Supplement of Atmos. Chem. Phys., 18, 12123–12140, 2018 https://doi.org/10.5194/acp-18-12123-2018-supplement © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Average versus high surface ozone levels over the continental USA: model bias, background influences, and interannual variability

Jean J. Guo et al.

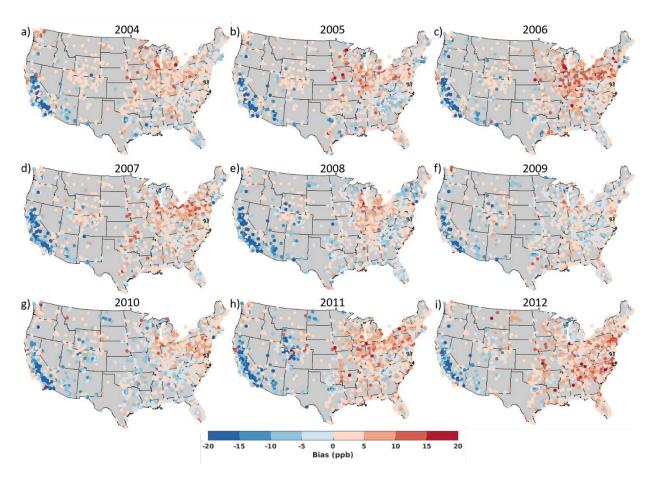
Correspondence to: Jean J. Guo (jean.j.guo@columbia.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

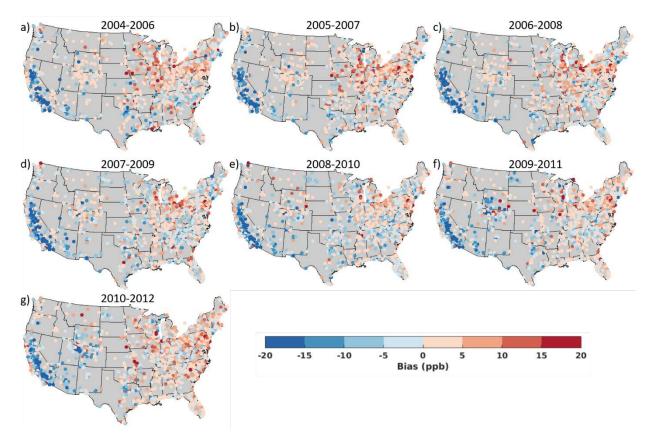
Supplemental Figures

Supplemental Table 1: The number of observational sites that fall within each EPA region for EPA AQS and CASTNet. (*) We include data from the Mount Bachelor Observatory in the Pacific Northwest region.

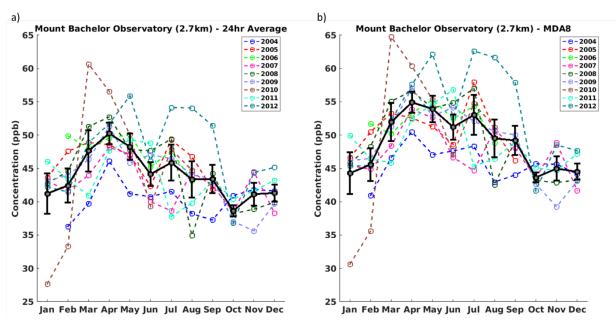
Region	EPA AQS	CASTNet	Total
1. New England	82	7	89
2. New York + New Jersey (NY+NJ)	61	7	68
3. Mid-Atlantic	138	14	152
4. Southeast	309	24	333
5. Midwest	255	18	273
6. South Central	202	5	207
7. Plains	71	2	73
8. Mountains and Plains	153	12	165
9. Pacific Southwest	325	14	339
10. Pacific Northwest	48	6*	54
Total	1644	109	1753

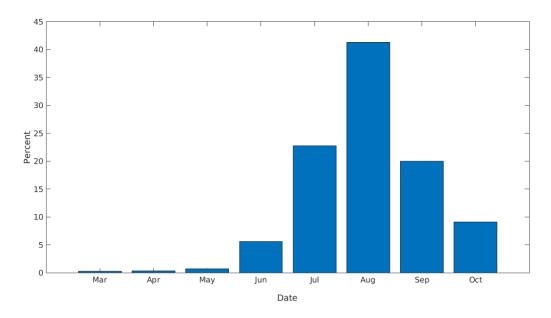

Supplemental Figure 1: Map of the states falling within each EPA region in the continental United States (adapted from U.S. Environmental Protection Agency, 2012).

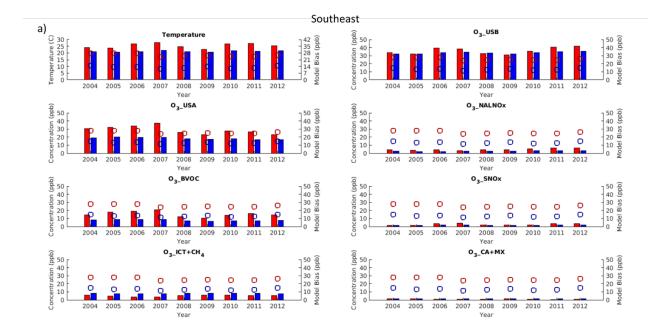
10 Supplemental Table 2: Number of EPA AQS sites collecting MDA8 O₃ data during each year from 2004-2012.

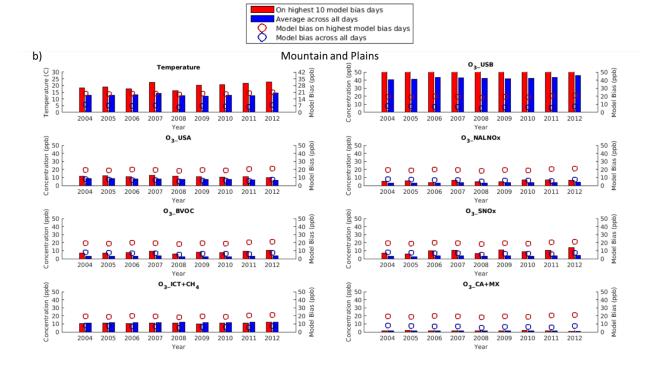

Number of EPA AQS Sites						
2004	1219					
2005	1207					
2006	1211					
2007	1237					
2008	1241					
2009	1251					
2010	1280					
2011	1333					
2012	1315					

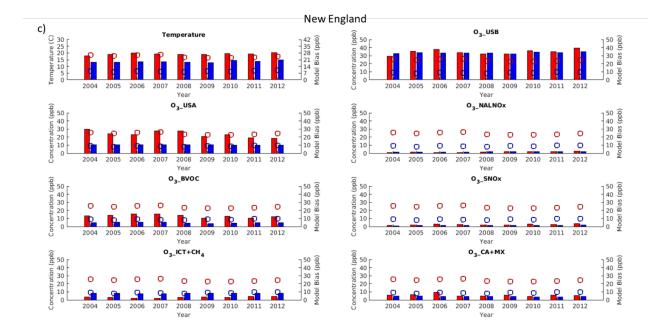
Supplemental Table 3: Global and US emissions totals for 2004-2012.

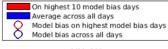

	Emissions	2004	2005	2006	2007	2008	2009	2010	2011	2012
	Anthropogenic NO with	30.3	30.2	30.1	29.9	29.5	29.0	28.8	28.8	28.8
	biofuels (Tg N)									
Global	Biomass burning (Tg N)	4.5	4.7	4.6	4.6	3.9	3.5	5.0	3.7	3.7
Global	Soil (Tg N)	9.0	9.1	8.8	8.5	8.4	8.6	8.4	8.6	9.2
	Lightning (Tg N)	5.5	6.1	6.2	6.4	6.9	7.3	7.2	7.1	7.2
	Isoprene (Tg C)	493.0	499.3	471.5	453.6	435.3	455.4	466.0	453.3	467.3
	Anthropogenic NO with	6.32	6.04	5.75	5.44	5.13	4.63	4.36	4.36	4.36
	biofuels (Tg N)									
116	Biomass burning (Tg N)	0.02	0.06	0.06	0.07	0.04	0.04	0.05	0.12	0.12
US	Soil (Tg N)	0.78	0.86	1.02	0.92	0.82	0.79	0.77	0.95	1.10
	Lightning (Tg N)	0.86	0.86	0.77	0.75	1.10	1.13	1.13	1.28	1.31
	Isoprene (Tg C)	18.1	21.5	21.9	22.0	19.3	18.3	20.2	22.0	22.4

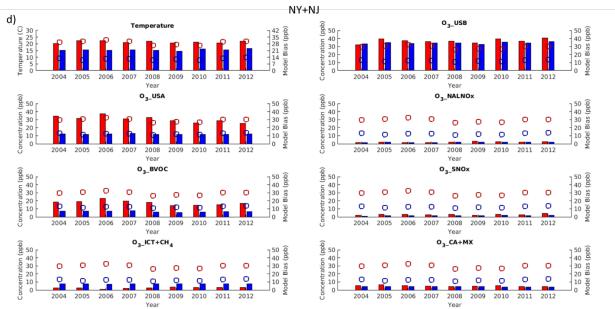

Supplemental Figure 2: Average model bias (model – observed) on the O_3 _top10obs days during (a) 2004, (b) 2005, (c) 2006, (d) 2007, (e) 2008, (f) 2009, (g) 2010, (h) 2011, and (i) 2012.

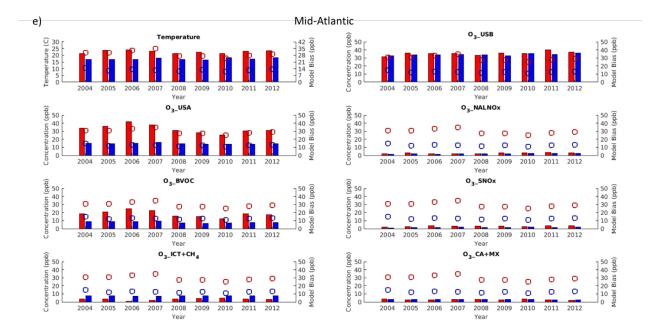

Supplemental Figure 3: Model bias (model – observed) on the 4th highest MDA8 O_3 day at each observational site averaged for each three-year span. (a) 2004-2006, (b) 2005-2007, (c) 2006-2008, (d) 2007-2009, (e) 2008-2010, (f) 2009-2011, and (g) 2010-2012.

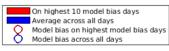


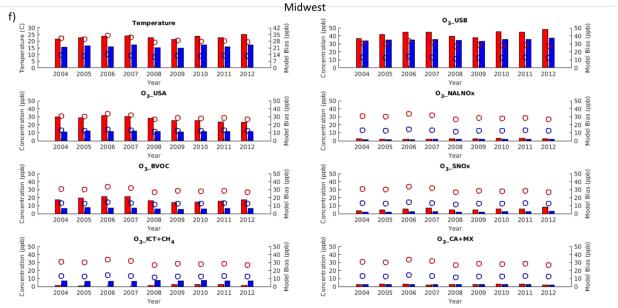

Supplemental Figure 4: Monthly average of observed (a) daily 24-hour and (b) MDA8 O_3 concentrations averaged across 2004-2012 at Mount Bachelor Observatory. Black line shows the average of each month from 2004-2012. Error bars show the standard deviation in the interannual variability in each month. Dashed lines show the concentrations for each individual year.

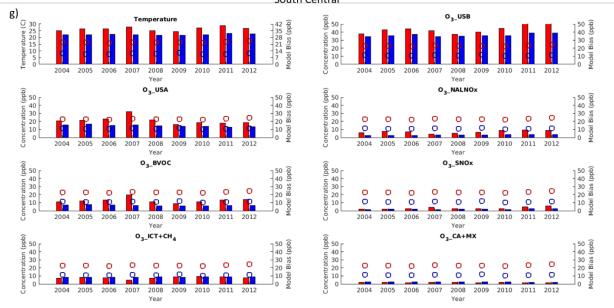


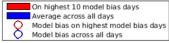

Supplemental Figure 5: Percent of total top 10 most biased days from Jan-Dec (9 years x 10 days x 10 regions) that fell within each month in the United States. All the most biased days fell between Mar-Oct.

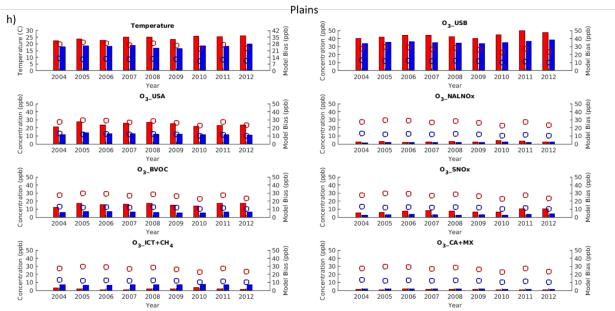


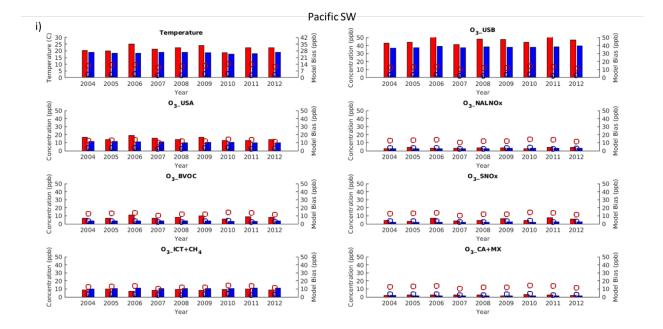


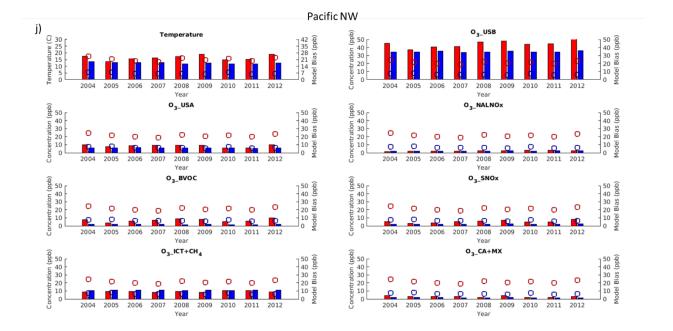


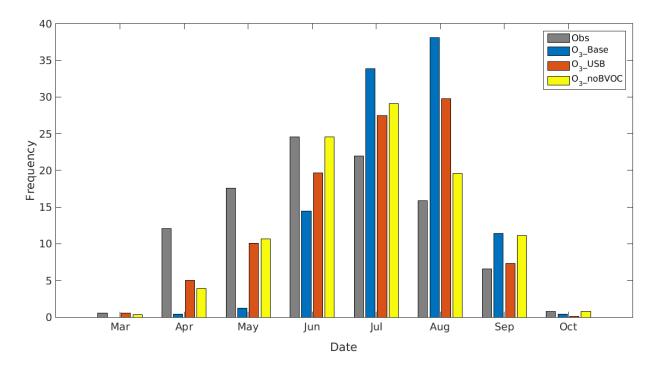


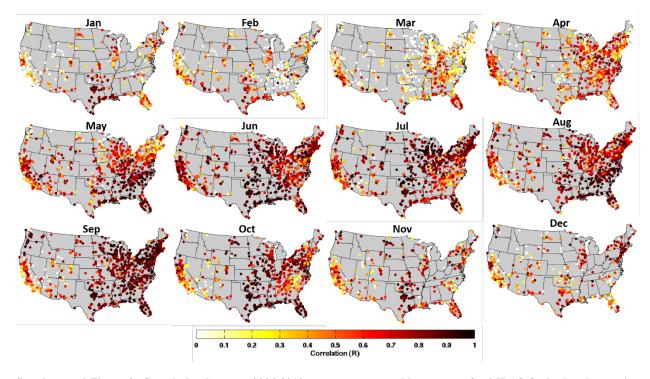


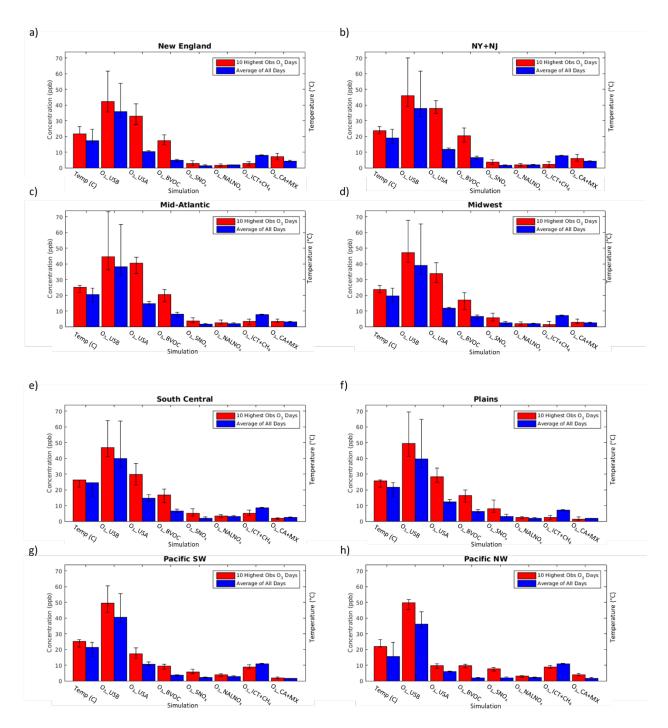


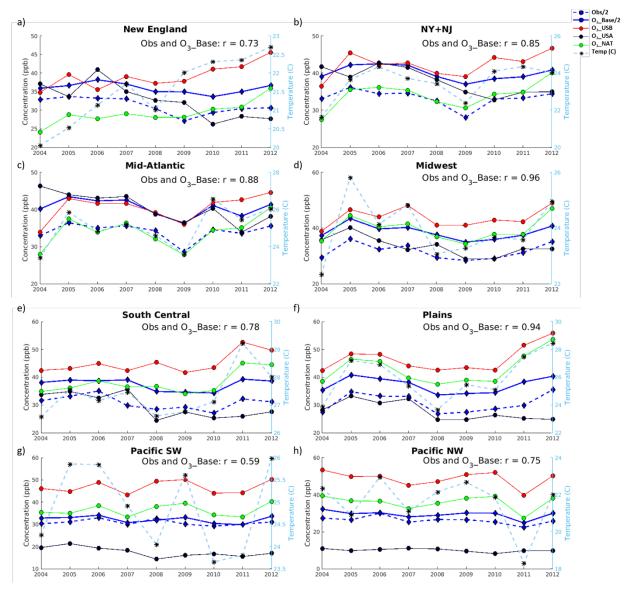






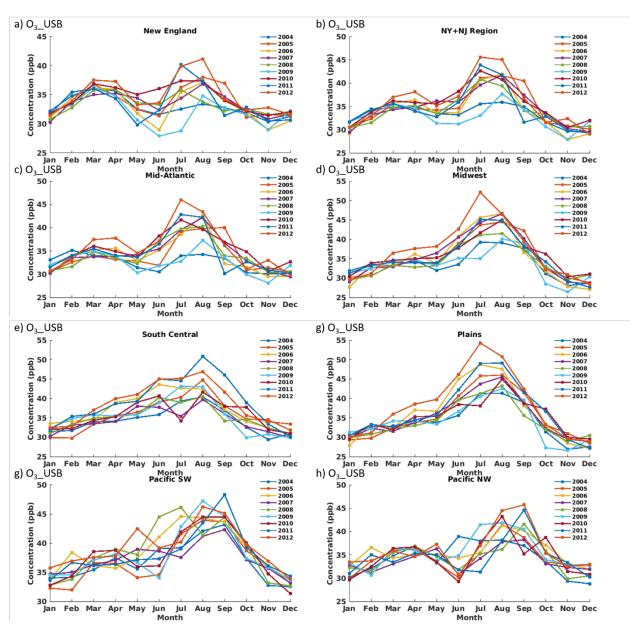



Supplemental Figure 6: Average influence of each sensitivity simulation on MDA8 O_3 in each region on the 10 most biased days from Mar-Oct (red) versus averaged across all days (blue). Red circles show the average model bias (O_3 _Base – observations) on the top 10 model bias days. Blue circles show the model bias averaged across all days. The circles do not vary between subplots.

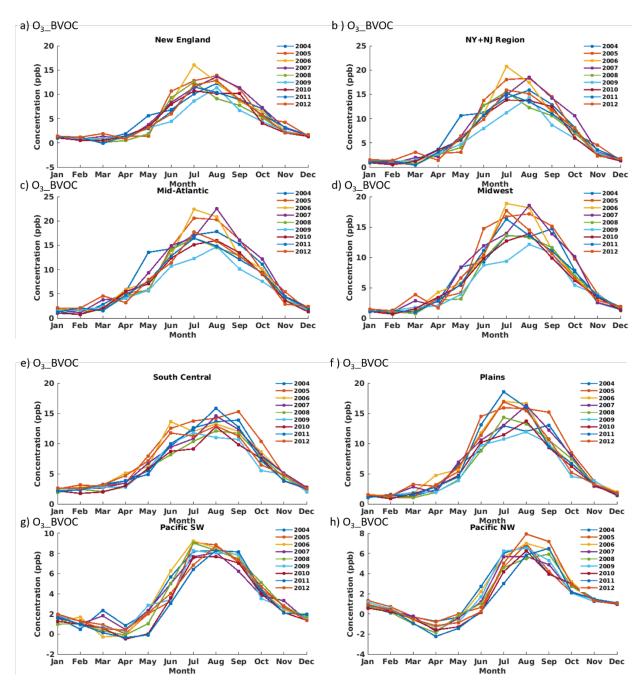

Supplemental Figure 7: Percent of total top ten days (9 years x 10 days x 10 regions) from Jan-Dec (365 or 366 days) in the observations, O_3 _Base, O_3 _USB, and O_3 _noBVOC that fell within each month for all sites across the U.S.A. All the top ten days for each simulation fell between Mar-Oct.

Supplemental Figure 8: Correlation between 2004-2012 year-to-year monthly averages for MDA8 O_3 in the observation and in the model (O_3 _Base) for each individual month.

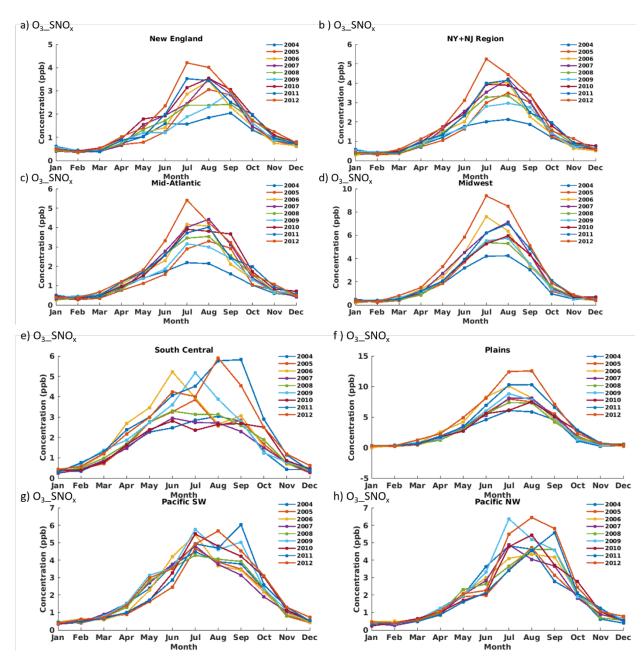
Supplemental Figure 9: Average 2004-2012 influence of each sensitivity simulation to O₃_Base in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW on the MDA8 O₃_top10obs_JJA days (red) versus averaged across all days (blue). Error bars show the average concentration on the lowest versus highest year for each sensitivity simulation in each region.

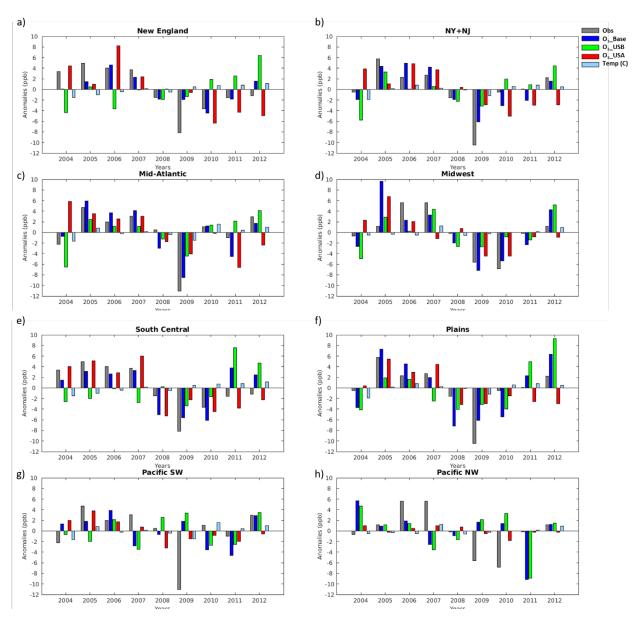

Supplemental Figure 10: Average yearly MDA8 O₃_top10obs_JJA concentrations for observations (divided by 2 to fit on the same axes; blue dashed line), O₃_Base (divided by 2; blue solid line), O₃_USB (red), O₃_USA (black), O₃_NAT (green) MDA8, and temperature (in degrees C; light blue) sampled on the O₃_top10obs days in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW.

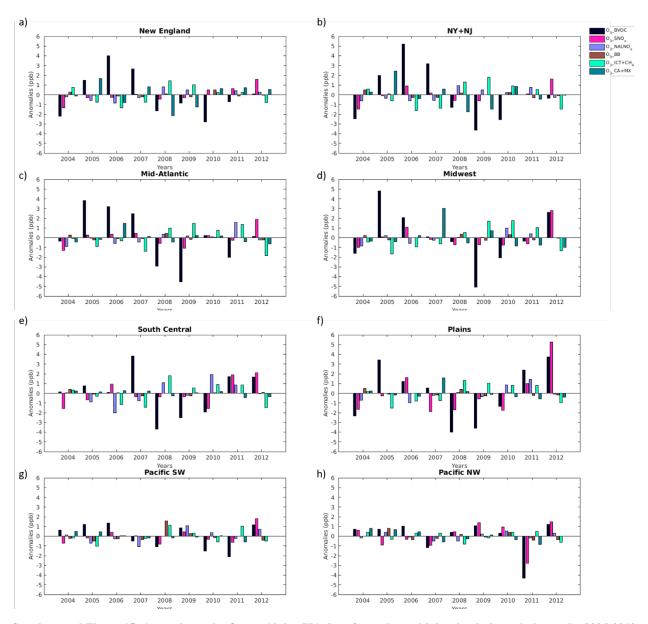
Supplemental Table 4: Monthly average temperature across all days in each season (average of 2004-2012) in (1) GEOS-Chem, in (2) the Global Historical Climatology Network (GHCN) and the Climate Anomaly Monitoring System (CAMS) (in degrees C), and (3) the difference between these values.

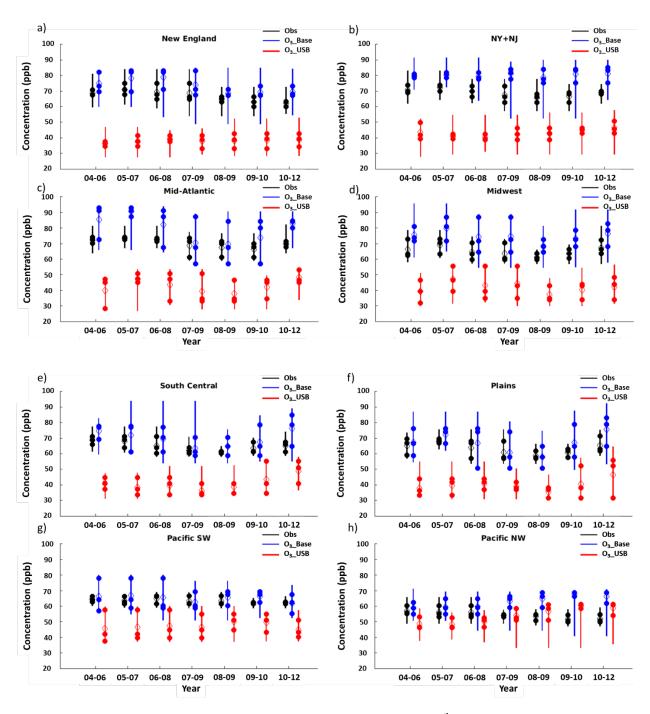

	Model Temperature (C) GHCN+CAMS Tempe			rature (C)	Model Temp. Bias		Bias		
Region	MAM	JJA	SON	MAM	JJA	SON	MAM	JJA	SON
New England	7	19	11	8	20	11	0	-1	1
NY+NJ	9	21	12	9	21	12	0	0	1
Mid-Atlantic	12	23	14	12	23	14	0	0	0
Southeast	17	26	18	17	26	18	0	0	0
Midwest	10	22	12	10	22	12	0	0	0
South Central	18	27	19	19	28	20	-1	-1	-1
Plains	13	25	13	13	25	13	0	0	0
Mountains + Plains	7	20	9	7	19	8	0	1	1
Pacific SW	14	23	17	14	22	17	-1	0	0
Pacific NW	8	17	10	8	17	9	0	0	1

Supplemental Table 5: Correlation between (1) O_3 _Base and O_3 _USB and (2) O_3 _Base and O_3 _USA on the average of O_3 _top10obs_JJA days from 2004-2012 in each region.


	Correlation					
Region	O ₃ _Base and O ₃ _USB	O ₃ _Base and O ₃ _USA				
New England	0.28	0.64				
NY+NJ	0.50	0.58				
Mid-Atlantic	0.54	0.70				
Southeast	0.66	0.59				
Midwest	0.75	0.76				
South Central	0.71	0.72				
Plains	0.80	0.75				
Mountains + Plains	0.95	0.64				
Pacific SW	0.72	0.28				
Pacific NW	0.98	0.05				


Supplemental Figure 11: Monthly average MDA8 O₃_USB concentrations in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW.


Supplemental Figure 12: Monthly average MDA8 O₃_BVOC concentrations in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW.


Supplemental Figure 13: Monthly average MDA8 O₃_SNO_x concentrations in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW.

Supplemental Figure 14: Anomaly on the MDA8 O_3 _top10obs_JJA days of each sensitivity simulation relative to the 2004-2012 average in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. Each panel shows the anomaly from observations, O_3 _Base, O_3 _USB, O_3 _USA, and temperature (in degrees C).

Supplemental Figure 15: Anomaly on the O_3 _top10obs_JJA days for each sensitivity simulation relative to the 2004-2012 average in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. Each panel shows the anomaly from O_3 _BVOC, O_3 _SNO $_x$, O_3 _NALNO $_x$, O_3 _BB, O_3 _ICT+CH $_4$, and O_3 _CA+MX.

Supplemental Figure 16: Summary information for each region showing the three 4th highest days in each year (solid dots) that went into the calculation of the three-year average of the 4th highest MDA8 O₃ day (hollow diamond). Error bars show the range between the highest and lowest O₃_top10obs days across each 3-year span (i.e, across 30 total points) occurring between March and October in (a) New England, (b) NY+NJ, (c) Mid-Atlantic, (d) Midwest, (e) South Central, (f) Plains, (g) Pacific SW, and (h) Pacific NW. Observations are shown in black, O₃_Base is in blue, and O₃_USB is in red.