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ABSTRACT

Accurate, unbiased, high-resolution (in space and time) nearshore wave predictions are needed to drive
models of beach erosion; coastal flooding; and alongshore transport of sediment, biota, and pollutants. On
sheltered shorelines, wave predictions are sensitive to the directions of onshore propagating waves, and
nearshore model prediction error is often dominated by directional uncertainty offshore. Here, regional wave
model skill in highly sheltered Southern California is compared for different offshore boundary conditions
created from offshore buoy observations and global wave model hindcasts [NOAA WaveWatch IIT (WW3)].
Spectral ray-tracing methods are used to transform incident offshore swell (0.04-0.09 Hz) energy at high
directional resolution (1°). Model skill is assessed for predictions (wave height, direction, directional spread,
and alongshore radiation stress) at 16 nearshore buoy sites between 2000 and 2009. Buoy-derived boundary
conditions using various estimators (maximum entropy, maximum smoothness) have similar skill and all
outperform WW3-derived boundary conditions. A new method for estimating offshore boundary conditions,
CMB-ADJ, combines buoy observations with WW3 predictions. Although CMB-ADJ skill is comparable to
buoy-only methods, it may be more robust in varying regions and wave climatologies, and will benefit from
future improvements in global wave model (GWM) predictions. A case study at Oceanside Harbor shows
strong sensitivity of alongshore sediment transport estimates to the boundary condition method. However,
patterns in alongshore gradients of transport (e.g., the location of model accretion and erosion zones) are
similar across methods. Weak, tidally modulated coastal reflection is evident in both shallow and deep buoy
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observations, and significantly increases the observed directional spread.

1. Introduction

Nearshore waves impact port and waterway opera-
tions, beach recreation, boating safety, and contribute to
coastal inundation. Over decades, nearshore wave energy
shapes the coastline by eroding beaches and transporting
sediment alongcoast. Accurate high-resolution wave pre-
dictions are needed in hindcast, real-time, and forecast
modes. Operational global wave models (GWMs) have
good skill due to recent improvements of model pa-
rameterizations (Ardhuin et al. 2010), development
of obstruction grids (Chawla and Tolman 2008), faster
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computers, and increasing satellite global wind cover-
age. However, GWM spatial resolution is typically too
coarse to properly resolve local islands, shoals, and
rough coastline features, for example, Southern Cal-
ifornia (SC) shown in Fig. 1.

Higher-resolution nearshore wave predictions are ob-
tained by dynamical downscaling, that is, the use of regional
nonlinear third-generation wave models, for example,
Garcia-Medina et al. (2013). Though large regions and long
time series can require significant computational resources,
statistical and/or hybrid downscaling methods can reduce
computational expense (Camus et al. 2011, 2013). Hybrid
methods model a small set of representative wave condi-
tions, forming a lookup table that is used to create con-
tinuous predictions. When the local wave climatology is
relatively simple, for example, limited exposure to large
ocean basis, hybrid methods work well. However, in regions
with wide exposure and many energy sources, the model
lookup table required to adequately represent possible
conditions may become unmanageably large.
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FI1G. 1. Southern California map showing offshore buoy (071, square) in 550-m depth used to
initialize regional model, local deep validation buoys (black triangles) in depths 100-500 m, and
local shallow validation buoys (circles) in 20-m depth. Gray contours show 20-, 100-, and 500-m

isobaths.

In some regions for some frequencies, for example,
swell energy on the U.S. West Coast, refraction and
shoaling dominate the wave field, and nonlinear in-
teractions and energy sources/sinks can be ignored
(O’Reilly and Guza 1993; O’Reilly et al. 2016). High
spatial, directional, and temporal resolution at small
computational costs can be achieved by using ray-
tracing methods to linearly propagate offshore energy
inshore (Dorrestein 1960; Longuet-Higgins 1957). Here,
we use these linear energy propagation techniques for
swell band waves (0.04-0.09Hz) in SC, modeling
~60% of the total shoreward wave energy flux (Fig. 2).
Swell model prediction skill at nearshore buoy sites is
compared for different offshore boundary condition
parameterizations.

In many populated regions, both offshore GWM pre-
dictions and buoy observations are available to parame-
terize a regional wave model boundary. These two data
sources are generally independent since operational
GWMs do not yet assimilate local buoy observations,
though data assimilation is an active area of research
(Orzech et al. 2013; Panteleev et al. 2015). When local
wave observations are sporadically available (typically in
the case of satellite altimetry or short-term buoy obser-
vations), biases can be removed from continuous GWM
predictions (Minguez et al. 2011), and the calibrated pre-
dictions are then used for the model boundary condition.

However, when long-term offshore wave buoy records are
available, it is not clear how to best specify the model
boundary condition. GWM predictions have skill, but
they still suffer from errors and biases. Additionally,
GWM predictions are not typically available in complete
frequency—directional detail at all model grid points. In
contrast, buoy observations provide an accurate energy
distribution in frequency, but they have significant di-
rectional ambiguity (Ochoa and Delgado-Gonzalez 1990).
Rogers et al. (2007) created an operational wave model for
SC using offshore buoy observations for some model
boundaries and GWM predictions for others. In their
discussion they experimented with a combination of off-
shore GWM directional predictions and nondirectional
(e.g., energy only) buoy observations, but they found that
the combination could increase nearshore prediction er-
rors during bimodal (northern and southern) conditions,
common in SC. Here, we extend the preliminary discus-
sion in Rogers et al. (2007), and consider in detail the skill
of using GWM and buoy observations in the boundary
condition for our SC swell wave model. We examine the
predictive skill for significant wave height, wave direction,
and alongshore radiation stress with different boundary
forcings. We find that buoy observations provide more
accurate boundary condition information than GWM
predictions and that surprisingly, combinations of GWM
and buoy observations are no more skillful than buoy
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FI1G. 2. The 10-yr mean wave conditions at offshore buoy 071.
(a) Mean GWM (NOAA-WW?3) wave energy predictions (color)
vs frequency and direction. (b) GWM- (dashed) and buoy-measured
(solid) mean energy flux (Ec,) vs frequency (integrated over di-
rection). Swell (0.04-0.09 Hz) and sea (0.09-0.25 Hz) frequency
bands account for 60% and 40% of the offshore energy flux,
respectively.

observations alone. While our study is limited to re-
motely generated swell wave energy, future work will
consider the more difficult question of using GWM and
buoy observations for the boundary condition at higher-
frequency wave energy, where local wind generation
may be important.

Section 2 discusses the limitations of directional wave
buoy observations and various methods typically used to
construct directional spectra. Additionally, formula-
tions for alongshore radiation stress and alongshore
transport are reviewed. Section 3 describes the study
region, buoy observations, wave model methodology,
and boundary condition methods tested. Section 4
compares the skill of different boundary conditions.
Section 5 discusses regional model error, examines the
effect of small directional biases in the context of
alongshore transport, and considers the effect of weak
coastal reflection.
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2. Background

Phase-averaged offshore wave energy F(f, 0) is de-
composed into the total energy E(f) at each frequency
band fand a normalized directional distribution D(f, 6)
such that

E(f,0) = E(f)D(f,9). 1)

Using accelerometers or onboard GPS, directional wave
buoys measure vertical and horizontal surface trans-
lations. Once transformed into frequency space, com-
binations of co- and quadspectra provide estimates of
E(f) and four integral constraints on D(f, ) (Longuet-
Higgins et al. 1963; Long 1980). Dropping f for clarity,
the directional constraints in matrix notation are

[ J D(6) cosf do |

=

JD(G) sinf d6

L= . )
JD(G) cos260 d6

St O R
N

8]

JD(O) sin26 df
Additionally, normalization yields
JD(O) =1, 3)

and the energy cannot be negative,
D(6)=0. 4)

The directional constraints on D(6) in (2), often referred
to as low-order moments, can be used to estimate the
bulk directional properties: mean direction (6), spread
(o), skewness, and kurtosis. Additionally, first (ay, by)
and second (a;, b,) low-order moments can be used in-
dependently to estimate 6 and o such that

6, = arctan(b,/a,),

6, =2arctan(b,/a,),

oy = /21— (@ + )", ©)

7=\ @+ )"

(Kuik et al. 1988; Herbers et al. 1999, 2012). The 180°
ambiguity in 6, does not differentiate between normally
incident waves and their specular reflection. The corre-
sponding o, estimate is advantageous when the properties
of incoming waves only are sought, whereas o is a sensitive
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FIG. 3. (a) Normalized (to unit area) energy density vs direction for a typical swell frequency band, at offshore buoy
071. Methods (see legend) are buoy only (MEM, MRM, BDM), model only (WW?3), and combinations (CMB-LH,
CMB-AD)J). Probability distributions (likelihood gray scale on right) for (b) MEM, (c) CMB-LH, and (d) MRM for
the expected uncertainty in a 1-h record [degree of freedom (DOF) = 64]. Solid colored curves repeat curves in (a).

Mean and scatter [5% and 95% levels; see legend in (b)] are also shown, respectively.

reflection detector (Herbers et al. 1999). Statistics of di-
rectional moments and bulk properties for a finite-length
buoy record are in Long (1980) and Kuik et al. (1988).
Low-order moments are accurately measured by a
Datawell directional wave buoy (O’Reilly et al. 1996),
but they do not define a unique directional spectrum
(Ochoa and Delgado-Gonzélez 1990), and a continuous
or finely discretized D(6) is needed at wave model
boundaries. Estimating D(#) from limited information
in (2), (3), and (4) is a classic geophysical inverse prob-
lem (Backus and Gilbert 1967) requiring an additional
subjective constraint. Minimum roughness (d>D/d6*)
yields the simplest solution consistent with the data and
is often used (Constable et al. 1987). In the last four
decades, various constraints have been used to find D(6)
given observed buoy moments and constraints [(3), (4)],
including maximum entropy (Kobune and Hashimoto
1985; Lygre and Krogstad 1986), minimum roughness
(Herbers and Guza 1990), and others (Oltman-Shay and
Guza 1984; Hashimoto and Konbune 1988). These
methods optimize different flavors of smoothness, and
the ability of each constraint to accurately represent the
true directional spectrum likely varies regionally and
seasonally. All smoothness constraints necessarily fail
when the true D(#) is complex owing to multiple di-
rectional sources. As an alternative to smoothness, Long

and Hasselmann (1979) presented a method to find the
D(0) that is consistent, in a least squares sense, with both
measured buoy moments and an a priori-preferred
spectrum (e.g., generated by a GWM).

The uncertainty inherent in buoy observations is il-
lustrated in Fig. 3a; the same buoy observations [(2)],
typical of bimodal directional spectra in SC, are input
into the maximum entropy method (MEM; Lygre and
Krogstad 1986), minimum roughness method (MRM;
Herbers and Guza 1990), and the Bayesian direct
method' (BDM; Hashimoto and Konbune 1988). Al-
though the direction of the primary northwest peak is
fairly consistent, the estimators disagree on the ampli-
tudes and widths of the two peaks even though each of
these distributions are consistent with the same de-
terministic low-order moments. Furthermore, each of
these estimates varies considerably owing to statistical
fluctuations of d in (2). For a typical 1-h buoy record,
known uncertainty in the low-order moments (Long

! The method is often unstable for point-source wave observa-
tions, for example, buoy or collocated pressure gauge and current
meters (PUV); however, we ignore the Akaike information crite-
rion (AIC) and seek stable spectra with the closest fit to the ob-
served low-order moments.
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1980) is used to generate many (N = 10000) random
realizations of d. MEM and MRM are then used to
create many realizations of D(#) from which a proba-
bility distribution is created, illustrating the statistical
uncertainty (Figs. 3b,d). Figure 3c shows a similarly
derived distribution for a method combing buoy obser-
vations and GWM predictions introduced in section 3d.
A 3-h averaging of buoy observations is used in our
analysis to reduce the statistical blurring of D(6).

Intuition about the fundamental limitations of buoy
observations follows from considering the number of sys-
tem knowns and unknowns. Buoy observations provide
five knowns [(2), (3)]. A unimodal system can be described
by a mean direction, amplitude, directional spread, skew-
ness, and kurtosis (five unknowns). A bimodal system can
be described with two peak amplitudes, two peak di-
rections, and with one known left to describe (poorly)
both peak widths. The properties of two individual peaks
are blurry, and with more than two peaks, buoy moments
cannot even describe peak locations and amplitudes.

Despite these inherent limitations, directional buoys
measure the alongshore radiation stress S, exactly,
without the need to estimate D(f, ) (Longuet-Higgins
and Stewart 1964). The term S,, is directly proportional
to the low-order moment b(zr), where

Sy = J J(%) E(f)D(f,0)sind cosf db df,

- | (%) ECO () df, (6)

and bg) is the buoy moment rotated into the local shore-
normal reference frame. The term S,, is an important
driver of alongshore currents (Guza et al. 1986) and
transport (Komar and Inman 1970). In the frequently
used Coastal Engineering Research Center (CERC)
transport formula (Komar and Inman 1970), the im-
mersed weight of sediment [ is

sin26

I= KEcg = KSXpr‘breaking’ (7)

breaking

where c; is group velocity, ¢, is phase velocity, and K is an
empirical constant typically 0.4-0.8. The simplistic CERC
formula performs similarly to sophisticated process models
(Haas and Hanes 2004).

3. Methods
a. Study region

Southern California (SC) extends from Point Con-
ception to the United States—Mexico border (Fig. 1),

CROSBY ET AL.

1677

and is exposed to distant North and South Pacific
storms as well as local wind swell (Adams et al. 2008).
Complex coastal bathymetry and shadowing from
offshore islands create a spatially variable nearshore
wave field that is extremely sensitive to the offshore
wave direction. Directional inaccuracies of the waves
specified at the offshore boundary are believed to be
the dominant source of wave model prediction error in
Southern California (O’Reilly and Guza 1993; Rogers
et al. 2007).

b. Swell wave model

Modern third-generation wave models [e.g., Wave-
Watch III (WW3) and Simulating Waves Nearshore
(SWAN)] solve the spectral wave action equation
(Hayes 1970), which includes refraction, shoaling, wind
generation, nonlinear wave interactions, wave—current
interactions, whitecapping, bottom dissipation, and
depth-limited breaking. These commonly used state-of-
the-art models are computationally expensive with high
spatial resolution and long duration. In SC, the trans-
formation of low-frequency (0.04-0.09Hz) swell is
dominated by island sheltering, and bathymetry-
controlled shoaling and refraction (O’Reilly and Guza
1993; O’Reilly et al. 2016). Our SC swell wave model,
limited to 0.04-0.09-Hz frequencies, captures these ef-
fects using frequency—direction-dependent transfer co-
efficients derived from backward ray-tracing methods
(see appendix A; Longuet-Higgins 1957; Dorrestein
1960; Mehaute and Wang 1982). The transfer co-
efficients represent a linear relation between the off-
shore and nearshore wave field. Because energy travel
time across SC can be significant, 10+ hours, frequency—
direction-dependent time lags are included by assuming
energy propagation at the theoretical group velocity
(Fig. Al), following O’Reilly and Guza (1998) and
O’Reilly et al. (2016). This methodology significantly
reduces computation expense, but it requires the as-
sumption that offshore wave conditions are spatially
homogenous (with time lags) in the along-crest direction
(Fig. Al). This contrasts with typical modern wave
models that accept heterogeneous boundary conditions
offshore. However, offshore GWM predictions confirm
along-crest spatial homogeneity over the few 100-km
scales of SC for the remotely generated waves that
dominate the swell band (<0.09 Hz); details are in ap-
pendix A. Our swell model predictions are therefore a
linear function of offshore energy E(f, 6) with an ap-
propriate time lag 7(f, 6).

The swell model captures approximately 60% of off-
shore energy flux (Fig. 2b). Model transfer coefficients
are created at a 0.005-Hz frequency resolution, typical of
buoy hourly records, and 1° directional resolution that is
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TABLE 1. Wave buoy names, depths, and site occupation dates.
NOAA CDIP Name Depth (m) Start End
Deep
46218 071 Harvest 549 2000 Jan 2009 Dec
46216 107 Goleta 182 2002 Jun 2009 Dec
46217 111 Anacapa 114 2002 Jun 2009 Dec
46221 028 Santa Monica 363 2000 Mar 2009 Dec
46222 092 San Pedro 457 2000 Jan 2009 Dec
46223 096 Dana Point 373 2000 Jul 2009 Dec
46224 045 Oceanside 220 2000 Jan 2009 Dec
46225 100 Torrey Pines 549 2001 Jan 2009 Dec
46231 093 Mission Bay 201 2005 Oct 2009 Dec
46226 095 Point La Jolla 181 2000 Jan 2005 Oct
Shallow

— 131 Rincon Point 21 2005 Sep 2007 Apr
46228 130 Pitas Point 20 2004 Oct 2005 Sep
46234 141 Port Hueneme 21 2007 Apr 2009 Feb
— 118 Leo Carillo 20 2003 Apr 2004 Mar
46230 172 Huntington Beach 22 2005 Jun 2006 Nov
46242 043 Camp Pendleton 20 2008 Jan 2009 Dec
46235 155 Imperial Beach 18 2006 Dec 2009 Dec
— 101 Torrey Pines Inner 20 2001 Apr 2004 Mar

higher than commonly used but desired for directionally
sensitive SC. The linear framework allowed for rela-
tively rapid testing of different boundary conditions
from 2000 to 2009. All wave properties discussed in the
following are swell band averaged such that some
property X is

j T E(D(p) df
0.04 )

X =" 00
| Epar
0.04
c. Buoy observations

Quality-controlled, hourly, Datawell directional buoy
observations (energy and low-order directional mo-
ments) from the Coastal Data Information Program
(CDIP; http://cdip.ucsd.edu/) were smoothed with a 3-h
running mean. The reduction of statistical uncertainty
with 3-h smoothing is particularly important for low-
frequency narrow-banded swell, where the effective
degrees of freedom (EDOF) are low (Elgar 1987). In
extreme cases (e.g., 20-s southwest swell), the EDOF
of a 1-h buoy record can be less than 100 for the entire
swell band spectrum, corresponding to approximately
a *=25% uncertainty (90th percentile) in measured
energy. Swell conditions are often stationary for 3h,
and minimal temporal resolution is lost. The regional
wave model is initialized with the exposed offshore

buoy, 071, in 550-m water depth. The model is tested
with nine coastal deep-water buoys in depths ranging
from 180 to 500m, and eight local shallow-water
buoys in 20-m depth (Fig. 1). Buoy site occupation
duration varied (Table 1). Shallow buoys were typi-
cally deployed for the shortest times, approximately
one year.

d. Boundary conditions

Estimates of F(f, 6, t) offshore were specified from
buoy 071 observations and from GWM predictions.
Buoy 071 has wide directional exposure and a 10-yr
time series of energy E,(f) and directional moments
d,(f). For hindcast GWM predictions, we use the
National Oceanic and Atmospheric Administration
(NOAA) WW3 reanalysis (Tolman 2009; Chawla et al
2011, 2013). The U.S. West Coast reanalysis has a
4-arc-min (7 km) spatial resolution, 3-h temporal reso-
lution, 10° directional resolution, and logarithmic fre-
quency spacing. Complete WW3 energy-directional
spectra predictions, Fywws(f, 6, t), and collocated buoy
071 observations from 2000 to 2009 are used to specify
boundary conditions. WW3 energy Fww;(f, 0, 1) is re-
banded in frequency to match typical buoy spectral out-
put (0.005-Hz bandwidth from 0.04 to 0.09Hz) and
interpolated by nearest neighbor to 1-h temporal and 1°
directional resolution. Excluded are the less-than-6-
months’ total when buoy 071 observations were
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unavailable. Boundary conditions tested are divided
into three categories:

e GWM only: Fwws(f, 0) is
hereafter WW3.

e Buoy only: F(f, 0) is created with buoy 071 observa-
tions. Three different methods—MEM, MRM, and
BDM (see section 2)—are tested to estimate the
discrete directional spectrum from directional buoy
observations [(2)].

e Combined (CMB): Buoy 071 observations are com-
bined with GWM predictions of the normalized
directional distribution Dwws(f, 0) in three differ-
ent ways.

used exclusively,

The first CMB method, CMB-E, multiplies the buoy E,
by Dwws, after the discussion of Rogers et al. (2007).
Buoy directional information is not used. The second
CMB method, CMB-LH, combines Dwws; with both £,
and d, (Long and Hasselmann 1979). The optimal di-
rectional spectrum Dy minimizes

J (D — Dyws )2 do ®)

while satisfying d,, [(2)] and constraints (3) and (4). The
computationally efficient iterative method developed
by Long and Hasselmann (1979) terminates when con-
straints are met within the expected statistical un-
certainty (Lawson and Long 1983; Long 1980). We
tested this iterative method and found that fitting con-
straints exactly yielded unbiased spectra with compar-
atively better nearshore predictive skill. Additionally,
we compared the iterative method solutions to those
from a modern optimization numerical solver, CVX, a
package for specifying and solving convex problems
[CVX (MATLAB), CVXPY (Python), and Convex.jl
(Julia); Boyd and Vandenberghe 2004; Grant and Boyd
2013]. Both solutions were robust for most conditions;
however, the iterative method occasionally failed to
converge for very low-energy spectra. We ultimately
used CVX to solve the minimization; however, we
continue to refer to the solution as CMB-LH. Once
found, Dy y is multiplied by E}, to construct F(f, 6), asin
the CMB-E method.

The third CMB method, CMB-ADJ, is not formally
optimal but relies instead on physically meaningful ad-
justments to Dwws, including a series of shifts and
smoothings to minimize misfit to constraints [(2)] with
d,. Initial testing showed the ideal simultaneous op-
timization was computationally burdensome and pro-
vided marginal improvement over the simpler sequential
adjustment process used below at each frequency bin for
each hour record.

CROSBY ET AL.
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1) Time lag/leads in Fwws(f, 6) are corrected for
each 1-h time step by considering the optimal
time lag correlation between GWM predicted
energy, fFWW3(f, 0)de, and E, inside a +36-h win-
dow. Typically, time lag/lead corrections were small
(<3h) and consistent across wave events.

2) Significant peaks in Dwws; are found (using
MATLAB’s Signal Processing toolbox) that meet
the following criteria:

(i) Each peak contains at least 2% of primary
peak energy.

(ii) Peaks spaced less than 55° are considered a
single peak.

3) If Dwws is unimodal (49% of records), then
(i) Rotate Dwws to match 6; measured by buoy 071.
(ii) Estimate o, for Dwws from (2) and (5). Smooth

Dww3 by convolving with a simple boxcar re-
peatedly until o, for Dwws is approximately
equal to o, measured by buoy 071. Here, o is
used to sometimes avoid oversmoothing due to
buoy-observed coastal reflection.

4) If Dwws; is bimodal (49% of records), then
(i) Use brute force to find the shift of energy

between the two Dwws peaks such that the
misfit to d,, weighted by the uncertainty in d,
(Long 1980), is minimized.

(ii) Simultaneously and independently shift both
peak directions (with a maximum shift of 25°)
to minimize misfit to dp.

5) If Dwws contains three or more peaks (2% of
records), then make no directional adjustments to
the WW3 spectrum as buoy directional information
is too limited.

Last, as in the previous methods, the adjusted Dwws3
is multiplied by E,, to form F(f, 0). These adjustments
to Dwws include some threshold values that may be
region specific. Additionally, the performance of the
methods is dependent on the accuracy of the GWM;
statistical chatter in buoy observations can only de-
grade the predictions of a theoretically error-free
GWM. However, here we show that buoy-based
adjustments with these thresholds do detectably im-
prove the GWM-only, WW3, and boundary condition
method skill.

4. Results
a. Significant wave height, direction, and spread

Model predictions (using the boundary conditions de-
scribed above) are compared with observations at sheltered
deep buoys using standard metrics [root-mean-square error
(RMSE), bias, model skill R?, and squared correlation
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TABLE 2. Mean model skill at local deep buoys.
Hsig E o1
Model Mean RMSE  |Bias| R? r? RMSE  |Bias| R? r RMSE  Bias R? r?
(m) (m) (m) — — ) ©) — — ) ) — —
WW3 0.65 0.21 0.09 0.53  0.73 15 4 072 077 14 -11  -153 041
CMB-E 0.52 0.15 0.06 0.56  0.67 13 4 0.64  0.69 13 -10 -1.61 034
CMB-LH 0.51 0.13 0.05 0.60 0.71 13 3 0.65 068 11 -9 -116 033
CMB-ADJ 0.52 0.13 0.03 063 072 11 2 072 074 11 -9  —-106 042
MEM 0.51 0.13 0.04 063 072 11 3 0.69 0.76 10 -8 —055 045
MRM 0.52 0.12 0.02 0.66  0.73 13 7 062 074 11 -9  —-116 037
BDM 0.51 0.12 0.03 0.66 0.74 11 5 069 077 10 -8  —056 047

r%; see appendix B for definitions]. Model skill varies

across boundary condition, buoy validation site, and
metric. Comprehensive skill results for significant wave
height H,, mean direction 6, and directional spread
o for all boundary conditions at all buoy validation
sites are in Tables S1 and S2 in the online supplemen-
tary material. Simple averages at deep buoy validation
sites (Table 2) are used to rank boundary condition
skill in Table 3, where the lowest score is best. Bias
magnitude was averaged for Hg, and 6; to avoid can-
celing errors. CMB-ADJ and MEM have the highest
0 skill, while MRM and BDM have the highest Hy;,
skill. WW3 has overall the lowest skill followed by
CMB-E. CMB-ADIJ has the highest overall skill fol-
lowed by BDM. Models using buoy observations in
the boundary condition (buoy only and CMB) out-
perform WW3 alone. However, directional bias is
lowest for WW3 and CMB boundary conditions at
local deep buoys. Bias in o; predictions is negative
for all boundary conditions and largest at low fre-
quencies (not shown), suggesting weak coastal re-
flection (section 5c).

The spatial distribution of model skill for a subset of
boundary conditions shows that WW3 initialization
consistently has relatively large RMSE and bias; in
Fig. 4 the upper-left quadrant is large and dark at most
buoys, for both Hj, and ;. The term Hj, from WW3 is
biased high at the initialization offshore buoy 071
(+23cm), and WW3 is correspondingly high in the
southern half of the model domain. In contrast, WW3
initializations are biased low for Hg, in the Santa
Barbara Channel (SBC), closest to the initialization
buoy (Fig. 4a), and directional errors and biases are
also large. Boundary condition MRM shows partic-
ularly large positive (northward) directional bias in
the southern end of the SBC. A ranking of buoy site
skill, averaged across select boundary conditions
(Table 4), indicates the poorest model performance
at buoy site 107 (in SBC) and at the southernmost
buoy site, 093.

b. Alongshore radiation stress

Mean (time averaged) S, model predictions and
shallow (20-m depth) buoy observations are compared
in the local shore-normal reference frame estimated
from depth contours onshore of each buoy; positive Sy,
indicates northward up-coast transport (Fig. 5). Modeled
and observed S, usually agree, at least qualitatively.
Boundary conditions using offshore buoy observations
generally outperform WW3 alone. No buoy-based
method clearly performs best. Uncertainty bars on Sy,
correspond to *2.5° shifts of the local shore normal.
At buoy 155, mean S,, is near zero, and the results are
relatively sensitive to the definition of beach normal.
At buoy 043 (Oceanside Harbor), different offshore
boundary conditions yield the widest range of S,, with
WW3 biased high and MRM biased low.

Depth contours offshore of Oceanside Harbor (gray,
Fig. 6a) were used to estimate local shore normals (dark
magenta, Fig. 6a) that were alongshore averaged (ex-
cluding the harbor area) to avoid the influence of slight
shore-normal changes on S,,. Predicted Hgg, 6>, and S,
on the 10-m-depth contour (bright green) show similar
alongshore variation about constant offsets (Figs. 6b—d).
WW3 predicts the highest wave heights and the most
oblique waves, resulting in the highest S,,. These are
compared to buoy 043 observations of S, (Fig. 6d; S,,

TABLE 3. Model skill rankings averaged across deep local buoys
for various boundary conditions and select metrics (low ranking
indicates higher skill).

Boundary Hggy 0,

Condition R? |Bias)] R?>  |Bias] Total Rank
WW3 7 7 6 4 24 7
CMB-E 6 6 5 5 22 6
CMB-LH 5 5 4 2 16 4
CMB-ADJ 3 3 1 1 8 1
MEM 4 4 2 3 13 3
MRM 2 1 7 7 17 5
BDM 1 2 3 6 12 2
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FIG. 4. Model performance at each SC nearshore buoy location for (a) wave height Hg;, and (b) wave direction ;. Each circle quadrant
shows a different boundary condition (key, upper right). Circle quadrant size shows RMSE (key, lower left), and color shows bias (color
bar, above). Normalized error metrics [ % RMSE and %bias, in (B1)] are used in (a). A small quadrant indicates small RMSE, and a pale
color indicates small bias. GWM (NOAA-WW3) initialization (upper-left quadrant), in all regions and for both H, and 61, is relatively
large and dark, indicating relatively high RMSE and bias. Gray contours show 20-, 50-, 100-, and 500-m isobaths.

conserved assuming depth contours are parallel). Along-
shore sediment transport estimated using the CERC
formula® [(7)] with constant K =0.6 (Fig. 6e) yields
estimates between 2 and 9 X 10°m>yr~'. Shaded regions
show transport estimates for a typical range of CERC
constant K (0.4 < K <0.8), smoothed by 1.5-km along-
shore locally weighted scatterplot smoothing (lowess)
filter. Longshore transport gradients, estimated from
smoothed transport estimates, are similar for all pre-
dictions (Fig. 6f). Note this gradient estimate ignores the
effect of the harbor and small-scale (<1.5km) alongshore
variations in S,,.

5. Discussion
a. Optimal boundary condition

Offshore buoy observations improve WW3 nearshore
wave prediction skill for most metrics at most buoy
validation sites. However, improvement is lowest for
CMB-E, where the buoy-measured energy is combined
with Dww3. Model skill further increases when buoy
energy and directional information are used, and
CMB-ADIJ outperforms CMB-LH (Table 3). Detailed
examination of CMB-LH reveals that the least squares
constraint in (8) often adds spurious directional peaks to

2 Waves were linearly shoaled to breaking (Ec, = constant) with
breaking constant y = 0.7.

the directional distribution. For example in Fig. 3a,
CMB-LH creates a third peak at 100° and adds energy in
the gap between the peaks. In contrast, CMB-ADJ
more physically adjusts peak amplitude, direction, and
width. While mathematically convenient and theoreti-
cally elegant, the CMB-LH squared difference con-
straint is not effective. CMB-ADJ, though crude,
outperforms CMB-LH.

While buoy observations improved the WW3 bound-
ary condition, the skill of CMB-ADJ is similar to buoy-
only methods; CMB-ADJ Hg, skill is lower, but the
direction skill is higher, yielding an overall higher skill
ranking (Table 3). Given the directional ambiguity in
buoy observations (e.g., Fig. 3), we expected that offshore

TABLE 4. Mean skill for best models (CMB-ADJ, MEM, BDM)
ranked across local deep buoys for select metrics (low ranking in-
dicates higher skill). Buoys are listed from north to south.

H sig 0_1
NOAA CDIP R? |Bias| R? |Bias| Total
46216 107 1 9 9 9 28
46217 111 4 8 1 5 18
46221 028 2 2 5 4 13
46222 092 3 7 4 6 20
46223 096 7 6 3 3 19
46224 045 9 5 6 1 21
46225 100 6 4 2 2 14
46231 093 8 3 8 8 27
46226 095 5 1 7 7 20




1682

80
4 Local buoy
¢ wws
¢  CMB-ADJ
60 MEM T
¢  MRM
40t 3 .
- H ts:
§ 20} 1
o !
Obdfle— ¢+ — — — — — —_— — — =
¥
L
20 b -
3
} 3
40 L— L L L
155 101 043 172 118 141 130 131
South Local shallow buoy ID North

FIG. 5. Observed (black, local buoy observations) and predicted
(using methods in legend) mean S,, at local shallow (20-m depth)
buoy sites (arranged south to north on the x axis). Positive S,,
values indicate northward up-coast transport. Bars indicate S,
range for £2.5° local shore-normal rotation. Predictions are offset
horizontally for clarity.

GWM directional spectra predictions offshore, in-
formed by global wind fields and sophisticated model
physics, would provide a powerful additional con-
straint. However, we were surprised to find that our
combinations of offshore GWM spectra and buoy ob-
servations in the offshore boundary condition param-
eterization were similarly skilled to buoy-only
methods. We show below that CMB-ADJ and buoy-
only methods have similar skill because details in
GWNM directional spectra are often well represented by
the first four low-order moments [(2)], nonnegativity,
and a smoothness constraint. In other words, the
present GWM directional resolution is roughly com-
parable to a directional wave buoy.

GWM (NOAA-WW3 hindcast) frequency—directional
spectra for 1yr were used to estimate the first four low-
order directional moments [(2)] in each frequency-time
bin. Using MRM, MEM, and BDM (section 2), re-
constructions of the GWM directional spectra were
generated, and R? misfit of the reconstructed spectra to
the original GWM spectra were computed. An example
unimodal reconstruction by MRM and BDM is very good
(R*=0.9); however, performance declines as spectra
complexity increases in the bimodal and trimodal cases
(Fig. 7, left panels). Mean R? misfit values of MRM re-
constructions for the entire year of GWM predictions
show that high-energy events tend to have high R? > 0.9
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across all frequencies (red in Fig. 8). Reconstructions of
lower-energy directional spectra have lower skill, sug-
gesting that spectra are more complex (green/blue in
Fig. 8). The presented skills, with the exception of
normalized skill in Fig. 4a, are more strongly influence
by moderate to high energy events that are well rep-
resented by buoy directional moments. During these
events GWM directional spectra provides little addi-
tional information, and therefore the combined (CMB-
ADJ) and buoy-only methods have similar nearshore
predictive skill.

The overall skill for buoy-only methods is compara-
ble; however, we observed differences across metrics.
MRM has lower Hg, RMSE, MEM has lower di-
rectional bias, and BDM is a compromise of the two. No
buoy-only method is the overall best performer, and
likely the ability of each method to recreate the true
directional spectra depends on frequency band, wave
age, and region. GWM directional spectra predictions,
used as a proxy for true spectra, yield insight into
method differences and the importance of diffuse re-
flections and scattering (Fig. 7). Reconstructions of
GWM directional spectra from the first four low-order
moments using each buoy-only method (left panels) are
contrasted with the addition of a small (10% of the total
energy) isotropic background energy added to the
GWM spectra (right panels). Constant background en-
ergy (Snodgrass et al. 1966) crudely mimics diffuse
shoreline reflections and scattering. Elgar et al. (1994)
observed low levels of reflection from a natural beach,
and Ardhuin and Roland (2012) found that constant
reflection on the order of 10% improved GWM pre-
diction along the coast (GWM predictions used here do
not include reflection). The addition of background
energy reduces MRM and BDM reconstruction skill but
improves dramatically MEM reconstruction skill. MEM
is designed to identify peak directions in the presence of
background energy, its roots in astronomy, and image
processing (Gull and Skilling 1984); however, peaks are
too sharp when background energy is lacking. In con-
trast, MRM and BDM are both smoother than MEM,
and background energy tends to overbroaden peaks.
Additionally, in the bimodal case (Fig. 7d), the MRM
and BDM peaks are slightly biased away from the
overall mean. MEM better resolves incoming di-
rectional peaks in the presence of background energy,
but BDM and MRM better resolve broader directional
peaks with low background energy; no method is opti-
mal. Buoy observations are fundamentally limited: these
three methods are drawn from an infinite set (Ochoa and
Delgado-Gonzilez 1990), and each will perform only as
well as their smoothness constraint represents the true
underlying directional spectra.
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FIG. 6. (a) Plan view of Oceanside Harbor with buoy 043 (black diamond) and depth contours (gray curves; 20-m intervals). Local beach
normal (magenta) are based on the nearest distance from the backshore point to 10-m depth contour (green curve). Predicted and
observed time-averaged (b) Hg, and (c) 6, in 10-m depth vs alongshore distance for different boundary conditions (see legend).
(d) Predicted mean S, at 10-m depth vs alongshore distance is estimated using the alongshore mean shore normal (magenta) that excludes
the harbor region, where shore normals are poorly defined [light magenta in (a)]. Buoy-measured mean Sy, in 20-m depth is also shown
(black diamond). (e) Predicted sediment transport using CERC formula, K = 0.6, vs alongshore distance. Shaded colors show alongshore-
smoothed (lowess 1.5-km alongshore filter) transport estimates for the range of K values 0.4 < K <0.8. (f) Gradient of lowess-filtered
transport alongshore (e.g., the divergence of the drift) vs alongshore distance.

b. Alongshore radiation stress and transport Alongshore transport estimates from different
boundary conditions differ primarily by a constant offset
(Fig. 6e). Thus, the alongshore transport gradient—that
is, divergence of the drift, indicating regions of accretion
and erosion—is relatively consistent (Fig. 6f). Typically,
the gradients of uncertain quantities are increasingly
uncertain; however, in this case the bias between pre-
dictions in terms of contributing to S,,, Hgg, and 6, is
constant alongshore (Figs. 6b,c). Therefore, accretion
and erosion zones [(4)] may be determined confidently.
We suspect that at these spatial scales [O(1) km], gra-
dients in alongshore transport gradients are dominated
by local bathymetry and high-order details of the off-
shore directional spectrum are insignificant. Note a
single offshore normal is used to estimate S,,, and small-
scale variations in beach orientation are not included.

For most boundary condition methods, at most
buoys, 6, bias is <10°, relatively small for most practical
applications. However, at some buoy sites Sy, estimates
varied significantly (Fig. 5); at buoy sites 043 and 172,
Sy, estimates varied by more than a factor of 2, sub-
stantial given that S,, is directly proportional to
alongshore transport estimates based on the CERC
formula. This variation in S, from different boundary
conditions exceeds the uncertainty in the CERC con-
stant K (Fig. 6f). Though boundary conditions utilizing
offshore buoys yield better estimates of S,, than WW3,
there is no overall best performer. The positive mean
Syy at buoy 043, indicating northward transport, is
contrary to expectations for the region (Inman and
Frautschy 1965); however, this estimate is integrated
only for swell energy (0.04-0.09 Hz). Mean S, for the
entire wave energy spectrum is typically negative
(O’Reilly et al. 2016), indicating southward transport in Weak coastal reflection (<10%) has small effects on
the region. Hgs and mean direction; even obliquely incident wave

c¢. Coastal reflection
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(left) GWM (NOAA-WW3) directional spectra (blue) and recreations using various smoothness methods (see section 2) and low-
order moments [ay, by, ap, by in (2)] integrated from the GWM spectrum. (right) GWM spectrum with an added isotropic signal
equal to 10% of the total spectrum energy simulating diffuse wave reflection and corresponding smooth recreation. The R? (see
tables) of the recreation and the original spectrum (GWM or GWM plus isotropic reflection) show that simple unimodal distri-
butions are better recreated than multimodal shapes. The R? varies substantially in the presence of isotropic noise and between

recreation methods.

conditions yield little change to 6; and 60, observations,
less than 4° and 2°, respectively. Alternatively, first-
order directional spread (o) observations are highly
sensitive to coastal reflection. Including simple re-
flection parameterizations in GWMs significantly im-
proves predicted o skill (Ardhuin and Roland 2012).
While not included in our linear wave model, strong
negative biases in o; predictions across all model
boundary conditions are consistent with weak coastal
reflection (Table 2). Strong (>10°) tidal modulation of
o is observed at local shallow buoy 172 offshore of
Huntington Beach during a low-frequency event arriv-
ing from a high incident angle, 20°-30° southward of the
local shore normal (Fig. 9b). At high tide, this convex
beach has relatively high slope, and enhanced reflection,
similar to Duck, North Carolina (Elgar et al. 1994). A
buoy also senses the effect of directional narrowing due
to increased refraction as the tide falls; however, these
effects (estimated assuming plane-parallel contours;

Herbers et al. 1999) are small in 20-m depth for the local
tidal amplitude (<2°; black line in Fig. 9b) and vanish-
ingly small in more than roughly 100-m depth. The ob-
served modulation in o7 at buoy 172 corresponds
roughly to a 3%-10% change in reflected energy,
equivalent to a 2%-5% change in Hg,; similar levels of
reflection are observed in Elgar et al. (1994). Owing to
the high incident swell angle, tidal modulation of o is
also observed, though at less than half the variance ob-
served in o;. Coherence at tidal frequencies M, and K,
between the local tidal elevation and observed o (f)
(estimated independently at each observed frequency)
is high in the swell band (0.04-0.09 Hz), peaking around
0.06 Hz and falling off at higher frequencies, where re-
flection is weaker (Fig. 9¢c). As expected for a nearby
reflector, at local shallow buoys close to shore the phase
lag for K; and M, frequencies is near zero (<=0.1 h). At
local deep buoys, the phase lags at K; and M, are scat-
tered between *0.5h (not shown).
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(x axis) and offshore GWM energy (y axis). Black text is the
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energy (y-axis).

Steep coastline slopes reflect more incoming wave
energy. The SC coastline is a mix of dissipative (fine to
coarse sand), intermediate (gravel), and reflective (rip-
rap, seawall, rocky cliffs) regions shown in Fig. 10
(NOAA 2006). The magnitude of o; prediction bias
(left half of colored square) at local buoy sites appears
lower in regions with larger amounts of dissipative
coastline, for example, San Diego (Fig. 10). Conversely
prediction bias is larger where coastlines are steeper, for
example, Santa Barbara and Los Angeles. This evidence
is admittedly qualitative, and some observations suggest
the opposite, e.g., buoy 092. Coherence of tidal elevation
and oy (colored right rectangle) is higher at shallow
buoy sites and is significant at all buoys except 093
(Fig. 10). Coherence is lower further from the coastline
because the travel times of reflected waves varies. At
even larger distances (not shown), buoys are exposed
to a large array of diffuse reflectors (coastline and is-
lands), and tidal effects are blurred in direction and time
(Snodgrass et al. 1966; Herbers et al. 1999).

d. Santa Barbara Channel

Our results confirm the previously observed large Hgj,
prediction errors in the SBC (Rogers et al. 2007,
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O’Reilly et al. 2016). The extreme sheltering by Point
Conception and the Channel Islands (Fig. 1) amplifies
the significance of high-order details of the offshore di-
rectional wave spectra. For example, during northwest
wave events the SBC is often sheltered to the dominant
swell direction by Point Conception, making critical the
accurate description of the peak shoulder (e.g., Fig. S1
in the supplementary material). A higher-resolution
boundary condition than provided by the WW3 pre-
dictions and buoy observations may be needed. Missing
model physics likely partially explain these prediction
errors; reflection from the steep cliff faces of the Channel
Islands could help explain the Hg, low bias. Also sup-
porting reflection, the positive (northward) directional
bias at buoy 107 suggests additional wave energy coming
from a more southerly direction. However, further east-
ward in the SBC (buoys 111, 130, 131) model directional
bias suggests the opposite. It is not clear whether wave
reflection contributes significantly to the large model er-
rors in the SBC. Diffraction, surface current-induced
refraction, and bathymetry inaccuracies may also con-
tribute to prediction errors.

6. Summary

Different methods for parameterizing regional wave
model offshore boundary conditions from buoy obser-
vations and global wave model GWM predictions
(NOAA-WW3) are compared. Offshore wave energy
was transformed to the nearshore with ray-tracing-
derived transfer coefficients and frequency—direction-
dependent time lags (section 3b and appendix A).
Offshore wave conditions were assumed homogenous
in the along-crest direction for each discrete fre-
quency and direction, a valid assumption for swell
band (0.04-0.09Hz) energy in SC (appendix A).
Limiting model predictions to the swell band allowed
for the use of point-based offshore information in the
boundary condition, that is, buoy observations and
frequency—directional GWM predictions. This method-
ology is valid for only swell energy in hindcast and
nowcast modes.

Results show that for swell predictions, boundary
conditions, including offshore buoys, performed bet-
ter than those with GWM predictions alone. Buoy-
only methods (MEM, BDM, MRM,; refer to section 2)
and the GWM-buoy combined method, CMB-ADJ,
perform similarly, and they suggests that the di-
rectional “‘resolution” of low-order buoy moments is
comparable to current GWM predictions. Supporting
this hypothesis the complexity in directional spectra
predictions for moderate to high energy events is well
represented by low-order buoy directional moments
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frequencies (see legend) for one complete year of buoy observations is significantly high for wave energy, where 0.04 Hz = f = 0.09 Hz
(x axis). Black dashed line shows the 95% coherence confidence level.

and smoothness assumptions (section 5a). Though affected by local winds and not along-crest homoge-
GWM predictions may not currently add significant nous offshore winds. It is not yet clear how to extend
skill to buoy-only swell prediction, GWM predictions our simple combined approach to higher frequencies.
are necessary for higher-frequency energy that is However, as GWM predictions improve, the simple
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F1G. 10. Model (CMB-ADJ boundary condition) directional spread (o) prediction bias at
local buoy sites shown in color (see color bar) in left half of square. Right half of square shows
coherence at the M, tidal frequency (1.9 cycles per day) of buoy-observed o (f = 0.055 Hz) and
local tidal elevation (see color bar). Hatched colors indicate insignificant coherence levels at
95% confidence. The coastline is classified as dissipative (fine to coarse sand), intermediate
(gravel), and reflective (riprap, rocky cliffs, seawall) types shown in color (see legend at
bottom left).
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methodology in our CMB-ADJ method should yield
higher skill for swell prediction, and it may also be a
robust technique in varying regions and wave climates
where buoy-only smoothness may fail.

For some applications—for example, recreational
boating—our model errors are small. However, the
variance in alongshore radiation stress predictions
(8yy) was relatively high despite small (<10°) wave
direction biases. Simple 1D (CERC) transport esti-
mates varied twofold. However, despite large S,
uncertainties, the alongshore gradient of transport
(e.g., the divergence of the drift) across all model
predictions is surprisingly similar, suggesting that
patterns of (theoretical) erosion and accretion may be
insensitive to modest boundary condition errors and
variations.
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APPENDIX A

Model Transfer Coefficients

For each nearshore location of interest—for ex-
ample, buoy validation site—backward ray tracing
relates the nearshore arrival angle 6 to the offshore
arrival 8© (e.g., O’Reilly and Guza 1998, their Fig. 2).
Rays are traced seaward following Snell’s law as
phase speed changes in varying bathymetry (Dobson
1967). Some rays terminate at offshore islands, in-
dicating blocked arrival directions, while others are
terminated when they reach deep water seaward of
the SC Bight. The transfer coefficient K? is estimated
using conservation of energy (depth-limited shoaling)
and a simple relation from geometrical-optical theory
such that,

E(f.0) _ ()| as
T Ry 1) ol (A
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FIG. Al. Schematic of along-crest spatial homogeneity assump-
tion and linear wave propagation at the group velocity ¢,. Wave
conditions (buoy observations or GWM predictions) at yellow
symbol are used to predict waves at the red x. The time lag,
7(f, 0, Ax), is used with complete frequency—directional spectra,
E(f, 6, 1), to make predictions at location xy.

where c, is group velocity and (o) indicates offshore
properties (Dorrestein 1960). Mehaute and Wang
(1982) show that (A1) is equivalent to Snell’s law and
the theoretical work of Longuet-Higgins (1957) for
slowly varying bathymetry. Rays are traced at a very
high directional resolution and carefully integrated to
discretize K? at 1° resolution (Dorrestein 1960). Un-
like finite-difference propagation schemes, wave ray
integration numerics are stable at any spatial/directional
resolution and are only limited by the assumption of
slowly varying bathymetry for linear shallow-water
waves. Additionally, in this framework, K? is typically
not a function of offshore position, assuming spatially
homogenous and temporally stationary offshore
conditions. Dorrestein (1960) provides a thorough
discussion of this practical method for transforming
wave energy nearshore.

Offshore assumptions

Low-frequency energy arriving from distant
sources—for example, high southern and northern
latitudes—is along-crest homogeneous on the
scale of the SC domain (300 km), much less than the
travel distance (Fig. Al). Additionally, at these
spatial scales, low-frequency energy is assumed to
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predictions for 2000-07 (NOAA buoy observations are not used here). GWM predictions at northerly buoy
46042 are used, with simple linear propagation and along-crest homogeneity assumptions [(A2)], to predict
swell at the southerly sites. These model predictions are compared with the full frequency-directional GWM
predictions at each site. (b) The R? skill vs frequency at southerly locations (see legend). The high prediction
skill for frequencies = 0.9 Hz (vertical dashed line) is similar for all approach directions (the average is
shown) and supports the method of boundary condition specification used here.

propagate at the theoretical group velocity ¢, with
negligible dissipation, generation, and nonlinear
energy transfers. Under these assumptions, energy is
transformed at each frequency and direction as

E(fi,ej,xk, 1 =K(f, H)E[ﬁ,ﬁj,xp,ﬂr fr(fl.,(ij,Ax)], (A2)
where K? captures the effect of bathymetry-induced
refraction, shoaling, and island shadowing. The
time lag 7 for each location (x;), frequency, and di-
rection is

Ax cos@i

7(f;. 0, Ax) :W’
g\i

(A3)

and is illustrated in Fig. Al.

Assumptions (A2) and (A3) are tested offshore,
with no bathymetry effects (i.e., K?=1), using
complete frequency—directional WW3 predictions,
Fwws(f, 6), that do not make these assumptions.
Buoy observations, with inherent directional un-
certainty (section 2), are less reliable for this test of
assumptions. The Fwws(f, 6) predictions at NOAA
buoy site 46042 (Fig. 6a) are used in (A2) and (A3)
to predict wave conditions at buoy locations 46028,
46011, 46069, and 46047. These linear predictions
are compared with Fwws(f, 6) predictions at the
buoy sites. The predictive skill of the assumptions in

(A2) and (A3) is shown in Fig. 6b using the R?
metric. Skill declines sharply above 0.09Hz for
prediction sites farthest from buoy 46042 (Fig. 6)
and was similar for varying wave directions (not
shown). The high skill of (A2) and (A3) confirms
the validity of both long-crest homogeneity and
linear wave energy propagation assumptions for
frequencies < 0.09 Hz.

Here, these assumptions are used with transfer
coefficients to predict waves nearshore; however,
they can be additionally used to parameterize a typ-
ical regional wave model boundary with a single-
point-based observation or GWM prediction. For
example, locations along the thick black line in
Fig. A2, representing a wave model boundary, could
be well predicted using (A2) and (A3) for similar
spatial scales O(100) km at similar frequencies (0.04—
0.09 Hz).

APPENDIX B

Metrics

The metrics used in the paper are estimated from N
hour-length records. Given observations o and pre-
dictions p, the following formulas are used:
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where the overbar indicates a mean. Detailed model
results at each local buoy site are available in the sup-
plementary material online.
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