 

(Coles, 2001). Usually the optimization of the parameter set is addressed in terms of the log-likelihood 

function given by 
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G�U
 	= 	 log T�U
 	== log B�	>; U
�
>@� . (5) 

 

During the maximum likelihood approach, Equation (5) is implemented using optimization procedures 

such that the log-likelihood function is maximized resulting in the maximum likelihood estimates of the 

distribution parameter set, θ. Because of the monotonic behavior of the log-likelihood function, the 

likelihood and log-likelihood functions take on the maximum given the same set of likelihood estimators 

(Coles, 2001). The model likelihood functions implemented within this study are outlined in Table 2. 

 

3.3. Threshold Selection 

A critical component in the implementation of the GP and PP excess distribution models in hydrological 

frequency analysis is the selection of a threshold value (Villarini et al., 2011; Saeed Far and Wahab, 

2016). In this study, mean residual life plots and threshold range plots (Coles, 2001) were applied for the 

evaluation of threshold values. Each of these exploratory techniques aim to guide in the selection of a 

minimum threshold such that there is linearity below the threshold in the mean residual life plot and there 

is stability beyond the threshold in the distribution parameters (Coles, 2001; Saeed Far and Wahab, 2016).  

Further evaluation of threshold selection for the POT and its influence on the performance of the GP and 

PP models was analyzed by taking into consideration the significance level for the goodness of fit tests 

outlined earlier.  

 

In this study, threshold values were selected such that appropriate significance levels were achieved with 

the lowest possible threshold as to limit the resulting variance in distribution parameter estimation, while 

achieving agreement among the three goodness of fit two-sided p-values. Each of the above techniques 

was employed, along with goodness of fit tests (Kolmogorov–Smirnov (K-S), Cramer–von Mises (C-

vM), and Anderson–Darling (A-D)), to derive a threshold value for each USGS gauging station. It is 
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important to note that in the case of block maxima data, the threshold value was set slightly lower than the 

absolute minimum of the AMF data set such that all events are considered. This is done because by 

nature, that is the natural threshold of the AMF time series. As a result, the GP and PP distributions 

consider the AMF data in the same facet as the GEV and Gumbel distributions, thereby providing 

consistent sample sizes for which the distribution parameters can be estimated and prevent additional 

bias. 

 

4. Applications 

4.1. Analysis of Rocky Creek 

Rocky Creek drains approximately 502.5 square kilometers (sqkm) just north of the Catawba River into 

Lake Wateree, SC. The drainage area above the USGS monitoring station can be classified as moderately 

rural, composed of smaller communities and residential areas. In this drainage system, the peak flow rate 

during the October 2015 flood event was approximately 59 cubic meters per second (cms), with a 

sustained peak rate for approximately 8 hours.  

 

Analysis begins with the diagnostic plots. Figure 3a presents the results for the fitted cumulative 

distribution function, P-P (probabilities plot), and Q-Q (quantile-quantile) plots for the GEV, GP, 

Gumbel, and PP models using historical AMF records without the inclusion of the 2015 flood event (i.e., 

1952-2015). For clarity, these data will be referred to as AMF herein, while historical records with the 

2015 event will be referred to as AMF-2015. The diagnostic plots reveal that both the GEV and the 

Gumbel models more precisely predicted the empirical distribution and probabilities when compared to 

the GP and the PP models. Both the GEV and Gumbel distributions appeared to have comparable quantile 

accuracy below 250 cms, with the GEV model showing more variability in its upper tail bound. Visual 

fitting results of the GP and PP models indicate that each model under/over predicted the observed 

probability (P-P) and increasingly deviated from the observed quantiles with increasing probabilities. 
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A more detailed review of the fitting performance data provides a summary of the four models for the 

AMF data. Table 3 presents two-sided p-values for the K-S, C-vM, and A-D tests, the Pearson correlation 

coefficient (ρ), P-P coefficient of determination (R
2
), AIC, and BIC. The upper tail performance of the 

GEV model as indicated by the A-D test proves a slightly higher significance compared to the Gumbel 

model, while the overall fitting performance indicated by the K-S test is much lower than that of the 

Gumbel. The cumulative consideration of the goodness of fit test results and the information-based 

criteria indicated that the Gumbel distribution provided the best fit for the Rocky Creek AMF data 

followed by the GEV, GP, and PP models, respectively. It is important to note that the selection of the 

most appropriate parent distribution within this study was based on the distribution which produced the 

highest and most consistent significance level (i.e., two-sided p-value) for the K-S, C-vM, and A-D tests, 

while also generating the lowest information-based criteria set forth by the AIC and BIC statistics. 
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(a) 

 

(b) 

Figure 3. Rocky Creek diagnostic plots: (a) AMF series and (b) POT series. 

 

Next, the analysis proceeded using AMF-2015 data. Results of the AMF-2015 analysis are based on the 

hypothesis that the parent distribution of AMF (i.e., Gumbel) would not hold true for AMF-2015. 

Inclusion of the 2015 flood event within the AMF dataset (i.e., AMF-2015) served as an investigatory 

analysis into the underlying evaluation of the potential abnormality of the 2015 hurricane event and its 

impact on the underlying parent distribution of AMF. Referring to Table 3, the performance of the 

probability models was not generally affected when including the October 2015 flood event. However, 
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the fitted models of the EVT family showed slightly asymmetric behavior, but they were not prominent as 

the upper tails of GP, GEV, and PP models are approximately exponential (i.e., their shape parameters are 

close to zero). In this respect, the Gumbel model deemed more accurate than those obtained by power 

law. As expected, the only model which experienced a significant impact on performance was the GEV 

(K-S > 0.05). 

 

Table 3. Rocky Creek AMF performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.8599 0.9886 0.9971 0.9977 0.9946 728.5 734.8 

GP 0.0627 0.0629 0.0529 0.9862 0.9229 738.5 742.7 

GUMBEL 0.9942 0.9773 0.9751 0.9978 0.9909 729.9 734.1 

PP 0.0626 0.0630 0.0530 0.9862 0.9229 860.5 866.8 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.8071 0.9770 0.9948 0.9972 0.9938 726.6 732.9 

GP 0.0884 0.0737 0.0627 0.9867 0.9277 735.7 739.9 

GUMBEL 0.9892 0.9701 0.9613 0.9977 0.9904 728.5 732.7 

PP 0.0882 0.0736 0.0626 0.9867 0.9277 857.7 864.0 

1Two sided p-value. 

 

The fitted distribution parameters presented in Table 4 highlight the superiority of the Gumbel model for 

the AMF-2015 series. When compared to the rest of the models, the Gumbel distribution computed the 

second lowest scale parameter, thus constituting a much lower variance in the predicted runoff level for 

any given design period. This result indicates that the hurricane event more so follows the underlying 

distribution of the annual flood data, rejecting the hypothesis of power law distribution for the Rocky 

Creek AMF-2015 dataset. 
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Table 4. Rocky Creek AMF distribution parameters. 

 
Without 2015 Food Event With 2015 Flood Event 

Parameter GEV GP GUMBEL PP GEV GP GUMBEL PP 

Location1 134.52 23.13 141.27 23.11 130.11 23.13 137.30 23.16 

Scale2 78.36 190.43 83.89 190.46 76.55 183.73 82.67 183.68 

Shape  0.1469 -0.1286 - -0.1288 0.1602 -0.1159 - -0.1157 
1Threshold for the GP model 
2Modified scale for the GP model 

 

As the second part of data analysis for Rocky Creek, a continuous time series (i.e., sub-hourly) of DMF 

was extracted for a period from 10/01/1986 – 09/30/2015. GP and PP are the two most appropriate 

distributions to describe the exceedance over threshold, thus they were implemented for POT probability 

analysis. Diagnostic plots of the resulting POT frequency analysis without the inclusion of the 2015 flood 

(i.e., POT) are presented in Figure 3b. Examination of the CDF and P-P plots suggest a decreased 

performance in the parent distribution (i.e., Gumbel), due to the variation between the model and 

observed data. An assessment of the GP and PP diagnostic plots show arguably exceptional fits, with a 

very fine degree of variation between the model and observed data, with little-to-no visual deviance 

between the two model results.  

 

Overall, the GP and PP models provided between 0.85 and 0.93 significance levels, with a well computed 

upper tail bound (i.e., A-D ≈ 0.93). The GP and PP models generated nearly identical results given the 

goodness of fit tests and coefficient of determination, but the PP model dominated after review of the 

Bayesian information criteria. Inclusion of the 2015 flood event (i.e., POT-2015) appeared to have a 

marginally significant effect on the central distribution behavior as indicated by the K-S test. However, 

the upper tail behavior outlined by the A-D significance levels showed negligible impact. 
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Table 5 - Rocky Creek POT performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.8552 0.9081 0.9352 0.9991 0.9975 1,887.0 1,893.5 

PP 0.8545 0.9076 0.9348 0.9991 0.9975 1,520.2 1,530.1 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.7964 0.9195 0.9453 0.9990 0.9975 1,942.2 1,948.9 

PP 0.7961 0.9199 0.9456 0.9990 0.9975 1,560.4 1,570.3 
1Two sided p-value. 

 

 

The resulting distribution parameters for the POT analysis are presented in Table 6. The PP model 

distribution parameters for the POT with the 2015 event clearly show an increase. For example, the 

variation in predicted runoff, as indicated by the scale parameter, increased from 43.4 cms to 45.9 cms, 

while the rate at which runoff generation grows with more intense events, set forth by the shape 

parameter, increased from 0.017 to 0.031. Although the increase in the parameters is small, the increase in 

the positive shape parameter indicates the possibility of the return level growth and non-linear increase 

over larger return periods. Thus, the inclusion of additional data within the POT time series appears to 

have a considerable effect, to a degree, of the ultimate distribution shape and hence the underlying 

vulnerability of current drainage infrastructure.  

 

Table 6. Rocky Creek POT distribution parameters. 

 
Without 2015 Food Event With 2015 Flood Event 

Parameter GP PP GP PP 

Location1 96.28 178.76 96.28 183.20 

Scale2 42.03 43.40 43.23 45.91 

Shape  0.0163 0.0167 0.0312 0.0306 
1Threshold for the GP model 

2Modified scale for the GP model 
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Addressing the implications of the flood event through the AMF and POT analysis was complimented by 

return level predictions generated from the AMF and POT parent distribution parameters. These estimates 

with the bootstrapped 95% CIs are presented in Figure 4. The results indicate that the BM’s parent 

distribution replicated the theoretical return level function quite well (see raw data points). The AMF 

computed return levels from the Gumbel distribution had little-to-no dispersion below the 25-year return 

period. Unlike the AMF, the POT return model had much more variation between the modeled and 

empirical results. Since the annual time series was best represented with a Gumbel model, there is a 

strong linearity in return level estimation, with less uncertainty above the 50-year level when compared to 

the POT model (i.e., PP distribution).  

 

  

(a) (b) 

Figure 4. Computed return levels for Rocky Creek excluding the 2015 flood event for (a) AMF and (b) 

POT. Bootstrap 95% confidence intervals are shown as the shaded region. 

 

The width of the CIs confirms that a large uncertainty characterizes the results obtained by the POT 

analysis. For instance, the AMF 100-year return level ranged between approximately 420 to 650 cms, 

whereas a significant width of the CI for lower (i.e., 10-year) and upper (i.e., > 100-year) return levels 

reflect that the model is less informative. This further implies that the increase of extreme data is paid in 

terms of the increase of uncertainty and extreme complexity. In both cases, the shape and underlying 

distribution were different. However, a peak flow rate of 59 cms only registered as a 1.1-year and 1.0-
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year return period for the AMF and POT model, respectively, thus confirming that the 2015 hurricane 

event cannot be classified as an extreme event from a truly probabilistic point of view. 

 

4.2. Analysis of the Enoree River 

The Enoree River lies in the heart of the Sumter National Forest draining more than 1,150 sqkm of rural 

and urban land and eventually discharging into the Broad River. Available historical datasets for this 

basin provided AMF data from 1974-2015, in addition to continuous (i.e., sub-hourly) flow data from 

04/05/1985 – 09/30/2015.  

 

Figure 5a presents the diagnostic plot results of the AMF analysis. The results indicate that the GEV and 

Gumbel models appeared to be good indicators for predicting the annual maxima, with little deviation 

between model and empirical estimates. The CDF plots of these models show similar characteristics in 

the lower tail behavior of the distribution, but a review of the probability plots reveals that the GEV had 

much less variation between the model and the observed data than that of the Gumbel. The quantile plots 

confirm this result and show that the GEV model had more accuracy in predicting the upper tail behavior 

of the AMF distribution when compared to the Gumbel. A significant increase in the shape parameter of 

AMF-2015 denotes a tendency to heavier tailed Fréchet law. Unlike the GEV model, both the GP and PP 

resulted in slight deviations in the model fitting. 

 

The AMF results (Table 7) showed a superior performance of the GEV model for all goodness of fit 

results (≈ 0.87 to 0.90). However, each of the models proved to have similar accuracy in predicting the 

probability of exceedance, with the GEV being however the most realistic among the competitors. As 

illustrated by the diagnostic plots (see Figure 5a), the Gumbel model represented the distribution of data 

well, but falls short of the GEV with significance levels approximately 0.22 to 0.42 lower than the GEV. 

The central tendency of the GP and PP models was slightly lower than that of the Gumbel, nonetheless 

the tail performance was at most satisfactory (≈ 0.16). The consideration of each of the performance 
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standards led to the adoption of the GEV model as a proxy for the AMF data. However, interestingly, the 

GEV, GP, and PP models had similar Bayesian criterion with the latter being the most realistic model.  

 

 

(a) 

 

(b) 

Figure 5. Enoree River diagnostic plots: (a) AMF series and (b) POT series. 

 

Including the 2015 flood event within the AMF dataset (i.e., AMF-2015) predominantly affected the GEV 

and the Gumbel models, although around the 5% significance level. In both cases, the performance of the 

goodness of fit tests improved, with the most improvement observed in the tail behavior of the 
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distributions. For example, prior to the 2015 hurricane, the A-D statistic for the GEV model was 0.90, 

while following the event this statistic increased to approximately 0.95. Improved performance was also 

noted in the GP and PP models, although affected less than the 2% CI. As a result, the GEV model 

maintained the stance of representing the AMF distribution. However, as Cooley, 2013 stated, any 

method for generating CIs has drawbacks, therefore, caution should be exercised when interpreting such 

results.  

 

A review of the fitted distribution parameters is warranted to further summarize the response of the 

probability distribution to the 2015 flood event. The results presented in Table 8 do not suggest a larger 

rate of variability of the runoff prediction for the GEV, GP, and PP models, as indicated by the shape 

parameter. However, the GP and PP models did tend to show much more fluctuation in the model when 

comparing the scale parameter during pre- and post-hurricane event. For instance, the GEV model 

showed an increase in the scale parameter of approximately 1.6 cms, while the GP and PP models 

increased by approximately 5 cms. In this basin, incorporation of AMF excess models (i.e., GP and PP) 

presented more uncertainty in design variables as opposed to the selected GEV parent distribution. 

 

Table 7. Enoree River AMF performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.8726 0.8653 0.9092 0.9938 0.9844 498.9 504.1 

GP 0.3289 0.1595 0.1624 0.9770 0.9282 501.4 504.9 

GUMBEL 0.4540 0.6492 0.5701 0.9925 0.9653 505.0 508.5 

PP 0.3277 0.1592 0.1621 0.9770 0.9281 587.4 592.6 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.9150 0.9138 0.9476 0.9949 0.9872 512.6 517.9 

GP 0.3468 0.1772 0.1793 0.9796 0.9343 515.0 518.5 

GUMBEL 0.4948 0.6946 0.6327 0.9931 0.9689 518.3 521.8 
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PP 0.3474 0.1774 0.1795 0.9796 0.9343 603.0 608.2 

1Two sided p-value. 

The distribution fitting performance increased with the addition of the 2015 hurricane event. However, 

many of the estimated distribution parameters experienced a slight increase. For example, the GEV 

location and scale parameters increased by approximately 2 cms and 1.6 cms, respectively, while the 

shape parameter remained constant. In this regard, the central tendency and the anticipated variation of 

the discharge increase, such an increase is considered minor and practically immeasurable in engineering 

practice. Most importantly, the upper tail behavior (i.e., shape parameter) of the distribution remained 

unchanged by the hurricane event. As a result, the parent distribution did not show significant deviations 

during the post-event analysis, indicating no abnormalities or outlier prone evidence of the 2015 hurricane 

event in this drainage system. It is however important to note that the lack of abnormalities indicated by 

the distribution performance and parameters does not necessarily negate the potential extreme intensity of 

the event. 

 

Table 8. Enoree River AMF distribution parameters. 

 
Without 2015 Food Event With 2015 Flood Event 

Parameter GEV GP GUMBEL PP GEV GP GUMBEL PP 

Location1 126.24 47.83 136.00 47.80 128.27 47.83 138.07 47.81 

Scale2 63.35 134.84 73.48 134.76 64.99 139.26 75.01 139.31 

Shape  0.2489 0.0180 - 0.0180 0.2452 0.0049 - 0.0047 
1Threshold for the GP model 
2Modified scale for the GP model 

 

Further evaluation of the extremeness of the 2015 flood event was continued for the Enoree River with 

the development of probability models using the partial duration series prior to the 2015 flood event. 

Visual inspection of the diagnostic plots for these models (Figure 5b) indicated exceptional fits for both 

the GP and PP in terms of the predicted distribution function (i.e., CDF). The results of goodness of fit 

tests revealed that the GP model simply provides a proxy for the probabilities of exceedance Qi, with the 

PP model trailing. However, Bayesian statistics highlight the superiority of the PP model (see Table 9). 
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Table 9. Enoree River POT performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.8218 0.7737 0.8474 0.9974 0.9947 1,402.0 1,407.9 

PP 0.8231 0.7748 0.8480 0.9974 0.9947 1,238.0 1,246.9 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.9374 0.8863 0.9403 0.9981 0.9962 1,454.3 1,460.3 

PP 0.9362 0.8851 0.9398 0.9981 0.9962 1,277.9 1,286.9 

1Two sided p-value. 

 

Evaluation proceeded by analysis of the POT-2015 series. The results presented in Table 9 prove that the 

inclusion of the 2015 flood event significantly affected the distribution performance. Both the GP and PP 

models show improvement in model adequacy. In the case of the POT-2015 analysis, it appears the 

hurricane event significantly affected the parent distribution in terms of the goodness of fit tests. 

However, both the GP and PP models showed little-to-no degree of variability in the distribution 

parameters (see Table 10). The most adequate fit, the PP model, showed the highest increase in the 

estimated scale and shape parameters when compared to the GP distribution.  

 

Table 10. Enoree River POT distribution parameters. 

 Without 2015 Flood Event With 2015 Flood Event 

Parameter GP PP GP PP 

Location1 113.27 180.91 113.27 185.60 

Scale2 32.94 54.97 34.32 58.30 

Shape  0.3258 0.3255 0.3312 0.3317 
1Threshold for the GP model 
2Modified scale for the GP model 

 

Figure 6 shows the 95% CIs obtained by the GEV and PP models for the AMF and POT data sets, 

respectively. In both cases, the predicted return levels for lower return periods (i.e., < 25-year event) 

showed close to each other, though a high variability existed at higher frequencies between two 



  

 

28 

 

formulations. Further, both series CIs were slightly asymmetric and deemed more accurate based on 

performance criterion. However, such asymmetry was more prominent for the POT model, as the upper 

tail of the PP distribution was not exponential (i.e., the GEV shape parameter is not close to zero). The 

fitted model for POT indeed showed more nonlinear temporal patterns compare to the AMF. As 

illustrated, the width of the CIs of higher frequencies/return periods confirms that a significant uncertainty 

characterizes the results obtained by the PP distribution. This further demonstrates that the increase in 

model complexity (i.e., moving from GEV to PP distribution) is paid in terms of increasing uncertainty 

and more complex probability models cannot replace information if this is not available. 

 

Estimated return periods for the Enoree River discharge (i.e., 303 cms) during the 2015 event were 8.8 

years and 5.8 years for the AMF and POT datasets, respectively. The modeled return periods show larger 

intensities compared to the previous application, but still much lower than typical bridge and road design 

settings in the study region (i.e., ≥ 25-year return period). Although the POT distribution fit and parameter 

values did experience more significant variations when compared to the AMF analysis, these results 

corroborate and substantiate the previous FFA results and provide reason to disregard the runoff event as 

a truly extreme sample from the underlying distribution of flood events. 

 

  

(a) (b) 

Figure 6. Computed return levels for the Enoree River excluding the 2015 flood event for (a) AMF and 

(b) POT. Bootstrap 95% CIs are shown as the shaded region. 
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4.3. Analysis of the Saluda River  

The Saluda River  is situated below Lake Greenwood, draining a diverse set of landscapes and river 

systems totaling more than 3,522 sqkm and eventually discharging to Lake Murray outside of Lexington, 

SC. Due to the size and slope of the Saluda River basin, a maximum peak flow of nearly 1,000 cms was 

recorded to have caused considerable damages to water control structures (e.g., dams and ponds) during 

hurricane Joaquin. The USGS station at the Saluda River monitors flow since 1906 (i.e., 108-year data set 

for BM). However, a continuous sub-daily maximum flood data set is not readily available until 

07/31/1986.  

 

Diagnostic plots for the AMF series are shown in Figure 7a. As illustrated, the GP and PP modeled 

adequately in terms of predicting most of the observed flood data when compared to the GEV and the 

Gumbel models. Inspection of the P-P plots show each model had a degree of dispersion, with the GP and 

PP being less biased. A review of the Q-Q plots reveals the effectiveness of the GP and PP models in all 

cases apart from the single most extreme flood event, a much different result from the previous 

applications of the Rocky Creek and the Enoree River basins. For example, the GP and PP models 

showed an excellent fit to the observed discharge levels below approximately 1,700 cms, although in 

some intervals the models over predicted large flood events. The Gumbel distribution visually appeared to 

offer the most concise quantile estimates (i.e., less dispersion) when compared to empirical data.  
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(a) 

 

(b) 

Figure 7. Saluda River diagnostic plots: (a) AMF series and (b) POT series. 

 

Inspection of the performance indicators (Table 11) of the four probability models show that the GP 

model outperformed the PP model, followed by the GEV and Gumbel, respectively. Unlike the two 

previous applications, the GP and PP statistical significance of the fits, as indicated by the K-S, C-vM, 

and A-D two-sided p-values, were substantially higher (i.e., ≈ 0.70 to 0.93 significance levels). 

Statistically, the GEV model did provide evidence that the flood data could come from the distribution, 

with confidence levels of approximately 0.24 to 0.30. However, the selected parent distribution of the GP 
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had more than twice the confidence level. Similarly, the Gumbel did show minor confidence in the 

distribution of the flood data, but with satisfactory results in the tail estimate around 0.11. 

 

Extension of the annual time series to include the 2015 flood event (i.e., AMF-2015) is summarized in 

Table 11. The performance summary results did not change significantly for the GEV and Gumbel 

models. However, the GP and PP models experienced a slight improvement in the overall fitting. The 

fitted distribution parameters (Table 12) substantiate this hypothesis, although there was an increased 

degree of variability introduced into each model. For example, the GP model most appropriately 

represented the behavior of annual extreme events for the Saluda River basin. Inclusion of the 2015 flood 

event within the AMF series increased the scale parameter by nearly 11 cms. In this case, a larger degree 

of uncertainty in the estimated runoff is present when compared to the previous applications, especially at 

larger runoff rates. 

 

Table 11. Saluda River AMF performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.3032 0.2482 0.2939 0.9887 0.9731 1,246.3 1,253.7 

GP 0.9375 0.7702 0.7034 0.9956 0.9906 1,235.4 1,240.4 

GUMBEL 0.1228 0.2143 0.1163 0.9885 0.9651 1,262.7 1,267.7 

PP 0.9371 0.7701 0.7034 0.9956 0.9906 1,415.4 1,422.9 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.3012 0.2474 0.2888 0.9889 0.9734 1,263.6 1,271.1 

GP 0.9532 0.7900 0.7318 0.9958 0.9910 1,251.9 1,256.9 

GUMBEL 0.1214 0.2108 0.1161 0.9886 0.9652 1,279.5 1,284.5 

PP 0.9531 0.7899 0.7318 0.9958 0.9910 1,433.9 1,441.4 
1Two sided p-value. 

 



  

 

32 

 

In addition, the block maxima approach yielded much more appropriate performance for the GP and PP 

models in comparison to the GEV and Gumbel models.  However, the small size of the samples, usually 

less than 50 AMF, tends to hide the heavy tail behavior as seen elsewhere (e.g., Serinaldi and Kilsby, 

2014, 2015). Evaluation of the frequency analysis using partial duration series led to a more abundant 

supply of extreme data points, although over only a portion of the annual period of record. Hence, the 

threshold models (i.e., GP and PP) provided superiority over the rest of the models. 

 

Table 12. Saluda River AMF distribution parameters. 

Without 2015 Food Event With 2015 Flood Event 

Parameter GEV GP GUMBEL PP GEV GP GUMBEL PP 

Location1 265.31 94.55 319.03 94.65 268.25 94.55 322.86 94.50 

Scale2 165.21 384.84 225.67 384.72 168.56 395.20 229.51 395.14 

Shape  0.5158 -0.0346 - -0.0345 0.5147 -0.0465 - -0.0463 
1Threshold for the GP model 
2Modified scale for the GP model 

 

Figure 7b presents the diagnostic plots for the extreme value distributions considered for the Saluda River 

POT time series. Like the block maxima dataset, the GP and PP models characterized the extreme flood 

events well below the 90% exceedance level, while overpredicting events above this threshold. Further 

investigation of the GP and PP probability plots revealed a less degree of dispersion when compared to 

the AMF results (Figure 7a). Moreover, the POT frequency analysis slightly affected the central tendency 

of the probability models. However, the upper tail performance was significantly affected by this 

frequency approach (Table 13). For example, the AMF analysis resulted in approximately 70% CIs for 

the upper tail behavior of the GP model (i.e., A-D), while POT yielded a 95% significance level for the 

adequacy of the GP model based on the goodness of fit test.  

 

Considering different goodness of fit statistics, the PP model provided the best overall fit, although the 

effect on the upper tail behavior was negligible. The results presented in Table 13 show that 2015 flood 
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event appeared to have a marginally significant effect (i.e., ≈ 5%) on the overall performance of the POT 

models. For example, the A-D test prior to the 2015 event was estimated at 0.9504, while the test results 

with the hurricane event produced a significance level of 0.9532. Therefore, the inclusion of the 2015 

flood data appears to be less statistically significant.  

 

Table 13. Saluda River POT performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.8607 0.9292 0.9504 0.9984 0.9966 1,834.4 1,840.6 

PP 0.8608 0.9291 0.9504 0.9984 0.9966 1,611.4 1,620.6 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.9098 0.9385 0.9532 0.9985 0.9967 1,890.9 1,897.1 

PP 0.9119 0.9385 0.9532 0.9985 0.9967 1,657.8 1,667.0 
1Two sided p-value 

 

The fitted distribution parameters for the POT analysis presented in Table 14 indicate that the 2015 flood 

event increased the scale parameter by approximately 15 cms.  Such increases led to a larger variance in 

the predicted runoff and increased the non-linearity of the quantile function for which design discharges 

can be estimated. The K-S test of the PP model produced a more significant influence from the event. 

This result is observed with the increase in the location parameter from approximately 411 cms to 

approximately 427 cms. Although the location parameter is a vital distribution parameter, the shape and 

scale parameters play a more influential role in the runoff estimation for the infrastructure design setting. 
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Table 14. Saluda River POT distribution parameters. 

 Without 2015 Flood Event With 2015 Flood Event 

Parameter GP PP GP PP 

Location1 198.22 411.40 198.22 427.54 

Scale2 118.32 130.28 119.98 145.17 

Shape  0.05582 0.05626 0.10935 0.10975 
1Threshold for the GP model 

2Modified scale for the GP model 

 

The GP and PP models presented in Figures 7a and 7b were used to construct return level predictions for 

the Saluda River. This result is presented in Figure 8. Like the two previous applications, the model return 

level function of each model appropriately represented the estimated discharge below the 10-year event, 

with more variation between the modeled and empirical results above the 10-year event. 

 

  

(a) (b) 

Figure 8. Computed return levels for the Saluda River excluding the 2015 flood event for (a) AMF and 

(b) POT. Bootstrap 95% CIs are shown as the shaded region. 

 

The BM approach predicted higher return level estimates when compared to the POT approach, although 

both followed the empirical data well and have comparable shape parameters. Further, reduced 

confidence intervals were generated from the POT model versus the AMF model. For example, the 100-

year storm CI for the AMF model would be approximately 900 to 3,200 cms, while the POT CI would be 
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approximately 700 to 1,700 cms. Hence, for a common design storm such as the 100-year event, the AMF 

model has approximately 1,300 cms more variation in the predicted design discharge. On the other hand, 

the 100-year design discharge for the AMF model would be approximately 1,700 cms, while the POT 

model would be 1,100 cms, thereby representing a difference in the design discharges by approximately 

half the difference in the discharge variation. In this case, the AMF model has more than four times the 

available data of that compared to the POT model, making the selection of the AMF model much more 

appealing to infrastructure safety and reliability as opposed to the POT model. 

 

The return period framework was extended to estimate the intensity of the 2015 event to be approximately 

11.2 years and 51.7 years for the AMF and POT model, respectively. This result further exemplifies the 

uncertainty in design level estimates for this basin using the POT techniques presented herein when 

compared to the AMF model. For example, the AMF analysis resulted in a slightly negative shape 

parameter which did not experience a significant change with the inclusion of the 2015 event. However, 

the POT model experienced a positive shape parameter which doubled during the post-event analysis, 

hence increasing the non-linearity in the return level estimation. In this context, the AMF model showed 

less influence and severity due to the hurricane event when compared to the POT model, although with a 

much larger sampling size. 

 

4.4. Analysis of the Congaree River 

The Congaree River is located at the heart of Columbia, SC and drains more than 20,331 sqkm. Block 

maxima (i.e., 1982-2015) and POT (i.e., 10/01/1984-09/30/2015) datasets were developed from historical 

USGS datasets and used to construct probabilistic models of extreme flood events. Figure 10 reveals the 

results for the GEV, GP, Gumbel, and PP models through constructed CDF and probability plots without 

the 2015 event.  The AMF results show that each model performed well when comparing the modeled 

probability to the empirical probabilities, of which the GEV appeared to be the best fit. The GEV and 

Gumbel models produced comparable distributions (i.e., CDFs), but a review of the Q-Q plots show much 
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more variability in the upper tail behavior of the Gumbel model (i.e., 5,000 cms to 10,000 cms). The GP 

and PP models provided satisfactory results below 10,000 cms for the distribution and quantile 

predictions, but well overpredicted the major flood event by more than 10,000 cms.  

  

 

(a) 

 

(b) 

Figure 9. Congaree River diagnostic plots: (a) AMF series and (b) POT series. 

 

It is evident that the observed patterns (i.e., for the mean and standard deviation) in the different quantile 

plots are not in the middle of the simulated bundle of curves but are compatible with the range of extreme 
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fluctuations and persistent. However, the quantile estimation method, like any statistical method, can be 

affected by the sampling uncertainty. The AMF performance summary outlined in Table 15 indicates that 

the GEV model was appropriately considered the parent distribution for the Congaree River flood data 

that represented the upper tail behavior of the empirical distribution quite well when compared to the rest 

of models. 

 

Table 15. Congaree River AMF performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.7153 0.8769 0.8954 0.9976 0.9949 2,111.4 2,119.8 

GP 0.0284 0.0514 0.0309 0.9922 0.9582 2,122.3 2,127.9 

GUMBEL 0.2534 0.4110 0.2870 0.9950 0.9830 2,124.6 2,130.2 

PP 0.0283 0.0513 0.0309 0.9922 0.9581 2,372.3 2,380.8 

 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GEV 0.7243 0.8907 0.9207 0.9977 0.9952 2,132.0 2,140.5 

GP 0.0323 0.0595 0.0369 0.9927 0.9607 2,142.1 2,147.8 

GUMBEL 0.2363 0.3922 0.2824 0.9948 0.9825 2,145.2 2,150.9 

PP 0.0322 0.0594 0.0369 0.9927 0.9607 2,394.1 2,402.6 

1Two sided p-value. 

 

The upper tail behavior of the GP and PP models demonstrated in the AMF diagnostic plots likely 

indicate the inadequacy of these models in approximating the block maxima time series for the Congaree 

River basin. Although, the length of AMF for the Congaree River is more than 120 years, the behavior of 

the extreme flood data did not follow Fréchet law as observed at the Saluda River basin.   

 

Inclusion of the 2015 flood event within the AMF analysis (i.e., AMF-2015) had the least amount of 

effect on the performance of the probability models compared to the three previous applications. In this 

case, the Congaree River basin is the largest of the four study areas, thus exhibiting larger runoff lag times 
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and response levels for the same meteorological setting. The longer time series and larger basin size is 

expected to enable the flood distribution to be less affected by additional extreme events. 

 

No significant (i.e., < 0.05) changes were observed in the AMF shape parameter estimates with the 

inclusion of the 2015 flood event (Table 16), thus suggesting the event does not appear to affect the 

distribution or cause a larger degree of uncertainty in the model fitting. The GEV served as the most 

appropriate AMF distribution with a minimal increase in the estimated shape parameter by 0.003. 

Conversely, the scale parameter experienced an increase of approximately 11 cms. In this case, the 2015 

flood is indicated to be a larger event (increase in location parameter) and introduces more variability in 

runoff deviation, nonetheless the runoff rate for any given return level is nearly constant.  

 

Table 16. Congaree River AMF distribution parameters. 

 
Without 2015 Food Event With 2015 Flood Event 

Parameter GEV GP GUMBEL PP GEV GP GUMBEL PP 

Location1 1,703.97 580.47 1,834.89 580.51 1,713.82 580.47 1,847.94 580.50 

Scale2 868.58 2,082.71 998.17 2,082.17 879.67 2,117.50 1,012.66 2,117.07 

Shape  0.2531 -0.0996 - -0.0997 0.2569 -0.1053 - -0.1054 
1Threshold for the GP model 
2Modified scale for the GP model 

 

The performance summary for the Congaree POT time series excluding the 2015 flood provided in Table 

17 shows a strong consideration for the GP or PP as a parent distribution when considering the 

significance level of the cumulative frequency distribution. However, Bayesian criterion suggests that the 

PP model should be selected. In this case, the traditional hypothesis tests produced nearly identical 

results, but a fair comparison of the information based criteria (i.e., BIC/AIC) quickly differentiates the 

underlying distribution. 

  



  

 

39 

 

Table 17. Congaree River POT performance summary. 

Without 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.9358 0.9113 0.9317 0.9991 0.9979 3,829.3 3,836.4 

PP 0.9325 0.9102 0.9320 0.9990 0.9979 3,218.7 3,229.5 

With 2015 Flood Event 

Model K-S1 C-vM1 A-D1 
Pearson 

(ρ) 
R2 AIC BIC 

GP 0.9564 0.9141 0.9388 0.9991 0.9980 3,888.9 3,896.0 

PP 0.9554 0.9146 0.9389 0.9991 0.9980 3,265.8 3,276.5 

1Two sided p-value 

 

Extension of the POT time series to include the entirety of the 2015 flood event did not significantly 

affect the PP model. For example, the PP scale and shape parameters prior to the 2015 event were 636.62 

cms and 0.1810, respectively, while the influence of the 2015 flood increased the scale and shape to 

677.86 cms and 0.2085, correspondingly (see Table 18). While the shape parameter is only marginally 

affected, the scale parameter does experience an increase by more than 6.5%. An important result 

demonstrated in Table 17 is the fact that the performance of each model slightly improved with the 

inclusion of the 2015 flood event data, thus there is ultimately a degree of influence.  

 

Table 18. Congaree River POT distribution parameters. 

 
Without 2015 Food Event With 2015 Flood Event 

Parameter GP PP GP PP 

Location1 1,160.99 2,299.16 1,160.99 2,344.43 

Scale2 430.47 636.62 431.32 677.86 

Shape  0.17990 0.1810 0.2083 0.2085 
1Threshold for the GP model 
2Modified scale for the GP model 

 

Figure 10 shows the predicted return levels with bootstrapped 95% CIs assuming the GEV and PP models 

as parent distributions for the AMF and POT analyses, respectively. In this case, the AMF frequency 

analysis resulted in a return period function which more adequately mimicked the empirical behavior of 
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the underlying distribution when compared to the POT frequency analysis. It is important to note that the 

PP parameterization used herein is given in terms of the GEV block maxima parameters and then further 

re-parameterized as a threshold model in terms of the GP derivation. 

 

Both the AMF and POT return level functions had comparable underlying function shapes (i.e., AMF = 

0.25 vs. POT = 0.18), as with the Enoree River and the Saluda River applications, while the underlying 

scale of the AMF model was much higher (i.e., AMF = 868.6 cms vs. POT = 636.6 cms). For example, 

the estimated 100-year runoff for the AMF model was just below 10,000 cms, while the POT model 

estimated slightly less than 7,500 cms (Figure 10). In this case, the design level discharge is 

approximately 2,500 cms less for the POT approach. This result is like that of the Saluda River 

application in that the AMF model produces consistently higher design discharges but based on more than 

100 years of historical data as opposed to the POT model which is based on approximately 35 years of 

historical records. As stated in the analysis of other applications, the small size of the samples tend to hide 

the true distribution and the heavy tail fluctuation. 

 

A peak flow rate of 5,239 cms registered for the Congaree River during hurricane Joaquin. The models 

presented herein (i.e., GEV and PP) estimated a return period of 16.9 years and 29.2 years for the AMF 

and POT series, respectively. The intense rainfall which was categorized as a 1,000-year storm did not 

directly correlate to such an extreme event for the direct runoff (i.e., river discharge) within the Congaree 

basin. However, extensive hydraulics structures (e.g., dams, ponds, levees, etc.) in the study region can 

delay and mitigate peak runoff and substantially affect distribution family. 

 



  

 

41 

 

  

(a) (b) 

Figure 10. Computed return levels for the Congaree River excluding the 2015 flood event for (a) AMF 

and (b) POT. Bootstrap 95% confidence intervals are shown as the shaded region. 

 

5. Conclusions 

This paper provided a critical analysis of stochastic flood frequency analysis using four real-world 

applications from North Carolina and South Carolina, USA. The aim was to explore the inferences 

involved in extreme modeling, the available methods/tools, and explicitly highlight the modeling 

difficulties and the role of uncertainty in flood frequency analysis. Two types of time series were 

evaluated, the first method employed historical annual maximum flood data, AMF, collected by USGS, 

while the second incorporated daily maximum flood data or POT. The AMF incorporated all annual data 

points, while the POT series incorporated all daily maximum data above a specific threshold defined 

based on statistical goodness of fit tests. Four extreme value probability distributions were selected and 

tested based on statistical fitting: i) Generalized Extreme Value; ii) Generalized Pareto; iii) Gumbel; and 

iv) Point Process. Of these methods, the GP and PP models are parameterized in terms of threshold 

exceedances for the POT dataset. 

 

Evaluation of the extreme events was first based on statistical testing of the data with and without the 

inclusion of the 2015 flood event that occurred in the Carolinas. The results indicated that the 2015 flood 

event does affect some of the probability distributions but does not appear to cause statistically significant 



  

 

42 

 

influences on the selected parent distribution. Focusing on the geographical distribution of the fitted 

distributions in the study region, the analyses suggest that large urban and rural areas share approximately 

the same distributions (i.e., GEV), whereas less developed areas exhibit light- to heavy-tailed behaviors 

(i.e., Gumbel and GP). The AMF analysis of Rocky Creek favors the use of the Gumbel distribution and 

does not provide any evidence of its outperformance over the Fréchet law. Saluda River, on the other 

hand, showed the best fit to GP with a negative shape parameter. Here, we would suggest that this should 

not be used in the case where flood data propose an extreme distribution with a negative shape parameter. 

Instead, it makes more sense and seems more reasonable to use a Gumbel distribution as recommended 

by Papalexiou and Koutsoyiannis, 2013. In addition, the analysis of the estimated GEV shape parameters 

of the AMF data for the Enoree and Congaree basins revealed a close relationship between these two 

basins and suggests that the distribution of the GEV shape parameter, that would emerge if extremely 

large samples were available, is slightly shifted toward a heavier-tail when the October 2015 flood was 

included (≈ 0.25). However, as stated by Papalexiou and Koutsoyiannis, 2013, only very large samples 

can reveal the true distribution of the shape parameter and actual variability of the underlying process.  

 

Further, modeling results of the POT series showed the best fit with the PP distribution for four 

applications. In all cases, the average value of the PP shape parameter increased and tended to a positive 

value as the October 2015 POT values were included to the time series (i.e., the record length increased). 

Under the hypothesis of the existence of an asymptotic distribution for the shape parameter, it has been 

demonstrated that the apparent exponential decay of the upper tail of the POT distribution observed in 

short time series is coherent with an asymptotic process which fluctuates around an average heavy tail 

behavior and affects return level estimation and its uncertainty.  

 

Dealing with extreme analysis, uncertainty affects not only the distribution model, but also the 

exploratory diagnostics. This study used the nonparametric and parametric bootstrap method or Monte 

Carlo simulation model to compute CIs of distribution models and the estimators. The empirical 
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distribution of the bootstrap method showed a close relationship with the actual distribution (i.e., 

asymptotic assumptions) and easily met specific requirements of the four applications. Therefore, we 

suggest the bootstrap method as a practical approach to obtain CIs, however more advanced methods such 

as Bayesian approaches can be applied to reduce the uncertainty by incorporating exogenous information 

(i.e., a variable originates externally, but has influences within a drainage system).  

 

Based on these analyses, the answer for the research question of “how extreme was the October 2015 

flood in the Carolinas?” raised earlier is that there is insufficient evidence to show that the 2015 flood 

event affected the parent distribution model of the annual series, but certainty affected the POT series in 

terms of shifting the shape parameter towards a heavier tail. However, tail fluctuations that are caused by 

i) mixture of extreme observational data and their thresholds and ii) temporal fluctuations of the parent 

distribution and/or its parameters over long time scales may introduce significant uncertainty and make 

extreme inference difficult. While this research tends to diminish the impact of the first fluctuation by 

analysis of different applications, time series, and thresholds, the latter one is correlated with the 

fluctuation of physical mechanisms driving the runoff process, such as dam construction, land use 

changes/site development, etc., as recently advocated by Samadi and Meadows, 2017.  

 

Further research is required to understand the true behavior of runoff in the study region. For instance, the 

inclusion of independent variables (e.g., reservoir factor) can be employed as covariates to check for 

monotonic trends, abrupt changes, or more complex nonlinear temporal patterns and relationships 

between flood dynamics and watershed factors. In this context, possible deterministic predictable 

mechanisms can be applied to identify (temporal/permanent) evolution of drainage systems. If necessary, 

such an assessment should be complemented by other criteria, such as risk of failure in the design life and 

cost benefit analyses/considerations, by accounting for the different sources of uncertainty (e.g., 

distribution parameters, quantile estimates, and sampling uncertainty).  
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Finally, this research provides a consistent and practical procedure to model floods which can be applied 

to other hydrological extremes (e.g., rainfall). The key implication of this analysis is that increasing the 

magnitude and frequency of runoff particularly for peak over threshold events is more probable at least 

for the four applications presented here, thus the classical frequency analysis may underestimate the flood 

magnitude. This result is seen in the context of the Saluda and Congaree basins, which experience major 

changes in the estimated shape parameters for the POT analysis and should not be blindly assumed to 

occur elsewhere. However, a similar analysis could be thoroughly applied to study regions around the 

globe to grasp a greater understanding of changing flood distributional behavior in response to extreme 

events and aid in advancing resilient infrastructure design. Engineering design and practice need to move 

from simple methods to more practical/advanced approaches that acknowledge the shifting of extremes 

from exponential law toward heavier tailed probability distributions.  
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- The October 2015 flooding in the Carolinas is analyzed using various distributions  

- GEV/GP were recommended as the parent distributions for the Carolinas annual flood  

- Monte Carlo model provided a realistic asymmetric confidence interval 

- Engineering design should move from simple methods to more practical approaches 

 

 


