

1
2 Received Date:
3 Revised Date:
4 Accepted Date:
5 Article Type: Articles
6 Running Head: Urchin mortality on rocky reefs
7
8 Title: Experiments reveal limited top-down control of key herbivores in southern California kelp
9 forests
10

11 Robert P. Dunn^{1,2*} and Kevin A. Hovel¹
12

13 ¹Coastal and Marine Institute & Department of Biology, San Diego State University, San Diego,
14 CA

15 ²Department of Environmental Science and Policy, University of California Davis, Davis, CA
16

17 *Corresponding author: rpdunn@ucdavis.edu
18

19 **Abstract**

20 Predator responses to gradients in prey density have important implications for
21 population regulation and are a potential structuring force for subtidal marine communities,
22 particularly on rocky reefs where herbivorous sea urchins can drive community state shifts. On
23 rocky reefs in southern California where predatory sea otters have been extirpated, top-down
24 control of sea urchins by alternative predators has been hypothesized but rarely tested
25 experimentally. In laboratory feeding assays, predatory spiny lobsters (*Panulirus interruptus*)
26 demonstrated a saturating functional response to urchin prey, whereby urchin proportional
27 mortality was inversely density-dependent. In field experiments on rocky reefs near San Diego,
28 CA, predators (primarily the labrid fish California sheephead, *Semicossyphus pulcher*) inflicted
29 highly variable mortality on purple urchin (*Strongylocentrotus purpuratus*) prey across all

This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the Version of Record. Please cite this article as [doi:
10.1002/ECY.2625](https://doi.org/10.1002/ECY.2625)

density levels. However, at low to moderate densities commonly observed within kelp forests, purple urchin mortality increased to a peak at a density of $\sim 11 \text{ m}^{-2}$. Above that level, at densities typical of urchin barrens, purple urchin mortality was density-independent. When larger red urchins (*Mesocentrotus franciscanus*) were offered to predators simultaneously with purple urchins, mortality was density-independent. Underwater videography revealed a positive relationship between purple urchin density and both the number and richness of fish predators, but these correlations were not observed when red urchins were present. Our results demonstrate highly variable mortality rates across prey densities in this system and suggest that top-down control of urchins can occur only under limited circumstances. Our findings provide insight into the dynamics of alternate community states observed on rocky reefs.

Key words: functional response, density dependence, rocky reef, *Macrocystis pyrifera*, *Panulirus interruptus*, *Strongylocentrotus purpuratus*, *Mesocentrotus franciscanus*, *Semicossyphus pulcher*

Introduction

In ecology, longstanding debates center on the frequency, strength, and causes of population regulation (Nicholson 1933, Hairston et al. 1960, Turchin 1995). Predatory, or top-down, regulation of prey requires direct density-dependent mortality, which bounds prey above extinction and below limitless growth (Murdoch 1994). Direct density dependence in at least one demographic rate is a necessary but not sufficient condition, by itself, for temporal population regulation (Hixon and Webster 2002). Alternatively, inverse density dependence and density independence occur when a demographic rate scales negatively or independently of density, respectively. Top-down regulation of prey often is inferred from correlative evidence, including time series meta-analysis (Worm and Myers 2003) and variance partitioning of community data (Halpern et al. 2006). A more rigorous test requires experimental manipulation of prey density followed by analysis of demographic rates or population size to explicitly test for a density-dependent change (Harrison and Cappuccino 1995, Hixon and Webster 2002). Such experiments have been used to document spatial (Hixon and Carr 1997) and temporal (Webster 2003, Johnson 2006) density-dependent predation mortality. This manipulative approach, which we adopt here, is particularly useful because it can provide insight on the mechanisms driving observed mortality rates. Top-down control of prey has implications for community structure and biodiversity (Paine 1974), ecosystem function (DeAngelis 1992), and population stability.

61 (Murdoch and Oaten 1975), so a mechanistic understanding of predator-prey interactions is vital,
62 particularly for ecosystems subject to anthropogenic stressors and those of conservation concern.

63 Predatory functional responses to gradients in prey density represent this mechanistic
64 understanding, can be characterized experimentally, and are often incorporated into population
65 dynamics models. The type II functional response is a saturating curve with high proportional
66 mortality at low prey densities and rapidly decaying mortality rate as prey density increases
67 (Holling 1959). Type II responses are considered de-stabilizing for predator-prey interactions
68 and are common for specialist predators feeding on a single prey species which can be driven to
69 extinction. Generalist predators that can switch to alternate prey at low prey densities are
70 typically characterized by type III responses (Gascoigne and Lipcius 2004) which involve
71 increasing proportional mortality as prey density increases from low to moderate levels.

72 Intraspecific differences in body size and/or morphology can affect functional response shapes
73 and parameter values (Eggleston 1990, Toscano and Griffen 2013), and the implications of
74 observing a type II versus type III functional response for community structure and stability are
75 substantial. A type II response can cause local extinction of prey when they fall below a low
76 density threshold (Oaten and Murdoch 1975), while a type III response allows for top-down
77 regulation (but persistence) of prey due to low mortality rates at low prey densities.

78 At the population level, mechanisms leading to density-dependent predation over short
79 time-scales include refuge limitation for prey (Forrester and Steele 2004), predator aggregation
80 (Anderson 2001), and stabilizing, type III functional responses of predators to prey density
81 (Holling 1965). However, the spatial distribution of habitat can affect mortality patterns, with
82 prey located on isolated patches more likely to suffer density-dependent predation than those in
83 closely-spaced patches (Overholtzer-McLeod 2006) or within continuous habitats (Sandin and
84 Pacala 2005). This is because transient predators are more likely to consume resources from
85 closely spaced patches due to higher visitation rates (Overholtzer-McLeod 2006) or due to
86 reduced predator selectivity among foraging patches (Sandin and Pacala 2005). On longer time-
87 scales, or across a heterogenous landscape with multiple habitat types, regulation of prey can
88 occur through a numerical response of predators (Solomon 1949), or via habitat-specific
89 regulation (Seitz et al. 2001, Boada et al. 2018). Inferences about the density-mortality
90 relationship are highly dependent upon the configuration and scale at which experiments are
91 conducted (White et al. 2010). For instance, if habitat quality is spatially heterogeneous, prey in

92 high and low quality habitats, respectively, could be consumed at different rates, independent of
93 their density (Johnson 2006), producing a temporally stable prey population (at a large scale)
94 even though observed patterns of mortality could be density-independent within some smaller
95 patches.

96 We investigated the importance of top-down control for regulation of herbivorous
97 invertebrates that can drive community state shifts in a widespread marine habitat. On nearshore
98 rocky reefs, top-down control of herbivorous sea urchins by dominant predators like sea otters
99 (*Enhydra lutris*) has strong effects on macroalgal persistence and faunal community structure
100 (Estes et al. 1998). In southern California (SC), where sea otters have been extirpated, predatory
101 fish, such as the California sheephead, *Semicossyphus pulcher*, and spiny lobsters, *Panulirus*
102 *interruptus*, consume the dominant herbivores in this system, the sea urchins *Strongylocentrotus*
103 *purpuratus* and *Mesocentrotus franciscanus* (Cowen 1983, Tegner and Levin 1983, Dayton et al.
104 1998). Correlative and theoretical evidence suggest that when rocky reef-associated predators are
105 removed, kelp forests are susceptible to a shift into urchin barrens (Scheibling 1996, Lafferty
106 2004, Hamilton and Caselle 2015, Dunn et al. 2017). However, physical forces also affect the
107 distribution and persistence of habitat-providing macroalgae in this region (reviewed in Schiel
108 and Foster 2015), and the relative importance of top-down control remains contentious (Halpern
109 et al. 2006, Foster et al. 2006, Foster and Schiel 2010). Trophic control of rocky reefs has been
110 experimentally confirmed in New Zealand (Shears and Babcock 2002), but clear experimental
111 support for direct density-dependent mortality of urchins on SC rocky reefs remains lacking.

112 We quantified urchin mortality patterns in the lab and field across a gradient of prey
113 density in two alternate urchin species combinations: purple urchins (*S. purpuratus*) alone and
114 purple urchins with larger red urchins (*M. franciscanus*). Large red urchins can provide refuge to
115 smaller urchins through a spine canopy refuge (Tegner and Dayton 1977) but are also an
116 alternative prey item for both sheephead and spiny lobsters. Red urchins are also targeted in a
117 fishery and are most abundant in marine reserves (Nichols et al. 2015, Teck et al. 2017), so their
118 ability to mediate interactions between purple urchins and rocky reef predators may be spatially
119 variable. We discriminated between potential mechanisms underlying the observed mortality
120 patterns by characterizing the functional responses of spiny lobsters and quantifying the
121 aggregative response of fishes foraging on urchins in the field.

122 **Methods**

123 *Spiny lobster functional response to urchin density*

124 We conducted experiments to determine the functional responses (Holling 1959) of spiny
125 lobster predators to two alternate urchin species combinations: purple urchins alone and purple
126 plus red urchins. We conducted feeding experiments within mesocosms at the San Diego State
127 Coastal and Marine Institute Laboratory (CMIL) using lobsters (69-81 mm carapace length, CL)
128 and urchins (15-86 mm test diameter, TD, for purple and 67-105 mm TD for red) collected from
129 the Point Loma kelp forest or from rock jetties within Mission Bay, San Diego. Urchins were
130 haphazardly selected for experimental trials to include a range of sizes within each of six density
131 treatments in each trial: 2, 3, 5, 10, 16, or 26 urchins, which represent urchin densities commonly
132 found on macroalgal-dominated rocky reefs ($1 - 14 \text{ m}^{-2}$). We measured the TD of each urchin to
133 facilitate identification of mortalities following trials. We used the same prey densities in both
134 urchin species combination experiments by substituting one to three red urchins for purple
135 urchins in each assay. We starved lobsters for 48 h prior to beginning the trials and used new
136 lobsters in each trial. Following a 2 h urchin acclimation period, we added a haphazardly
137 selected lobster to each experimental arena and allowed them to feed for 48 h, at which point
138 remaining live urchins were counted and measured. When empty urchin test(s) were left over, we
139 could directly identify which urchin(s) had been eaten. If no remains were left and no live
140 urchins fit the TD of an urchin initially introduced, the missing urchin was assumed to have been
141 eaten whole. We conducted trials between March-May 2014 for purple urchins ($n = 11$ replicate
142 trials) and December 2016-March 2017 for purple plus red urchins ($n = 9$).

143 We compared the fits of two versions of the generalized functional response model (Real
144 1977) using AIC, one in which the scaling exponent was allowed to vary (providing a density-
145 dependent, type III sigmoidal shape) and one in which we held the scaling exponent constant (for
146 a type II saturating shape). Finding little evidence for the sigmoidal shape (see Appendix S1), we
147 used the saturating Rogers random predator equation (Rogers 1972) for parameter estimation for
148 both sets of feeding assays because this function describes an asymptotic response when prey are
149 not replaced upon consumption. We fit the Rogers equation $Ne = N_0[1 - e^{a(N_e h - T)}]$ using
150 maximum likelihood (Bolker 2008), where N_e and N_0 are the number of prey eaten and offered,
151 respectively, a is the instantaneous attack/capture rate of the predator, T is experimental duration,
152 and h is handling and ingesting time (units = day). All functional response fitting and tests were
153 conducted in the R statistical environment with the *FRAIR* package (Pritchard et al. 2017).

154 To determine if predation by lobsters is size-structured, we estimated size-dependent
155 survival probabilities for urchins in both sets of feeding experiments using logistic regression
156 [generalized linear models (GLMs) with a binomial response and logit link]. Due to strong
157 evidence in the overall model that the effect of urchin size on mortality probability varied
158 between species combination treatments ($p = 0.053$), we fit separate GLMs for purple urchin-
159 only data versus purple plus red urchin data. See Appendix S1 for additional experimental and
160 analytical details.

161 *Field experiment*

162 To test for density-dependent mortality of sea urchins on rocky reefs in the field, in the
163 summers of 2014 and 2017 we conducted manipulative experiments in two kelp forests near San
164 Diego, California, USA (see Appendix S1 for description of study sites and experimental
165 methods). Urchin densities on experimental plots ranged from 3.5-35.5 m⁻² corresponding to 2, 3,
166 6, 9, 13, or 20 urchins per plot, and we recorded the TD of all urchins prior to deployment.
167 Divers placed urchins on plots between 0900-1100 by removing the top layer of rocks,
168 introducing the urchins, and then replacing the rocks. Divers remained on site for 1 min. to
169 ensure urchins were firmly sheltered and then returned after 1 h and 24 h to count remaining
170 urchins. We conducted trials with only purple urchins (16-73 mm TD) in both 2014 and 2017,
171 while trials with purple urchins (22-75 mm TD) plus red urchins (58-111 mm TD) were
172 conducted only in 2017 and used the same substitutive design as the feeding assays described
173 above. Each trial included one replicate per urchin density (n = 11 trials for purple urchins, n = 6
174 with red urchins).

175 We used an information theoretic model selection approach to test for effects of urchin
176 density, urchin species combination (purple only versus purple plus red urchins), site,
177 experimental year, and sampling period on urchin mortality. We fit a set of generalized linear
178 mixed models (GLMMs) using a binomial distribution, with candidate models based on *a priori*
179 hypotheses of interest. We included a random effect of experimental reef nested within trial to
180 account for the multiple urchin counts made on each reef for a given trial (the experimental unit
181 in our case), at 1 h and 24 h after initial urchin deployment. For a given reef during each trial, we
182 modeled the number of urchins eaten and number of urchins not eaten as the ‘successes’ and
183 ‘failures’, respectively, for a series of binomial trials (Bolker 2008). We used the change in
184 Akaike’s information criterion (ΔAIC) and AIC weights to gauge support for candidate models.

185 We initially included interaction terms of interest (e.g., urchin density*year and urchin
186 density*site), but these were never included in the final model based on our model selection
187 procedure. We fit GLMMs using Laplace approximation with the *glmer()* function from the *lme4*
188 package in R (Bates et al. 2015).

189 To investigate feeding behavior in response to gradients in urchin density, we
190 opportunistically deployed underwater video cameras at plots of each treatment density ($N = 26$
191 in purple only trials and $N = 14$ in purple + red trials). Video cameras recorded a single plot for
192 the first 1 h after urchins were deployed. All individual fish that were actively foraging around
193 the plot during the video were enumerated. California sheephead would initiate attacks on
194 experimental urchins in most cases (see Appendix S1 for a list of predator and scavenger fish
195 species). To test for an aggregative response, we measured the highest number of individual fish
196 foraging simultaneously, MaxN (Ellis and DeMartini 1995). We also calculated the species
197 richness of the foraging community observed in each video, to test whether higher density
198 patches attract a more speciose suite of foragers. Data for both response variables were fit with
199 linear models using prey density as the predictor, and including site, experimental year, and
200 interactions as appropriate (model selection based on AIC, as above). Both sets of video data met
201 assumptions of linear regression based on visual inspection of residuals and Levene's test for
202 homoscedasticity.

203 **Results**

204 We found no compelling evidence for direct density-dependent mortality of urchins via
205 the functional response of spiny lobsters, as lobsters in both feeding experiments exhibited
206 saturating responses causing inversely density-dependent urchin mortality (Fig. 1, Appendix S1).
207 Bootstrapped estimates of attack rate and handling time were similar for both experiments and
208 had largely overlapping 95% confidence intervals [purple urchins: $a = 0.194$, 95% CI = (0.107,
209 0.373), and $h = 0.741$ (0.346, 1.237); purple plus red: $a = 0.127$ (0.074, 0.26), and $h = 0.594$
210 (0.203, 1.271)]. Survival probability increased with urchin size in both sets of experiments (both
211 $p < 0.0001$; Appendix S1: Fig. S1). However, survival probability of purple urchins < 35 mm TD
212 was higher when red urchins were offered as additional prey (Appendix S1: Fig. S1), and the
213 regression coefficient for the binomial GLM testing for an effect of urchin size on mortality was
214 33% steeper for purple urchin-only trials (coefficient \pm SE = 0.095 ± 0.011) compared to trials
215 with red urchins (0.063 ± 0.011), demonstrating the mitigating effect of red urchins on predation

216 of small purple urchins.

217 In the field, there was substantial variation in urchin proportional mortality across purple
218 urchin-only and purple with red urchin experiments (Fig. 2). For the full dataset, the model with
219 the most support (55% of AIC weight) included significant effects of urchin species
220 combination, experimental site, and sampling period, and a non-significant effect of urchin
221 density (Table 1). Because of the significant effect of urchin species combination ($p = 0.011$), we
222 next conducted separate analyses for each species combination treatment, following the same
223 model selection procedure described above. For purple urchin-only trials, the dominant model
224 (90% of AIC weight) did not include urchin density as a predictor variable, and density was non-
225 significant in all of the models in which it was included, suggesting that urchin mortality was
226 density-independent across the full range of experimental densities. Experimental site, year, and
227 sampling period were all significant predictors of urchin mortality (Table 1), and post-hoc
228 comparisons demonstrated that urchin mortality was higher in South La Jolla and during trials
229 conducted in 2014 ($p = 0.015$ and < 0.001 , respectively). For trials including red and purple
230 urchins together, the selected model (70% of AIC weight) included experimental site and
231 sampling period as significant fixed factors and a non-significant fixed effect of initial urchin
232 density (Table 1), also suggesting density-independent predation mortality. Trials conducted in
233 South La Jolla again had higher proportional mortality than those in Point Loma based on a post-
234 hoc means comparison ($p < 0.001$).

235 Overall, we found no evidence that urchin mortality was directly or inversely density-
236 dependent across the complete range of densities we included in these experiments. However,
237 our experimental urchin densities span the range observed under natural conditions across two
238 rocky reef communities which may be alternative stable states exhibiting hysteresis (Filbee-
239 Dexter and Scheibling 2014, Ling et al. 2015). Thus, the ability of predators to provide top-down
240 control could depend on which stable state the system currently occupies. For purple urchin-only
241 trials we observed a positive trend in proportional mortality across the three density levels which
242 would typically characterize a macroalgal-dominated rocky reef (based on a LOESS
243 visualization; Appendix S1: Fig S2A, B), so we conducted a subsequent analysis that separated
244 data from reefs with urchin densities typically observed in the macroalgal-dominated state (3.5,
245 5.3 and 10.7 m^{-2}) from those typical of urchin barrens ($16, 23.1, 35.5 \text{ m}^{-2}$). We then used a
246 similar information theoretic model selection procedure with a binomial GLMM (as described

above) to test for an effect of urchin density on proportional mortality. We found that at low densities typically observed in kelp forests, purple urchins alone suffer direct density-dependent predation mortality, as the coefficient for the fixed effect of initial urchin density was significantly positive ($0.15, p = 0.02$; Table 2), leading to mortality increasing from low (3.5 m^{-2}) to medium densities (10.7 m^{-2} ; Fig. 2A, B). At high purple urchin densities observed in barrens, mortality was density-independent (Fig. 2A, B) and urchin density was not selected as a predictor in the final model (Table 2). As expected from our initial analysis, when red urchins were combined with purple urchins, mortality was density-independent for both low- and high-density datasets as urchin density was not selected as a predictor in the final model in either case (Fig. 2C, D; Table 2). This finding of a shift in top-down control at ~ 11 purple urchins m^{-2} aligns closely with the global estimate of the kelp forest to urchin barren threshold density (see Discussion and Appendix S1).

Due to strong evidence that site influenced the relationship between urchin density and MaxN ($p = 0.07$, Fig. 3), we fit separate linear models for each site. Site-specific models indicated that fish exhibited an aggregative response to increasing purple urchin density in South La Jolla ($F_{1,10} = 29.93, p < 0.001$), but not in Point Loma ($F_{1,12} = 1.37, p = 0.264$; Fig. 3A). When red urchins were also available, fish did not demonstrate an aggregative response ($p = 0.801$; Fig. 3B). For species richness of the fish assemblage during purple urchin-only trials, there was a significant interaction between urchin density and experimental year ($p = 0.013$). When analyzed separately for each year, fish species richness was positively correlated with purple urchin density for trials conducted in 2014 ($F_{1,10} = 23.75, p < 0.001$), but not in 2017 ($F_{1,12} = 2.33, p = 0.15$; Appendix S1: Fig. S3A). Urchin density was not a significant predictor of fish species richness when red urchins were also present ($p = 0.645$), though richness was significantly higher in South La Jolla than Point Loma ($p = 0.04$; Appendix S1: Fig. S3B).

271 Discussion

Correlative evidence has suggested a strong link between rocky reef predators and their urchin prey, and that top-down regulation of urchins helps maintain kelp forests and their associated high levels of biodiversity (Sala et al. 1998, Lafferty 2004, Hamilton and Caselle 2015). We found that the relationship between sea urchin density and proportional mortality on rocky reefs is dependent on predator and prey assemblages and varies between areas of low versus high prey density, resulting in top-down control only under limited circumstances. Purple

urchin density-dependent mortality occurred where sheephead were large and abundant, which is common within southern California marine protected areas (MPAs) (Hamilton and Caselle 2015, Selden et al. 2017). However, sheephead and other predators only regulated purple urchins when large red urchins were absent, a condition consistent with fished areas but not typically observed within MPAs (Nichols et al. 2015, Teck et al. 2017). While individual spiny lobsters ate relatively few urchins and did not cause direct density-dependent mortality via their functional response, fish predators did induce a region of increasing proportional mortality at low prey densities by aggregating to higher density prey patches. However, this result is dependent on initial urchin densities being consistent with those found in kelp forests rather than in urchin barrens, and an urchin recruitment pulse (Hart and Scheibling 1988, Cardona et al. 2013) could overwhelm the narrow region of directly density-dependent mortality that we detected. We also observed substantial variability in predation mortality across all six experimental density levels (Fig. 2), which represent natural urchin densities across two alternate community states. For example, at the highest urchin density level, predators consumed between 0 and 17 purple urchins within the first hour of the experiment (Fig. 2B). This level of variability is similar to that previously documented in this system (Nichols et al. 2015), and is likely due to rapid, localized responses of fish predators to urchin prey in some cases. Overall, our results suggest a need to re-evaluate the paradigm of top-down control on SC rocky reefs in the absence of sea otters.

Trophic cascades are a common occurrence on rocky reefs globally (Shears and Babcock 2002, Lafferty 2004, Guidetti 2006), and our results suggest that under certain circumstances, predatory fish, more so than lobsters, contribute to persistence of kelp forests in SC by consuming urchins. This is similar to other temperate and tropical regions in which predatory fish generally exert a stronger influence on urchins than do lobsters (Sheppard-Brennan et al. 2017). Others have also suggested that fishing for spiny lobsters does not inevitably induce a trophic cascade (Guenther et al. 2012), yet the paradigm of top-down control by lobsters in SC has remained prevalent despite a lack of experimental evidence for such an effect. It is possible that spiny lobster populations have been size-truncated by fishing such that they are no longer able to provide top-down control in this region (McArdle 2008). Though some large lobsters (> 100 mm CL) remain on rocky reefs in SC, particularly around the Channel Islands or within MPAs (Kay et al. 2012, Yaeger et al. 2017), the size range we used here (< 81 mm CL) are the

309 most abundant size class caught along the mainland (Hovel et al. 2015, Yaeger et al. 2017).
310 Results from our functional response experiments suggest that lobsters in this size range are
311 unable to exert top-down control on sea urchins inhabiting SC rocky reefs. While we do
312 document density-dependent mortality under certain field conditions, our estimate regarding the
313 strength of this effect is likely conservative given our inability to account for the “ghosts of
314 missing animals” within kelp forests which have been highly altered by humans (Dayton et al.
315 1998). The ongoing recovery of sea otters in southern California (Lafferty and Tinker 2014)
316 should strengthen the top-down control exerted by predators in this ecosystem (Watson and Estes
317 2011). This could drastically alter our findings of context-specific density-dependent mortality of
318 sea urchins, particularly because otters preferentially consume large red urchins (Stevenson et al.
319 2016) and can interact with mesopredators to partition size-structured sea urchin prey (Burt et al.
320 2018), both of which strengthen the trophic cascade leading to kelp forest dominance.

321 Our results differ from the findings of a previous experimental test of top-down control
322 on SC rocky reefs, which found that purple urchins suffered inversely density-dependent or
323 density-independent mortality depending on the time of day and surrounding substrate cover
324 (Nichols et al. 2015). Our experiments incorporated a wider size range of prey than this previous
325 study, including urchins < 35 mm TD. Large sheephead are required to consume the largest
326 urchins (Selden et al. 2017), and lobsters in our study more readily consumed small urchins than
327 larger urchins. However, the introduction of refuge-providing red urchins modulated some of the
328 threat of predation for small urchins (Appendix S1: Fig. S1) and eliminated the potential for
329 density-dependent mortality (Fig. 2C, D). Two potential mechanisms may have caused this
330 result: direct sheltering underneath the spine canopy by small urchins or reduced predatory
331 dependence on purple urchins because of increased available biomass of an alternative, larger-
332 bodied prey item. We believe the latter to be the likely mechanism operating here, because when
333 red urchins were included as a potential prey item, the difference in urchin biomass across
334 density levels was small (~3x) relative to differences in density (~10x). Body size plays a key
335 role in trophic interactions and can determine the strength of trophic cascades (Shurin and
336 Seabloom 2005), so we strongly advocate for including the full size range of prey items in
337 studies of predator-prey interactions. This is particularly important in the case of mixed prey
338 assemblages of different body sizes, where the presence of a high biomass prey item could
339 strongly affect mortality rates at low levels of prey density but have less effect at high prey

340 densities, as we observed on experimental reefs with red and purple urchins offered together.

341 The discrete plots of granite cobble that we used in these experiments could overestimate
342 urchin mortality rates relative to other urchin habitats (bedrock, urchin cups/bowls) if predators
343 are more likely to consume urchins from experimental reefs than natural habitats. However,
344 experimental plots are an established method used to test for density-dependent mortality of
345 subtidal prey (Schmitt 1987, Hixon and Carr 1997, Webster 2003), and the critical time at which
346 population regulation must occur to prevent a shift from a kelp forest to an urchin barren is when
347 urchins exhibit reduced crypsis when inadequate drift kelp forces them to emerge from shelter to
348 forage. Our reefs approximate this level of protection. Moreover, a recent meta-analysis showed
349 that predatory impacts on urchins increase with longer experimental duration and do not vary
350 with the size of the experimental plot (Sheppard-Brennand et al. 2017), so our short-term, small-
351 scale field experiment may actually be a conservative estimate of urchin mortality.

352 While urchin barrens and kelp forests are proposed to be alternative stable states (Filbee-
353 Dexter and Scheibling 2014, Ling et al. 2015), direct empirical evidence of their stability
354 remains lacking due to the difficulty of manipulating ecosystems at the spatial and temporal
355 scales required, and some authors have questioned whether rocky reefs truly support stable
356 alternative communities (Petraitis and Dudgeon 2004). The narrow region of direct density-
357 dependent mortality we observed is not sufficient on its own to confirm the idea of alternative
358 stable states on rocky reefs but does provide evidence that predators may be able to prevent a
359 forward shift from a kelp forest into an urchin barren if large red urchins are absent (due to
360 fishing, disease, etc.). This region of direct density dependence requires beginning in the kelp
361 forest state, and an urchin recruitment pulse (Hart and Scheibling 1988, Cardona et al. 2013)
362 could push the system beyond the threshold of where top-down control can act. At low prey
363 densities, predators exert top-down control on purple urchins via aggregation and size-selective
364 predation on small individuals, while at higher prey densities, similar to those in urchin barrens,
365 mortality is density-independent and top-down control no longer acts. This conceptual model is
366 supported by the overlap between our region of increasing proportional mortality and the
367 estimate of urchin biomass at which a forward shift from kelp forest dominance into urchin
368 barrens occurs on rocky reefs globally (Ling et al. 2015). Using test diameter-to-biomass
369 conversions (Shears et al. 2012), we estimated the density of urchins in our experiments (back-
370 calculated from mean biomass, see Appendix S1) at which the forward transition would occur

371 based on Ling et al.'s (2015) global mean estimate of this threshold. This estimate of 12.3 m^{-2} is
372 notably close to the point at which we document mortality shifting from density-dependent to
373 density-independent ($\sim 11\text{ m}^{-2}$; Fig. 2, Appendix S1: Fig. S2). Our threshold density is also
374 similar to the urchin density threshold between macroalgal and barren states on rocky reefs in the
375 northeast Atlantic (10 m^{-2} , Leinaas and Christie 1996). Across the northern Channel Islands,
376 kelp density and percent cover are negatively correlated with urchin density, which itself is
377 negatively related to sheepshead biomass, though no threshold relationships are apparent
378 (Hamilton and Caselle 2015). Importantly, only in areas where large sheepshead are present
379 (mainly MPAs) can they strongly affect urchin grazing potential via top-down control (Hamilton
380 and Caselle 2015). Spiny lobster and sheepshead density, size, and diet are all spatially variable
381 across the SC Bight (Hamilton et al. 2011, Caselle et al. 2011, Yaeger et al. 2017), and there is
382 variation in the strength of trophic cascades induced by fishing for urchin predators across
383 environmental gradients (Shears et al. 2008, Guenther et al. 2012). Thus, further tests are needed
384 to identify the contexts in which top-down control structures SC rocky reefs, particularly in the
385 face of growing anthropogenic threats to these systems.

386 Experimental manipulation of prey density can reveal mechanisms driving mortality
387 patterns, and knowledge of these mechanisms allows for predictions about whether density-
388 dependent mortality scales from small experimental plots up to larger areas (Steele and Forrester
389 2005). However, simply detecting a region of direct density dependence should not be
390 interpreted as a finding that predators are regulating their prey at the population level because
391 spatial density dependence does not necessarily lead to temporal density dependence (Forrester
392 et al. 2008), which is required to stabilize populations (Murdoch 1994). Using experimental tests,
393 we found that predators can cause spatial density dependence in mortality for urchins in some
394 cases, but that pattern is far from ubiquitous. We recommend that manipulative experiments
395 should accompany correlative surveys when attempting to determine the strength of top-down
396 population regulation.

397 **Acknowledgements**

398 Many divers and trap-pullers provided vital assistance collecting organisms, building reefs, and
399 counting urchins, but A. Harrington, I. Su, M. Yeager, and P. Saldaña deserve special mention.
400 Comments from T. Burnham, two anonymous reviewers, and the handling editor improved the
401 manuscript. This study was supported by the NSF Graduate Research Fellowship Program (grant

402 no. DGE-1252376), a NMFS/Sea Grant Population and Ecosystem Dynamics Fellowship, the
403 California State University Council on Ocean Affairs, Science & Technology, and by the Joint
404 Doctoral Program in Ecology at SDSU/UCD. This is Contribution No. 64 of the Coastal and
405 Marine Institute, San Diego State University.

406 **Literature cited**

407 Anderson, T. W. 2001. Predator responses, prey refuges, and density-dependent mortality of a
408 marine fish. *Ecology* 82:245–257.

409 Bates, D., M. Mächler, B. M. Bolker, and S. C. Walker. 2015. Fitting linear mixed-effects
410 models using lme4. *Journal of Statistical Software* 67:1–48.

411 Boada, J., S. Farina, R. Arthur, J. Romero, P. Prado, and T. Alcoverro. 2018. Herbivore control
412 in connected seascapes: habitat determines when population regulation occurs in the life
413 history of a key herbivore. *Oikos* 127:1195–1204.

414 Bolker, B. M. 2008. *Ecological Models and Data in R*. Princeton University Press.

415 Burt, J. M., M. T. Tinker, D. K. Okamoto, K. W. Demes, K. Holmes, and A. K. Salomon. 2018.
416 Sudden collapse of a mesopredator reveals its complementary role in mediating rocky reef
417 regime shifts. *Proceedings of the Royal Society B: Biological Sciences* 285:20180553.

418 Cardona, L., J. Moranta, O. Reñones, and B. Hereu. 2013. Pulses of phytoplanktonic
419 productivity may enhance sea urchin abundance and induce state shifts in Mediterranean
420 rocky reefs. *Estuarine, Coastal and Shelf Science* 133:88–96.

421 Caselle, J. E., S. L. Hamilton, D. M. Schroeder, M. S. Love, J. D. Standish, J. A. Rosales-Casián,
422 and O. Sosa-Nishizaki. 2011. Geographic variation in density, demography, and life
423 history traits of a harvested, sex-changing, temperate reef fish. *Canadian Journal of
424 Fisheries and Aquatic Sciences* 68:288–303.

425 Cowen, R. 1983. The effect of sheepshead (*Semicossyphus pulcher*) predation on red sea urchin
426 (*Strongylocentrotus franciscanus*) populations - an experimental analysis. *Oecologia*
427 58:249–255.

428 Dayton, P. K., M. J. Tegner, P. B. Edwards, and K. L. Riser. 1998. Sliding baselines, ghosts, and
429 reduced expectations in kelp forest communities. *Ecological Applications* 8:309–322.

430 DeAngelis, D. L. 1992. *Dynamics of nutrient cycling and food webs*. 1st edition. Chapman &
431 Hall, London, United Kingdom.

432 Dunn, R. P., M. L. Baskett, and K. A. Hovel. 2017. Interactive effects of predator and prey

433 harvest on ecological resilience of rocky reefs. *Ecological Applications* 27:1718–1730.

434 Eggleston, D. B. 1990. Functional responses of blue crabs *Callinectes sapidus* Rathbun feeding
435 on juvenile oysters *Crassostrea virginica* (Gmelin): effects of predator sex and size, and
436 prey size. *Journal of Experimental Marine Biology and Ecology* 143:73–90.

437 Ellis, D. M., and E. E. DeMartini. 1995. Evaluation of a video camera technique for indexing the
438 abundances of juvenile pink snapper, *Pristipomoides filamentosus*, and other Hawaiian
439 insular shelf fishes. *Fishery Bulletin* 93:67–77.

440 Estes, J. A., M. T. Tinker, T. M. Williams, and D. F. Doak. 1998. Killer whale predation on sea
441 otters linking oceanic and nearshore ecosystems. *Science* 282:473–476.

442 Filbee-Dexter, K., and R. E. Scheibling. 2014. Sea urchin barrens as alternative stable states of
443 collapsed kelp ecosystems. *Marine Ecology Progress Series* 495:1–25.

444 Forrester, G. E., and M. A. Steele. 2004. Predators, prey refuges, and the spatial scaling of
445 density-dependent prey mortality. *Ecology* 85:1332–1342.

446 Foster, M. S., M. S. Edwards, D. C. Reed, D. R. Schiel, and R. C. Zimmerman. 2006. Top-down
447 vs. bottom-up effects in kelp forests. *Science* 313:1737–1739.

448 Foster, M. S., and D. R. Schiel. 2010. Loss of predators and the collapse of southern California
449 kelp forests (?): Alternatives, explanations and generalizations. *Journal of Experimental
450 Marine Biology and Ecology* 393:59–70.

451 Gascoigne, J. C., and R. N. Lipcius. 2004. Allee effects driven by predation. *Journal of Applied
452 Ecology* 41:801–810.

453 Guenther, C. M., H. S. Lenihan, L. E. Grant, D. Lopez-Carr, and D. C. Reed. 2012. Trophic
454 cascades induced by lobster fishing are not ubiquitous in southern California kelp forests.
455 PLoS ONE 7:e49396.

456 Guidetti, P. 2006. Marine reserves reestablish lost predatory interactions and cause community
457 changes in rocky reefs. *Ecological Applications* 16:963–976.

458 Hairston, N. G., F. E. Smith, and L. B. Slobodkin. 1960. Community structure, population
459 control, and competition. *American Naturalist*:421–425.

460 Halpern, B. S., K. Cottenie, and B. R. Broitman. 2006. Strong top-down control in southern
461 California kelp forest ecosystems. *Science* 312:1230–1232.

462 Hamilton, S. L., and J. E. Caselle. 2015. Exploitation and recovery of a sea urchin predator has
463 implications for the resilience of southern California kelp forests. *Proceedings of the*

464 Royal Society of London B: Biological Sciences 282:20141817.

465 Hamilton, S. L., J. E. Caselle, C. A. Lantz, T. L. Egloff, E. Kondo, S. D. Newsome, K. Loke-

466 Smith, and D. J. Pondella. 2011. Extensive geographic and ontogenetic variation

467 characterizes the trophic ecology of a temperate reef fish on southern California (USA)

468 rocky reefs. *Marine Ecology Progress Series* 429:227.

469 Harrison, S., and N. Cappuccino. 1995. Using density-manipulation experiments to study

470 population regulation. Pages 131–147 in N. Cappuccino and P. W. Price, editors.

471 Population dynamics: new approaches and synthesis. Academic Press, New York, New

472 York, USA.

473 Hart, M. W., and R. E. Scheibling. 1988. Heat waves, baby booms, and the destruction of kelp

474 beds by sea urchins. *Marine Biology* 99:167–176.

475 Hixon, M. A., and M. H. Carr. 1997. Synergistic predation, density dependence, and population

476 regulation in marine fish. *Science* 277:946–949.

477 Hixon, M. A., and M. S. Webster. 2002. Density dependence in marine fishes: coral reef populations

478 as model systems. Pages 303–325 in P. F. Sale, editor. *Coral reef fishes: dynamics and*

479 *diversity in a complex ecosystem*. Academic Press, San Diego, California, USA.

480 Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. *The*

481 *Canadian Entomologist* 91:385–398.

482 Holling, C. S. 1965. The functional response of predators to prey density and its role in mimicry

483 and population regulation. *The Memoirs of the Entomological Society of Canada* 97:5–60.

484 Hovel, K. A., D. J. Neilson, and P. E. Parnell. 2015, January. Baseline characterization of

485 California spiny lobster (*Panulirus interruptus*) in South Coast marine protected areas-

486 Final report. California Sea Grant.

487 Johnson, D. W. 2006. Predation, habitat complexity, and variation in density-dependent

488 mortality of temperate reef fishes. *Ecology* 87:1179–1188.

489 Kay, M. C., H. S. Lenihan, C. M. Guenther, J. R. Wilson, C. J. Miller, and S. W. Shrout. 2012.

490 Collaborative assessment of California spiny lobster population and fishery responses to

491 a marine reserve network. *Ecological Applications* 22:322–335.

492 Lafferty, K. D. 2004. Fishing for lobsters indirectly increases epidemics in sea urchins.

493 *Ecological Applications* 14:1566–1573.

494 Lafferty, K. D., and M. T. Tinker. 2014. Sea otters are recolonizing southern California in fits

495 and starts. *Ecosphere* 5:art50.

496 Leinaas, H. P., and H. Christie. 1996. Effects of removing sea urchins (*Strongylocentrotus*
497 *droebachiensis*): stability of the barren state and succession of kelp forest recovery in the
498 east Atlantic. *Oecologia* 105:524–536.

499 Ling, S. D., R. E. Scheibling, A. Rassweiler, C. R. Johnson, N. Shears, S. D. Connell, A. K.
500 Salomon, K. M. Norderhaug, A. Pérez-Matus, J. C. Hernández, S. Clemente, L. K.
501 Blamey, B. Hereu, E. Ballesteros, E. Sala, J. Garrabou, E. Cebrian, M. Zabala, D. Fujita,
502 and L. E. Johnson. 2015. Global regime shift dynamics of catastrophic sea urchin
503 overgrazing. *Philosophical Transactions of the Royal Society of London B: Biological*
504 *Sciences* 370:20130269.

505 McArdle, D. A. 2008. Integrating ecology and history to understand historical marine population
506 dynamics: a case study of the California spiny lobster. PhD Dissertation, University of
507 California, Santa Barbara, Santa Barbara, California, USA.

508 Murdoch, W. W. 1994. Population regulation in theory and practice. *Ecology* 75:271–287.

509 Murdoch, W. W., and A. Oaten. 1975. Predation and population stability. Pages 1–131 in A.
510 MacFadyen, editor. *Advances in Ecological Research*. Academic Press.

511 Nichols, K. D., L. Segui, and K. A. Hovel. 2015. Effects of predators on sea urchin density and
512 habitat use in a southern California kelp forest. *Marine Biology* 162:1227–1237.

513 Nicholson, A. J. 1933. The balance of animal populations. *Journal of Animal Ecology* 2:132–178.

514 Oaten, A., and W. W. Murdoch. 1975. Functional response and stability in predator-prey
515 systems. *American Naturalist*:289–298.

516 Overholtzer-McLeod, K. L. 2006. Consequences of patch reef spacing for density-dependent
517 mortality of coral-reef fishes. *Ecology* 87:1017–1026.

518 Paine, R. T. 1974. Intertidal community structure. *Oecologia* 15:93–120.

519 Petraitis, P. S., and S. R. Dudgeon. 2004. Detection of alternative stable states in marine
520 communities. *Journal of Experimental Marine Biology and Ecology* 300:343–371.

521 Pritchard, D. W., R. A. Paterson, H. C. Bovy, and D. Barrios-O'Neill. 2017. *frair*: an R package
522 for fitting and comparing consumer functional responses. *Methods in Ecology and*
523 *Evolution* 8:1528–1534.

524 Real, L. A. 1977. The kinetics of functional response. *The American Naturalist* 111:289–300.

525 Rogers, D. 1972. Random search and insect population models. *The Journal of Animal*

526 Ecology:369–383.

527 Sala, E., C. F. Boudouresque, and M. Harmelin-Vivien. 1998. Fishing, trophic cascades, and the
528 structure of algal assemblages: Evaluation of an old but untested paradigm. *Oikos*
529 82:425–439.

530 Sandin, S. A., and S. W. Pacala. 2005. Fish aggregation results in inversely density-dependent
531 predation on continuous coral reefs. *Ecology* 86:1520–1530.

532 Scheibling, R. E. 1996. The role of predation in regulating sea urchin populations in eastern
533 Canada. *Oceanologica Acta* 19:421–430.

534 Schiel, D. R., and M. S. Foster. 2015. The biology and ecology of giant kelp forests. University
535 of California Press, Berkeley, US.

536 Schmitt, R. J. 1987. Indirect interactions between prey: apparent competition, predator
537 aggregation, and habitat segregation. *Ecology* 68:1887–1897.

538 Seitz, R. D., R. N. Lipcius, A. H. Hines, and D. B. Eggleston. 2001. Density-dependent
539 predation, habitat variation, and the persistence of marine bivalve prey. *Ecology*
540 82:2435–2451.

541 Selden, R. L., S. D. Gaines, S. L. Hamilton, and R. R. Warner. 2017. Protection of large
542 predators in a marine reserve alters size-dependent prey mortality. *Proc. R. Soc. B*
543 284:20161936.

544 Shears, N. T., and R. C. Babcock. 2002. Marine reserves demonstrate top-down control of
545 community structure on temperate reefs. *Oecologia* 132:131–142.

546 Shears, N. T., R. C. Babcock, and A. K. Salomon. 2008. Context-dependent effects of fishing:
547 variation in trophic cascades across environmental gradients. *Ecological Applications*
548 18:1860–1873.

549 Shears, N. T., D. J. Kushner, S. L. Katz, and S. D. Gaines. 2012. Reconciling conflict between
550 the direct and indirect effects of marine reserve protection. *Environmental Conservation*
551 39:225–236.

552 Sheppard-Brennan, H., S. A. Dworjanyn, and A. G. B. Poore. 2017. Global patterns in the
553 effects of predator declines on sea urchins. *Ecography* 40:1029–1039.

554 Shurin, J. B., and E. W. Seabloom. 2005. The strength of trophic cascades across ecosystems:
555 predictions from allometry and energetics. *Journal of Animal Ecology* 74:1029–1038.

556 Solomon, M. 1949. The natural control of animal populations. *Journal of Animal Ecology* 18:1–35.

557 Steele, M. A., and G. E. Forrester. 2005. Small-scale field experiments accurately scale up to
558 predict density dependence in reef fish populations at large scales. *Proceedings of the*
559 *National Academy of Sciences* 102:13513–13516.

560 Stevenson, C. F., K. W. Demes, and A. K. Salomon. 2016. Accounting for size-specific
561 predation improves our ability to predict the strength of a trophic cascade. *Ecology and*
562 *Evolution* 6:1041–1053.

563 Teck, S. J., J. Lorda, N. T. Shears, T. W. Bell, J. Cornejo-Donoso, J. E. Caselle, S. L. Hamilton,
564 and S. D. Gaines. 2017. Disentangling the effects of fishing and environmental forcing on
565 demographic variation in an exploited species. *Biological Conservation* 209:488–498.

566 Tegner, M. J., and P. K. Dayton. 1977. Sea urchin recruitment patterns and implications of
567 commercial fishing. *Science* 196:324–326.

568 Tegner, M. J., and L. A. Levin. 1983. Spiny lobsters and sea urchins: analysis of a predator-prey
569 interaction. *Journal of Experimental Marine Biology and Ecology* 73:125–150.

570 Toscano, B. J., and B. D. Griffen. 2013. Predator size interacts with habitat structure to
571 determine the allometric scaling of the functional response. *Oikos* 122:454–462.

572 Turchin, P. 1995. Population regulation: old arguments and a new synthesis. Pages 19–40 in N.
573 Cappuccino and P. W. Price, editors. *Population dynamics: new approaches and*
574 *synthesis*. Academic Press, New York, New York, USA.

575 Watson, J., and J. A. Estes. 2011. Stability, resilience, and phase shifts in rocky subtidal
576 communities along the west coast of Vancouver Island, Canada. *Ecological Monographs*
577 81:215–239.

578 Webster, M. S. 2003. Temporal density dependence and population regulation in a marine fish.
579 *Ecology* 84:623–628.

580 White, J. W., J. F. Samhouri, A. C. Stier, C. L. Wormald, S. L. Hamilton, and S. A. Sandin.
581 2010. Synthesizing mechanisms of density dependence in reef fishes: behavior, habitat
582 configuration, and observational scale. *Ecology* 91:1949–1961.

583 Worm, B., and R. A. Myers. 2003. Meta-analysis of cod–shrimp interactions reveals top-down
584 control in oceanic food webs. *Ecology* 84:162–173.

585 Yaeger, K. G., C. S. Culver, S. C. Schroeter, and H. M. Page. 2017. Utility of a collaborative at-
586 sea sampling program (CASP) for the California spiny lobster commercial fishery: catch
587 characteristics and implications for management. *Marine and Coastal Fisheries* 9:190–202.

588

589 **Data availability:** Data and analyses associated with this manuscript are available on the Dryad
 590 Digital Repository: <https://doi.org/10.5061/dryad.50t6sq6>

591

592 **Table 1:** Results of generalized linear mixed models (GLMMs) testing for density-dependent
 593 urchin mortality in field experiments.

Models and effects	<i>Estimate/Variance</i>	<i>Std. Error/Std.</i>	<i>z</i>	<i>p</i>				
	<i>Deviation</i>							
Full model								
Fixed effects								
Intercept	-3.504	0.531	-6.602	<0.001				
Initial density	-0.001	0.010	-0.139	0.889				
Urchin treatment	1.257	0.496	2.534	0.011				
Experimental site	1.054	0.470	2.243	0.025				
Sampling period	1.995	0.139	14.293	<0.001				
Random effects								
Reef:Trial	0.763	0.873						
Trial	0.695	0.834						
Purple urchin- only model								
Fixed effects								
Intercept	-1.256	0.226	-5.551	<0.001				
Experimental site	0.727	0.299	2.433	0.015				
Experimental year	-1.800	0.304	-5.918	<0.001				
Sampling period	1.906	0.161	11.842	<0.001				
Random effects								
Reef:Trial	0.774	0.879						
Trial	0.000	0.000						

Purple + red model

Fixed effects

Intercept	-4.319	0.517	-8.35	<0.001
Initial density	-0.006	0.015	-0.428	0.669
Experimental site	2.558	0.410	6.231	<0.001
Sampling period	2.223	0.278	7.986	<0.001

Random effects

Reef:Trial	0.319	0.565
Trial	0.047	0.217

594

595 Notes: For each analysis we show only the output for the final selected model. Estimate and
 596 standard error values are for coefficients of fixed factors, with Point Loma, 2014, and 1 h
 597 sampling periods as references, respectively. Variance and standard deviation apply to random
 598 effects. Model AICs are as follows: full model = 635.2; purple urchin-only model = 427.6;
 599 purple + red model = 181.4.

600 **Table 2:** Results of generalized linear mixed models (GLMMs) testing for density-dependent
 601 urchin mortality in low vs. high urchin density plots, which are representative of kelp forest and
 602 urchin barrens, respectively.

Density and effects	Estimate/Variance	Std. Error/Std.	z	p
Random effects				
<hr/>				
Purple-only low density				
Fixed effects				
Intercept	-2.251	0.639	-3.522	<0.001
Initial density	0.150	0.065	2.325	0.020
Experimental year	-1.636	0.476	-3.435	<0.001
Sampling period	2.257	0.376	6.00	<0.001
Random effects				
Reef:Trial	0.309	0.556		

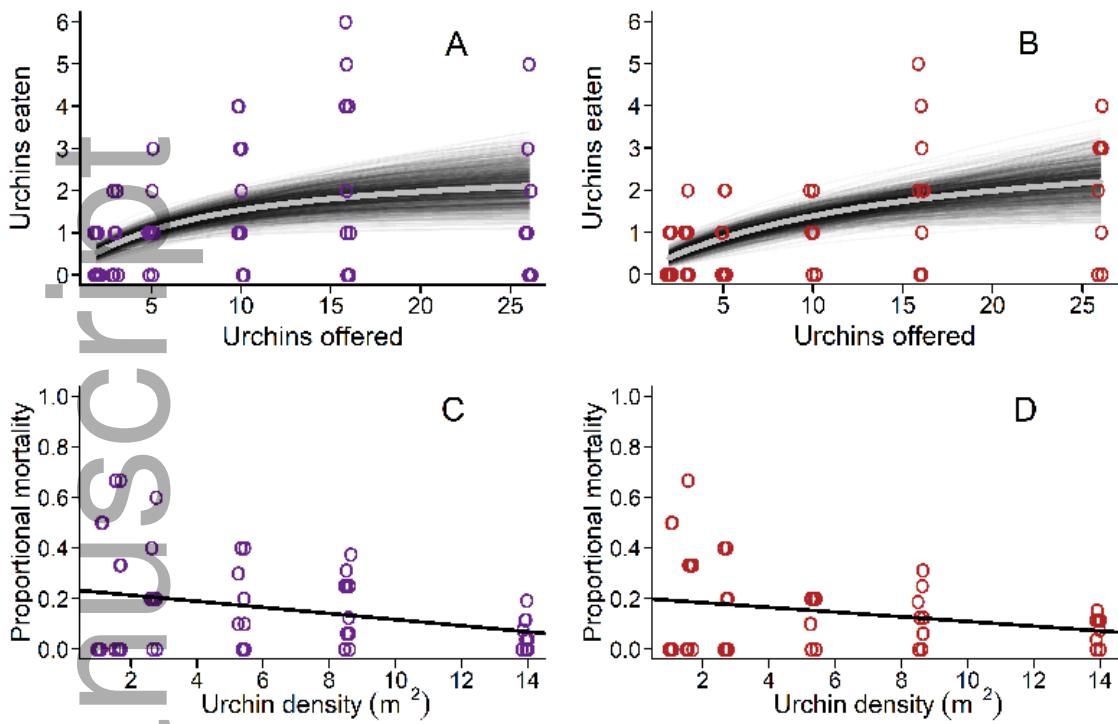
Trial	0.153	0.391		
Purple-only high density				
Fixed effects				
Intercept	-1.382	0.283	-4.874	<0.001
Experimental site	1.144	0.376	3.038	0.002
Experimental year	-1.928	0.383	-5.036	<0.001
Sampling period	1.818	0.178	10.22	<0.001
Random effects				
Reef:Trial	0.775	0.88		
Trial	0.000	0.000		
Purple + red low density				
Fixed effects				
Intercept	-4.08	0.880	-4.634	<0.001
Experimental site	2.939	0.847	3.469	<0.001
Sampling period	1.638	0.546	3.001	0.003
Random effects				
Reef: Trial	0.530	0.728		
Trial	<0.001	<0.001		
Purple + red high density				
Fixed effects				
Intercept	-4.644	0.476	-9.748	<0.001
Experimental site	2.403	0.459	5.235	<0.001
Sampling period	2.452	0.333	7.358	<0.001
Random effects				
Reef:Trial	0.277	0.527		
Trial	0.057	0.239		

603

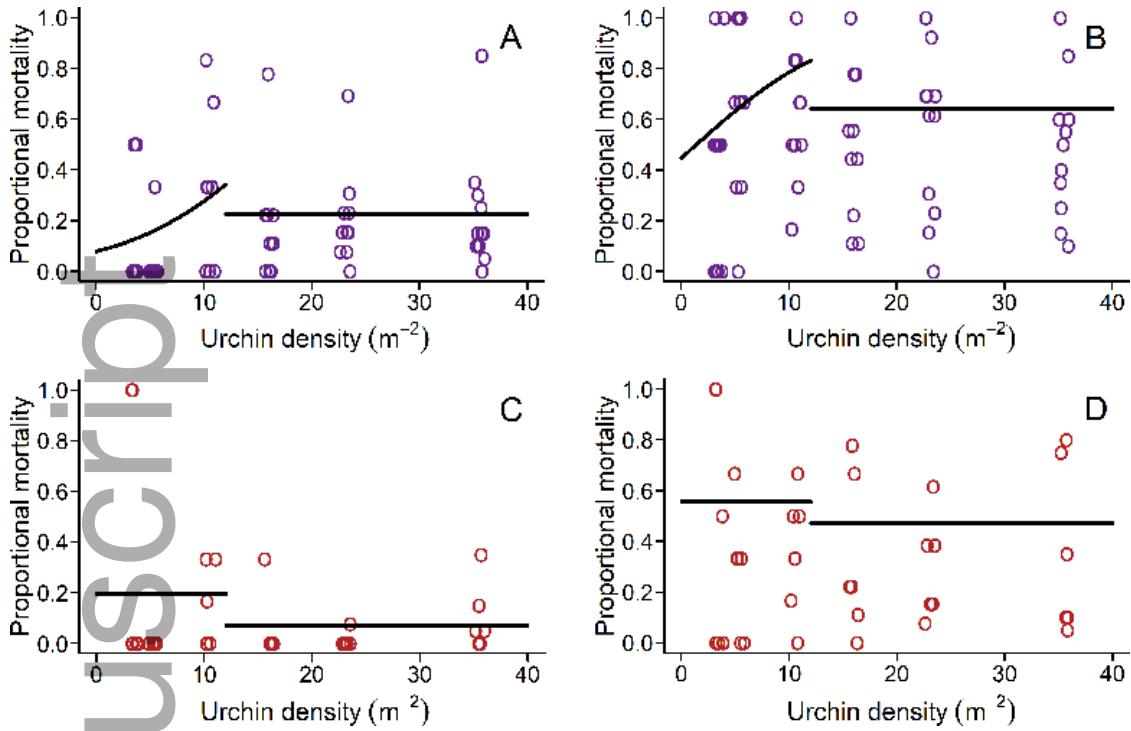
604 Notes: For each analysis we show only the output for the final selected model. Estimate and
 605 standard error values are for coefficients of fixed factors, with the same references as Table 1.
 606 Variance and standard deviation apply to random effects. Density AICs are as follows: purple-

607 only low density = 146.5; purple-only high density = 282.9; purple + red low density = 68.3;
608 purple + red high density = 117.5.

609

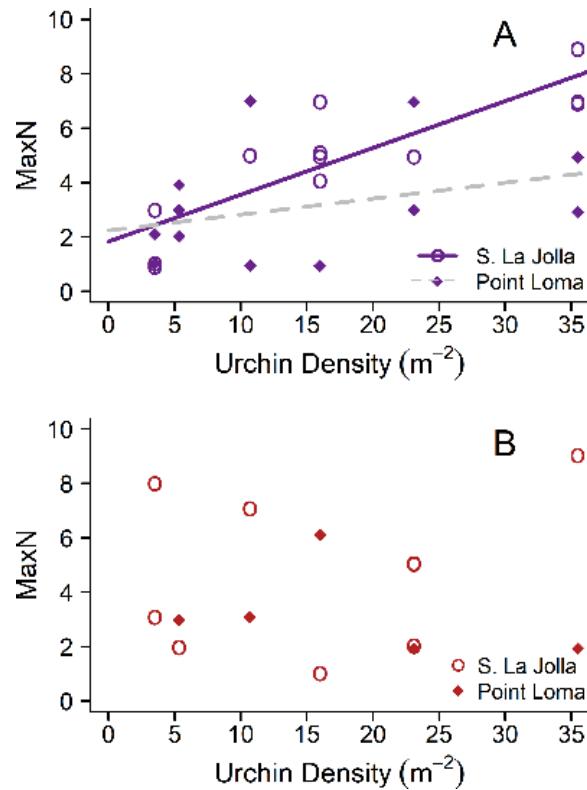

610

611 **Figure legends**


612 **Fig. 1:** Functional responses of individual spiny lobster predators to purple urchin prey (A) and
613 purple plus red urchin prey offered simultaneously (B). In each, the thick gray line is the best-fit
614 functional response, and thin, dark lines are bootstrapped estimates. Points are raw data jittered
615 horizontally. Panels C and D show proportional mortality of urchin prey fit with linear regression
616 (Panel C, purple urchins only: $F_{1,64} = 5.398, p = 0.0233$; Panel D, purple plus red urchins: $F_{1,52} =$
617 $3.625, p = 0.0624$). Both show a decline in mortality with increasing prey density, characteristic
618 of a saturating functional response.

619 **Fig. 2:** Proportional mortality of urchins in field trials for purple urchins alone, (Panels A, B; n =
620 11 trials) and for purple plus red urchins offered together (Panels C, D; n = 6 trials) after 1 h (A,
621 C) and 24 h (B, D). Points are jittered horizontally. Mortality prediction curves are from the
622 models with the lowest AIC for low and high density reefs analyzed separately for each urchin
623 species combination. Data are pooled across experimental sites and years (for purple urchin-only
624 trials); see Table 2 for statistical output for all factors.

625 **Fig. 3:** Fish aggregative response to sea urchin density in the field. The response variable,
626 MaxN, is the highest number of fish simultaneously foraging. Panel A shows results for purple
627 urchin only trials (2014 and 2017), with trials conducted in Point Loma as diamonds and those in
628 South La Jolla as open circles. Site and urchin density interacted in our full model, so while we
629 plot prediction lines for both sites, urchin density was a significant predictor for South La Jolla
630 ($p < 0.001, R^2 = 0.75$, solid purple line) but not Point Loma ($p = 0.264, R^2 = 0.10$, dashed grey).
631 Panel B shows data from trials with purple plus red urchins. Urchin density was not a significant
632 predictor of MaxN when red and purple urchins were offered together ($p = 0.801$).



ecy_2625_f1.tif

ecy_2625_f2.tif

Author Manuscript

ecy_2625_f3.tif