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Abstract

Derived from river monitoring data, concentration-discharge (C-Q) relationships are useful
indicators of riverine export dynamics. A top-down synthesis of C-Q patterns is provided for
suspended sediment (SS), total phosphorus (TP), and total nitrogen (TN) for nine major
tributaries (15 sites) to Chesapeake Bay, which represent diverse characteristics in terms of land
use, physiography, and hydrological settings. Model coefficients from the recently-developed
WRTDS (Weighted Regressions on Time, Discharge, and Season) method were used to make
informative interpretation of C-Q relationships. Unlike many previous C-Q studies that focused
on stormflow conditions, this approach allows simultaneous examination of various discharge
conditions within an uncertainty framework. This synthesis on WRTDS coefficients (i.e., the
sensitivity of concentration to discharge) has offered new insights on the complexity of
watershed function. Results show that watershed export has been dominated by mobilization
patterns for SS and TP (particulate-dominated species) and chemostasis patterns for TN
(dissolved-dominated species) under many discharge conditions. Among nine possible
modalities of low-flow vs. high-flow patterns, the three most frequent modalities are
mobilization-mobilization (17 cases), chemostasis-mobilization (13 cases), and chemostasis-
chemostasis (7 cases), representing 82% of all 45 watershed-constituent pairs. The general lack
of dilution patterns may suggest that none of these constituents has been supply-limited in these
watersheds. For many site-constituent combinations, results show clear temporal non-stationarity
in C-Q relationships under selected time-invariant discharges, reflecting major changes in
dominant watershed sources due to anthropogenic actions. These results highlight the potential
pitfalls of assuming fixed C-Q relationships in the record. Overall, this work demonstrates the
utility of WRTDS model coefficients for interpretation of river water-quality data and for
generation of sensible hypotheses on dominant processes in different watersheds. The approach
is readily adaptable to other river systems, where long-term discretely-sampled data are available,

to decipher complex interactions between hydrological and biogeochemical processes.
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1. Introduction

Derived from river monitoring data, concentration-discharge (C-Q) relationships are a
powerful tool for understanding complex interactions between hydrological and biogeochemical
processes, including solute and particulate export dynamics (Evans and Davies, 1998; Chanat et
al., 2002; Godsey et al., 2009; Thompson et al., 2011; Meybeck and Moatar, 2012; Musolff et al.,
2015; Moatar et al., 2017). In particular, C-Q relationships have been commonly classified into
three categories — namely, “dilution” (i.e., negative relationship); “mobilization” (i.e., positive
relationship); and “chemostasis” (i.e., C invariant with Q). Such classifications have been found
to vary with constituent and with site (Godsey et al., 2009; Hirsch et al., 2010; Meybeck and
Moatar, 2012; Stallard and Murphy, 2014; Herndon et al., 2015; Musolff et al., 2015; Moatar et
al., 2017).

In general, C-Q relationships are largely controlled by the spatial availability and distribution
of constituent sources in the various compartments as well as their hydrological connectivity to
the stream channel. Particularly, dilution responses can occur when anthropogenic point sources
(e.g., wastewater treatment plants) or other spatially distinct and flow-independent sources (e.g.,
mineral dissolution from base-flow pathways) are dominant and are more concentrated than
nonpoint sources in the watershed. Mobilization responses can occur when otherwise
disconnected solute or sediment sources become connected to water flow paths during elevated
discharges. Mobilization and dilution are often described as transport- and source- limitation,
respectively. These conceptualizations have formed the foundation to the development of
component mixing models for interpretation of event-scale concentration data in terms of
contributions from deep subsurface, shallow subsurface, and surface water sources (Evans and
Davies, 1998; Chanat et al., 2002; Bieroza and Heathwaite, 2015) and riverine loading
apportionment models for analysis of decadal-scale records (Bowes et al., 2008; Bowes et al.,
2009). As a relatively less familiar concept, chemostasis has been recently documented for
nutrients and weathering products in a range of watersheds and has been attributed to constant
fluxes of release from legacy stores that have been accumulated historically from sources such as
agricultural input, atmospheric deposition, and mineral formation and deposition (Godsey et al.,
2009; Basu et al., 2010; Basu et al., 2011; Thompson et al., 2011; Herndon et al., 2015).



58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

While many prior C-Q studies focused on the interpretation of event-scale data (e.g., storm
hysteresis) and the development of component mixing models for inferring source water (Evans
and Davies, 1998; House and Warwick, 1998; Outram et al., 2014; Bieroza and Heathwaite,
2015), decadal-scale discretely-sampled (low-frequency) data also have merits. In particular,
such long-term data can reveal temporal changes in C-Q relationships, which in turn may reflect
long-term shifts in watershed function due to anthropogenic activities such as land disturbance
and watershed management (Bieroza and Heathwaite, 2015; Burt et al., 2015; Gray et al., 2015;
Zhang et al., 2016d; Moatar et al., 2017). In this regard, several recent C-Q studies focused on
“top-down” synthesis of long-term data from multiple watersheds with the common feature of
searching for parsimonious representation of dominant watershed processes (Godsey et al., 2009;
Basu et al., 2010; Thompson et al., 2011).

While the adoption of log-linear C-Q relationship (or its modified form, log-linear loading-
discharge relationship) has been a popular practice in the hydrological literature, there are several
issues noted with this approach that can complicate or even mislead the interpretation. These
issues include non-linear log(C)-log(Q) relations and variations in relation over time and season
due to changes in constituent availability and biochemical modulation. Zhang et al. (2016c¢)
discussed these issues with real-world examples and proposed an improved approach that uses
the model coefficients from the recently-developed WRTDS (“Weighted Regressions on Time,
Discharge, and Season”) method (Hirsch et al., 2010) to provide informative interpretation of C-
Q patterns in long-term, discretely-sampled data.

This work builds upon the work of Zhang et al. (2016c) to better understand constituent
export patterns from the multi-jurisdictional watershed of Chesapeake Bay, the largest estuary in
the North America. For this watershed, reduction of total nitrogen (TN), total phosphorus (TP),
and suspended sediment (SS) loads has long been a management focus toward controlling Bay
eutrophication and hypoxia (Kemp et al., 2005; Murphy et al., 2011; Shenk and Linker, 2013).
For assessment of past management progress and development of future restoration strategies, it
is critical to understand export from different areas of the watershed. In this context, the main
objective of this work was to apply the approach of Zhang et al. (2016c) to long-term (~ 30 years)
data covering three major constituents (i.e., SS, TP, and TN) for nine major tributaries to
Chesapeake Bay (Fig. 1). This work is presumably the first top-down analysis of C-Q patterns in

the Chesapeake Bay watershed, which was aimed to address two research questions:
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(1) How does the prevalence of C-Q relationship vary by discharge condition and how does

the pattern compare among sites and species?

(2) How does C-Q relationship vary over time under different discharge conditions and how

does the pattern compare among sites and species?

These questions have been similarly explored by Moatar et al. (2017) in a number of French
watersheds using a “split-hydrograph” method, where C-Q relationship is separately modeled for
below- and above- median discharge conditions. In comparison, the approach proposed by Zhang
et al. (2016c) provides a more flexible and comprehensive representation of the C-Q relationship
across discharge, temporal, and seasonal conditions, and it has the capability of dealing with
censored (below detection limit) concentrations.

2. Methods
2.1. Monitoring Sites

This work focused on nine major tributaries to Chesapeake Bay, namely, Susquehanna,
Potomac, James, Rappahannock, Appomattox, Pamunkey, Mattaponi, Patuxent, and Choptank,
which represent diverse characteristics in terms of land use, physiography, and hydrological
settings (Fig. 1; Table 1). Since the 1980s, these rivers have been monitored at their fall-line
locations (divide of tidal and non-tidal areas) by the U.S. Geological Survey (USGS) River Input
Monitoring (RIM) Program. Collectively, these sites account for ~93% of non-tidal discharge
and ~77% of total freshwater discharge to Chesapeake Bay between 1991 and 2000 (Shenk and
Linker, 2013). The Choptank is located entirely in the coastal plain and may represent the much
larger Eastern Shore. On the Western Shore, only Mattaponi draws a substantial portion of its
water from the coastal plain. The other tributaries are dominated by upland physiographic
provinces, including piedmont, Blue Ridge, valley and ridge, and Appalachian plateau (Shenk
and Linker, 2013).

In terms of export from the nine tributaries, Susquehanna contributed ~62% of river
discharge , ~65% of TN load, ~46% of TP load, and ~41% of SS load between 1979 and 2012
(Zhang et al., 2015). The relatively lower fractional contributions of TP and SS reflect historical
retention within the Lower Susquehanna River Reservoir System (LSRRS). The most-
downstream member of the LSRRS, Conowingo Reservoir, is reportedly over 90% full in terms

of sediment storage (Langland, 2015), accompanied by substantial recent decline in net trapping



119
120
121
122
123
124

125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

of sediment and particulate nutrients (Hirsch, 2012; Zhang et al., 2013; Zhang et al., 2016d).
Below the LSRRS, one site has been managed by the USGS, which is the RIM site at
Conowingo Dam, Maryland. Above the LSRRS, six sites have been monitored by the
Susquehanna River Basin Commission (SRBC) since the 1980s, with three of them (i.e.,
Towanda, Danville, and Marietta) on the main-stem of Susquehanna and the other three (i.e.,
Lewisburg, Newport, and Conestoga) on tributaries to Susquehanna (Fig. 1; Table 1).

2.2. Monitoring Data

For each site, daily discharge data were compiled from the USGS National Water
Information System (NWIS) (U.S. Geological Survey, 2014). In addition, SS, TP, and TN
concentration data were compiled from NWIS for the nine RIM sites (U.S. Geological Survey,
2014) and from SRBC for the six Susquehanna sites above LSRRS (Susquehanna River Basin
Commission, 2014). These sites are among the most densely sampled long-term stations within
the Chesapeake Bay Nontidal Water-Quality Monitoring Network (Chanat et al., 2016). The
average number of days sampled varies with sites, ranging between 12.6-39.4 days/year (median
= 25.7) for SS, 20.8-40.4 days/year (median = 28.3) for TP, and 20.8-39.4 days/year (median =
27.6) for TN. See Table 2 for details of data coverage.

In general, water-quality concentration samples at each site were collected across the full
range of hydrologic conditions in each year and comprised of at least eight targeted stormflow
samples and twelve regular samples (Chanat et al., 2016; Zhang et al., 2016a). Consequently,
these sites have been sampled at least 20 days per year (Table 2). The only exceptions are SS
records at one RIM site in Maryland (Potomac) and all five RIM sites in Virginia. To coarsely
examine the representativeness of water-quality sampling with respect to flow conditions,
distributions of discharge on days with water-quality samples and discharge on all days in the
record were compared. Results show that SS, TP, and TN have been sampled with generally

good coverage of high-flow conditions — see Fig. S1-S3 in the online supplementary material.
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Table 1. Details of the 15 long-term monitoring sites in the Chesapeake Bay watershed. ®

Annual river flow in

Upstream land use (percent)

. . . Drainage 1984-2014
Station Number River sites area. Kim? Average Average
’ 93 . g Urban  Agricultural  Forested Other
flow, m°/s  yield, m/yr
01578310 Susquehanrwa River near 70,189 1147 0.52 2 29 67 2
Conowingo, MD
01646580 | oromacRiveratChainBridge, ), 338 0.35 3 35 61 1
Washington D.C.
02035000 James River at Cartersville, VA 16,213 199 0.39 1 16 80 3
3 Rappahannock River near
= 01668000 . 4,144 49 0.38 1 36 61 2
g Fredericksburg, VA
T 02041650 Appomattox River at Matoaca, VA 3,471 33 0.30 1 20 72 7
01673000 Pamunkey River near Hanover, VA 2,800 28 0.31 1 24 68 7
01674500 Mattaponi near Beulahville, VA 1,557 15 0.30 1 19 69 11
01594440 Patuxent River at Bowie, MD 901 11 0.38 13 41 38 8
Choptank Ri G b
01491000 optan 'Ve;/ln;ar reensboro, 203 4.2 0.45 1 50 29 20
01576000 Susquehanna River at Marietta, PA 67,314 1114 0.52 4 30 64 2
01540500 Susquehanna River at Danville, PA 29,008 475 0.52 5 33 60 2
% 01531500  Susquehanna River at Towanda, PA 20,194 325 0.51 4 35 60 1
West Branch Susquehanna River at
g 01553500 . q 17,765 310 0.55 2 15 81 2
o Lewisburg, PA
01567000 Juniata River at Newport, PA 8,687 126 0.46 2 28 69 1
01576754 Conestoga River at Conestoga, PA 1,217 19 0.50 8 54 37 1

® modified from Table 3 and Table 8 in Sprague et al. (2000)



Table 2. Temporal coverage of observed water-quality data at the 15 Chesapeake sites.
(Tstare: first sampled day; Teng: last sampled day; Neampie: total number of sampled days; fompie: @verage number of sampled days per year.)

River sites Suspended Sediment (SS) Total Phosphorus (TP) Total Nitrogen (TN)

T Te gt Te Te ) Ten  Te o
Sus‘é‘:)enhof;?r?gi“ﬁr[)”ear 1984/10/25  2014/9/3 (267_ g?yr) 1984/10/25  2014/9/3 (268.?;/3yr) 1984/10/25  2014/9/3 (268.2;yr)
gr?é‘;?a\fv';s'xfr:ga;ﬁ@'g 1984/11/14  2014/9/9 (154_if’yr) 1984/10/9  2014/9/9 (33179/; ) 1984202 2014/9/9 (3;15/30
fames River ot Cartersville, 1984710130 20141012 (égyr) 1984/10/30  2014/9/2 (278.51yr) 1984/10/30  2014/9/2 (2?.%)}yr)
% Ra‘;ﬁgggplgﬁgﬁé"% Xear 1984/10/9  2014/9/9 (123_%0 1984/10/9  2014/9/9 (2; if’yr) 1984/10/9  2014/9/9 (2; Z’?yr)
% App&rgt"’(‘;;‘c’;s}‘fr B 1984/11/20 2014/9/4 (123’%2/0 1984/11/20  2014/9/4 (2; Z)?yr) 1984/11/20  2014/9/4 (2; g?yr)
% Pamﬂ’;ﬁa’/;’“@x‘em 1984/10/17 2014/9/16 (123_3%0 1984/10/17 2014/9/16 (278.?#yr) 1984/10/17 2014/9/16 (278.§S?yr)
Mattapont nea? Beulahville: 1984710117 2014/9/30 (123’_2’/3yr) 1984/10/17 2014/9/30 (278.%3?yr) 1984/10/17 2014/9/30 (2?.5’yr)
Patuxent R&’g atBowie,  1984111/28 2014/9/26 (257_ ;}yr) 1984/10/24 2014/9/26 (2§g?yr) 1984/10/24 2014/9/26 (2; ;}yr)
Crg’rif:s'zgri(‘)”e,(/lngar 1984/10/19 2014/9/25 (Zg_i‘;’yr) 1984/10/19 2014/9/25 (zgf;yr) 1984/10/19 2014/9/25 (zggj‘yr)
S“Sqﬁﬂeaﬁ?é‘t?:, F;Xer 8 1986/10/7 2014/9/29 (3?5’/;) 1986/10/7  2014/9/29 (;93‘,‘/;) 1986/10/7  2014/9/29 (3%/3 )
S“Sq[‘;gﬂf‘/?lrl‘; RIVErat  1084/20/11 2014/9/30 (3913.14?/?”) 1984/10/11 2014/9/30 4%).241/30 1984/10/11 2014/9/30 (3?3;)

o .
-§ W:SSE\EEEE%’EE:::M 1988/10/5  2014/9/15 (3;39_1%?30 1984/10/10 2014/9/15 (3%2{/2 ) 1984710110 2014/9/15 (356?5{0
S Riverat Lewishurg, A 1984/10/11 2014/9/30 T ) 19B4/10/11 2014/9/30 oo 1984/10/11 201419030 oy
Juniata Ri"ffA{"t Newport, 19g4/10/10  2014/9/17 (3\}3950/30 1984/10/10 2014/9/17 (3?05/30 1984/10/10 2014/9/17 (33%0
C‘g‘gﬁg‘;‘i’jgii‘;‘iat 1984/10/18 2014/9/29 (3?97/30 1084/10/18 2014/9/29 (3513056/3 ) 198411018 20149129 (3:1’>(.)81/§1/r)
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2.3. Statistical Method

WRTDS estimates daily constituent concentrations and loadings based on discretely-sampled

concentration data (Hirsch et al., 2010):
In(C;) = Boi + Briti + Ba,i In(Qy) + B3 sin(2mt;) + By cos(2me;) + ¢ 1)

where t; is time in decimal years, C; is daily concentration at time t;, Q; is daily discharge at time
ti, Bo,i ~ Pa.i are fitted coefficients, and ¢; is the error term. For each estimation day, WRTDS pre-
screens all available samples and selects the most relevant samples to fit Equation (1), with the
“relevancy” being quantified on three dimensions, i.e., time, discharge, and season. The fitted
coefficients are used to estimate In(C;) on the estimation day with known values of tj and Q;. To
expedite estimation, WRTDS establishes a set of evenly-spaced grid points on a surface defined
by t and In(Q), develops individual model for each grid point, and performs bi-linear
interpolations among the grid points to generate a surface of concentration estimates (i.e., C as
functions of t and Q). The estimation process is fully described in Hirsch and De Cicco (2015).

For interpretation of C-Q relationships, Zhang et al. (2016c) recommended use of WRTDS
S coefficients over traditional approaches. Specifically,

(1) It does not assume a linear In(C)~In(Q) relation.

(2) It allows the C-Q relation to flexibly vary with time, discharge, and season.

(3) It conducts local fitting at many points in the t-Q space in a consistent manner.

(4) 1t can decouple the interactions among time, discharge, and season.

(5) Itis less sensitive than other approaches to the scarcity of highflow samples.

(6) It can deal with concentration data set that contains censored values.
2.4. Data Analyses

For each constituent and each site, WRTDS was implemented using the EGRET (Exploration
and Graphics for RivEr Trends) package version 2.2.0 (Hirsch and De Cicco, 2015) inR 3.1.0 (R
Development Core Team, 2014). R codes published by Zhang et al. (2016¢) and documented at
the Johns Hopkins University Data Archive (Zhang et al., 2016b) were applied to estimate,
extract, and visualize the /5, coefficients. In addition, variance inflation factor (Kutner et al.,
2004) was calculated for each regression to confirm that collinearity among the independent

variables was not an issue.

10
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WRTDS p, coefficients are used to categorize export patterns — namely, (1) “dilution” (i.e.,
S2<0); (2) “chemostasis” (f2 ~ 0); and (3) “mobilization” (f, > 0). Following prior
investigations (Godsey et al., 2009; Herndon et al., 2015), the range of -0.1 to 0.1 is considered
as chemostasis. For illustration, the estimated £, coefficients for TP in Susquehanna River at

Conowingo are shown as a contour plot against axes of t and In(Q) in Fig. 2.

Estimated Coefficient Beta 2 (Discharge) Surface in Color

10000 15
5000
1.0
=2 2000
=
£ 1000 8o
(0]
o)
s 500 0.0
(&)
K]
0O 200
-05
100
50 -1.0

1985 1990 1995 2000 2005 2010 2015

Fig. 2. Contour plot showing estimated WRTDS f, coefficients as a function of time and
discharge for total phosphorus in Susquehanna River at Conowingo, MD. Black open circles
indicate the time-discharge combinations where concentration samples have been taken. The S,
coefficients correspond to three broad categories, namely, (1) dilution (i.e., 52 < 0); (2)
chemostasis (5, = 0); and (3) mobilization (52 > 0).

To address the first question posited above, daily S, coefficients were grouped by discharge
percentiles to reveal discharge-related patterns for each site-constituent pair. These results are
presented in Section 3.1 (Fig. 3-5) and discussed in Section 4.1. To address the second question,
[ coefficients were grouped by year under three selected discharge conditions to accommodate
the effects of inter-annual discharge variability. Because £, coefficients were estimated for 14
fixed discharge levels, the discharges closest to the 10", 60", and 99.5™ percentiles of the site-
specific daily discharge distribution were used to represent low-, mid-, and high- discharge

conditions, respectively. For each discharge, S, coefficients were extracted and their annual

11
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averages were calculated. These results are presented in Section 3.2 (Fig. 6-8) and discussed in
Section 4.2. Following Zhang et al. (2016c), 90% confidence intervals were quantified for these
annual averages using the block-bootstrap method of Hirsch et al. (2015), which resamples (with
replacement) the original concentration data to obtain 50 realizations of representative sets and
re-run the model estimation with each replicate. The period-of-record change in annual S,
coefficient (A) was quantified, i.e., A = B yr 2014 — f2, yr 1984. The probability of positive change
(“Pa>0”) or negative change (“Pa<o”) was calculated for the 50 bootstrap runs for each site-

constituent pair (Table 4).

3. Results
3.1. Changes in C-Q Pattern over Discharge

SS coefficients show predominantly mobilization effects across all discharge intervals at the
15 Chesapeake sites (Fig. 3). Exceptions include five sites at the lowest discharge interval
(Towanda, Conowingo, Rappahannock, Appomattox, and Mattaponi) and one site at the highest
discharge interval (Mattaponi). For such exceptions, median coefficient is close to zero,
indicating chemostasis or even dilution. At most sites, SS coefficients follow a positive
monotonic pattern with respect to discharge, with the highest values occurring at the highest
discharge interval (i.e., 90"~100™ percentile). Deviations from this general pattern are observed
in several cases. For the low-discharge intervals, coefficients are not correlated with discharge at
two sites (Pamunkey and Choptank). For the high-discharge intervals, coefficients appear to
level off at three sites (Marietta, Appomattox, and Choptank) and decrease with discharge at six
sites (Potomac, James, Rappahannock, Pamunkey, Mattaponi, and Patuxent).

TP coefficients also show predominantly mobilization patterns at many discharge intervals,
but TP coefficients are generally smaller than SS coefficients (Fig. 4). Exceptions (i.e.,
chemostasis or dilution) are observed with all sites at the lowest discharge and two sites at the
highest discharge (Pamunkey and Mattaponi). In terms of relationship with discharge, TP
coefficients generally follow a positive monotonic pattern. Deviations from this pattern are
observed: for the low-discharge intervals, coefficients are not correlated with discharge at four
sites (Newport, Appomattox, Pamunkey and Choptank); for the high-discharge intervals,
coefficients decline with discharge at five sites (Rappahannock, Pamunkey, Mattaponi, Patuxent,
and Choptank).

12
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TN coefficients show patterns that are very different from SS or TP: mobilization effect is
not dominant; instead, chemostasis or nearly-chemostatic effects are much more prevalent for
many discharge intervals (Fig. 5). In addition, TN coefficients are generally smaller than SS and
TP coefficients. Several exceptions (i.e., non-chemostatic effects) are observed, including
mobilization at Newport, Potomac, James, and Rappahannock for most discharge intervals as
well as dilution at Conestoga for high-discharge intervals and Patuxent for all discharge intervals.
In terms of relationship with discharge, TN coefficients show monotonic decline with discharge
at three sites (Newport, Conestoga, and Potomac), monotonic increase with discharge at two sites
(James and Appomattox), but no correlation with discharge at all other sites.

These results (Fig. 3-5) show strong contrast between low-flow and high-flow C-Q patterns.
As a more focused analysis, such contrast is summarized for the lowest and highest discharge
intervals, i.e., Qo-10th VS. Qgo-100th, IN Table 3, where mobilization, chemostasis, and dilution are
indexed as M, C, and D, respectively. Theoretically, there are nine possible modalities, namely,
M-M, M-C, M-D, C-M, C-C, C-D, D-M, D-C, and D-D. For SS, only two modalities exist,
which are M-M (10 sites) and C-M (5 sites). In other words, dilution is always absent and
mobilization is always the pattern at the highest discharge interval. For TP, four modalities exist,
namely, C-M (7 sites), M-M (4 sites), D-M (3 sites), and C-C (1 site). TP is also dominated by
mobilization at the highest discharge but TP behaves more diversely than SS at the lowest
discharge. For TN, six modalities exist, which are more diverse than SS and TP. The most
frequent modalities are C-C (6 sites), M-M (3 sites), and M-C (3 sites), all irrelevant to dilution.
Considering all three constituents at the 15 sites (45 cases), the most frequent modalities are M-

M (17 cases), C-M (13 cases), and C-C (7 cases), which represent 82% of all cases.

13
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Table 3. Summary of comparison between
low-flow (Qo-10tn; the lowest 10% of flows) and
high-flow (Qgo-100th; the highest 10% of flows)
C-Q patterns at the 15 Chesapeake sites. (C =
chemostasis; M = mobilization; D = dilution.)

I. Summary by individual sites

River sites SS TP TN
Towanda CcC-M D-M M-C
Danville M-M  C-M M-C

Lewisburg M-M  D-M C-C
Newport M-M M-M  M-C

Conestoga M-M  D-M C-D
Marietta M-M  M-M C-C

Conowingo C-M C-M C-C
Potomac M-M  M-M M-M

James M-M  C-M M-M
Rappahannock C-M C-M M-M
Appomattox C-M C-Mm C-M

Pamunkey M-M  C-M C-C
Mattaponi C-M Cc-C C-C
Patuxent M-M  C-M D-D

Choptank River M-M  M-M  C-C

Il. Summary by the nine modalities
Modalities SS TP TN

M-M 10 4 3
M-C 3
M-D
C-M 5 7 1
c-C 1
C-D 1
D-M 3
D-C
D-D 1
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3.2. Changes in C-Q Pattern over Time for Selected Discharge Conditions

SS coefficients have declined at 10 of the 15 sites at high discharges (Fig. 6; Table 4). The
largest decline occurred at Pamunkey (A = -0.91), whereas the largest rise occurred at
Conowingo (+0.81). Both changes are statistically robust based on the 50 replicate runs. Notably,
the Conowingo rise is much stronger than Marietta (inlet of Conowingo Reservoir). At middle
discharges, SS coefficients have declined at six sites, with the largest decline again occurred at
Pamunkey (-0.35) and the largest rise at Rappahannock (+0.26). At low discharges (black lines),
SS coefficients have declined at nine sites, with the largest decline occurred at Conestoga (-0.56)
and the largest increase at Danville (+0.36). Among the 15 sites, four sites show declines at all
three discharges (Newport, Conestoga, Pamunkey, and Choptank). Remarkably, the three largest
RIM sites (Conowingo, Potomac, and James) all show rises at middle and high discharges.

TP coefficients have increased at 11 sites at high discharges (Fig. 7; Table 4). The largest
rise again occurred at Conowingo (A = +0.84), whereas the largest decline occurred at
Appomattox (-0.19). Both changes are robust based on the 50 replicate runs. At middle
discharges, TP coefficients have increased at 11 sites, with the largest decline occurred at
Choptank (-0.09) and the largest rise at James (+0.72). At low discharges, TP coefficients have
increased at 11 sites, with the largest decline occurred at Choptank (-0.20) and the largest rise at
Lewisburg (+0.63). Among the 15 sites, only two sites (Appomattox and Choptank) show
declines at all three discharges. By contrast, eight sites show rises at all three discharges (James,
Patuxent, and all Susquehanna sites except Towanda). Similar to SS, TP coefficients show rises
at middle and high discharges at the three largest RIM sites.

TN coefficients have declined at nine sites at high discharges (Fig. 8; Table 4). The largest
decline occurred at Conestoga (A = -0.28), whereas the largest rise occurred at Conowingo
(+0.45). Both changes are robust based on the 50 replicate runs. At middle discharges, TN
coefficients have declined at 10 sites, with the largest decline occurred at Choptank (-0.10) and
the largest rise at Patuxent (+0.28). At low discharges, TN coefficients have declined at 9 sites,
with the largest decline occurred at James (-0.18) and the largest rise at Patuxent (+0.34). Among
the 15 sites, two sites (Potomac and Patuxent) show rises at all three discharges. By contrast, six
sites show declines at all three discharges, including Pamunkey and all Susquehanna sites except
Conowingo and Marietta. As with SS and TP, TN coefficients also show increases at high

discharges at the three largest RIM sites.
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Table 4. Period-of-record changes (A) in estimated WRTDS p, coefficients at the 15 Chesapeake sites under three different discharge conditions.

(Arow: A under low-discharge condition; Amig: A under mid-discharge condition; Anign: A under high-discharge condition; Paso: probability of

positive change [A > 0] observed in the 50 replicate runs; pink cells: A > 0; green cells: A < 0; yellow cells: strong positive change [Paso > 0.9] or
strong negative change [Paso < 0.1].)

River Sites

Suspended Sediment (SS)

Total Phosphorus (TP)

Total Nitrogen (TN)

Atow Paso | Amid  Paso | Anigh Paso | Atow Paso | Amia  Paso | Anigh Paso | Atow  Paso | Amia  Paso | Anigh  Paso

Towanda 025 086| 0.04 061]-040 0.04|-008 041|014 096 | 0.19 0.90|-0.11 0.16 |-0.02 0.33]-0.03 0.27

o Danville 036 092|0.14 090|-0.10 031|040 098] 0.15 092|039 1.00]|-0.03 0.49|-0.04 0.06|-0.03 0.43
n Lewisburg 0.28 0.88|-0.20 0.00|-0.12 0.24| 063 100| 0.30 1.00| 0.42 0.98|-0.02 0.33|-0.06 0.06 |-0.09 0.25
8 Newport -0.37 0.12(-0.23 0.10(-0.15 029|022 088 | 0.20 100| 0.41 1.00|-0.06 0.25]-0.02 0.25]-0.09 0.02
cﬂl:) Conestoga -0.56 0.00(-0.14 025|-0.22 006|019 098|021 100 0.16 0.76 |-0.07 0.08 | -0.02 0.16 | -0.28 0.00
Marietta 0.15 078|004 065|006 063|019 094|027 100| 0.23 0.96| 0.03 0.69|-0.02 0.31]-0.11 0.02
Conowingo |-0.13 0.18| 0.06 0.63| 081 1.00| 0.13 0.94| 0.11 096| 0.84 1.00|-0.09 0.06 |-0.07 0.02| 0.45 1.00
Potomac 002 059|002 065|023 096 |-009 022|030 100| 0.13 084 | 0.09 082] 0.03 088 ] 0.01 0.69

James -0.10 037014 075|0.09 065|051 100|072 100| 0.28 094 |-0.18 0.06 | 0.24 1.00| 0.15 1.00

& | Rappahannock | 0.01 053 | 0.26 0.90|-0.16 0.33| 0.21 096 |-0.08 0.20 | 0.12 0.86| 0.01 0.55|-0.03 0.29 | 0.04 0.86
g Appomattox |-0.33 0.02| 0.21 0.96|-0.15 0.59|-0.16 0.10|-0.02 0.16 [-0.19 0.10| 0.01 0.63| 0.02 0.67 |-0.02 0.33
T Pamunkey -0.33 0.16 [-0.35 0.06 [-0.91 0.00 | 0.03 0.61| 0.00 043 |-0.04 045|-0.08 0.12 |-0.06 0.12 |-0.06 0.25
Mattaponi -0.16 0.18 0.01 0.71(-0.16 031|001 051|001 061]-003 031]0.02 049 0.08 0.98|-0.04 0.27
Patuxent -0.25 0.02|-0.03 031|015 086|040 100|038 100|006 0.75] 034 100| 0.28 1.00| 0.02 0.59
Choptank -0.20 0.20({-0.12 0.20 |-0.20 0.06 | -0.20 0.16 {-0.09 0.20 |-0.11 0.14 |-0.05 0.12 |-0.10 0.00 | 0.03 0.63
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4. Discussion
4.1. Changes in C-Q Pattern over Discharge

C-Q patterns of SS and TP show predominantly mobilization effects under a wide range of
discharges (Fig. 3-4). This indicates that source areas across the landscape become
hydrologically connected to the stream as discharge increases (Thompson et al., 2012; Wolf et
al., 2013; Outram et al., 2016). For SS and TP, nonpoint sources are likely dominant in the
watersheds, otherwise dilution would have been prevalent. Mobilization observed under low-
discharge and high-discharge conditions may reflect contributions by different source areas.
Specifically, low-discharge mobilization more likely arises due to the flushing of sources that are
near stream and/or subject to a more rapid transport pathway (e.g., lateral and vertical exchanges
of sediment within the hyporheic zones), whereas high-discharge mobilization more likely
indicates the flushing of sources that are far from stream and/or subject to a delayed transport
mechanism (e.g., rill erosion). Such distinct responses may be referred to as “proximal” and
“distal” responses, respectively (Sherriff et al., 2016).

Deviations from the general mobilization pattern provide additional insights on SS and TP
export. At low discharges, chemostasis is observed with TP at all sites and SS at five sites. This
likely indicates the existence of flow thresholds for mobilization of particulate constituents,
below which flow paths connecting source zones and river channel remain deactivated (Shanley
et al., 2011; Thompson et al., 2012; Wolf et al., 2013). Under such conditions, concentration is
largely insensitive to flow-generation processes. At high discharges, chemostasis is rare but
nonetheless observed with Mattaponi (SS and TP) and Pamunkey (TP), which implies an
equilibrium between constituent supply and water flux. These cases, as well as several other
cases that show decreased levels of mobilization at the high-discharge intervals (e.g., SS for
Patuxent; TP for Pamunkey), may reflect exhaustion of supply and/or deposition in the flood
plains. In this context, the two coastal-plain rivers (Mattaponi and Choptank) behaved very
differently at the high-discharge end (i.e., chemostasis vs. mobilization). A plausible cause is the
marked difference in agricultural land fraction (19% vs. 50%) in these two watersheds (Table 1).

Unlike SS and TP, TN shows predominantly chemostasis under many discharges (Fig. 5),
which suggests that solute production and/or mobilization is nearly proportional to water flux

(Godsey et al., 2009; Stallard and Murphy, 2014). Dilution patterns are observed in some cases,
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particularly Patuxent (most discharges) and Conestoga (high discharges). Such patterns highlight
the dominance of point-source contributions in these watersheds, which have the highest
fractional areas of urban land among the 15 watersheds (Table 1). Mobilization patterns are also
observed, including low-discharge conditions (Newport, Potomac, James, and Rappahannock)
and high-discharge conditions (Potomac, James, Rappahannock, and Pamunkey), suggesting the
dominance of nonpoint sources in these cases. Remarkably, strong mobilization is observed with
Conowingo at the highest discharge but not with Marietta (inlet of Conowingo Reservoir),
indicating the effect of particulate N remobilization in the reservoir (Zhang et al., 2016d).
Among all three constituents, TN coefficients show the smallest variability, highlighting its
distinct source and fate. In general, SS and TP are dominated by surface transport and are
expected to have undergone more spatially-heterogeneous processes, e.g., sources, pathways, and
reactions (Heathwaite and Dils, 2000; Brakebill et al., 2010; Dupas et al., 2015; Zhang et al.,
2015). By contrast, TN is generally dominated by subsurface transport and is expected to have
undergone relatively homogeneous processes due to subsurface storage and mixing over a range
of spatial and temporal scales (Kirchner and Neal, 2013; Sanford and Pope, 2013; Harman,
2015). In addition, TN coefficients are generally smaller than SS and TP coefficients. The
smaller sensitivities of TN concentration to discharge indicates a less important role of
hydrology in N flux regulation; other factors such as biogeochemical processes may have also
played important roles. A supporting evidence to this hypothesis is that median g, coefficients
were statistically significantly (p-value < 0.05) correlated with mean summer temperature (a
proxy of biogeochemical processes) at the 15 sites for TN (including all-flow, low-flow, and
high-flow conditions), but not for SS or TP (data not shown). Consistent with the above findings,
Moatar et al. (2017) also observed lower variability in C-Q pattern for nitrate than sediment
associated constituents (including SS and TP) based on a synthesis of 200+ French sites.
Overall, export at the 15 watersheds has been dominated by mobilization for SS and TP
(particulate-dominated species) and chemostasis for TN (dissolved-dominated species). The
general lack of dilution patterns across most discharges may suggest that none of these species
has been supply-limited. Therefore, it is legitimate to speculate that there exists sufficiently large
surface and/or subsurface storage for nutrients and sediment due to legacy inputs, as previously
noted on Chesapeake Bay, Mississippi River, and Lake Erie basins (Meals et al., 2009; Basu et
al., 2010; Jarvie et al., 2013; Sharpley et al., 2013; Zhang et al., 2016a; Van Meter et al., 2017).
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Finally, according to the comparison of low-flow (Qo-10tn) VS. high-flow (Qgo-100th) patterns
(Table 3), all three constituents were dominated by only two or three of the nine possible
modalities. Altogether, the 45 site-constituent pairs were dominated by three modalities, which
are M-M (16 cases), C-M (14 cases), and C-C (7 cases), totaling 82% of all cases. In this regard,
Moatar et al. (2017) also compared low-flow and high-flow patterns (using Qo-soth and Qso-100th
intervals) and reported that these constituents were dominated by only two or three of the nine
possible modalities. The authors hypothesized that intrinsic and extrinsic properties of
constituent (e.g., solubility, reactivity, source) fundamentally determine the basic C-Q pattern,
which is secondarily influenced by biogeochemical activities (e.g., oxic state), hydrological
conditions (e.g., flow path), and watershed characteristics (e.g., land use). The results from this
work, representative of markedly different regions, provide additional support to that conclusion.
While this work was intended to seek common patterns among the watersheds, further research
is needed to explore factors that have driven the unique behavior of each individual watershed,
which may include watershed input, land use, reservoir density, and flood-plain structure.

4.2. Changes in C-Q Pattern over Time for Selected Discharge Conditions

Long-term changes in C-Q relationship were diverse under low-, mid-, and high- discharge
conditions, which may reflect temporal shifts in watershed function due to anthropogenic
activities. For the selected discharges, SS coefficients show mixed trends across sites (Fig. 6;
Table 4). One of the most remarkable trends is Pamunkey at high discharge. This dramatic
decline has caused the SS pattern to switch from mobilization to dilution, suggesting decreased
availability of nonpoint sources in this watershed. Another notable pattern is the consistent
decline under all three discharges at four sites (Newport, Conestoga, Pamunkey, and Choptank),
presumably reflecting combined reductions of a wide range of nonpoint sources (proximal and
distal). By contrast, the three largest RIM sites (i.e., Susquehanna [Conowingo], Potomac, and
James) show increases in f, at middle and high discharges, all with high confidence (Paso =
0.65~1.0). The rise at Conowingo is remarkable and statistically robust (Pa>o = 1.0). Considering
that the Marietta coefficient has remained almost unchanged, the Conowingo rise signifies the
diminished trapping efficiency of Conowingo Reservoir, as documented previously using other
approaches (Hirsch, 2012; Zhang et al., 2013; Zhang et al., 2016d). The rises at Potomac and
James may reflect combined effects of land clearance and urbanization (Brakebill et al., 2010),

removal of small mill dams (Walter and Merritts, 2008; Merritts et al., 2011), and altered rainfall
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and watershed conditions that may promote erosion and transport (Karl and Knight, 1998),
which deserve further investigation.

For TP coefficients, upward trends are most common (Fig. 7; Table 4). The Conowingo rise
at high discharge is most remarkable and statistically robust (Pa>o = 1.0). This rise is also much
larger than that of Marietta and thus corroborates the reservoir effect discussed above. Moreover,
TP coefficients have increased at high discharges at the four largest RIM sites (Conowingo,
Potomac, James, and Rappahannock), all with high confidence (Pa>o = 0.84~1.0). This is
alarming since the four sites represent a vast majority of the nontidal Bay watershed. Several
sites show major shifts in TP pattern at low discharges: Lewisburg and James switched from
dilution to mobilization, whereas Danville, Conowingo, Rappahannock, and Patuxent switched
from chemostasis to mobilization. These shifts probably suggest enrichment of nonpoint sources
over the record and/or depletion of point sources due to management actions such as P-detergent
ban (Litke, 1999) and enhanced nutrient removal at wastewater treatment plants (Sprague et al.,
2000; Boynton et al., 2008). Reverse effects occurred at Choptank, where the low-discharge
pattern switched from mobilization to chemostasis, reflecting decreased dominance of nonpoint
sources or exhaustion of such sources.

For TN coefficients, downward trends are most common (Fig. 8; Table 4). Among all sites,
the largest decline is observed with Conestoga at high discharge and with high confidence (Pa<o
= 1.0). Interestingly, its pattern has shifted from mobilization to dilution. Such change may
reflect the effectiveness of nonpoint source reductions in this mixed-land-use watershed. By
contrast, TN coefficients have increased at high discharges in the four largest RIM sites, all with
high confidence (Pa>o = 0.69~1.0). The most significant rise is observed with Conowingo at high
discharge, which has caused the pattern to switch from chemostasis to mobilization. The
implication is that N concentration in the reservoir effluent has become more sensitive to
discharge as the reservoir approaches sediment storage capacity (Langland, 2015). Six sites show
declines in coefficients at all three discharges (Pamunkey and five Susquehanna sites), reflecting
reduced sensitivity to discharge that was probably attributable to reduction of nonpoint sources
and atmospheric sources in these watersheds (Linker et al., 2013). By contrast, Potomac and
Patuxent both show rises at all three discharges, which have followed different mechanisms. For
Potomac, the coefficients have become more positive, suggesting increased nonpoint source

dominance. For Patuxent, the coefficients have become less negative, suggesting decreased
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point-source dominance due to technology upgrade at wastewater treatment plants (Sprague et
al., 2000; Boynton et al., 2008).

Overall, these changes in coefficients demonstrate clear temporal non-stationarity in C-Q
patterns at the 15 Chesapeake sites. Such non-stationary relationships effectively highlight the
complexity of watershed function, which should be taken into consideration when riverine C-Q
data sets are used to infer transport processes or estimate concentrations and fluxes using
regression approaches (Horowitz, 2003; Crowder et al., 2007; Hirsch et al., 2010; Hirsch, 2014).
The diverse trends in C-Q patterns under different discharge conditions may reflect major
changes in dominant watershed sources due to anthropogenic actions. Future research should
investigate factors that have driven the observed changes in the various watersheds. In addition,
from a multiple-method perspective toward watershed management, these trends in WRTDS
coefficients may be compared with other approaches (e.g., WRTDS flow-normalization, seasonal

Kendall test) to identify consistent conclusions on water-quality conditions and changes.

5. Conclusions

Through a synthesis of C-Q patterns for nine major tributaries of Chesapeake Bay, this work
has provided several new insights on the complexity of watershed function (i.e., the sensitivity of
concentration to discharge). Results show that constituent export at the 15 long-term sites has
been dominated by mobilization patterns for SS and TP (particulate-dominated species) and
chemostasis patterns for TN (dissolved-dominated species) under many discharge conditions.
Among the nine possible modalities of low-flow vs. high-flow patterns, the three most frequent
modalities are mobilization-mobilization (17 cases), chemostasis-mobilization (13 cases), and
chemostasis-chemostasis (7 cases), representing 82% of all 45 watershed-constituent pairs. The
general lack of dilution patterns may suggest that none of these constituents has been supply-
limited in these watersheds. Moreover, for many site-constituent combinations, coefficients show
clear temporal non-stationarity in C-Q relationships under various discharge conditions,
reflecting major changes in dominant watershed sources due to anthropogenic actions. These
results also highlight the potential pitfalls of assuming fixed C-Q relationships in the record.
Continued research is needed to investigate factors that have driven the observed water-quality

changes in the various watersheds under different discharges.
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This work demonstrates the utility of the WRTDS model coefficients to provide informative
interpretation of C-Q relationships in discretely-sampled data. Unlike many previous C-Q studies
that focused on stormflow conditions, this approach allows simultaneous examination of various
discharge conditions. In addition, this work illustrates the value of adopting a top-down approach
for synthesizing temporal and spatial patterns of C-Q relationships across multiple watersheds, in
order to infer the status and changes of constituent export as well as the relative dominance of
sources under different flow conditions. In this regard, WRTDS coefficients provide a useful
means for generation of sensible hypothesis on dominant processes in different watersheds.
Moreover, the synthesis on C-Q temporal patterns was conducted within an uncertainty
framework to provide sound conclusions, which is presumably the first of its kind. Broadly, the
approach demonstrated here is readily adaptable to other river systems, where long-term
discretely-sampled data are available, to decipher complex interactions between hydrological and

biogeochemical processes.
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Fig. 1. Chesapeake Bay watershed and the 15 monitoring sites that include nine River Input
Monitoring (RIM) sites on the fall-line of nine major tributaries and six Susquehanna River

Basin Commission (SRBC) sites at upstream locations within the Susquehanna River basin.

Fig. 2. Contour plot showing estimated WRTDS p, coefficients as a function of time and
discharge for total phosphorus in Susquehanna River at Conowingo, MD. Black open circles
indicate the time-discharge combinations where concentration samples have been taken. The
S coefficients correspond to three broad categories, namely, (1) dilution (i.e., 2 < 0); (2)
chemostasis (52 = 0); and (3) mobilization (2 > 0).

Fig. 3. Boxplot summary of estimated WRTDS p, coefficients by discharge decile for

suspended sediment (SS) at the 15 Chesapeake sites. X-axis shows flow bins: 1 = 0"~10", 2 =
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10"~20™..., 9 = 80"~90™, and 10 = 90"~100". The region between the purple horizontal lines
(i.e., between -0.1 and 0.1) represents chemostasis. Regions above and below it represent

mobilization and dilution, respectively.

Fig. 4. Boxplot summary of estimated WRTDS p, coefficients by discharge decile for total
phosphorus (TP) at the 15 Chesapeake sites. X-axis shows flow bins: 1 = 0"~10", 2 =
10"~20"..., 9 = 80"~90™ and 10 = 90"~100". The region between the purple horizontal lines
(i.e., between -0.1 and 0.1) represents chemostasis. Regions above and below it represent

mobilization and dilution, respectively.

Fig. 5. Boxplot summary of estimated WRTDS p, coefficients by discharge decile for total
nitrogen (TN) data at the 15 Chesapeake sites. X-axis shows flow bins: 1 = 0"'~10™, 2 =
10"~20"..., 9 = 80"~90™ and 10 = 90"~100". The region between the purple horizontal lines
(i.e., between -0.1 and 0.1) represents chemostasis. Regions above and below it represent

mobilization and dilution, respectively.

Fig. 6. Annual averages of estimated WRTDS f, coefficients for three selected discharges for
suspended sediment (SS) at the 15 Chesapeake sites. Dashed lines represent the 90%
confidence interval as derived from 50 bootstrap runs. The region between the purple
horizontal lines represents chemostasis. Regions above and below it represent mobilization

and dilution, respectively.

Fig. 7. Annual averages of estimated WRTDS f, coefficients for three selected discharges for
total phosphorus (TP) at the 15 Chesapeake sites. Dashed lines represent the 90% confidence
interval as derived from 50 bootstrap runs. The region between the purple horizontal lines
represents chemostasis. Regions above and below it represent mobilization and dilution,

respectively.

Fig. 8. Annual averages of estimated WRTDS /£, coefficients for three selected discharges for
total nitrogen (TN) at the 15 Chesapeake sites. Dashed lines represent the 90% confidence
interval as derived from 50 bootstrap runs. The region between the purple horizontal lines
represents chemostasis. Regions above and below it represent mobilization and dilution,

respectively.
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