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Statistically Downscaled Precipitation Sensitivity to Gridded Observation Data and

Downscaling Technique

A .M. Wootten, K. W. Dixon, D. Adams-Smith, R. A. McPherson

Abstract

Future climate projections illuminate our understanding of the climate system and
generate data products often used in climate impact assessments. Statistical downscaling
(SD) is commonly used to address biases in global climate models (GCM) and to translate
large-scale projected changes to the higher spatial resolutions desired for regional and local
scale studies. However, downscaled climate projections are sensitive to method
configuration and input data source choices made during the downscaling process that can
affect a projection’s ultimate suitability for particular impact assessments. Quantifying how
changes in inputs or parameters affect SD-generated projections of precipitation is critical
for improving these datasets and their use by impacts researchers.

Through analysis of a systematically designed set of 18 statistically downscaled
future daily precipitation projections for the south-central United States, this study aims to
improve the guidance available to impacts researchers. Two statistical processing
techniques are examined: a ratio delta downscaling technique and an equi-ratio quantile
mapping method. The projections are generated using as input results from three GCMs

forced with representative concentration pathway (RCP) 8.5 and three gridded



observation-based data products. Sensitivity analyses identify differences in the values of
precipitation variables among the projections and the underlying reasons for the
differences.

Results indicate that differences in how observational station data are converted to
gridded daily observational products can markedly affect statistically downscaled future
projections of wet-day frequency, intensity of precipitation extremes, and the length of
multi-day wet and dry periods. The choice of downscaling technique also can affect the
climate change signal for variables of interest, in some cases causing change signals to
reverse sign. Hence, this study provides illustrations and explanations for some downscaled
precipitation projection differences that users may encounter, as well as evidence of

symptoms that can affect user decisions.

1. Introduction

Global climate modeling is an important tool for researching the large-scale climate
system (Weart, 2010) and developing climate projections that help guide decision making
related to anthropogenic climate change (Smith and Stern, 2011). Regional and local-scale
climates often are not well represented in global climate models (GCMs; Rummukainen,
2010). Downscaling techniques can be used to translate a GCM-simulated climate response
to smaller spatial scales, reducing GCM biases and providing added information scaled for
decision-makers (Rummukainen, 2016; Tabari et al., 2016). Because statistical downscaling

and bias correction methods (hereafter SD methods) are relatively flexible and



computationally efficient, SD-generated climate projections are frequently used as input for
multiple types of impacts models (e.g. Gergel et al., 2017; Basso et al., 2015) as part of
impact assessment studies and adaptation planning.

The generation of SD-processed future climate projections involve three main
ingredients: 1) observation-based data for climate variables of interest from a historical
period, 2) GCM output for both historical and future time periods, and 3) a statistical
technique that uses 1) and 2) as inputs to determine statistical relationships used to produce
refined future projections as output. This statistical processing aims to add value to the raw
GCM output by using information gleaned from observations, rendering output more
suitable for direct use in research applications. SD assumes that large-scale climate
conditions can be linked to local-scale effects and that model biases during the historical
period are applicable to future climate conditions (Wilby and Wigley, 1997).

The climate services community has encouraged stakeholders to use ensembles of
emissions scenarios, GCMs, and downscaling techniques (e.g. Markus et al., 2018) to
capture a range of possible future climates, with differences among the projections (i.e., the
spread) resulting from multiple sources of uncertainty (Wootten et al., 2017). Unfortunately,
simply capturing the uncertainty range does not provide adequate insight to researchers or
adaptation experts regarding the sources of this uncertainty or, more practically, how
choices made during the process of downscaling may influence the resulting climate
variable. This study examines the sensitivity of precipitation variables projections to the

choice of SD method and the gridded observations used to train the methods. Herein, the



term “sensitivity” refers to the change in precipitation variables resulting from choices
made in the downscaling process.

Numerous studies have examined the sensitivity of dynamical climate
model-simulated climate changes to model formulation and factors affecting radiative
forcings (e.g., the Coupled Model Intercomparison Project, CMIP [Taylor et al., 2012]; the
Coordinated Regional Downscaling Experiment [Whitehall et al., 2012]). Fewer studies
have examined the sensitivity of statistically refined climate change signals to downscaling
technique choices (e.g. Action ES1102 (VALUE) of the European Cooperation in Science
and Technology [Maraun et al., 2014]). A limited set of studies have examined the
influence of different training datasets and SD techniques on projections of different
precipitation metrics or their regional effects on ecosystem or hydrological modeling
applications (e.g., Pourmoktharian et al., 2016, Werner and Cannon, 2016), the accuracy of
gridded observations and GCMs (Behnke et al., 2016, Sillmann et al., 2013), and the effect
of gridded observations on hydrologic model calibration (Elsner et al., 2014). Our study
examines the influence of different gridded observations and SD techniques on projections
of precipitation metrics important to climate impacts researchers in the south-central United
States.

Regional and local scale precipitation remains challenging to simulate well in large
scale dynamical climate models (e.g. Cesana et al., 2017; Tapiador, 2019). Accordingly,
impacts researchers benefit from using SD-generated precipitation projections as input to

their work, as long as the sensitivities of precipitation-related variables connected to their



needs are better documented. For example, (1) What aspects of the training data can drive
the sensitivity of downscaled precipitation projections? (2) Which precipitation-related
variables are more sensitive to SD choices than others? (3) What training data or SD
techniques are better suited to refine climate projection data for use in particular types of
impacts models and their applications?

We compare high-resolution climate projections for 2070-2099 created with two
SD techniques trained separately with three gridded observation-based datasets and forced
by representative concentration pathway (RCP) 8.5 (van Vuuren et al., 2011; Riahi et al.,
2007) and three CMIP5 GCMs (Taylor et al., 2012). Our analysis focuses on the differences
in the change signal present in this set of 18 SD-generated precipitation projections and
those in the three GCMs’ pre-downscaled data. We then assess the influence of different
observation data and downscaling techniques on the resulting projections of several
precipitation metrics of interest to impacts researchers and decision makers. Though not
comprehensive in scope (e.g., not all SD methods nor all observational products are tested),
these results illustrate often under-appreciated aspects of SD-generated precipitation data
products. Similarly, though this study focuses on analyses of precipitation metrics that are
of interest to climate impacts researchers in the topographically complex south-central
United States (i.e., region of our funding source), our results highlight sensitivities present

in SD-generated projections covering other regions.

2. Study Region, Data, and Methods



2.1. Study Region

The study region was the south-central United States, from about 26°N 108.5°W to
40°N 91°W, excluding Mexico and the Gulf of Mexico. The region has varied topography
with the Mississippi River Valley and the Ozark Mountains in the east (elevations of
200-800 m), the Rocky Mountains in the west (1,500-4,400 m), and the coast of the Gulf of
Mexico in the southeast (near sea level). This region has a sharp gradient of mean annual
precipitation from east to west, with some southeastern locations receiving eight times
more precipitation than the driest western locations (Figure 1). Strong gradients of both
mean annual number of days with rain and annual daily maximum rainfall also exist. Snow
dominates precipitation across the mountainous terrain during winter; tropical systems can
provide substantial portions of any given year’s precipitation along the Gulf coast. The
strong climatological differences in precipitation type and amounts provide an opportunity
to assess the sensitivity of SD-generated precipitation projections to the choice of

downscaling techniques and training data.

2.2. Observation-based data

Though some downscaling efforts used weather stations for training or calibration
purposes, many publicly available downscaled projections are created using gridded
observation-based data (hereafter gridded observations) for training. Gridded observations

are processed data products largely based on station data (but can include remotely sensed



observations) that are adjusted and interpolated to a grid in a manner that attempts to
account for missing station data, as well as temporal and spatial incoherence. The absence
of a standard practice to create gridded observations results in the production of numerous
gridded observations from multiple sources. Three gridded observations over the 48
conterminous United States (CONUS) serve as training data for downscaling in this study
(Table 1): Daymet Version 2.1 (hereafter Daymet, Thornton et al., 2017), Livneh Version
1.2 (hereafter Livneh, Livneh et al., 2013), and PRISM Version AN81d (hereafter PRISM,
Daly et al., 2008; Daly et al., 2013). These datasets reflect different methods for creating
gridded observations (Table 1) and are used in numerous prior downscaling efforts,
including the Multivariate Adaptive Constructed Analogs (MACA, Abatzoglou et al., 2012)
and the Localized Constructed Analogs (LOCA, Pierce et al., 2014). In particular, these
gridded observations were created using different methods to adjust the daily precipitation
time series from station data to ensure temporal and spatial coherence. Differing methods
for adjusting the daily precipitation time series have known impacts on precipitation
variables, including the frequency of occurrence and intensity (Oyler and Nicholas, 2018).
Therefore, using daily precipitation from these three gridded observations allowed us to

assess if such differences affect the output of SD experiments.

2.3. GCM data
We used one ensemble member from three GCMs from CMIPS5 (Taylor et al.,

2012): the Community Climate System Model version 4 (CCSM4, Gent et al., 2011), the



Model for Interdisciplinary Research on Climate version 5 (MIROCS, Watanabe et al.,
2010), and the Max-Planck-Institute Earth System Model running on a low-resolution grid
(MPI-ESM-LR, Giorgetta et al., 2013). These GCMs produced reasonable historical
climate simulations for global models of this class based on the bias for temperature and
precipitation across the south-central U.S. compared to other GCMs (Sheffield et al., 2013).
The three GCMs also reflected the range of simulated future change signals in the study
region, capturing what is referred to as “model uncertainty” (Hawkins and Sutton, 2011).
Here, we focused on GCM simulations driven by RCP 8.5, a scenario with a large radiative
forcing increase by 2100 (8.5 W m 2, van Vuuren et al., 2011; Riahi et al., 2007), as it was
more likely to produce readily detectable change signals by the end of the 21* century and
allowed us to analyze greater possible differences between the projections in the sensitivity

analysis.

2.4 Analysis Metrics and Periods

Our analyses focus on years 2070-2099 and variables that reflected means,
extremes, and occurrences of precipitation. These variables were a subset of the CLIMDEX
indices (Zhang et al., 2011, Bronaugh, 2014) calculated using the “climdex.pcic” package

in the R software language (https://CRAN.R-project.org/package=climdex.pcic). The

chosen CLIMDEX variables were: the total precipitation (prcptot), the number of days with

precipitation (rlmm), the maximum dry spell length (cdd), the maximum wet spell length
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(cwd), and the maximum 1-day precipitation (rx1day). These variables (calculated per year)
were those requested by stakeholders for impacts assessments across the study region.

The historical period used for downscaling was 1981-2005. Thirty-year averaging
periods are a standard for climatological normals, as they encompass a range of climate
variability; however, the PRISM gridded observations were only available from 1981
onward, so the other gridded observations and GCM historical data were trimmed to match

PRISM’s 25-year period (Table 1).

3. Methods

To investigate the impact of training data and SD techniques on the resulting climate
projections, the publicly available GCM and gridded observations were first interpolated to
a common grid with bilinear interpolation applied at a daily timescale using the NCAR
Command Language (NCAR et al., 2018) Earth System Modeling Framework regridding
functions (NCAR, 2019). These functions interpolated each GCM and observation dataset
to a 0.1° latitude by 0.1° longitude rectilinear grid, resulting in >19,000 grid points within a
study domain which included the Upper Rio Grande, Red, and Canadian River basins
(Figure 1). We used a conservative interpolation for coastal grid points where there was
inadequate information in gridded observations for a bilinear interpolation. The resulting
interpolated GCMs and gridded observations were the inputs for two SD techniques

(detailed below). The interpolation is a key component of the downscaling procedure, but
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the same interpolation is used to allow the differences between SD techniques (also referred
to as bias correction techniques) to be the focus of this study.

Conventions used herein are that MF (model future) refers to the GCM precipitation
during the future time period, and MH (model historical) and OH (observed historical) refer
to the GCM and observation-based precipitation during the corresponding historical time

window. Downscaled output (DS) represents refined future precipitation.

3.1. Ratio Delta Method (DeltaSD)

Variants of a simple technique commonly referred to as the delta method (Maraun et
al., 2010; Fowler et al., 2007; Réty et al., 2014) combine information from observations and
GCMs to produce climate projections. In general, delta methods (including the DeltaSD
version used here) operate by first determining a GCM-simulated time-mean change signal
over some specified time range. Next, delta methods apply that change signal to the
observations to yield an adjusted future projection. Therefore, the downscaled output time
series produced using DeltaSD exhibits daily weather sequences that resemble those of the
observations used in the statistical processing (Teutschbein and Seibert, 2012).

How the time-mean signal is computed and applied can differ across applications of
the delta approach. In this study, we implemented a multiplicative scaling (ratio) approach
for precipitation adjustments. Accordingly, for each time period, DeltaSD calculated the

ratio (A) at each grid point based upon the GCM being used:
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_ (MF)
A = mean———-(MH) (1)

Ratios were computed for the future period (2070-2099) relative to the 1981-2005 historical
period. In our implementation of the DeltaSD method, the seasonal cycle was captured by
using 12 time windows of three months each for which the means of MH and MF are
calculated over the multi-decadal period. For training (calibration) purposes, we used
three-month time windows to obtain an adequate sample size of wet days in arid regions of
the domain. These MH and MF means were used to calculate the change ratio (A) that is
applied to the daily observations of the center month of each time window. The appropriate
OH time series was multiplied by the ratio (A) to calculate the final downscaled

precipitation values (DS):

DS = OH * A 2)

Following the multiplicative adjustments performed by DeltaSD, any projection values less
than the standard U.S. daily trace amount (0.01 inches day' = 0.254 mm day™') were set as
dry days (i.e., 0.00 inches) in the output.

For example, to generate the adjusted daily April precipitation values for the late
21* century, the ratio (A) was calculated using the three-month means (March, April, and
May) during 1981-2005 (MH) and 2070-2099 (MF), then applied to the series of historical

observations (OH) for all Aprils during the historical period to calculate DS. Therefore, if a
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GCM’s simulation exhibited a 21 percent increase in mean precipitation amounts for
March-April-May of 2070-2099 relative to its simulation for March-April-May of
1981-2005, then the April daily observations were multiplied by 1.21 to generate the
downscaled future time series. Because the GCM future simulations span 94 years (2006
through 2099, inclusive) and the observational time series cover only 25 years, DeltaSD
output was generated by recycling the observational sequence starting with 1 Jan 1981
being the basis for 1 Jan 2006. Accordingly, 2070-2080 DeltaSD outputs are based on
scaled versions of the 1995-2005 observational sequence, and 2081-2099 outputs are based
on scaled versions of the 1981-1999 observations. Variants of the ratio delta approach
downscale daily precipitation to ensure values of zero or greater; an additive delta approach

is more common for variables such as daily temperatures.

3.2. Equi-ratio Quantile Mapping (ERQM)

Equi-ratio quantile mapping (ERQM) was designed to retain the relative change
signal at all quantiles of the precipitation distribution while performing bias correction (Li
et al., 2010; Wang and Chen, 2014; Cannon et al., 2015). This approach was distinct from
that of DeltaSD, which only retained the change signal of monthly mean precipitation. Our
implementation of ERQM used the QDM (quantile delta mapping) code of Cannon and
colleagues from the R-language MBC (multivariate bias correction) package

(https://CRAN.R-project.org/package=MBC). However, configuration choices here differed

enough from those used by Cannon et al. (2015) to warrant our adoption of a different
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acronym to avoid confusion. Many of these choices aligned with earlier pilot studies across
the Arkansas-Red River basin (Bertrand and McPherson, 2018, 2019), facilitating
comparisons. Like other SD methods that employ a bias correction approach, the weather
sequences present in ERQM future projections resemble those of the future GCM used as
input.

Prior to execution of ERQM, we applied a trace adjustment (similar to Pierce et al.
[2015]) to correct the wet-day fraction of the MH precipitation data to match that of the OH
training data. Then we applied a cube-root transformation on daily precipitation values
from all GCM inputs to yield a more Gaussian distribution.

First, the ERQM method calculated Ty the non-exceedance probability of the MF

value (x,,-) at day ¢:

T (O = Fi[x,, ()] 3)

The inverse cumulative distribution functions (CDFs) of the MH and MF precipitation were
used then to define a relative change factor at the quantile corresponding to the GCM future

precipitation value at day ¢.

Folte ©)

Frn 0]

A, (0= 4)
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This equation defined a relative change at the quantile of the GCM value. ERQM also used

the inverse CDF of OH used for training to bias correct the MF for day ¢ as follows:

XAO:M,H:F(t) - F;;I[TMF(t)]’ (5)

where x* . was the bias-corrected value of the GCM future precipitation. The

calculated value from ERQM for a future GCM value at day ¢ is

xDS(t) - XAO:M,H:F(t)AM(t)’ (6)

where x4 1s the DS value for day ¢.

We patterned our time-window approach for ERQM calibration training and
output-generation steps after that of the aforementioned Arkansas-Red River work,
including using the same training period (1981-2005). It differs from that used with the
DeltaSD herein and that used for QDM in Cannon et al. (2015). In our ERQM processing,

the seasonal cycle was represented by calculating AM(t)for each of four non-overlapping
three-month seasonal periods. For example, AM(t)for March-April-May was calculated
using the inverse CDFs of March-April-May precipitation from MH and MF. The A M(t)

value for March-April-May was then multiplied by the bias-corrected GCM precipitation in
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March-April-May to produce the final result. We applied the trained ERQM to the entire
future period (2006-2099), rather than using non-overlapping 30-year periods (as in

DeltaSD) or overlapping 30-year future periods (as in Cannon et al. 2015).

3.3. Technique differences

DeltaSD and ERQM are relatively simple techniques that have one common feature
— they use the relative change between GCM historical and future simulations to refine
future projections in a manner that is informed by historical observations. However, there
are two noteworthy differences between these downscaling techniques. First, while both
techniques use ratios representing relative change, DeltaSD preserves only the relative
change in the monthly mean precipitation, while ERQM preserves the relative change at the
quantiles of the precipitation distribution. This methodological difference impacts the
variability of daily precipitation that results from ERQM and DeltaSD.

Consider Figure 2, an example of October precipitation using MPI-ESM-LR and
PRISM. Using the DeltaSD approach, the mean of the three-month, GCM-simulated
precipitation totals is 21 percent greater in the future period than in the historical period.
That is, the relative change from the historical period to the future period is 1.21 at all
quantiles for the DeltaSD approach. In contrast, ERQM calculates the relative change at
each quantile; here, the GCM-simulated climate change-induced relative increases are
greater at the right-hand tail of the distribution (e.g., A =1.97 at the 95" percentile). Thus,

although ERQM and DeltaSD yield similar values at the 50™ percentile (10 mm/day and 8
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mm/day, respectively), there is roughly a 60 percent difference in precipitation at the 95"
percentile using ERQM (78 mm/day) versus DeltaSD (48 mm/day). While this example is
not necessarily representative for all seasons and locations, it demonstrates that ERQM can
produce substantially different projected changes for extreme values of precipitation
compared to DeltaSD.

Second, the DeltaSD method is designed such that the output is time synchronous
with the training data, while ERQM’s output is time synchronous with the GCM-simulated
future daily weather variations. Thus, the two methods likely will represent the time
sequence of daily precipitation and the length of dry and wet spells differently. Using the
OH time series as the basis for the future time sequence also constrains the output of
DeltaSD to reflect a similar frequency of wet days between the historical and future time
periods. That is, DeltaSD ignores GCM-simulated dynamical changes that influence
weather sequences, while ERQM incorporates those dynamic changes. Some users of
SD-generated daily precipitation projections prefer using downscaled data products that
have weather sequences based on observations (as produced by DeltaSD and other “change
factor” methods), especially if a GCM’s historical weather sequence characteristics (e.g.,
wet or dry spells) differ markedly from observations. Other practitioners may prefer to use
bias correction types of SD methods that, like ERQM, produce future projections based on
GCM weather sequences, and hence can represent climate change-induced changes in spell

lengths not represented by methods such as DeltaSD (Teutschbein and Seibert, 2012).
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Though the techniques used here do not encompass all downscaling methods used
in climate studies, ERQM and DeltaSD are two techniques that provide insight into
sensitivities of the downscaled output to differing objectives for representing the change
signal in climate projections. We expect that the differing objectives will affect the
projected change signal for precipitation spells and extremes and be compounded by the
differing observational choices available for training data. Also, by using three different
gridded observations for training, the experimental design allows quantitative exploration
of additional factors that influence the results of the two downscaling methods.

Though not very sophisticated, methods like DeltaSD are used by some impacts
researchers in studies that support decision-making, such as climate scenario development
for the Netherlands and Switzerland (KNMI, 2014; Kotlarski et al., 2018), ecological
modeling of climate impacts (Bucklin et al., 2013), and addressing data availability
limitations (Walsh et al., 2018). Given the many users of DeltaSD and similar methods, it is
important to compare it to more sophisticated methods, such as ERQM, if only to remind

users of its limitations.

4. Results and Discussion

We used this suite of downscaled projections (created with two downscaling
techniques, three GCMs and three sets of gridded observations) to address several
questions. We focused on precipitation and several derived variables to answer these

questions because many stakeholders in the south-central U.S. are keenly interested in
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future changes of precipitation. As SD-generated output is affected by both the gridded
observations and the GCMs, we set the context of how these inputs affect the downscaled
projections, detailed in section 4.1. In section 4.2, we discuss our findings related to

questions 1 and 2. Finally, section 4.3 more broadly examines our last question.

4.1. Input Data Context

Among the gridded observations used for training purposes, Daymet and PRISM
used daily precipitation amounts recorded at any time during the day to represent the daily
total for the period from midnight to midnight local time. However, Livneh apportioned
observations of daily precipitation based on their time of observation, prorating the
precipitation total by the number of hours overlapping the date of the gridded observation
(Livneh et al., 2013). For example, if the daily total were recorded at 8AM local time,
representing the past 24 hours, the Livneh method apportioned two-thirds of the total
precipitation to the previous day and the remaining third to the recorded date of
observation.

Livneh’s apportioning approach affected each daily precipitation amount, but not
the annual total precipitation (preptot). Figure 3a displays averages of prcptot across the
south-central U.S. for the historical period 1981-2005 (see also Figure 4). Visual inspection
revealed that differences between the observations are similar to those between
observations and GCMs and among the three GCMs. The areal-average for Daymet,

Livneh, and PRISM was 782.7 mm, 753.4 mm, and 653 mm, respectively. The
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GCM-calculated values (areal averages of 814.4 mm for CCSM4, 701.5 mm for MIROCS,
and 696.1 mm for MPI-ESM-LR) and spatial patterns across this region also were similar
among GCMs during the historical period (Figure 4), including the known wet bias in the
western portion of the domain (e.g., Mejia et al., 2018). The range (maximum minus
minimum grid point values) of prcptot across the region, however, was consistently smaller
for the GCMs than for the observations. The known tendency for GCMs to underestimate
precipitation (Pendergrass and Hartmann, 2014; Stephens et al., 2010) results in fewer
extreme precipitation values and prompts the need for bias correction.

Unlike annual total precipitation, the gridded observations showed marked
differences in the annual number of days with precipitation (rlmm). The Livneh gridded
observations have about 60 percent more days with precipitation (mean = 99.7 days)
compared to Daymet and PRISM (mean = 62.1 days and 62.5 days, respectively, Figure
3b). In contrast, the GCMs tended to overestimate the observed number of days with
precipitation, with CCSM4 having the largest rlmm (mean = 143.4 days) and
MPI-ESM-LR having the smallest rimm (mean = 104.1 days). The known tendency for
GCMs to overestimate the number of days with light precipitation (Stephens et al. 2010;
Pendergrass and Hartmann, 2014) also caused the GCM climatology for the total number of
precipitation events to be larger than observed. This overestimation is another issue that SD
attempts to correct, while retaining the differing future change signals from the GCMs.

Although Livneh’s apportioning process improved the temporal alignment and

spatial coherence, this adjustment also increased the frequency and decreased the intensity
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of events (Oyler and Nicholas, 2018). For large, single-day events (rx1day), this
apportioning process divided precipitation across two days, decreasing the amounts on a
single day (Figure 5). This effect was mitigated for multi-day events, as any single day
receives prorated precipitation amounts from two days. The known tendency for GCMs to
underestimate variance for daily precipitation also caused GCM estimates of precipitation
extremes to be smaller than observed. Therefore, the OH training data likely will influence
the downscaled number of wet and dry days, along with rainfall amounts for single-day
extreme events.

Livneh’s precipitation adjustment (apportioning) also affected the length of dry and
wet spells in its gridded observations. For example, when a single day’s precipitation was
split over two days and both days had values larger than 1 mm, then two wet days were
counted for Livneh rather than one for Daymet and PRISM. Since the apportioning
separated rain across two consecutive days, the average length of the longest wet spell in a
year (cwd) was larger in Livneh (mean 8.2 days) than Daymet (mean 5.6 days) or PRISM
(mean 5.6 days; Figure 6a). Dry spells (consecutive days with precipitation less than 1 mm)
also decreased in length for a similar reason. Although the apportioning effect is limited,
the average length of the longest dry spell in a year (cdd) in Livneh was still smaller (mean
37.7 days) than Daymet (mean 42.6 days) and PRISM (mean 41.7 days; Figure 6b). The
GCM’s bias toward overestimating the number of rain days also caused the wet (dry) spells
represented by most GCMs to be larger (smaller) than observations (Figure 6), though the

climate change signal was slightly different among GCMs. This result suggested that while
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the GCM change signal had a strong influence on the downscaled output, the training data
also had some influence on the downscaled projections of cdd and cwd.

Figures 3, 5, and 6 display the undownscaled future projection (2070-2099) from
each GCM for each variable. The simulated climate change signals range from minimal
(CCSM4) to large (MPI-ESM-LR) model-simulated changes for all variables. The future
GCM values had less spatial variability and overestimate the frequency of rain days as
compared to the gridded observations. This result stems in part from the coarse resolution
of the GCMs that reduced precipitation variability across complex topography or coastal
boundaries. SD attempted to correct these aspects based on the training data; yet, these
gridded observations exhibited marked differences resulting in part from the choice of
precipitation adjustment used to create them. Therefore, it is likely that the choice of
training data, GCM, and downscaling technique influenced the projected precipitation

output.

4.2. Sensitivities in the Downscaled Projections

The GCMs and training data were two inputs for SD, but the downscaling technique
also played a critical role in the resulting high-resolution climate projections. For the
temporal subsamples used in a given SD training step, DeltaSD applied a single ratio to
translate relative change from each GCM to local scales across the entire precipitation
distribution of the training data, while ERQM used quantile-specific ratios to translate

change across all quantiles and maintain the GCM weather sequence.
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From Figure 7 it is apparent that, for the annual number of precipitation days
(rImm), the change signal was highly sensitive to the GCM, training data, and downscaling
technique. When downscaled using Daymet as training data, the DeltaSD-downscaled
MPI-ESM-LR indicated an increase in rlmm (~+1 day), whereas ERQM-downscaled
MPI-ESM-LR (also trained with Daymet) and the raw MPI-ESM-LR indicated a decrease
in rlmm (~-7 and ~-16 days respectively; Figure 7, left). The difference in climate signal
sign resulted from the different relative change calculations for the two methods. For
DeltaSD, the ratios were generally > 1, causing future precipitation values less than 1 mm
to sometimes become greater than 1 mm, slightly increasing rImm. For ERQM, the ratios
at low quantiles were generally < 1, causing the rlmm to decrease. This effect was not
limited to the MPI-ESM-LR-forced results, but also occurred for the other two GCMs
(Figure 7, right). Thus, ERQM better preserved the rlmm change signal at low quantiles
provided by the trace-adjusted GCM (see Supporting Information) than the DeltaSD
method. The resulting ERQM change signal was more than double that of the DeltaSD
change signal for 75.3% of the domain on average (Table 2). In addition, switching from
DeltaSD to ERQM caused the rlmm change signal to switch from increasing to decreasing
for 25.5% of the domain on average.

The choice of gridded observations for training data also influenced the rimm
climate change signal. Recall that, following the CLIMDEX conventions, “wet days” in our
analyses were those with more than 1 mm day™ (~0.04 inches day™). For example, using

MPI-ESM-LR and ERQM, downscaled output trained with Daymet, Livneh, and PRISM
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projected a mean decrease of 7.5 days, 14.4 days, and 8.6 days, respectively, for rimm. All
of the statistically downscaled projections created using Livneh projected a decrease in the
number of precipitation days that was up to twice as large as those created with the other
training data. Using Livneh in place of Daymet or PRISM for training caused the rlmm
climate change signal to be twice as large (or larger) for 41.5% of the domain on average
(Table 2). Again, as the Livneh apportioning caused the single-day precipitation amounts to
become smaller (i.e., closer to the trace value), ratios < 1 caused more rain days to be
converted to dry days and a larger decrease in rlmm compared to PRISM- and
Daymet-trained projections. Table 3 shows the mean and interquartile range for the
projected changes across the study domain for all simulations. We examine the sensitivity
of the results to each GCM, downscaling technique, or gridded dataset by comparing the
difference between the maximum and minimum values of the mean projected change, or
the range of mean projected change (RMC). For example, the sensitivity of rlmm to the
choice in GCMs is represented by the RMC for each GCM across all downscaling
techniques and training data, or -0.9 days (CCSM4 average) — (-5.8 days, MPI-ESM-LR
average) = 4.9 days. The RMC is calculated using the mean values in Table 3. Overall, for
the SD-generated output, the projected number of days with precipitation was sensitive to
the GCM (RMC = 4.9 days), downscaling technique (RMC = 5 days), and training data
(RMC = 3.5 days) used (Table 3).

As one may suspect, the different ratios used by DeltaSD and ERQM also affect

precipitation extremes. For example, although the raw MPI-ESM-LR output projected an
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area-averaged mean increase of 8 mm in 1-day maximum precipitation (rx1day) by the end
of the century, the DeltaSD downscaled MPI-ESM-LR trained with Daymet projected a
mean decrease of 1 mm (Figure 8, left). This difference was broadly consistent with ERQM
applying larger relative change to the right tail of the GCM’s precipitation distribution than
for the middle of the distribution, due to the previously mentioned tendency for GCMs to
underestimate daily precipitation amount variances (Figure 8). The sign of the change
signal switched for rx1day based on the downscaling technique used in 58.7% of the
domain on average (Table 2). On the other hand, ERQM trained with Daymet had a slightly
higher positive change (mean change of +11 mm) compared to the GCM (Table 3).

The training data also appeared to have less influence on rx1day than the
downscaling technique and GCM. The effect of apportioning on precipitation extremes is
mitigated in the raw output by prorating over two days and further diminished in the change
signal. For example, using the MPI-ESM-LR downscaled with ERQM, the mean change in
rxlday was +11.2 mm, +9.3 mm, and +11.4 mm for Daymet, Livneh, and PRISM,
respectively. In our example with MPI-ESM-LR, the Livneh based projected change was
80% of the Daymet or PRISM based changes. For 45.9% of the domain on average, the
Livneh-based projected change to rx1day was 80% or less of the Daymet- or PRISM-based
changes (Table 2). Though the training data used influenced the future projections, we
found that the downscaling technique (RMC = 9.9 mm) and GCMs (RMC = 2.2 mm) had

the largest influence on the change signal for rx1day (Table 3).
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Similarly, the differences between DeltaSD and ERQM influenced the annual
longest dry and wet spells (cdd and cwd). For cwd (Figure 9), the GCMs projected a mean
change of -0.85 to 0.21 days, DeltaSD projected a mean change of -0.39 to 0 days, and
ERQM projected a mean change of -0.66 to 0.54 days (Table 3). For cdd (Figure 10), the
three GCMs projected a mean change of one to three days and their downscaled projections
using DeltaSD and ERQM projected a mean change of zero to two days, and two to six
days, respectively (Table 3). For cdd and cwd, the ERQM based projected change was
twice as large (or larger) than the DeltaSD based changes for 73.6% and 71.6% of the
domain on average respectively (Table 2). The ERQM result exhibits a larger range across
the domain in the downscaled output than DeltaSD for both metrics (Figures 9 and 10).

For the cdd and cwd metrics, the Livneh-based projected change was twice as large
(or larger) than Daymet- or PRISM-based changes for 20.2% and 59.2% of the domain on
average, respectively (Table 2). That the DeltaSD future spell length metrics cdd and cwd
were not much different from those of the observations’ was expected because the DeltaSD
future weather sequence was simply based on the observed OH time series multiplied by
ratio scale factors (Table 3). For DeltaSD, spell length change signals arose largely from
when the ratio multiplication caused the output value to cross the trace-value threshold. In
contrast, the ERQM future values were scaled versions of the GCM’s future time
sequences, thus changes in spell lengths simulated by the dynamical models were reflected
in the ERQM downscaled future projections (also reflected by the interquartile range, Table

3). We found that downscaled projections of cdd were most sensitive to the downscaling
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technique (RMC = 2.3 days) and GCM (RMC = 1.8 days, Table 3). Also, downscaled
projections of cwd were most sensitive to the GCM (RMC = 0.5 days) and training data
(RMC = 0.2 days, Table 3).

For the annual total precipitation (prcptot), the mean change from the GCMs was
-68 to -19 mm, the mean change from DeltaSD across all GCMs and training data was -68
to -6 mm, and the mean change across all GCMs and training data from ERQM was -72 to
6 mm (Figure 11). In addition, regardless of the training data or downscaling technique
used, the projections for prcptot were nearly identical for 48-56% of the domain on average
when the GCM is held fixed (Table 2). We find that projections of prcptot are less sensitive
to the training data (RMC = 10.4 mm) and downscaling technique (RMC = 7.5 mm) and far

more sensitive to the GCM used (RMC = 63.0 mm, Table 3).

4.3. Broader Issues

Although limited in geographic region and downscaling methods examined, this
study illustrates the types of uncertainties present in SD-generated precipitation projections
produced by a broader range of statistical methods for various regions using different input
data sources. Our analyses of downscaled precipitation climate projections for the
south-central United States are broadly consistent with studies that focused on other regions
(e.g., Biirger et al. [2013]). Accordingly, our results can help guide and inform users of
downscaled precipitation projections, especially those who use output from the projections

as input to their climate impacts-related model of interest.
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First, analyses demonstrate that both SD techniques examined here are sensitive to
the training data used. Second, variables such as the occurrence and extremes of
precipitation are more sensitive to the choice of training data or downscaling technique than
the GCM used. These results can be especially relevant for users (e.g., water managers,
agricultural producers) who care about number of precipitation days and the daily
maximum amount.

Third, the analyses suggest that developers of gridded observations should be
strategic in selecting how they treat once-a-day precipitation station data (e.g., Section 4.1),
as that choice can drive the sensitivity for several downscaled precipitation variables. The
apportioning used to create Livneh data product results in more rain days with
simultaneously smaller values. The effect of this apportioning increases the number of rain
days and decreased the intensity of single day extreme events. However, for the number of
rain days, we also find that the ERQM and DeltaSD were similar with respect to how
sensitive they are to the training data. Using Livneh in place of Daymet or PRISM caused
the change signal to decrease by 3.28 days and 2.24 days on average in ERQM and
DeltaSD, respectively.

Finally, although the DeltaSD and ERQM approaches generally were similar in the
middle of the precipitation distribution, they could be significantly different at both high
and low quantiles. The differences in the SD-generated climate change signal at high and
low quantiles is related to how each downscaling approach incorporated the GCM projected

change. For the south-central U.S., ERQM projected a future increase in precipitation at the
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high quantiles. In contrast, DeltaSD projected a decrease in large, daily precipitation
amounts. This difference at high quantiles resulted from the use of one change factor at all
quantiles (as in DeltaSD) versus a unique, and typically varying, change factor at each
quantile (as in ERQM).

These findings return us to a broader research question: With increasing demand for
projections in climate impact assessments and adaptation planning, are certain training data
or SD techniques better suited than others to refine climate projection data for use in
impacts modeling? Based on our analyses, we answer with a qualified “yes,” noting that it
is important to carefully consider how projected precipitation variables are affected by the
modeling choices made to produce a set of downscaled projections. The qualification arises
in part from recognizing that different climate impacts applications are sensitive to different
precipitation-related characteristics. For example, an application driven by changes in
annual mean precipitation would be less sensitive to different statistically downscaled data
products than one sensitive to changes in the length of wet or dry spells. Also, our results
illustrate that practitioners should be cautious about using a single statistically downscaled
data product without considering how sensitive their particular application is to the SD
technique’s characteristics and limitations. The degree to which any of these downscaling
choices (GCM, downscaling technique, and training data) influences the projection depends
on the variable in question. Here, we found that the annual number of days with
precipitation was the most sensitive, while the annual total precipitation was the least

sensitive to these downscaling choices. One must account for the varying sensitivity when
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using these variables either to make decisions or as input to impacts models, such as those
commonly used to project future streamflow, crop yield, or species distribution. If an
adaptation decision or impacts model requires daily precipitation values (where the number
of days with rain, precipitation intensity, and dry- or wet-spell length would be important)
or exceedance thresholds, we have demonstrated that certain training data or downscaling
techniques are more appropriate than others.

To illustrate this, let us consider a practitioner and impacts researcher interested in
changes to stream discharge under a changing climate. Calculating streamflow and
discharge generally requires daily precipitation as an input to a hydrology model (Devi et
al., 2015). To assess changes to stream discharge or streamflow in a changing climate
requires the use of downscaled (or bias-corrected) projections of precipitation (e.g.
Mizukami et al., 2016; Sunde et al., 2017). The question is, what is important to the
practitioner? If the practitioner were only concerned with annual total discharge, then this
study indicates that a sufficient number of GCMs (to account for model uncertainty) could
be employed with any combination of downscaling technique and gridded observations. If,
however, the practitioner were concerned with peak daily discharge, then they will plan for
changes to precipitation extremes. This study indicates then that using downscaled
projections created with DeltaSD or trained with the Livneh observations can dampen the
projected intensity of single-day events, reducing the likelihood the impacts researcher will
develop a simulation that adequately guides the practitioner. Generally, an impacts

researcher or practitioner should ask themselves: “Do heavy precipitation events,
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precipitation occurrence, the length of dry and wet spells, or seasonality matter for my
problem?” If so, then it is important to select climate projections that represent each of
these variables in the historical and future periods.

More broadly, there are several recommendations based on this study. First, when
using downscaled projections for impact assessments, one should carefully consider how
the training data were created. In many cases, it is advisable to consider using downscaled
projections based on more than one training dataset so that the uncertainty associated with
the different options for training data is included for a more complete assessment of risk.
We recognize that many times the choices of training data and downscaling technique are
meant to meet specific needs (such as capturing the effect of complex topography or
reflecting an important time period); however, at a minimum, users need to acknowledge
the uncertainty associated with these choices.

Second, our study focuses on the precipitation adjustment used to create the gridded
observations, but that adjustment is only one component in the creation of gridded
observations that could be translated into downscaled projections. Methods to account for
wind-induced undercatch, wetting, or evaporation losses in station measurements of
precipitation (Yang et al., 1998) also have been used to create gridded observations. There
are also numerous interpolation techniques and elevation corrections that have been applied
with differing station networks to create gridded observation-based datasets. We have not
analyzed all these corrections or interpolations here, and it was beyond the scope to

completely isolate and determine which components of the gridded observations affected
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the precipitation projections. To our knowledge, current literature does not document any
sensitivities in statistically downscaled climate projections that are caused by the many
components of generating gridded observations. Therefore, we recommend that future
studies examine the sensitivity of SD techniques to these other choices made during the
creation of gridded observations.

Finally, DeltaSD and ERQM represent two simple downscaling techniques, but they
do not represent the breadth of publicly available downscaled projections. More recent
datasets have been created with complex techniques such as the Multivariate Adaptive
Constructed Analogs (MACA, Abatzoglou et al., 2012) and the Localized Constructed
Analogs (LOCA, Pierce et al., 2014). We recommend examining the effect of downscaling
choices with these more complex downscaling techniques and impacts-specific variables,
given that small changes may result in effects to the projected change signal not shown
using simpler SD techniques.

The results from this study disagree somewhat with those of Pourmoktharian et al.
(2016) that found that the training data had more influence on the change signal than the
downscaling technique. The results from this study agree with Alder and Hostetler (2019)
with respect to downscaling technique and training data as well as with Timmermans et al.
(2019) with respect to precipitation extremes in gridded observations. However,
Pourmoktharian et al. (2016) and Alder and Hostetler (2019) focused on the results
projected by an ecosystem model and a hydrology model respectively using downscaled

projections. It is plausible that the non-linear physical relationships between climate and
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impacts modeling could magnify the effect of the training data over the choice of
downscaling technique. Therefore, a question raised by this study, is how far the effect of
training data is conveyed from downscaling through impact modeling.

Pourmoktharian et al. (2016) and Alder and Hostetler (2019) are both natural
extensions of this study, focusing on the effect of modeling choices in the climate
projections on impact modeling. The work of Timmermans et al. (2019) focused on the
gridded observations with respect to precipitation extremes. While this study went beyond
precipitation extremes, we agree with the note of Timmermans et al. (2019), that one should
be particularly cautious of the gridded observations used. The gridded observations used in
this study are “standard” products used for SD and other research activities. The influence
of the gridded observations upon downscaled projections documented in this study
alongside the work of other recent studies implies the need to continuing probing the
uncertainty involved and emphasize caution when using gridded observations for SD of

precipitation.

5. Conclusions

This study examines the effects of the choices that climate scientists make in
developing projections of multiple precipitation variables, in this case, using two simple
downscaling techniques (DeltaSD and ERQM) and three gridded observations (Livneh,
PRISM, and Daymet) for training. The domain of interest was the south-central United

States. For simplicity, we use three GCMs (CCSM4, MIROCS5, MPI-ESM-LR) that
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exhibited sufficient spread in their future projections while also generating a representative
simulation of this region’s historical climatology.

This study finds that downscaled projections of precipitation variables can be
sensitive to the training data used in SD. This effect is apparent in results generated by both
SD techniques. Specifically, the precipitation adjustment (apportioning) used to create the
Livneh observations leads to an increased frequency of days with measurable precipitation
and decreased intensity of daily events, matching the results of Oyler and Nicholas (2018).
The apportioning also causes Livneh to have shorter dry spells, longer wet spells, and less
intense precipitation extremes then Daymet or PRISM. These differences between gridded
observations are translated into projections that use SD, causing the effects present in the
Livneh observations to be present in the historical output, future output, and change signal
for both downscaling techniques regardless of the GCM used. This finding is important for
those who apply results from the Fourth National Climate Assessment (Easterling et al.,
2017), as the LOCA-based downscaled climate projections were trained using Livneh
gridded observations.

The ERQM and DeltaSD methods show marked differences for projected changes of
the number of days with rain, longest dry spells, longest wet spells, and precipitation
extremes. This result is caused by the different approaches to translating relative change
with each downscaling technique. Although ERQM preserves the change signal at all

quantiles of a distribution, DeltaSD only preserves the change in the mean. Therefore, other
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methods which preserve the change signal at all quantiles will likely produce change
signals different from a ratio delta method for many of the variables in this study.
Although the choice of GCM, downscaling technique, and gridded observations
used for training all affect projections of precipitation, we find that there are varying
degrees of influence depending on the variable. Annual total precipitation is the least
sensitive and the annual number of days with precipitation is the most sensitive variable.
Annual total precipitation is sensitive primarily to the GCM, while the annual number of
days with precipitation is sensitive to the GCM, downscaling technique, and training data.
Given that we find some projected variables are more sensitive than others, certain
training data or downscaling techniques appear to be better suited than others to use in
specific types of impacts modeling and adaptation planning efforts. As the use of climate
projections grows across multiple applications, impacts researchers should carefully
consider the potential effects of training data and downscaling technique when selecting
downscaled datasets for impacts modeling in agriculture, ecology, and other fields. Such
additional studies will allow the climate science community to identify potential issues
where overconfidence may exist, expand the breadth of climate model evaluation, and
provide users of climate information with more robust guidance for impact assessments and

adaptation planning.
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Figure Captions

Figure 1. Study domain overlaid with annual average precipitation (mm) from Daymet v.

2.1 (Thornton et al. 1997; Thornton et al. 2017).

Figure 2. Daily precipitation cumulative distribution functions (CDFs) from PRISM (thick
black line), MPI-ESM-LR historical values (thin, dark blue line) and future projections (red
line with open circles), and the ERQM (light blue line with diamonds) and DeltaSD (purple
line with triangles) downscaled results. The historical period is 1981-2005 and the future
period is 2070-2099 with RCP8.5. The horizontal dashed lines correspond to the 50" and

95™ percentiles.

Figure 3. Boxplots of the (a) climatology of the annual total precipitation (prcptot, in mm)
and (b) climatology of the annual number of days with precipitation (rlmm) for the gridded
observations during the historical period (1981-2005; left set), the GCMs used during the
historical period (center set), and the GCMs during the future period (2070-2099; right set).
Open circles indicate the minimum and maximum for each boxplot, and horizontal lines
reflect the 5™, 25™, 50™ (median; thickest line), 75", and 95™ percentiles, from bottom to top

of each box plot. The domain average is the asterisk overlaid on each boxplot.
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Figure 4. Average annual total precipitation (prcptot, in mm) during the historical period
(1981-2005) for the three GCMs (top row) and three gridded observation datasets (bottom
row). From left to right on the top row: CCSM4, MIROCS, and MPI-ESM-LR. From left to
right on the bottom row: Daymet, Livneh, and PRISM. Domain-wide maximum, mean, and
minimum are plotted in the lower left of each map. Note the similarities within GCMs and
within gridded observations, but the large differences between the GCMs and gridded

observations.

Figure 5. As in Figure 3 except for the annual 1-day maximum precipitation (rx1day).

Figure 6. Boxplots of the (a) climatology of the annual longest wet spell (cwd; left half) and
(b) climatology of the annual longest dry spell (cdd; right half) for the gridded observations
during the historical period (1981-2005; left set for each variable), the GCMs used during
the historical period (center set for each variable), and the GCMs during the future period
(2070-2099; right set for each variable). Open circles indicate the minimum and maximum
for each boxplot, and horizontal lines reflect the 5™, 25™, 50" (median; thickest line), 75",
and 95™ percentiles, from bottom to top of each box plot. The domain average is the

asterisk overlaid on each boxplot. Note the different scales for cwd and cdd.

Figure 7. Left, the projected change (2070-2099 values minus 1981-2005 values) of the

annual average of the number of days with precipitation (rlmm, in days) for MPI-ESM-LR
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(top; not downscaled), MPI-ESM-LR downscaled with DeltaSD using Daymet for training
(middle), and MPI-ESM-LR downscaled with ERQM using Daymet for training (bottom).
Positive (negative) values indicate more (fewer) rain days in the future. Domain-wide
maximum, mean, and minimum are plotted in the lower left of each map. Right, boxplots of
projected change of rlmm for all GCMs and downscaling experiments. Open circles
indicate the minimum and maximum for each boxplot, and horizontal lines reflect the 5%,
25™ 50™ (median; thickest line), 75", and 95" percentiles, from bottom to top of each box

plot. The domain average is the asterisk overlaid on each boxplot.

Figure 8. As in Figure 7 except for the annual average of the maximum 1-day precipitation
(rx1day, in mm). Positive (negative) values indicate higher (lower) values for rx1day in the

future.

Figure 9. As in Figure 7 except for the annual average of the longest wet spell (cwd, in
days). Positive (negative) values indicate longer (shorter) duration of the longest wet spell

in the future.

Figure 10. As in Figure 7 except for the annual average of the longest dry spell (cdd, in

days). Positive (negative) values indicate longer (shorter) duration of the longest dry spell

in the future.
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Figure 11. As in Figure 7 except for the annual total precipitation (prcptot). Positive

(negative) values indicate more (less) precipitation in the future.
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Tables

Table 1. Gridded observation-based datasets used in this study.

Dataset Interpolation or gridding Precipitation Native Time Period
(Citation) method Adjustments resolution Available
Daymet
version 2.1
(Thornton et Geographlcally weighted No adjustment | km? 1980 -
al. 1997, regression
Thornton et al.
2017)
Uniform
Livneh version Synergraphic mapping system adjustment
1.2 (Maurer et (SYMAP), precipitation similar to that 1/16 degree
al. 2002; tested by 5 1950 - 2013
. scaled to match PRISM (~6 km")
Livneh et al. climatolo Oyler and
2013) &y Nicholas
(2018)
PRISM Geographically and
version elevation-weighted
AN81d (Daly . welghree . 2.5 min (~4
regression, station weighting  No adjustment 5 1981-
et al. 2008; . km?)
by topography, distance to
Daly et al. coast, atmospheric factors
2013). ’ P '
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Table 2. Mean percentage of study domain where switching between training data or
downscaling techniques causes the magnitude of the change signal to more than double,
become 80% or less, remains approximately the same, or causes the sign of the change
signal to reverse. Where the training dataset is changed, the value is the mean percentage
across GCMs and downscaling technique. Where the downscaling technique is changed,

the value is the mean percentage across GCMs and training datasets.

Changing training

Changing downscaling

V?;lfe t;lees tOf data to Livneh from technique to ERQM from
Daymet or PRISM DeltaSD
Mean percentage of rimm 41.5 75.3
the domain where the rxlday 8.2 55.8
change signal more cdd 20.2 73.6
than doubles in cwd 59.2 71.6
magnitude preptot 8.0 11.4
Mean percentage of rimm 12.2 1.7
the domain where the rxlday 459 19.8
change signal cdd 50.3 11.0
becomes 80% or less cwd 16.8 11.9
in magnitude preptot 18.4 28.6
rlmm 15.7 6.3
Mean pe.rcentage of rx1day 44.0 11.8
the domain where the
. o cdd 19.6 6.8
change signal within )
25% of the same. cwd 0.5 7.3
prcptot 56.0 48.0
rlmm 15.7 25.5
Mean pe.rcentage of rx1day 79 587
the domain where the
i cdd 21.4 32.7
sign of the change d 316 45.4
signal reverses oW : >-
prcptot 5.0 8.2
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Table 3. Means and Interquartile ranges (IQR) for projected changes of rlmm (days), rx1day (mm), cdd (days), cwd (days), and

prcptot (mm) across the study domain for each GCM and downscaled projection in this study.

rlmm rx1day cdd cwd preptot
DS GCM Training Data m;:a IQR | mean IQR | mean IQR | mean IQR mean IQR
CCSM4 -5.1 10.4 1.2 54 1.2 33 0.2 2.2 -20.2 67.8
N/A MIROCS N/A -180. 52 6.8 5.9 3.0 4.0 -0.2 1.3 -69.1 54.2
MPI-ESM-LR _136' 9.3 7.7 4.6 2.9 7.3 -0.9 1.2 -51.1 99.3
Daymet 0.6 1.5 0.8 3.0 0.1 1.4 0.0 0.2 -7.0 47.1
CCSM4 Livneh -1.8 2.7 0.5 2.5 1.4 2.1 -0.1 0.3 -8.2 45.0
PRISM -1.1 1.4 0.6 2.9 1.3 1.9 -0.1 0.2 -7.5 38.0
Daymet 0.0 1.2 -4.2 6.7 0.5 1.3 0.0 0.1 -68.4 79.7
DeltaSD MIROCS Livneh -3.1 2.3 -3.4 4.9 2.1 2.5 -0.1 0.4 -66.3 77.1
PRISM -1.7 1.4 -4.9 6.5 1.8 2.1 -0.1 0.2 -62.5 73.0
Daymet 0.7 1.8 -1.4 8.7 -0.1 1.5 0.0 0.1 -35.0 98.3
MPI-ESM-LR Livneh -3.5 5.8 -1.6 7.4 1.6 2.6 -0.4 0.6 -38.3 103.4
PRISM -1.7 2.3 -1.1 8.3 1.6 2.4 -0.1 0.2 -28.4 74.8
Daymet -0.2 4.3 4.6 7.5 2.0 6.0 0.4 0.8 1.3 50.7
CCSM4 Livneh -2.0 5.7 3.8 6.2 2.2 5.2 0.5 1.2 -1.4 45.2
PRISM -1.0 4.0 4.6 7.6 2.5 6.0 0.3 0.8 6.0 441
ERQM Daymet -6.7 6.2 10.4 11.8 53 7.4 -0.1 0.6 -73.2 98.7
MIROCS Livneh 9.1 5.7 8.7 9.8 4.5 5.7 -0.2 0.9 -65.7 75.9
PRISM -1.5 5.8 10.5 12.8 59 7.7 -0.1 0.6 -58.7 83.0
Daymet -1.5 4.9 11.2 13.1 2.8 10.5 -0.3 0.7 -27.8 104.1




Livneh _144' 7.3 9.3 10.8 2.8 8.0 -0.7 1.0 -36.4 95.8

PRISM -8.7 4.7 11.4 13.6 34 10.6 | -0.3 0.7 -11.4 82.0
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