

Rescue PCR: Reagent-rich PCR recipe improves amplification of degraded DNA extracts

Bobbi M. Johnson^a and Brian M. Kemp^b

^aSchool of Biological Sciences, Washington State University, PO Box 644236 Pullman, WA 99164, USA

^bDepartment of Anthropology, University of Oklahoma, Norman, OK 73019

Email address: bobbi.johnson@wsu.edu (corresponding author), bmkemp@ou.edu

Abstract

Minimizing the inadvertent co-extraction of polymerase chain reaction (PCR) inhibitors and/or subduing their influence are two of the most pervasive challenges in the study of ancient DNA (aDNA). Some commonly employed methods to circumvent inhibition include dilution of DNA extracts and/or removal of inhibitors via silica-based treatments. While these methods have been shown to be effective, they may not be useful for all aDNA extracts. Samples with very low copy number, for instance, may not benefit from such methods, as dilutions lower DNA concentration in tandem with the inhibitors, and some DNA loss is expected to follow silica-based treatments. Therefore, the development of additional options to overcome PCR inhibition is at a premium. In this study, we present evidence that a reagent-rich PCR protocol, where all reagents are increased in equal relative proportion can increase amplification success when DNA concentration is reduced relative to inhibitors. The reagent-rich PCR recipe, termed *rescue PCR*, increased amplification success by 51% for the 112 extracts used in the study. Rescue PCR represents a simple and robust addition to the suite of options currently available to work with DNA in the presence of inhibition, especially ancient, degraded, and low copy number DNA extracts.

1 1. Introduction

2
3 Polymerase chain reaction (PCR), the *in vitro* process by which small amounts of template DNA
4 can be copied and exponentially increased in copy number, has transformed molecular biology
5 (Bartlett and Stirling, 2003, Palumbi, 1996). Despite several decades of refinement, some
6 challenges remain. In particular, as PCR is dependent on enzymes, it is subject to inhibition. PCR
7 inhibition is a failure to copy available DNA molecules due to the presence of some extraneous
8 substance or substances, the inhibitor(s). Given that adequate DNA is present in an eluate,
9 inhibition is one of the most frequent causes of PCR failure (Alaeddini, 2012). To this end,
10 analysis of DNA derived from low copy number (LCN), ancient and/or degraded samples can be
11 especially challenging, as such specimens have often spent time buried in the ground and/or in
12 contact with environmentally-based inhibitory substances (Alaeddini, 2012, Kemp, et al., 2014a,
13 Schrader, et al., 2012). While DNA recovered from these types of samples may be especially
14 prone to PCR inhibition, this phenomenon has also been well documented in studies utilizing

15 clinical, food, and other contemporary sample sources (Al-Soud and Rådström, 2001, Alaeddini,
16 2012, Rådström, et al., 2004, Rossen, et al., 1992, Schrader, et al., 2012, Wiedbrauk, et al., 1995).

17
18 The list of compounds that can act as inhibitors to PCR is as long as it is diverse. Some inhibitors
19 may be introduced during sample processing and/or DNA extraction. Types of such inhibitors
20 include salts (e.g., sodium or potassium chloride), detergents, ethanol, isopropyl, phenol, and
21 even powder from laboratory gloves (Burkhardt, 2000, Demeke and Jenkins, 2010, Katcher and
22 Schwartz, 1994, Schrader, et al., 2012, Weyant, et al., 1990, Wilson, 1997). In these cases, proper
23 protocol selection and careful processing may be able to neutralize or minimize the effects of
24 these inhibitors (Rådström, et al., 2008, Schrader, et al., 2012, Weyant, et al., 1990).

25
26 Naturally occurring environmental substances such as copper, humic acids, iron, lead, as well as
27 substances that exist in the samples themselves (e.g., calcium and collagen in bone and/or
28 connective tissue, melanin in hair and skin, hematin in blood, among others) can also inhibit PCR
29 [for reviews see Alaeddini (2012), Kemp, et al. (2006), and Schrader, et al. (2012)]. Similarly, if
30 present, exogenous non-target DNA can reduce the efficiency of PCR when present in high
31 enough concentrations (Tebbe and Vahjen, 1993, Wilson, 1997). Inhibitors of these types are
32 more difficult to exclude from processing as their sample-incorporated nature means they might
33 be co-extracted with target DNA, despite even the most impeccable laboratory procedures.

34
35 The presence and effect of inhibitors has been well documented, but determining the actual
36 mechanism of inhibition has proven more challenging (Alaeddini, 2012). Potential mechanisms
37 include interference with cell lysing during DNA extraction as well as interference with
38 polymerase, primer binding sites, and/or template DNA during PCR (Bickley, et al., 1996, Eckhart,
39 et al., 2000, Opel, et al., 2010, Wilson, 1997). These mechanisms may be predictable for some
40 specific inhibitors. For example, calcium, hematin, and tannic acid are indicated to act directly on
41 polymerase, melanin appears to bind to DNA template molecules, and collagen exhibits both
42 these behaviors (Opel, et al., 2010). Detailed mechanisms that drive inhibition are beyond the
43 scope of this article, for in-depth information see Alaeddini (2012), Opel, et al. (2010), Schrader,
44 et al. (2012), Wilson (1997). While these classifications may be informative, they are based on
45 controlled experiments where known inhibitors, at known concentrations, are added to DNA
46 standards and the outcomes observed. As such, they may lack direct application in the
47 laboratory where, in any given DNA eluate, there can exist unknown concentrations of an
48 unknown number of different inhibitory substances.

49
50 Practical investigations into inhibition have focused on strategies to remove inhibitors and/or
51 subdue their influence. For example, removal of inhibitors can be accomplished via treatments in
52 which DNA is bound to silica, thus allowing inhibitors, theoretically, to be washed away prior to
53 releasing the DNA back into solution (Kemp, et al., 2006, Yang, et al., 1998). In fact, subjection of
54 eluates to repeated rounds of silica extraction has been found to be particularly useful (Grier, et
55 al., 2013, Kemp, et al., 2014a, Moss, et al., 2014). In addition to removal strategies, several
56 methods for the circumvention of inhibition have been demonstrated. The most common is
57 direct dilution of DNA extracts, which likely lowers the level of inhibitors below some “threshold”
58 at which PCR can successfully copy DNA (Alaeddini, 2012, Kemp, et al., 2006). Modifications of

59 the PCR recipe have also been demonstrated as a means to amplify DNA in the presence of
60 inhibitors. Adding protein-based facilitators such as bovine serum albumin (BSA) to PCR reactions
61 may bind and inactivate some types of inhibitors (Juen and Traugott, 2006, Kreader, 1996).
62 Increasing the concentration of polymerase and/or its magnesium cofactor (e.g., in the form of
63 $MgCl_2$) may also aid in overcoming inhibition (Rådström, et al., 2008, Wilcox, et al., 1993).
64 Additionally, alternating or blending multiple polymerases for use in PCR recipe has also been
65 demonstrated to effectively overcome inhibition, as certain polymerases appear to have
66 decreased susceptibility to specific types of inhibitors (Al-Soud and Rådström, 1998, Belec, et al.,
67 1998, Eilert and Foran, 2009, Hedman, et al., 2010, Monroe, et al., 2013). Real-time PCR (qPCR)
68 has also been used to study inhibition (Hudlow, et al., 2008, Kontanis and Reed, 2006, Opel, et
69 al., 2010, Swango, et al., 2007, Swango, et al., 2006). Pairwise comparisons of qPCR results can
70 be used to characterize, and then optimize for, specific PCR inhibitors (Opel, et al., 2010).
71 However, these methods require repeated analysis for comparison, resulting in additional
72 consumption of DNA template and may not be possible in all cases.
73

74 In practice, any DNA sample can be subject to a potential sundry of inhibitors, the outcomes of
75 which can vary between samples, eluates, and PCR reactions (Huggett, et al., 2008). While
76 methods exist to remove or dilute inhibitors, eluates with very low concentrations of DNA may
77 not benefit from such applications. In the case of removal methods, for each treatment some
78 loss of DNA will occur along with inhibitor removal, which is a particularly undesired outcome
79 when processing eluates with low DNA concentrations (Barta, et al., 2014b, Kemp, et al., 2014b).
80 Similarly, when eluates are diluted, the DNA concentration will be reduced in parallel with
81 inhibitors, as such this also may not be an effective strategy for processing samples with low
82 DNA concentrations (Alaeddini, 2012, Ye, et al., 2004). Thus, modifications to the PCR recipe may
83 represent better options for PCR amplification from these types of samples. In any case, it offers
84 an alternative approach that a researcher may elect to try. Here we present evidence that even
85 low-levels of inhibition can produce false-negatives when DNA concentrations are reduced and,
86 in turn, provide a simple and effective method to overcome such inhibition and obtain DNA
87 amplification. In homage to Gilbert and Willerslev (2007) who suggested that new polymerases
88 may help “rescue” ancient DNA, we term our new method “rescue PCR”, a strategy based on a
89 reagent-rich PCR recipe.
90
91

92 2. Materials and methods

93

94 All pre-PCR laboratory work (DNA extraction and PCR set-up) was conducted in the ancient DNA
95 lab at Washington State University. Strict laboratory protocols are in place in this laboratory to
96 closely monitor and minimize contamination to ensure the authenticity of results (Kemp and
97 Smith, 2010).
98
99

100 2.1. Sample sources

101 A total of 227 fish vertebrae were acquisitioned from two archaeological collections. Collections
102 were indicated to contain primarily salmonids (*Salmonidae*) along with minnows (*Cyprinidae*) and

103 suckers (*Catostomidae*). The first collection is comprised of materials from seven excavation
104 locations coinciding with four contemporary dams along the Snake and Columbia Rivers
105 (locations 1-4 depicted in Figure 1). The first site, Strawberry Island (45FR5) in the McNary
106 Reservoir, is an excavated house pit village with materials dating to 2000 – 200 years before
107 present (YBP) (Schalk, et al., 1983). The second site, Windust Caves (45FR46), is located near Ice
108 Harbor Dam. These caves were used as ancient storage and camp shelters with materials dating
109 9000 – 200 YBP (Jenkins, 2011, Rice, 1965, Thompson, 1985). The caves were inundated by Lake
110 Sacajawea in 1961, after the completion of the lock and dam. Three ancient house pit villages:
111 Harder (45FR40), Hatiuhpuh (45WT134), and Three Springs Bar (45FR39) are located near the
112 Lower Monumental Dam. Materials sampled from these sites date to ~1500 YBP (Harder), 4000
113 – 500 YBP (Hatiuhpuh), and 3000 – 200 YBP (Three Springs Bar) (Brauner, 1990, Browman and
114 Munsell, 1969, Daugherty, et al., 1967, Funk, 1998, Hicks, 2004). Two sites, Granite Point
115 (45WT41) and Wexusnime (45GA61) are located near Lower Granite Dam. Granite Point is an
116 ancient camp site with materials dating from 10000 – 200 YBP (Leonhardy, 1969). The
117 Wexusnime site is comprised of two components, a camp site with materials dated to pre-8000
118 YBP as well as a house pit village with materials dating to 500 YBP (Nakonechny, 1998). Samples
119 from these seven locations will be collectively referred to as the *Snake River group*. The second
120 sample of vertebrae originated from a collection of materials excavated at an ancient fishing site
121 near the Spokane River (45SP266) (location 5 depicted in Figure 1) with two components,
122 approximated at 2500 and 3250 YBP (Galm, 1994). These samples will be collectively referred to
123 as the *Spokane River group*.

124

125

126 2.2. DNA extractions

127 Three hundred and thirty-four extractions were conducted from the 227 vertebrae using one of
128 two methods. One hundred and fifty-five extractions were generated using the first method
129 (henceforth referred to as *Extraction Method 1*) from approximately 7 - 48 mg of bone carefully
130 removed from the whole. These portions of bone were submerged in 6% (w/v) sodium
131 hypochlorite (bleach) for 4 min (Barta, et al., 2013) and the bleach poured off. The samples were
132 then twice submerged in DNA-free water, with the water poured off following each submersion.
133 Samples were transferred to 1.5 mL tubes, to which aliquots of 500 µL of
134 ethylenediaminetetraacetic acid (EDTA) were added, and gently rocked at room temperature for
135 >48 hours. Samples were extracted in batches of seven with one accompanying extraction
136 negative control per batch. The negative control consisted of 500 µL of EDTA to which no bone
137 sample was added. DNA was extracted following the WSU method described by Cui et al. (2013)
138 and summarized here. Following EDTA treatment, three milligrams proteinase K was added and
139 the samples were incubated for 3 hours at 65°C. To this digestion, 750 µL of 2% celite in 6 M
140 guanidine HCl and 250 µL of 6 M guanidine HCl was added and the tubes vortexed numerous
141 times over a 2-minute period. The mixtures were then pulled across Promega Wizard®
142 Minicolumns via Luer-Lok syringes attached to a vacuum manifold. Syringes and columns were
143 rinsed with 3mL DNA-free water prior to introducing the extraction mixture. Silica pellets were
144 rinsed on the filter by pulling 3 mL of 80% isopropanol across the columns. Columns were
145 transferred to 1.5mL tubes and centrifuged at 10,000 g for 2 minutes. The columns were then
146 transferred to new 1.5 mL tubes to which 50 µL of 65°C DNA-free water was added. Columns

147 were incubated at room temperature for 3 minutes and then centrifuged at 10,000 g for 30
148 seconds. An additional 50 μ L of 65°C DNA-free water was added and the incubation and
149 centrifugation repeated, resulting in a final volume of 100 μ L.

150
151 One hundred and seventy-nine extractions were generated with the second method (henceforth
152 referred to as *Extraction Method 2*) from approximately 53 - 412 mg of bone carefully removed
153 from the whole. These portions of bone were submerged in 6% (w/v) sodium hypochlorite
154 (bleach) for 4 min (Barta, et al., 2013) and the bleach poured off. The samples were then twice
155 submerged in DNA-free water, with the water poured off following submersion. Samples were
156 transferred to 15 mL tubes, to which aliquots of 3 mL of EDTA were added, and gently rocked at
157 room temperature for >48 hours. Samples were extracted in batches of seven with one
158 accompanying extraction negative control per batch. The negative control consisted of 3 mL of
159 EDTA to which no bone sample was added. DNA was extracted following a modified protocol of
160 Kemp et al. (2007) described by Moss et al. (2014) and summarized here. Following EDTA
161 treatment, three milligrams proteinase K was added and samples were incubated for 3 hours at
162 65°C. Following this, an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1) was added
163 to the EDTA and briefly rocked to mix. Tubes were then centrifuged at 3,000 rpm for 5 min and
164 the aqueous phase transferred to new tubes containing one volume phenol:chloroform:isoamyl
165 alcohol (25:24:1). Tubes were vortexed and centrifuged as just described and the resulting
166 aqueous phase was transferred to new tubes containing one volume chloroform:isoamyl alcohol
167 (24:1). Tubes were vortexed briefly and centrifuged at 3,000 rpm for 3 min. The aqueous phase
168 was transferred to a new tube to which one half volume of room temperature 5 M ammonium
169 acetate one combined volume (equaling the aqueous phase and the ammonium acetate) of
170 room temperature 100% isopropanol, as suggested by Hänni, et al. (1995). DNA was precipitated
171 overnight at room temperature and then pelleted via centrifugation at 3,000 rpm for 30
172 minutes. The liquid was gently poured off and the inverted tubes air dried for 15 minutes. DNA
173 pellets were washed with 1 mL of 80% ethanol and vortexed. DNA was re-pelleted by an
174 additional centrifugation at 3,000 rpm for 30 minutes before gently decanting the ethanol and
175 once again inverted and air dried for 15 min. Once completely dry, DNA was resuspended in 300
176 μ L of 55°C DNA-free water. To this 750 μ L of 2% celite in 6 M guanidine HCl and 250 μ L of 6 M
177 guanidine HCl were added and the tubes vortexed numerous times over a 2-minute period. The
178 mixtures were then pulled across Promega Wizard® Minicolumns via Luer-Lok syringes attached
179 to a vacuum manifold. Syringes and columns were rinsed with 3mL DNA-free water prior to
180 introducing the extraction mixture. Silica pellets were rinsed on the filter by pulling 3 mL of 80%
181 isopropanol across the columns. Columns were transferred to 1.5mL tubes and centrifuged at
182 10,000 g for 2 minutes. The columns were then transferred to new 1.5 mL tubes to which 50 μ L
183 of 65°C DNA-free water was added. Columns were incubated at room temperature for 3 minutes
184 and then centrifuged at 10,000 g for 30 seconds. An additional 50 μ L of 65°C DNA-free water was
185 added and the incubation and centrifugation repeated, resulting in a final volume of 100 μ L.

186
187

188 2.3. Initial evaluation for inhibition

189 All extracts were initially tested for inhibition following Kemp, et al. (2014a) (see schematic
190 illustration in their Figure 1). In brief, PCRs were set-up with an aDNA control, one comprised of

191 pooled DNA extracted from ~3500-year-old northern fur seal (*Callorhinus ursinus*) remains
192 (Barta, et al., 2014a, Barta, et al., 2013, Winters, et al., 2011). This pool was created using
193 individual DNA extracts previously verified to yield 181 base pair (bp) amplicons of northern fur
194 seal mitochondrial cytochrome B gene using the following primers: CytB-F 5'-
195 CCAACATTGAAAAGTTCATCC-3' and CytB-R 5'- GCTGTGGTGGTGCTGAGGT-3' (with an
196 annealing temperature of 60°C) (Moss, et al., 2006). This control PCR mix is then "spiked" with
197 the DNA (2.5 µL added to 25 µL volume reactions) recovered from the fish vertebrae, that is DNA
198 to be tested for the presence of sufficient inhibition to prevent amplification of northern fur seal
199 mtDNA. One advantage of this approach to monitoring for the presence of PCR inhibitors is that
200 the control is aDNA and exhibits characteristics common in ancient extracts (i.e., signatures of
201 post-mortem chemical degradation, high levels of DNA fragmentation, and low concentrations)
202 (Barta, et al., 2014a, Barta, et al., 2013, Winters, et al., 2011). Another advantage, given that the
203 degree of PCR inhibition is directly related to the size of DNA to be amplified (McCord, et al.,
204 2015), the northern fur seal mtDNA fragment size targeted by these reactions is similar to that
205 targeted in fish (189 bp, see section 2.4 below). None of the ancient fish DNA extracts were
206 shown to contain sufficient PCR inhibitors to cause amplification failure of the aDNA control.
207
208

209 2.4. "Standard" PCR

210 Except in one test (described below in section 2.5.), all PCRs targeted a 189 bp portion of the 12S
211 mitochondrial gene using "universal" fish primers: OST12S-F 5'-GCTTAAACCCAAAGGACTT-3'
212 and OST12S-R 5'- CTACACCTCGACCTGACGTT-3' (Jordan, et al., 2010). Note that Jordan et al.
213 (2010) described the OST12S-R primer in the incorrect orientation. It has been corrected here.
214 These primers can distinguish bony fish species and have been demonstrated to be especially
215 effective in amplifying salmonid mtDNA, the sequences of which can be used to differentiate the
216 Pacific salmonids and a variety of other fish to the species level (Grier, et al., 2013,
217 Halfmann, et al., 2015, Jordan, et al., 2010, Kemp, et al., 2014a).

218 Polymerase selection was based on results from Monroe, et al. (2013) indicating KlenTaq LA was
219 the least susceptible of nine polymerase or polymerase blends to inhibition associated with DNA
220 obtained from prehistoric salmonid vertebrae recovered from two archaeological sites in the
221 Pacific Northwest (DgRv-003 and DgRv-006). "Standard" 25 µL PCRs contained: 1X Omni KlenTaq
222 Reaction Buffer mix (containing a final concentration of MgCl₂ at 3.5 mM), 0.32 mM dNTPs, 0.24
223 µM each of forward and reverse primer, 0.3 U of Omni KlenTaq LA polymerase, and 2.5 µL of
224 template DNA. PCRs consisted of an initial three minute denaturation at 94°C, followed by sixty
225 cycles of 94°C (denaturation, 15 s), 55°C (annealing, 15 s), and 68°C (extension, 15 s). This was
226 followed with a final extension at 68°C for 3 minutes. Negative PCR controls and positive PCR
227 controls (utilizing DNA extracted from contemporary Chinook salmon, added in the post-PCR lab
228 prior to initiating PCR) accompanied all sets of standard PCRs and experimentally modified PCRs
229 (described below). Negative controls, consisted of replacing DNA with an equal volume of DNA
230 free-water. A minimum of one negative control for every 15 individual PCR reactions.

232
233 Successful amplification following standard PCR or any of the experimentally modified PCRs were
234 confirmed via separation on a 4% agarose gel and approximate size was determined against a 20

235 bp ladder (Bayou BioLabs). Amplification outcomes were classified as either: 1) *successful* when a
236 single, clear band of the correct size was observed, 2) *failure* when no band was seen, or 3) *non-*
237 *target* (NT). Non-target classifications were further divided into two additional categories, those
238 of the incorrect size (i.e., based on the relative position on the gel) (referred to, henceforth, as
239 non-target size, or NT-S) and those that produced multiple bands (referred to, henceforth, as
240 non-target multiple or NT-M).

241

242

243 *2.5. Rescue PCR: Tests of varying percentage reagent increases (10%, 25%, and 50%)*

244 Initial rescue PCRs conducted on thirty extracts consisted of increasing the buffer mix, dNTPs,
245 primers, and polymerase in equal relative proportion (i.e., +10%, +25%, +50%) with the amount
246 of water reduced to accommodate the increased reagent volumes. For example, in comparison
247 to the “standard” PCR described in section 2.4, +50% rescue PCRs contained: 1.5X Omni KlenTaq
248 Reaction Buffer mix (containing a final concentration of MgCl₂ at 5.25 mM), 0.48 mM dNTPs,
249 0.36 μM each of forward and reverse primer, 0.45 U of Omni KlenTaq LA polymerase, but
250 maintained 2.5 μL of template DNA. Rescue PCR conditions using the 12S primers were as
251 described in section 2.4.

252

253 In addition to the 12S primer set, an additional set of PCRs were used to account for any
254 differential behavior of inhibitors on specific primers, as well as potential template/primer
255 compatibility differences. These PCRs targeted a 193 bp portion of the mitochondrial control
256 region (D-loop) with the following primers: 5'-GCTTTAGTTAACGCTACGCCAG-3' and reverse 5'-
257 CCAGGAAGTTCAAATCAGCA-3'. These reaction conditions were as described in section 2.4, with
258 an annealing temperature of 58°C for this primer set.

259

260

261 *2.6. Effect of 25% increases of individual reagents (dNTP, buffer, polymerase, or primers) and*
262 *combinations of those reagents*

263 As the experiments described in section 2.5 demonstrate that +25% rescue PCR outperformed
264 standard, +10% and +50% rescue PCRs (see results), to possibly determine the cause of the
265 effect, we tested the efficacy of increasing individual reagents by 25%, as well as combinations of
266 reagents. Sixteen PCR mixes were prepared, one using standard PCR (no increase in reagents),
267 another using rescue PCR (all reagents increased by 25%), and the remaining fourteen using a
268 25% increase specifically of dNTPs, Omni KlenTaq Reaction Buffer mix (including premixed
269 MgCl₂), KlenTaq LA polymerase, or primers, as well as all possible combinations of these four
270 reagents. Each reaction mix was tested across twelve fish DNA extracts.

271

272

273 *2.7. Comparisons of standard and rescue PCR across samples*

274 Of the 334 extracts, neither standard or rescue PCR permitted amplification from 202 of them.
275 Thus, we focused on the results from the remaining 132 extracts, 82 from the Snake River group
276 and 50 from the Spokane River group (Table S1). From these 132 extracts, 423 PCR reactions
277 were conducted using either standard (N = 268) or +25% rescue (N = 155) PCR recipes. Note that
278 from this point forward, +25% rescue PCR will simply be referred to as “rescue PCR”. Twenty

279 extracts (14 from the Snake River group and 6 from the Spokane River group) produced non-
280 target DNA (indicated by a band of incorrect size present on the agarose gel, the presence of
281 multiple bands on the agarose gel, or through direct sequencing; Table S1) and were omitted
282 from further analyses. Results were tabulated in one of two ways. First, we established
283 “application of method” for each sample by determining if a given method (rescue or standard
284 PCR) could produce successful PCR amplification in any number of attempts. Second, we
285 determined an “efficiency rate”. Using the subset of samples that amplified using both rescue
286 and standard PCR (N = 55), efficiency rate is based on the number of successful amplifications
287 per PCR attempt.

288

289

290 *2.8. Determining mechanism of rescue*

291 Although all extracts passed the initial test for inhibition, as described above under section 2.3.,
292 it is possible that some level of inhibitors still exist, but at a threshold below that which would
293 render PCR amplification of the aDNA positive control impossible. We hypothesized that in cases
294 where only very small amounts of DNA are present in the fish DNA extracts, even undetectable
295 low levels of inhibition might be sufficient to hinder amplification of the fish mtDNA. To
296 investigate if rescue PCR is capable of overcoming this potential problem, we designed two
297 complementary tests.

298

299 The first test was designed to simulate an incremental decrease of DNA concentration. Two
300 pools of DNA were created from fish extracts (N = 24 for each pool) that individually amplified
301 for the 12S fragment using standard PCR. These pools were then diluted 1:1, 1:5, 1:10, 1:25,
302 1:50, 1:75, 1:100, 1:150, and 1:200 with DNA-free water. Two replicates for each, as well as an
303 undiluted pool (i.e., 1:0), were then subjected to standard and rescue PCR for each dilution value
304 [undiluted (1:0) – 1:200] and checked for amplification (See Figure 2 for schematic illustration of
305 the method). It is important to note that in this test inhibitors were diluted proportionally to that
306 of the target DNA and, therefore, results would vary according to the effect of DNA
307 concentrations, and not the relationship between inhibitors and the DNA, which here is a
308 *constant*.

309

310 The second test was designed to simulate a decreasing concentration of target DNA relative to
311 that of the inhibitors. We used a modification of the inhibition test described in Kemp, et al.
312 (2014a). In our modified test, the aDNA control (northern fur seal DNA) was diluted 1:1, 1:5,
313 1:10, 1:25, 1:50, 1:75, 1:100, 1:150, and 1:200. These dilutions, along with an undiluted control
314 (1:0), were then tested in replicates of four, each spiked with an individual fish extract. The fish
315 DNA spike is added to all dilution treatments equally, introducing some level of additional
316 inhibitors without increasing the amount of northern fur seal target DNA. Thus, each dilution
317 treatment has a decreasing amount of target DNA relative to the amount of total inhibitors.
318 Using primers specific to the aDNA control (described in section 2.3), amplification targeted the
319 northern fur seal DNA. As such, the level of total inhibitors (from both the northern fur seal and
320 fish DNA extracts) relative to the target DNA (northern fur seal) was *increased* across the
321 dilutions. (See Figure 3 for schematic illustration of the method.) Each combination was tested in
322 replicate for both standard and rescue PCR.

323

324 *2.10. Statistical comparisons*

325 Chi-square tests of independence were used to test for significant differences at the 0.05 level of
326 probability between treatments. Significance was determined for differences in reagent
327 concentration at the standard, rescue +10%, rescue +25%, and rescue +50% levels as well as
328 across all attempts and when grouped by extraction method or geographical group, as well as for
329 differences in efficiency rate between rescue and standard PCR.

330

331

332 *2.5. Sequencing confirmation*

333 Amplicons from 55 extracts, ones subjected to both standard and rescue PCR, were submitted
334 for sequencing in both the forward and reverse directions using the same primers utilized for
335 amplification. Product clean-up and sequencing were performed by Molecular Cloning
336 Laboratories (South San Francisco, CA). Sequences were aligned and the priming regions were
337 trimmed using Sequencher v 4.8 (Gene Codes; Ann Arbor, MI). Sequence quality scores were
338 determined using data provided by Molecular Cloning Laboratories. Each base was assigned a
339 score between zero and 60 as part of the sequencing process, with ranges of 20 for low, medium
340 and high confidence. All bases scoring in the medium or high range (21-60) were combined to
341 calculate the percent quality for the sequence as a whole. A sequence with a quality score of
342 75% indicates that 75% of the bases in the sequence were of medium to high confidence. All
343 sequencing results were compared to the NCBI nucleotide database using the Basic Local
344 Alignment Search Tool (BLAST) to determine species and gene region.

345

346

347 **3. Results and Discussion**

348

349 *3.1. Comparisons of rescue PCR at +10%, +25%, and +50% increases*

350 In the test of standard PCR against rescue PCR using various levels of increased reagents (+10%,
351 +25%, and +50%) results were tabulated for each primer set, as well as combined where a
352 success was counted if an extract amplified for either primer set at a given increase (Table 1). For
353 the D-Loop primers, of the 30 extracts tested, three amplified (extracts 9, 12, 26) using standard
354 PCR, seven amplified (extracts 8, 9, 13, 19, 25-27) using the 10% increase, 16 amplified (extracts
355 1, 2, 3, 6, 8-10, 13, 20, 22-27, 30) using the 25% increase, and 13 amplified (extracts 1-3, 6, 8, 9,
356 13, 14, 19) using the 50% increase. Extracts 9, 13, 25, and 26 amplified across all rescue PCR
357 treatments, but it is notable that extracts 13 and 25 did not amplify under standard PCR
358 conditions. For the 12S primer set, eight amplified (extracts 12, 15, 22-27) using standard PCR,
359 12 amplified (extracts 9, 12, 15, 17, 20, 22-27, 30) using the 10% increase, 17 amplified (extracts
360 1, 3, 6, 9-12, 14, 16, 17, 21-23, 25-27, 30) using the 25% increase, and 14 amplified (extracts 2, 4-
361 6, 9, 10, 12, 15, 19, 20, 22, 25, 26, 29) using the 50% increase in reagents. Here, extracts 9, 12,
362 22, 25, and 26 amplified across all rescue PCR treatments, of these five, extract nine did not
363 amplify under standard PCR conditions. In the combined dataset, where a success was counted if
364 a sample amplified for either primer set at a given increase, standard PCR amplified nine total
365 extracts, the 10% increase amplified 15 extracts, a 25% increase amplified 22 extracts, and the
366 50% increase amplified 19 extracts. Both the +25% and +50% rescue PCR treatments resulted in

367 significantly more amplification over standard PCR ($P < 0.000$ and $P = 0.010$, respectively). There
368 was no statistically significant difference indicated for differences between the other levels
369 (standard vs. +10%, +10% vs. +25%, +10% vs. +50%, or +25% vs. +50%).

370
371 Based on the number of successful amplifications, all rescue PCR treatments (+10%, +25%, and
372 +50%) outperformed standard PCR and the +25% rescue outperformed +10% and +50%. Despite
373 a lower overall success rate, the 50% increase permitted amplification of four of the samples
374 that could not be amplified using the lower increased reagent concentrations. However, this
375 higher reagent concentration also resulted in three non-target (NT) amplifications (indicated by
376 multiple bands) using the D-Loop primers (extracts 22, 27, 30) and two NT amplifications using
377 the 12S primers (extracts 13, 27), for a total of four independent extracts producing non-target
378 amplification (extracts 13, 22, 27, 30). In all four cases, lower reagent concentrations were able
379 to amplify target DNA and the 50% increase resulted in multiple bands. Therefore, we conclude
380 that a 50% reagent increase may be a good strategy to attempt on a set of samples if additional
381 amplifications are desired after attempting rescue PCR at +25%.

382

383

384 *3.2. Effect of 25% increases of individual reagents (dNTP, buffer, polymerase, or primers) and
385 combinations of those reagents*

386 In this test, two extracts (extract 1 and 2) failed to produce target DNA amplicons and none of
387 the extracts benefitted from increasing single reagents (Table 2). For increases in combinations
388 of two reagents, six extracts benefitted from an increase in dNTPs & MgCl₂ (extracts 3-8), four
389 from MgCl₂ & polymerase (extracts 4-7), eight from MgCl₂ & primers (extracts 3, 5-11), one from
390 dNTPs & polymerase (extract 5), five from dNTPs & primers (extracts 4-6, 9, 11), and six from
391 polymerase & primers (extracts 4-7, 11, 12). Notably not a single extract benefited from all
392 treatments. For combinations of three reagent increases, two extracts benefitted from
393 increasing dNTPs & MgCl₂ & polymerase (extract 7, 8), eight from dNTPs & MgCl₂ & primers
394 (extracts 4-7, 9-12), six from MgCl₂ & polymerase & primers (extracts 3, 5-7, 9, 11), and four
395 from dNTPs & polymerase & primers (extract 4, 5, 8, 11). Notably here too, not a single extract
396 benefited from the all treatments. Nine of the ten extracts that indicated amplification of target
397 DNA for any treatment (i.e., not including extracts 1 and 2) benefitted from rescue PCR, or
398 increasing all four reagents (extracts 3-5, 7-12).

399

400 Commonly employed methods to increase PCR success rates on difficult samples include
401 increasing either the concentration of MgCl₂ or amount of polymerase (Alaedini, 2012, Opel, et
402 al., 2010, Schrader, et al., 2012). These strategies are designed to overcome inhibitory
403 substances that act directly on the polymerase enzyme or that sequester the magnesium
404 cofactor. However, it is possible that inhibitors could act on any component of PCR to prevent
405 amplification (Alaedini, 2012). This principal, and the great complexity of inhibitor action, is
406 evidenced in our results. No single reagent increase resulted in amplification for any of the 12
407 extracts tested and results were mixed for combinations of two and three reagent increases. For
408 example, amplification from Extract 3 was made possible by: 1) increased percent combination
409 of dNTPs & MgCl₂, 2) increased percent combination of MgCl₂ & polymerase & primers, as well
410 as 3) when all reagents were increased. Intriguingly, this same extract did not amplify with the

411 increased percent combination of dNTPs & MgCl₂ & polymerase. These incongruent
412 amplification results were seen throughout these experiments, highlighting the stochastic and
413 complex nature of PCR, especially when conducted with the presence of inhibitors.
414 Consequently, increasing only a portion of the PCR reagents may not provide a consistently
415 successful strategy. In the case of rescue PCR, which is an increase in all reagent components, it
416 is possible that inhibitory “combinations” are largely accounted for, resulting in a reduction of
417 stochastic effect, and an increase in overall amplification success. Other possibilities remain
418 which deserve further investigation.

419

420

421 *3.3. Sequencing results*

422 For the subset of 55 extracts used for sequencing confirmation, 38 amplified with standard PCR
423 (11 that did not amplify with rescue PCR) and 44 with rescue PCR (13 that did not amplify with
424 standard PCR) (Table 3). All the standard PCR (N=38) amplifications were confirmed as target
425 DNA and 91% (40 of 44) of those generated from rescue PCR were confirmed as target DNA.
426 Four sequences generated using rescue PCR (extracts 52 – 55) matched to human DNA. Omitting
427 these four non-target amplifications, the average sequence quality score for each method was
428 approximately equal, with 80.1% and 82.8% confidence scores for standard and rescue PCR
429 generated sequences, respectively. In cases where templates generated under both standard
430 and rescue PCR were sequenced (extracts 1 – 27) the sequences generated using standard PCR
431 were identical to those generated using rescue PCR in every case.

432

433

434 *3.4. Amplification of non-target DNA*

435 Rescue PCR appears to be more prone to amplification of non-target DNA than is standard PCR.
436 Cases of non-target DNA, indicated by incorrect size or by the presence of multiple bands, were
437 noted throughout the tests in this study and have been observed as we continued to apply the
438 rescue method in the laboratory. Amplification of non-target DNA of a single-band of expected
439 size was also evidenced in the subset of samples that were selected for sequencing. In this
440 experiment, four amplifications were bands that appeared to be of the correct size but
441 sequencing results revealed the DNA as human in origin. As determined from the sequences, the
442 actual length of these amplicons ranged from 184 – 195 bp compared to the 189 bp expected
443 from target DNA. This points to a weakness in trying to estimate amplicons of 189 base pairs
444 from 4% agarose gels. Notably, all four non-target amplifications originated using rescue PCR on
445 extracts that failed to amplify with standard PCR.

446

447 This is not unexpected. Previous studies utilizing increased polymerase or MgCl₂ have indicated
448 that this modification can lead to increased non-specific binding of primers (Edwards, et al.,
449 2004). DNA extracted from degraded samples tends to be recovered in lower copy number and
450 is degraded with regards to strand length (Gilbert, 2006, Pääbo, 1989, Pääbo, et al., 1988). These
451 characteristics increase the susceptibility of degraded samples to contamination by endogenous
452 DNA sources (Kemp and Smith, 2010, Malmström, et al., 2005, Yang and Watt, 2005).
453 Endogenous DNA can be introduced to a DNA extract in many ways. Vectors include the
454 originating sample (e.g. through handling or contact with other sample sources) (Champlot, et

455 al., 2010, Kemp and Smith, 2005), laboratory personal (Champlot, et al., 2010), and from
456 laboratory reagents and consumables (Evans, et al., 2003, Gefrides, et al., 2010, Leonard, et al.,
457 Shanks, et al., 2005).

458
459 In our study, we employed extensive negative controls in both the extraction and PCR processes.
460 DNA introduced globally during extraction processing or from reagents or consumables may be
461 detectable through some amount of positive amplification of these controls. However, no such
462 amplification was indicated for any negative controls in the study. Further, amplification of non-
463 target DNA was confined to a small number of extracts (Table S1) and repeated for those
464 extracts in reactions prepared from independent PCR mixes. Although negative controls cannot
465 detect every contamination event, the combined results and repeatability indicate that the
466 endogenous DNA was likely co-extracted with the original sample and not introduced during
467 subsequent processing or from reagents. Prior to extraction, all samples were decontaminated
468 with bleach (see section 2.2) following Barta, et al. (2013). However, no protocol can guarantee
469 complete decontamination. The risk of non-target amplification may be greater for our 12S
470 primer set, as this region of mtDNA that is well conserved across species (Melton and Holland,
471 2007, Yang, et al., 2014). Conserved areas of the 12S portion of mtDNA have been noted for
472 animal species including amphibians, fish, and mammals (Yang, et al., 2014). Less conserved
473 genetic targets may lower the rate of non-target amplification. Cases of indicated non-target
474 DNA amplification using +25% rescue PCR were only observed in extracts where standard PCR
475 failed, indicating that rescue PCR is likely amplifying non-target DNA in the *absence of* target
476 DNA, not *instead of* target DNA.
477
478

479 *3.5. Application of method and efficiency rates between standard and rescue PCR*

480 It was possible to amplify 49% (55 of 112) of the extracts in this study using either standard or
481 rescue PCR (Table 4). The remaining 51% were amplifiable only with rescue PCR. The proportion
482 of samples that were amplifiable using either standard or rescue PCR differed significantly ($P <$
483 0.000). To determine if extraction method or sample collection had an influence on the
484 proportion of samples that could be amplified under either PCR recipe, we grouped extracts
485 categorically and determined success rates for each method within the groupings. Standard PCR
486 was used successfully to amplify 50% (24 of 48) of the samples generated using extraction
487 method 1 and 48% (31 of 64) of the extracts generated using extraction method 2. Differences in
488 the proportion of amplifications possible with standard PCR or rescue PCR was significant for
489 both extraction methods ($P < 0.000$ in both cases). For extracts organized by geographical group,
490 standard PCR was able to amplify 60% (41 or 68) of the Snake River extracts and 32% (14 or 44)
491 of the Spokane River extracts. Statistical significance was indicated for the differences in
492 amplification success rates between standard and rescue PCR in both the Snake and Spokane
493 groups ($P < 0.000$ in both cases).

494
495 All PCR preparations are subject to some level of stochasticity. Each aliquot of a DNA extract will
496 have varying amounts of inhibitors and DNA and, thus, mixed results may be seen across
497 multiple PCR reactions from a single extract. In fact, this is a commonly cited observation in the
498 laboratory; amplification of aDNA can be sporadic. Mixed outcomes are likely to occur frequently

499 in eluates where the concentration of target DNA and inhibitors exist near the threshold where
500 amplification or failure are equally likely. By random chance one draw from the eluate may
501 contain inhibitors above the threshold of amplification while the next has inhibitors below the
502 threshold, allowing amplification to complete. This effect was commonly observed in our study,
503 with multiple PCR reactions necessary to obtain amplification. We quantified this effect using the
504 calculation of an efficiency rate, or the number of successful amplifications per PCR attempted.
505 Standard PCR had an efficiency rate of 59% (58 of 98 attempts resulted in amplification) while
506 rescue PCR was 88% (58 of 66 attempts resulted in amplification) (Table 4). Statistical
507 significance was indicated ($P < 0.000$) for the differences in efficiency between the PCR types.

508 When the subset of amplicons was submitted for sequencing (section 3.3.) four of the 44
509 amplifications generated with rescue PCR appeared to be the correct size on the agarose gel, but
510 were confirmed as human DNA (Table 3). This potential miscall rate (9%) was applied to the
511 amplification counts for rescue PCR and reevaluated for statistical significance (Table 4). In all
512 cases, significant differences between standard and rescue PCR were maintained.

513
514 In the present study, rescue PCR significantly outperformed standard PCR. This enhancement
515 does not appear to be a function of the extraction methods employed here, indicating that
516 success of rescue PCR is independent of how the DNA was extracted and purified. The benefit of
517 rescue PCR was particularly evident in the case of the Spokane River collection. If processed
518 using the standard PCR protocol these samples would have only produced 14 amplifications from
519 the 44 DNA extracts in this group. However, rescue PCR permitted amplification from an
520 additional 30 extracts, resulting in amplification from 100% of the samples.

521

522

523 *3.6. Mechanism of rescue*

524 There was no difference in the amplification success of standard and rescue PCR for any given
525 dilution treatment of the pooled fish DNA (Figure 4). For fish pool 1 (FP1), at least faint
526 amplification (even if inadequate for sequencing) was observed for the undiluted and 1:1
527 dilution using both standard and rescue PCR. As visually assessed, neither PCR method produced
528 amplification at any of the further dilutions. For fish pool 2 (FP2), amplification was achieved
529 from the undiluted samples through the 1:25 dilutions for both standard and rescue PCR
530 treatments. No amplification was possible for either standard or rescue PCR at any further
531 dilution.

532

533 For the test inducing increases of inhibitors relative to the amounts of northern fur seal DNA
534 control, more striking differences are observed between the normal and rescue PCR results
535 (Figure 5). The positive controls (aDNA control diluted but not spiked with fish DNA) indicate that
536 both rescue and standard PCR can produce amplification up to the 1:150 dilutions. When
537 additional inhibitors were introduced using the fish DNA spike, standard PCR could produce
538 amplification up to the 1:10 dilutions. Rescue PCR was able to produce amplification through the
539 1:150 dilutions. Amplification strength does appear to drop off after the 1:25 dilutions but very
540 faint amplification was indicated from the 1:50 – 1:150 dilutions.

541

542 Attempts to determine the mechanism of rescue PCR was based on two complementary tests
543 focused on the concentration of target DNA and inhibitors. When the concentration of DNA was
544 reduced in equal proportion to the inhibitors present, the amplified products (or lack thereof),
545 appear consistent between standard and rescue PCR across all dilutions (1:0 – 1:200). Under
546 these conditions, rescue PCR had no positive affect on amplification success. However, when the
547 amount of target DNA was reduced at a rate different from that of inhibitors, rescue PCR was
548 able to produce amplification when standard PCR could not. As the aDNA control sample is
549 diluted, the target DNA and inhibitors from that sample are diluted at equal rates. In our tests,
550 both standard and rescue PCR were able to amplify the target DNA up to a 1:10 level dilution.
551 However, only rescue PCR was able to produce any amplification in the remaining dilutions.
552 Unspiked controls were run for all dilutions indicating that sufficient DNA existed for
553 amplification by both standard and rescue PCR up to the 1:150 dilutions and so amplification
554 failure in these reactions is a likely a function of inhibitory action(s). Based on our results we
555 conclude that rescue PCR circumvents the problem associated with overcoming the combination
556 of reduced DNA concentrations relative to the amount of inhibitors present in a sample.
557
558

559 4. Conclusions

560
561 Despite wide-ranging efforts to remove inhibitors, it is likely that some amount of inhibitors is
562 present in all DNA eluates. Samples with very low DNA concentrations are unlikely to benefit
563 from some of the previously described methods to further reduce inhibitors. Specifically, direct
564 dilution of sample reduces DNA along with inhibitors while each additional silica treatments will
565 result in some loss of DNA. Samples of such low copy numbers may not be able to withstand
566 such treatments. Notwithstanding the volume used to initiate Rescue PCR, our protocol provides
567 an alternative means by which amplification is attempted without risking loss or dilution of
568 target DNA in the extract.
569

570 Our results demonstrate a clear ability of reagent-rich PCR mixes to rescue DNA (i.e., rescue
571 PCR). However, the application of this method should not be applied blindly or with the notion
572 that it is the solution to all problems associated with the co-extraction of PCR inhibitors. Rescue
573 PCR represents a simple and robust addition to the suite of options currently available to work
574 with DNA in the presence of inhibition, especially ancient, degraded, and low copy DNA samples.
575 This method appears to have particular value when applied to samples where the relationship
576 between DNA and inhibitors concentration may be at an important crossroad, as it diminishing
577 the effects of inhibitors without compromising the amount of DNA in an eluate.
578

Acknowledgements

This work was funded by a grant from Washington Sea Grant, University of Washington,
pursuant to National Oceanic and Atmospheric Administration Award No. NA14OAR4170078-
762754. The views expressed herein are those of the author(s) and do not necessarily reflect the
views of NOAA or any of its sub-agencies. The authors thank Archaeological and Historical

Services, Stan Gough, and Sara Walker at Eastern Washington University as well as Mary Collins, Diane C. Curewitz, and Shannon Tushingham at Washington State University for providing the samples and archaeological information used in this manuscript. Thanks to Cara Monroe for assistance in the laboratory and to Nicole Fournier for editorial comments on a draft of the manuscript.

References

Al-Soud, W.A., Rådström, P., 1998. Capacity of nine thermostable DNA polymerases to mediate DNA amplification in the presence of PCR-inhibiting samples, *Applied and environmental microbiology* 64, 3748-3753.

Al-Soud, W.A., Rådström, P., 2001. Purification and characterization of PCR-inhibitory components in blood cells, *Journal of clinical microbiology* 39, 485-493.

Alaeddini, R., 2012. Forensic implications of PCR inhibition—a review, *Forensic Science International: Genetics* 6, 297-305.

Barta, J.L., Monroe, C., Crockford, S.J., Kemp, B.M., 2014a. Mitochondrial DNA Preservation Across 3000 Year Old Northern Fur Seal Ribs is Not Related to Bone Density: Implications for Forensic Investigations, *Forensic Science International* 239, 11-18.

Barta, J.L., Monroe, C., Kemp, B.M., 2013. Further Evaluation of the Efficacy of Contamination Removal From Bone Surfaces, *Forensic Sci Int* 231, 340-348.

Barta, J.L., Monroe, C., Teisberg, J.E., Winters, M., Flanigan, K., Kemp, B.M., 2014. One of the Key Characteristics of Ancient and Forensic DNA, Low Copy Number, May be a Product of its Extraction, *Journal of Archaeological Science* 46, 281-289.

Bartlett, J.M.S., Stirling, D., 2003. A Short History of the Polymerase Chain Reaction, in: Bartlett, J.M.S., Stirling, D. (Eds.), *Methods in Molecular Biology: PCR Protocols*, 2nd ed., Humana Press, Totowa, NJ, pp. 3-6.

Belec, L., Authier, J., Eliezer-Vanerot, M.C., Piédouillet, C., Mohamed, A.S., Gherardi, R.K., 1998. Myoglobin as a polymerase chain reaction (PCR) inhibitor: a limitation for PCR from skeletal muscle tissue avoided by the use of *Thermus thermophilus* polymerase, *Muscle & nerve* 21, 1064-1067.

Bickley, J., Short, J., McDowell, D., Parkes, H., 1996. Polymerase chain reaction (PCR) detection of *Listeria monocytogenes* in diluted milk and reversal of PCR inhibition caused by calcium ions, *Letters in Applied Microbiology* 22, 153-158.

Brauner, D., 1990. Archaeological Data Recovery at Hatiuhpuh, 45WT134, Whitman County, Washington, Department of Anthropology, Oregon State University.

Browman, D.L., Munsell, D.A., 1969. Columbia Plateau prehistory: Cultural development and impinging influences, *American Antiquity*, 249-264.

Burkardt, H.-J., 2000. Standardization and quality control of PCR analyses, *Clinical Chemistry and Laboratory Medicine* 38, 87-91.

Champlot, S., Berthelot, C., Pruvost, M., Bennett, E.A., Grange, T., Geigl, E.-M., 2010. An efficient multistategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications, *PLoS One* 5, e13042.

Cui, Y., Lindo, J., Hughes, C.E., Johnson, J.W., Hernandez, A., Kemp, B.M., Ma, J., Cunningham, R., Petzelt, B., Mitchell, J., Archer, D., Cybulski, J.S., Malhi, R.S., 2013. Ancient DNA analysis of mid-Holocene individuals from the Northwest Coast of North America reveals different evolutionary paths for mitogenomes, *PLoS One* 8, e66948.

Daugherty, R.D., Purdy, B.A., Fryxell, R., 1967. The descriptive archaeology and geochronology of the Three Springs Bar archaeological site, Washington, Washington State University Laboratory of Anthropology.

Demeke, T., Jenkins, G.R., 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits, *Analytical and bioanalytical chemistry* 396, 1977-1990.

Eckhart, L., Bach, J., Ban, J., Tschachler, E., 2000. Melanin binds reversibly to thermostable DNA polymerase and inhibits its activity, *Biochemical and biophysical research communications* 271, 726-730.

Edwards, C.J., MacHugh, D.E., Dobney, K.M., Martin, L., Russell, N., Horwitz, L.K., McIntosh, S.K., MacDonald, K.C., Helmer, D., Tresset, A., 2004. Ancient DNA analysis of 101 cattle remains: limits and prospects, *Journal of Archaeological Science* 31, 695-710.

Eilert, K.D., Foran, D.R., 2009. Polymerase resistance to polymerase chain reaction inhibitors in bone, *Journal of forensic sciences* 54, 1001-1007.

Evans, G.E., Murdoch, D.R., Anderson, T.P., Potter, H.C., George, P.M., Chambers, S.T., 2003. Contamination of Qiagen DNA extraction kits with Legionella DNA, *Journal of clinical microbiology* 41, 3452-3453.

Funk, P.S., 1998. Tucannon and Harder phase economic faunal analysis at Three Springs Bar (45FR39), Franklin County, Washington.

Galm, J.R., 1994. A Design for Management of Cultural Resources in the Lake Roosevelt Basin of Northeastern Washington, Archaeological and Historical Services, Eastern Washington University.

Gefrides, L.A., Powell, M.C., Donley, M.A., Kahn, R., 2010. UV irradiation and autoclave treatment for elimination of contaminating DNA from laboratory consumables, *Forensic science international: genetics* 4, 89-94.

Gilbert, M.T.P., 2006. Postmortem damage of mitochondrial DNA, *Human Mitochondrial DNA and the Evolution of Homo sapiens*, Springer, pp. 91-115.

Gilbert, M.T.P., Willerslev, E., 2007. Rescuing ancient DNA, *Nature biotechnology* 25, 872-874.

Grier, C., Flanigan, K., Winters, M., Jordan, L.G., Lukowski, S., Kemp, B.M., 2013. Using Ancient DNA Identification and Osteometric Measures of Archaeological Pacific Salmon Vertebrae for Reconstructing Salmon Fisheries and Site Seasonality at Dionisio Point, British Columbia, *Journal of Archaeological Science* 40, 544-555.

Halfman, C.M., Potter, B.A., McKinney, H.J., Finney, B.P., Rodrigues, A.T., Yang, D.Y., Kemp, B.M., 2015. Early human use of anadromous salmon in North America at 11,500 y ago, *Proc Natl Acad Sci U S A* 112, 12344-12348.

Hänni, C., Brousseau, T., Laudet, V., Stehelin, D., 1995. Isopropanol precipitation removes PCR inhibitors from ancient bone extracts, *Nucleic Acids Research* 23, 881.

Hedman, J., Nordgaard, A., Dufva, C., Rasmussen, B., Ansell, R., Rådström, P., 2010. Synergy between DNA polymerases increases polymerase chain reaction inhibitor tolerance in forensic DNA analysis, *Analytical biochemistry* 405, 192-200.

Hicks, B.A., 2004. Marmes Rockshelter: a final report on 11,000 years of cultural use, Washington State University.

Hudlow, W.R., Chong, M.D., Swango, K.L., Timken, M.D., Buoncristiani, M.R., 2008. A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: a diagnostic tool for STR typing, *Forensic Science International: Genetics* 2, 108-125.

Huggett, J.F., Novak, T., Garson, J.A., Green, C., Morris-Jones, S.D., Miller, R.F., Zumla, A., 2008. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon, *BMC research notes* 1, 70.

Jenkins, S.L., 2011. An Analysis of the Faunal Remains from Windust Cave C (45FR46), Washington, Washington State University.

Jordan, L.G., Steele, C.A., Thorgaard, G.H., 2010. Universal mtDNA primers for species identification of degraded bony fish samples. (vol 10, pg 225, 2010), *Molecular Ecology Resources* 10, 581-581.

Juen, A., Traugott, M., 2006. Amplification facilitators and multiplex PCR: tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates, *Soil Biology and Biochemistry* 38, 1872-1879.

Katcher, H., Schwartz, I., 1994. A distinctive property of Tth DNA polymerase: enzymatic amplification in the presence of phenol, *Biotechniques* 16, 84-92.

Kemp, B.M., Smith, D.G., 2005. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth, *Forensic Science International* 154, 53-61.

Kemp, B.M., Smith, D.G., 2010. Ancient DNA methodology: thoughts from Brian M. Kemp and David Glenn Smith on "Mitochondrial DNA of protohistoric remains of an Arikara population from South Dakota", *Human biology* 82, 227-238.

Kemp, B.M., Malhi, R.S., McDonough, J., Bolnick, D.A., Eshleman, J.A., Rickards, O., Martinez-Labarga, C., Johnson, J.R., Lorenz, J.G., Dixon, E.J., Fifield, T.E., Heaton, T.H., Worl, R., Smith, D.G., 2007. Genetic analysis of early Holocene skeletal remains from Alaska and its implication for the settlement of the Americas, *Am J Phys Anthropol* 132, 605-621.

Kemp, B.M., Monroe, C., Judd, K.G., Reams, E., Grier, C., 2014a. Evaluation of methods that subdue the effects of polymerase chain reaction inhibitors in the study of ancient and degraded DNA, *Journal of Archaeological Science* 42, 373-380.

Kemp, B.M., Monroe, C., Smith, D.G., 2006. Repeat silica extraction: a simple technique for the removal of PCR inhibitors from DNA extracts, *Journal of archaeological science* 33, 1680-1689.

Kemp, B.M., Winters, M., Monroe, C., Barta, J.L., 2014b. How Much DNA is Lost? Measuring DNA Loss of Short-Tandem-Repeat Length Fragments Targeted by the PowerPlex 16® System Using the Qiagen MinElute Purification Kit, *Human Biology* 86, 313-329.

Kontanis, E.J., Reed, F.A., 2006. Evaluation of Real-Time PCR Amplification Efficiencies to Detect PCR Inhibitors, *Journal of forensic sciences* 51, 795-804.

Kreader, C.A., 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein, *Applied and environmental microbiology* 62, 1102-1106.

Leonard, J.A., Shanks, O., Hofreiter, M., Kreuz, E., Hodges, L., Ream, W., Wayne, R.K., Fleischer, R.C., 2007. Animal DNA in PCR reagents plagues ancient DNA research, *Journal of Archaeological Science* 34, 1361-1366.

Leonhardy, F.C., 1969. Artifact Assemblages and Archaeological Units at Granite Point Locality 1 (45WT41), Southeastern Washington.

Malmström, H., Storå, J., Dalén, L., Holmlund, G., Götherström, A., 2005. Extensive human DNA contamination in extracts from ancient dog bones and teeth, *Molecular biology and evolution* 22, 2040-2047.

McCord, B., Pionzio, A., Thompson, R., 2015. Analysis of the Effect of a Variety of PCR Inhibitors on the Amplification of DNA using RealTimePCR, MeltCurves and STR Analysis, U.S. Department of Justice.

Melton, T., Holland, C., 2007. Routine forensic use of the mitochondrial 12S ribosomal RNA gene for species identification, *Journal of forensic sciences* 52, 1305-1307.

Monroe, C., Grier, C., Kemp, B.M., 2013. Evaluating the efficacy of various thermo-stable polymerases against co-extracted PCR inhibitors in ancient DNA samples, *Forensic science international* 228, 142-153.

Moss, M.L., Judd, K.G., Kemp, B.M., 2014. Can salmonids (*Oncorhynchus* spp.) be identified to species using vertebral morphometrics? A test using ancient DNA from Coffman Cove, Alaska, *Journal of Archaeological Science* 41, 879-889.

Moss, M.L., Yang, D.Y., Newsome, S.D., Speller, C.F., McKechnie, I., McMillan, A.D., Losey, R.J., Koch, P.L., 2006. Historical ecology and biogeography of North Pacific pinnipeds: Isotopes and ancient DNA from three archaeological assemblages, *Journal of Island & Coastal Archaeology* 1, 165-190.

Nakonechny, L.D., 1998. Archaeological Analysis of Area A, Wexpusnime Site (45GA61).

Opel, K.L., Chung, D., McCord, B.R., 2010. A study of PCR inhibition mechanisms using real time PCR, *Journal of forensic sciences* 55, 25-33.

Pääbo, S., 1989. Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification, *Proceedings of the National Academy of Sciences* 86, 1939-1943.

Pääbo, S., Gifford, J.A., Wilson, A.C., 1988. Mitochondrial DNA sequences from a 7000-year old brain, *Nucleic acids research* 16, 9775-9787.

Palumbi, S.R., 1996. Nucleic acids II: The polymerase chain reaction, in: Hillis, D.M., Moritz, C., Mable, B.K. (Eds.), *Molecular systematics*, Sinauer Associates, Sunderland, MA, pp. 205-247.

Rådström, P., Knutsson, R., Wolffs, P., Lövenklev, M., Löfström, C., 2004. Pre-PCR processing, *Molecular biotechnology* 26, 133-146.

Rådström, P., Löfström, C., Lövenklev, M., Knutsson, R., Wolffs, P., 2008. Strategies for overcoming PCR inhibition, *Cold Spring Harbor Protocols* 2008, pdb. top20.

Rice, H.S., 1965. The cultural sequence at Windust Caves, Washington State University.

Rossen, L., Nørskov, P., Holmström, K., Rasmussen, O.F., 1992. Inhibition of PCR by components of food samples, microbial diagnostic assays and DNA-extraction solutions, *International journal of food microbiology* 17, 37-45.

Schalk, R.F., Mierendorf, R.R., Olson, D.L., 1983. The 1978 and 1979 Excavations at Strawberry Island in the McNary Reservoir, DTIC Document.

Schrader, C., Schielke, A., Ellerbroek, L., Johne, R., 2012. PCR inhibitors—occurrence, properties and removal, *Journal of applied microbiology* 113, 1014-1026.

Shanks, O.C., Hodges, L., Tilley, L., Kornfeld, M., Larson, M.L., Ream, W., 2005. DNA from ancient stone tools and bones excavated at Bugas-Holding, Wyoming, *Journal of Archaeological Science* 32, 27-38.

Swango, K.L., Hudlow, W.R., Timken, M.D., Buoncristiani, M.R., 2007. Developmental validation of a multiplex qPCR assay for assessing the quantity and quality of nuclear DNA in forensic samples, *Forensic science international* 170, 35-45.

Swango, K.L., Timken, M.D., Chong, M.D., Buoncristiani, M.R., 2006. A quantitative PCR assay for the assessment of DNA degradation in forensic samples, *Forensic science international* 158, 14-26.

Tebbe, C.C., Vahjen, W., 1993. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast, *Applied and environmental microbiology* 59, 2657-2665.

Thompson, R.S., 1985. Paleoenvironmental Investigations at Seed Cave (Windust Cave H-45FR46), Franklin County, Washington, DTIC Document.

Weyant, R., Edmonds, P., Swaminathan, B., 1990. Effect of ionic and nonionic detergents on the Taq polymerase, *Biotechniques* 9, 308-309.

Wiedbrauk, D.L., Werner, J.C., Drevon, A.M., 1995. Inhibition of PCR by aqueous and vitreous fluids, *Journal of Clinical Microbiology* 33, 2643-2646.

Wilcox, A.W., Fisher, D.L., Mitchell, L., Wadhams, M., Holland, M.M., Sledzik, P.S., Weedn, V.W., 1993. Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone, *Journal of Forensic Science* 38, 60-68.

Wilson, I.G., 1997. Inhibition and facilitation of nucleic acid amplification, *Applied and environmental microbiology* 63, 3741.

Winters, M., Barta, J.L., Monroe, C., Kemp, B.M., 2011. To clone or not to clone: Method analysis for retrieving consensus sequences in ancient DNA samples, *PLoS One* 6, e21247.

Yang, D.Y., Eng, B., Waye, J.S., Dudar, J.C., Saunders, S.R., 1998. Technical note: improved DNA extraction from ancient bones using silica-based spin columns, *American journal of physical anthropology* 105, 539-543.

Yang, D.Y., Watt, K., 2005. Contamination controls when preparing archaeological remains for ancient DNA analysis, *Journal of Archaeological Science* 32, 331-336.

Yang, L., Tan, Z., Wang, D., Xue, L., Guan, M.-x., Huang, T., Li, R., 2014. Species identification through mitochondrial rRNA genetic analysis, *Scientific reports* 4.

Ye, J., Ji, A., Parra, E.J., Zheng, X., Jiang, C., Zhao, X., Hu, L., Tu, Z., 2004. A simple and efficient method for extracting DNA from old and burned bone, *Journal of forensic sciences* 49, 754-759.

Table 1. Results of PCR amplification tests for thirty DNA extracts against standard PCR (0% increase in reagents) as well as 10%, 25%, and 50% increases in reagents using two primer sets. Combined results indicate if a sample amplified using either primer set for a given PCR protocol. The symbol "+" indicates amplification of the target DNA occurred (inferred by band size), "-" indicates no amplification occurred, and "NT-M" indicates non-target DNA was amplified (multiple bands present on gel). No bands of incorrect size were seen in this experiment.

	Primer set 1 (D-Loop)				Primer set 2 (12S)				Combined			
	0	10%	25%	50%	0	10%	25%	50%	0	10%	25%	50%
Extract 1	-	-	+	+	-	-	+	-	-	-	+	+
Extract 2	-	-	-	+	-	-	-	+	-	-	-	+
Extract 3	-	-	+	+	-	-	+	-	-	-	+	+
Extract 4	-	-	+	-	-	-	-	+	-	-	+	+
Extract 5	-	-	-	-	-	-	-	+	-	-	-	+
Extract 6	-	-	+	+	-	-	+	+	-	-	+	+
Extract 7	-	-	-	-	-	-	-	-	-	-	-	-
Extract 8	-	+	+	+	-	-	-	-	-	+	+	+
Extract 9	+	+	+	+	-	+	+	+	+	+	+	+
Extract 10	-	-	+	-	-	-	+	+	-	-	+	+
Extract 11	-	-	-	-	-	-	+	-	-	-	+	-
Extract 12	+	-	-	-	+	+	+	+	+	+	+	+
Extract 13	-	+	+	+	-	-	-	NT-M	-	+	+	NT-M
Extract 14	-	-	-	+	-	-	+	-	-	-	+	+
Extract 15	-	-	-	-	+	+	-	+	+	+	-	+
Extract 16	-	-	-	-	-	-	+	-	-	-	+	-
Extract 17	-	-	-	-	-	+	+	-	-	+	+	-
Extract 18	-	-	-	-	-	-	-	-	-	-	-	-
Extract 19	-	+	-	+	-	-	-	+	-	+	-	+
Extract 20	-	-	+	-	-	+	-	+	-	+	+	+
Extract 21	-	-	-	-	-	-	+	-	-	-	+	-
Extract 22	-	-	+	NT-M	+	+	+	+	+	+	+	NT-M
Extract 23	-	-	+	-	+	+	+	-	+	+	+	-
Extract 24	-	-	+	+	+	+	-	-	+	+	+	+
Extract 25	-	+	+	+	+	+	+	+	+	+	+	+
Extract 26	+	+	+	+	+	+	+	+	+	+	+	+
Extract 27	-	+	+	NT-M	+	+	+	NT-M	+	+	+	NT-M
Extract 28	-	-	-	+	-	-	-	-	-	-	-	+
Extract 29	-	-	-	-	-	-	-	+	-	-	-	+
Extract 30	-	-	+	NT-M	-	+	+	-	-	+	+	NT-M
Negative control 1	-	-	-	-	-	-	-	-	-	-	-	-
Negative control 2	-	-	-	-	-	-	-	-	-	-	-	-
Target amplifications	3	7	16	13	8	12	17	14	9	15	22	19
Non-target amplifications	0	0	0	3	0	0	0	2	0	0	0	4

Table 2. Results of 16 PCR treatments testing the effect of increasing individual reagents as well as all possible combinations of reagents on 12 DNA extracts. Symbol "+" indicates amplification of the target DNA occurred (inferred by band size), "-" indicates no amplification occurred, non-target amplification is indicated by either "NT-S" (when inferred by size) or "NT-M" (when inferred by multiple bands).

Reagent(s) increased by 25%															
dNTPs	✓		✓	✓	✓			✓	✓	✓	✓		✓		
MgCl ₂ (+ buffer)		✓		✓			✓	✓		✓	✓		✓	✓	
Polymerase			✓		✓		✓		✓	✓		✓	✓	✓	
Primers			✓		✓		✓	✓	✓	✓	✓	✓	✓	✓	
Extract 1	-	-	-	-	-	-	NT-S	-	NT-S	NT-M	-	NT-S	NT-S	NT-M	NT-S
Extract 2	-	-	-	-	-	NT-S	NT-M								
Extract 3	-	-	-	-	-	+	-	-	+	-	-	-	-	+	+
Extract 4	-	-	-	-	-	+	NT-M	+	+	NT-M	+	+	+	NT-M	+
Extract 5	-	-	-	-	-	+	+	+	+	+	NT-M	+	+	+	+
Extract 6	-	-	-	-	-	+	NT-M	+	+	+	NT-M	+	NT-M	+	NT-M
Extract 7	-	-	-	-	-	+	NT-M	-	+	+	+	+	NT-M	+	+
Extract 8	-	-	-	-	-	+	-	-	+	NT-S	+	-	+	NT-M	+
Extract 9	-	-	-	-	-	-	+	-	+	-	-	+	-	+	+
Extract 10	-	-	-	-	-	-	-	-	+	-	-	+	-	-	+
Extract 11	-	-	-	-	-	-	+	-	+	+	-	+	+	+	+
Extract 12	-	-	-	-	-	-	-	-	-	+	-	+	-	-	+
Negative control	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 3. Results from attempts to amplify and sequence 55 extracts using both standard and rescue PCR at +25%. Extracts that failed to amplify in this test are indicated by "NA", non-target DNA evidenced by multiple bands is indicated by "NT-M". All others were amplifications that appeared to be of the correct size and were submitted for sequencing. Raw sequence quality score and NCBI BLAST results including species and genetic region for match, number of matches expected by chance (E value), and percent similarity between the sequence generated and the BLAST match (Ident) are given for all attempts.

	Sequence quality		Results Species (genetic region)	Match quality		Summary	Standard		Rescue
	Standard	Rescue		E value	Ident (%)		Standard	Rescue	
Extract 1	83.8	93.2	Oncorhynchus tshawytscha (12S)	9.00E-71	100	Attempted	55	55	
Extract 2	85.0	89.7	Oncorhynchus tshawytscha (12S)	9.00E-71	100	Failed to amplify	17	9	
Extract 3	48.0	89.0	Oncorhynchus tshawytscha (12S)	9.00E-71	100	Multiple bands on gel	0	2	
Extract 4	39.2	30.1	Oncorhynchus tshawytscha (12S)	9.00E-71	100	Sequence attempted	38	44	
Extract 5	72.3	86.5	Oncorhynchus tshawytscha (12S)	4.00E-25	100	Non-target DNA sequence	0	4	
Extract 6	85.5	79.7	Oncorhynchus tshawytscha (12S)	9.00E-71	100		0%	9%	
Extract 7	84.5	85.8	Oncorhynchus tshawytscha (12S)	9.00E-71	100	Target DNA confirmed	100%	91%	
Extract 8	75.3	90.6	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 9	85.5	79.9	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 10	84.3	85.6	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 11	86.7	86.0	Catostomus catostomus (12S)	2.00E-68	99				
Extract 12	87.9	85.8	Catostomus catostomus (12S)	2.00E-68	99				
Extract 13	91.9	93.2	Ptychocheilus oregonensis (12S)	4.00E-90	99				
Extract 14	83.8	86.2	Ptychocheilus oregonensis (12S)	4.00E-90	99				
Extract 15	83.9	80.1	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 16	71.6	81.9	Catostomus catostomus (12S)	2.00E-68	99				
Extract 17	87.9	83.9	Catostomus catostomus (12S)	3.00E-70	99				
Extract 18	81.1	78.0	Catostomus catostomus (12S)	2.00E-68	99				
Extract 19	84.2	81.4	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 20	95.2	87.8	Oncorhynchus kisutch (12S)	3.00E-70	100				
Extract 21	73.4	80.8	Oncorhynchus kisutch (12S)	3.00E-70	100				
Extract 22	79.3	78.8	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 23	82.3	85.5	Catostomus catostomus (12S)	2.00E-68	99				
Extract 24	76.6	91.0	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 25	90.4	86.6	Oncorhynchus tshawytscha (12S)	2.00E-68	99				
Extract 26	90.6	72.6	Catostomus catostomus (12S)	3.00E-70	99				
Extract 27	93.4	88.6	Oncorhynchus tshawytscha (12S)	9.00E-71	100				
Extract 28	52.2	NA	Oncorhynchus tshawytscha (12S)	2.00E-68	99				
Extract 29	34.8	NA	Oncorhynchus tshawytscha (12S)	9.00E-71	100				

Extract 30	82.8	NA	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 31	89.7	NA	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 32	81.4	NA	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 33	89.2	NA	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 34	84.0	NA	Catostomus catostomus (12S)	7.00E-67	99
Extract 35	85.1	NA	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 36	76.8	NA	Catostomus catostomus (12S)	2.00E-68	99
Extract 37	91.5	NT-M	Ptychocheilus oregonensis (12S)	4.00E-90	99
Extract 38	92.1	NT-M	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 39	NA	89.6	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 40	NA	88.8	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 41	NA	62.4	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 42	NA	71.1	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 43	NA	89.1	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 44	NA	87.7	Catostomus catostomus (12S)	3.00E-70	99
Extract 45	NA	81.3	Catostomus catostomus (12S)	3.00E-70	99
Extract 46	NA	83.3	Catostomus catostomus (12S)	3.00E-70	99
Extract 47	NA	81.2	Oncorhynchus tshawytscha (12S)	2.00E-68	99
Extract 48	NA	82.8	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 49	NA	88.2	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 50	NA	86.8	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 51	NA	81.7	Oncorhynchus tshawytscha (12S)	9.00E-71	100
Extract 52	NA	50.3	human (chromosomal)	4.00E-37	98
Extract 53	NA	93.0	human (chromosomal)	3.00E-25	94
Extract 54	NA	72.9	human (12S)	1.00E-64	99
Extract 55	NA	55.2	human (chromosomal)	9.50E-19	97.5

Table 4. Comparisons in application of method and efficiency between standard and rescue PCR at +25%. Successful application is based on the ability of standard and/or rescue PCR to generate amplification in a given extract. Calculated for all extracts as well as grouped by DNA extraction method and geography. Efficiency is the number of successful amplifications per attempted PCR across extracts that amplified using both PCR methods. Values for rescue PCR are give both as indicated by gel amplification and with a 9% reduction to account for miscalls of non-target DNA generating a band of the correct size.

	Extr acts	Application of Method												Efficiency		
		Method 1				Method 2				Snake River		Spokane River		Atte mpts	Amplifi ed	
		Extr acts	Amplifie d	Extr acts	Amplifie d	Extr acts	Amplifie d	Extr acts	Amplifie d	Extr acts	Amplifie d	Extr acts	Amplifie d			
Standard	112	5 5 1	49 % %	48	2 4	50 %	64	3 1	48 %	68	4 1	60 %	44	1 4	32 %	98 8 %
Rescue (as indicated)	1 2 1	1 0%	10 %	4 8	10 0%	10 %	6 4	10 0%	10 %	6 8	10 0%	10 %	4 4	10 0%	66 8 %	5 5 88 %
Rescue (9% reduction)	0 2	91 %	91 %	4 4	91 %	91 %	5 8	91 %	91 %	6 2	91 %	91 %	4 0	91 %	3 0	5 80 %
P value (as indicated)	<	0.000		<	0.000		<	0.000		<	0.000		<	0.000	<	0.000
P value (with reduction)	<	0.000		<	0.000		<	0.000		<	0.000		<	0.000		0.005

Figure captions

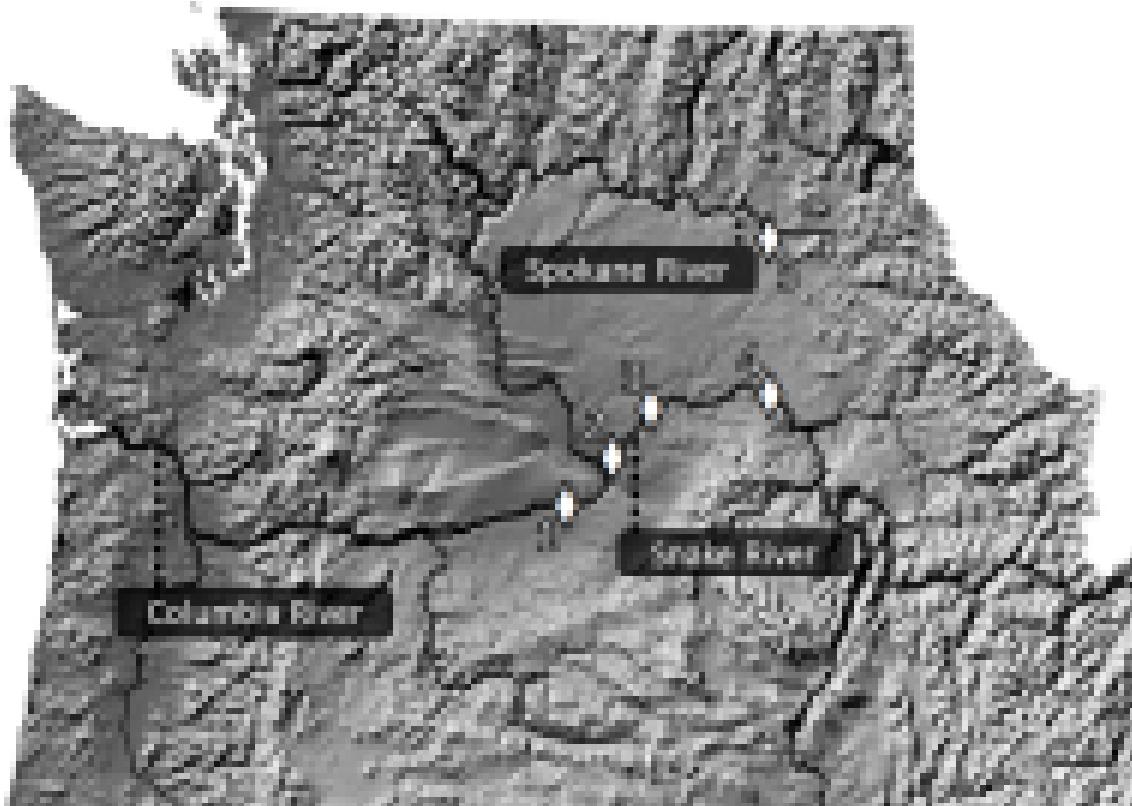

Figure 1. Excavation site locations and approximate ages for samples used in this study. Samples were comprised of two collections, those from in and near the Snake River basin (1 – 4) and those from a location near the Spokane River (5).

Figure 2. Schematic of experimental set-up to investigate effect of rescue PCR on decreasing concentrations of DNA. A pooled sample of fish DNA was subject to nine dilutions and amplification was attempted using standard and rescue PCR.

Figure 3. Schematic of experimental set-up to investigate the success of rescue PCR with changing DNA-inhibitor ratios. An aDNA control consisting of pooled DNA from northern fur seal was subject to nine dilutions; each dilution was then spiked with undiluted fish DNA. Amplification was attempted using standard and rescue PCR mixes created using primers designed to target the northern fur seal DNA and not fish DNA.

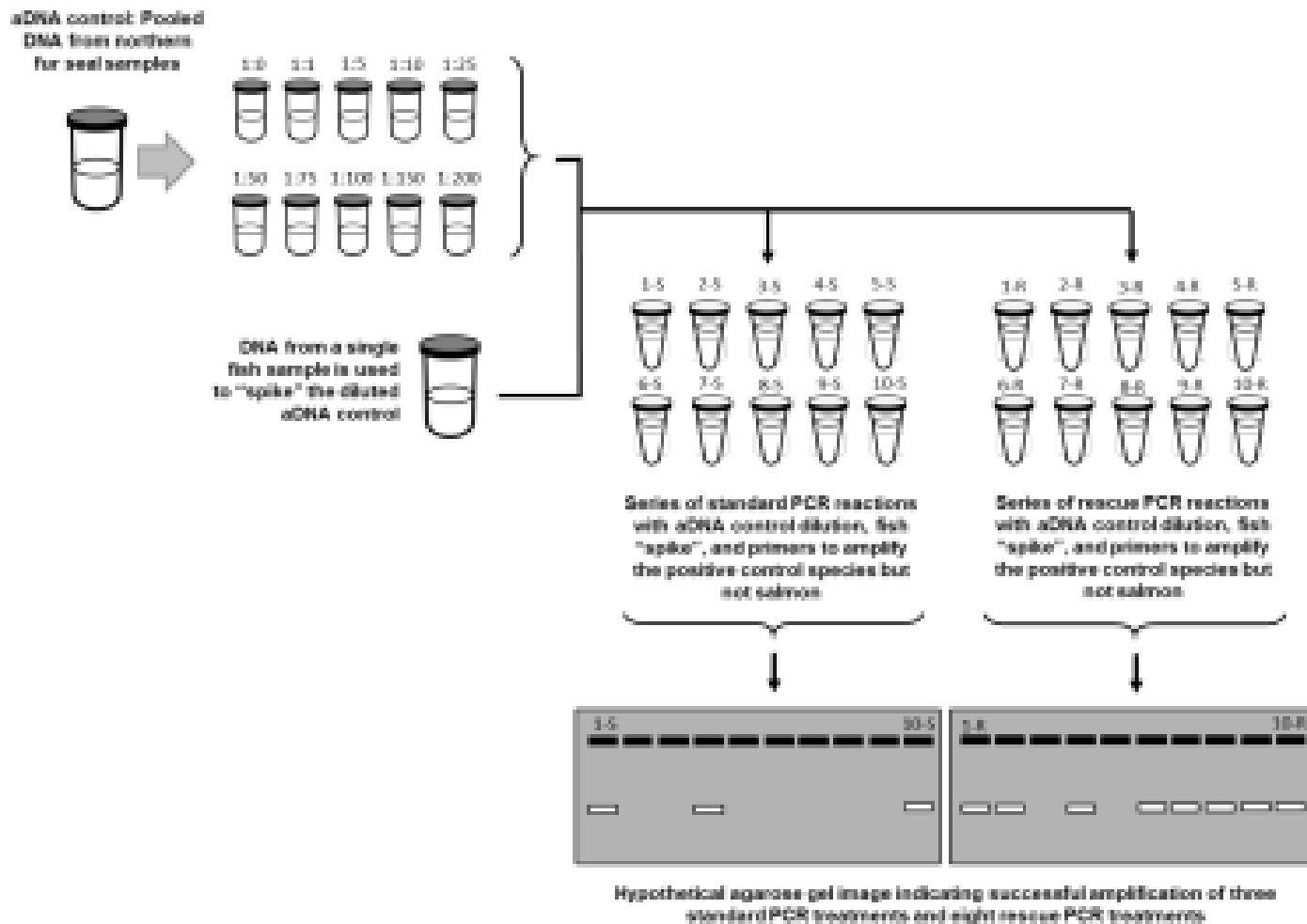
Figure 4. Amplification results for test inducing decreasing DNA concentrations. Two pools of fish DNA (FP1 and FP2) were diluted and amplification was attempted using standard and rescue PCR at +25%. Two replicates were run for each dilution of a DNA pool. Results indicate little difference between amplification capabilities of standard and rescue PCR. (Note: Results are from a single gel image that has been reordered to support interpretation, no other alterations were made to the images).

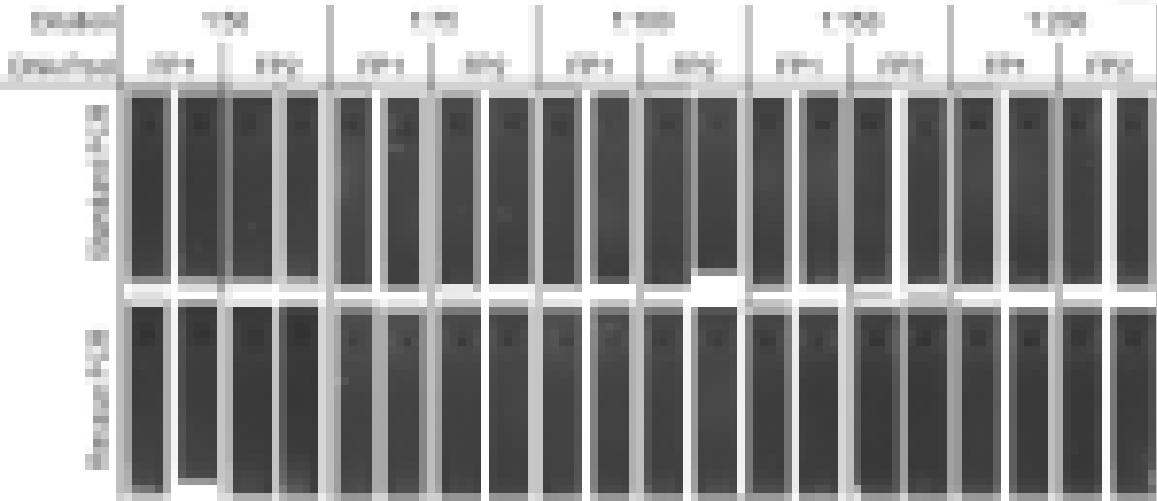
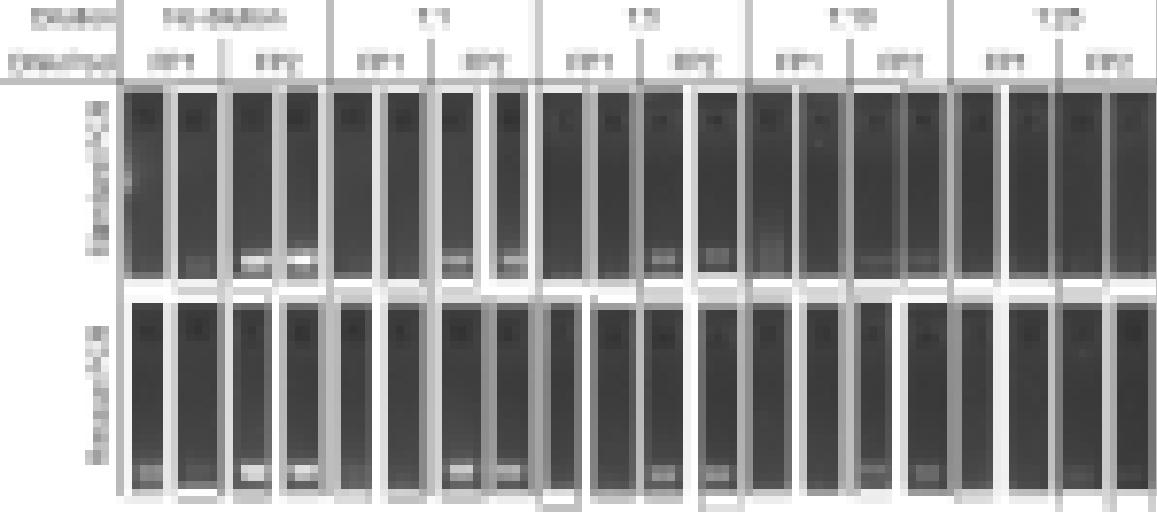
Figure 5. Amplification results for test inducing DNA-Inhibitor ratio changes. An aDNA positive control was diluted and then spiked with undiluted fish DNA (four distinct DNA samples, numbered 1 - 4). Primers used in the PCR target the aDNA control. Amplification was then attempted using standard and rescue PCR at +25%. Two replicates were done for each dilution/spike combination. "+C" shows the dilution treatment with no fish DNA spike. Results indicate amplification success of rescue PCR in cases where standard PCR fails. (Note: Results are from three gel images that has been combined and reordered to support interpretation, no other alterations were made to the images).

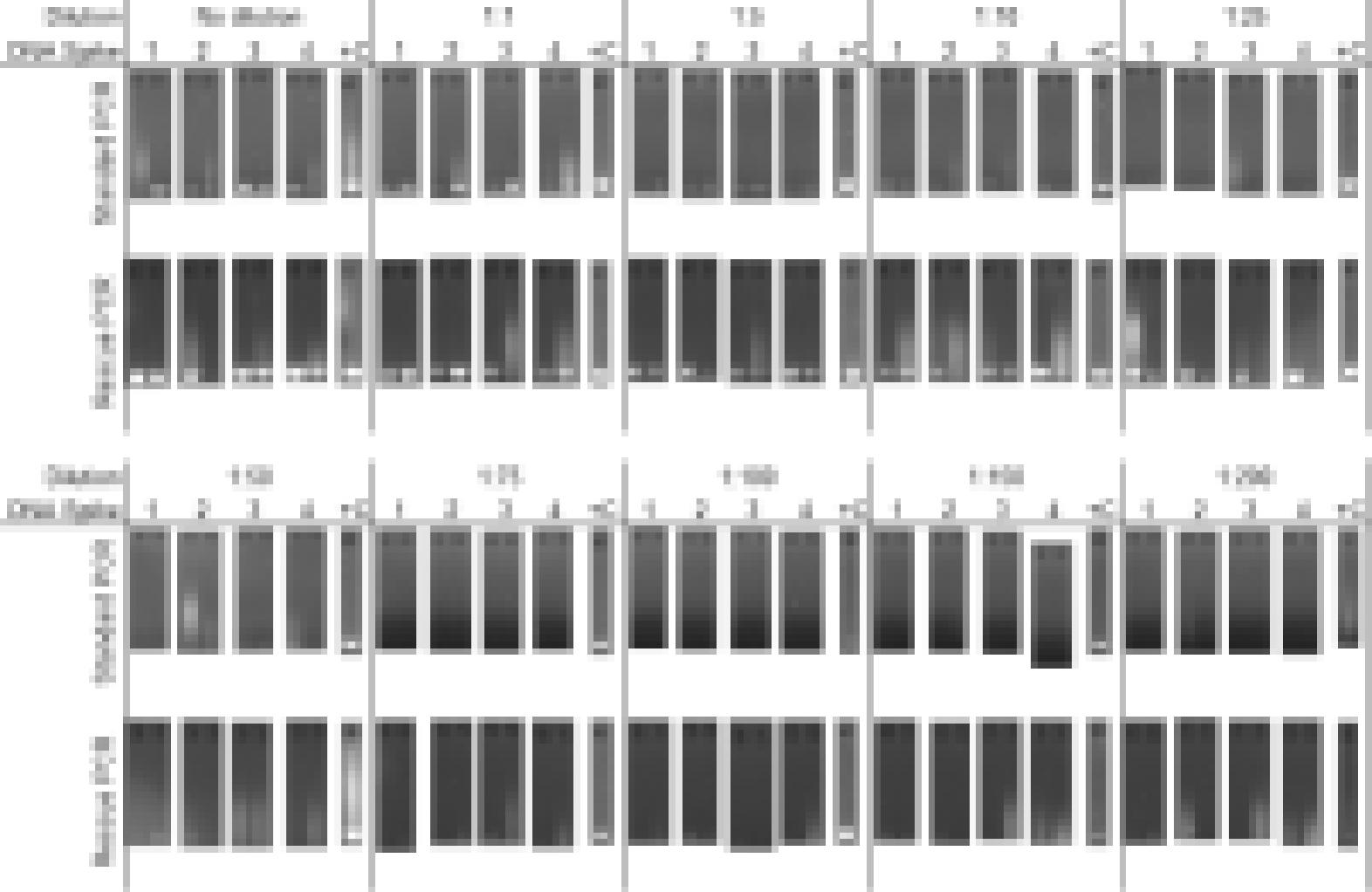
- 1] McNary Dam
- 2] Ice Harbor Dam
- 3] Lower Monumental Dam

- 4] Lower Granite Dam
- 5] Spokane

Fish Pool : Pooled
DNA from fish
samples


Series of standard PCR
reactions made with fish DNA
dilution and primers to
amplify salmon


Series of rescue PCR
reactions made with fish DNA
dilution and primers to
amplify salmon

Hypothetical agarose gel image indicating successful amplification of five
standard PCR treatments and nine rescue PCR treatments

