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Statistically Downscaled Precipitation Sensitivity to Gridded Observation Data and 

Downscaling Technique 

A.M. Wootten, K. W. Dixon, D. Adams-Smith, R. A. McPherson 

Abstract 

Future climate projections illuminate our understanding of the climate system and 

generate data products often used in climate impact assessments. Statistical downscaling 

(SD) is commonly used to address biases in global climate models (GCM) and to translate 

large-scale projected changes to the higher spatial resolutions desired for regional and local 

scale studies. However, downscaled climate projections are sensitive to method 

configuration and input data source choices made during the downscaling process that can 

affect a projection’s ultimate suitability for particular impact assessments. Quantifying how 

changes in inputs or parameters affect SD-generated projections of precipitation is critical 

for improving these datasets and their use by impacts researchers. 

Through analysis of a systematically designed set of 18 statistically downscaled 

future daily precipitation projections for the south-central United States, this study aims to 

improve the guidance available to impacts researchers. Two statistical processing 

techniques are examined: a ratio delta downscaling technique and an equi-ratio quantile 

mapping method. The projections are generated using as input results from three GCMs 

forced with representative concentration pathway (RCP) 8.5 and three gridded 
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observation-based data products. Sensitivity analyses identify differences in the values of 

precipitation variables among the projections and the underlying reasons for the 

differences. 

Results indicate that differences in how observational station data are converted to 

gridded daily observational products can markedly affect statistically downscaled future 

projections of wet-day frequency, intensity of precipitation extremes, and the length of 

multi-day wet and dry periods. The choice of downscaling technique also can affect the 

climate change signal for variables of interest, in some cases causing change signals to 

reverse sign. Hence, this study provides illustrations and explanations for some downscaled 

precipitation projection differences that users may encounter, as well as evidence of 

symptoms that can affect user decisions. 

1. Introduction 

Global climate modeling is an important tool for researching the large-scale climate 

system (Weart, 2010) and developing climate projections that help guide decision making 

related to anthropogenic climate change (Smith and Stern, 2011). Regional and local-scale 

climates often are not well represented in global climate models (GCMs; Rummukainen, 

2010). Downscaling techniques can be used to translate a GCM-simulated climate response 

to smaller spatial scales, reducing GCM biases and providing added information scaled for 

decision-makers (Rummukainen, 2016; Tabari et al., 2016). Because statistical downscaling 

and bias correction methods (hereafter SD methods) are relatively flexible and 
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computationally efficient, SD-generated climate projections are frequently used as input for 

multiple types of impacts models (e.g. Gergel et al., 2017; Basso et al., 2015) as part of 

impact assessment studies and adaptation planning. 

The generation of SD-processed future climate projections involve three main 

ingredients: 1) observation-based data for climate variables of interest from a historical 

period, 2) GCM output for both historical and future time periods, and 3) a statistical 

technique that uses 1) and 2) as inputs to determine statistical relationships used to produce 

refined future projections as output. This statistical processing aims to add value to the raw 

GCM output by using information gleaned from observations, rendering output more 

suitable for direct use in research applications. SD assumes that large-scale climate 

conditions can be linked to local-scale effects and that model biases during the historical 

period are applicable to future climate conditions (Wilby and Wigley, 1997). 

The climate services community has encouraged stakeholders to use ensembles of 

emissions scenarios, GCMs, and downscaling techniques (e.g. Markus et al., 2018) to 

capture a range of possible future climates, with differences among the projections (i.e., the 

spread) resulting from multiple sources of uncertainty (Wootten et al., 2017). Unfortunately, 

simply capturing the uncertainty range does not provide adequate insight to researchers or 

adaptation experts regarding the sources of this uncertainty or, more practically, how 

choices made during the process of downscaling may influence the resulting climate 

variable. This study examines the sensitivity of precipitation variables projections to the 

choice of SD method and the gridded observations used to train the methods. Herein, the 
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term “sensitivity” refers to the change in precipitation variables resulting from choices 

made in the downscaling process. 

Numerous studies have examined the sensitivity of dynamical climate 

model-simulated climate changes to model formulation and factors affecting radiative 

forcings (e.g., the Coupled Model Intercomparison Project, CMIP [Taylor et al., 2012]; the 

Coordinated Regional Downscaling Experiment [Whitehall et al., 2012]). Fewer studies 

have examined the sensitivity of statistically refined climate change signals to downscaling 

technique choices (e.g. Action ES1102 (VALUE) of the European Cooperation in Science 

and Technology [Maraun et al., 2014]). A limited set of studies have examined the 

influence of different training datasets and SD techniques on projections of different 

precipitation metrics or their regional effects on ecosystem or hydrological modeling 

applications (e.g., Pourmoktharian et al., 2016, Werner and Cannon, 2016), the accuracy of 

gridded observations and GCMs (Behnke et al., 2016, Sillmann et al., 2013), and the effect 

of gridded observations on hydrologic model calibration (Elsner et al., 2014). Our study 

examines the influence of different gridded observations and SD techniques on projections 

of precipitation metrics important to climate impacts researchers in the south-central United 

States. 

Regional and local scale precipitation remains challenging to simulate well in large 

scale dynamical climate models (e.g. Cesana et al., 2017; Tapiador, 2019). Accordingly, 

impacts researchers benefit from using SD-generated precipitation projections as input to 

their work, as long as the sensitivities of precipitation-related variables connected to their 
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needs are better documented. For example, (1) What aspects of the training data can drive 

the sensitivity of downscaled precipitation projections? (2) Which precipitation-related 

variables are more sensitive to SD choices than others? (3) What training data or SD 

techniques are better suited to refine climate projection data for use in particular types of 

impacts models and their applications? 

We compare high-resolution climate projections for 2070-2099 created with two 

SD techniques trained separately with three gridded observation-based datasets and forced 

by representative concentration pathway (RCP) 8.5 (van Vuuren et al., 2011; Riahi et al., 

2007) and three CMIP5 GCMs (Taylor et al., 2012). Our analysis focuses on the differences 

in the change signal present in this set of 18 SD-generated precipitation projections and 

those in the three GCMs’ pre-downscaled data. We then assess the influence of different 

observation data and downscaling techniques on the resulting projections of several 

precipitation metrics of interest to impacts researchers and decision makers. Though not 

comprehensive in scope (e.g., not all SD methods nor all observational products are tested), 

these results illustrate often under-appreciated aspects of SD-generated precipitation data 

products. Similarly, though this study focuses on analyses of precipitation metrics that are 

of interest to climate impacts researchers in the topographically complex south-central 

United States (i.e., region of our funding source), our results highlight sensitivities present 

in SD-generated projections covering other regions. 

2. Study Region, Data, and Methods 
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2.1. Study Region 

The study region was the south-central United States, from about 26°N 108.5°W to 

40°N 91°W, excluding Mexico and the Gulf of Mexico. The region has varied topography 

with the Mississippi River Valley and the Ozark Mountains in the east (elevations of 

200-800 m), the Rocky Mountains in the west (1,500-4,400 m), and the coast of the Gulf of 

Mexico in the southeast (near sea level). This region has a sharp gradient of mean annual 

precipitation from east to west, with some southeastern locations receiving eight times 

more precipitation than the driest western locations (Figure 1). Strong gradients of both 

mean annual number of days with rain and annual daily maximum rainfall also exist. Snow 

dominates precipitation across the mountainous terrain during winter; tropical systems can 

provide substantial portions of any given year’s precipitation along the Gulf coast. The 

strong climatological differences in precipitation type and amounts provide an opportunity 

to assess the sensitivity of SD-generated precipitation projections to the choice of 

downscaling techniques and training data. 

2.2. Observation-based data 

Though some downscaling efforts used weather stations for training or calibration 

purposes, many publicly available downscaled projections are created using gridded 

observation-based data (hereafter gridded observations) for training. Gridded observations 

are processed data products largely based on station data (but can include remotely sensed 
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observations) that are adjusted and interpolated to a grid in a manner that attempts to 

account for missing station data, as well as temporal and spatial incoherence. The absence 

of a standard practice to create gridded observations results in the production of numerous 

gridded observations from multiple sources. Three gridded observations over the 48 

conterminous United States (CONUS) serve as training data for downscaling in this study 

(Table 1): Daymet Version 2.1 (hereafter Daymet, Thornton et al., 2017), Livneh Version 

1.2 (hereafter Livneh, Livneh et al., 2013), and PRISM Version AN81d (hereafter PRISM, 

Daly et al., 2008; Daly et al., 2013). These datasets reflect different methods for creating 

gridded observations (Table 1) and are used in numerous prior downscaling efforts, 

including the Multivariate Adaptive Constructed Analogs (MACA, Abatzoglou et al., 2012) 

and the Localized Constructed Analogs (LOCA, Pierce et al., 2014). In particular, these 

gridded observations were created using different methods to adjust the daily precipitation 

time series from station data to ensure temporal and spatial coherence. Differing methods 

for adjusting the daily precipitation time series have known impacts on precipitation 

variables, including the frequency of occurrence and intensity (Oyler and Nicholas, 2018). 

Therefore, using daily precipitation from these three gridded observations allowed us to 

assess if such differences affect the output of SD experiments. 

2.3. GCM data 

We used one ensemble member from three GCMs from CMIP5 (Taylor et al., 

2012): the Community Climate System Model version 4 (CCSM4, Gent et al., 2011), the 
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Model for Interdisciplinary Research on Climate version 5 (MIROC5, Watanabe et al., 

2010), and the Max-Planck-Institute Earth System Model running on a low-resolution grid 

(MPI-ESM-LR, Giorgetta et al., 2013). These GCMs produced reasonable historical 

climate simulations for global models of this class based on the bias for temperature and 

precipitation across the south-central U.S. compared to other GCMs (Sheffield et al., 2013). 

The three GCMs also reflected the range of simulated future change signals in the study 

region, capturing what is referred to as “model uncertainty” (Hawkins and Sutton, 2011). 

Here, we focused on GCM simulations driven by RCP 8.5, a scenario with a large radiative 

forcing increase by 2100 (8.5 W m–2, van Vuuren et al., 2011; Riahi et al., 2007), as it was 

more likely to produce readily detectable change signals by the end of the 21st century and 

allowed us to analyze greater possible differences between the projections in the sensitivity 

analysis. 

2.4 Analysis Metrics and Periods 

Our analyses focus on years 2070-2099 and variables that reflected means, 

extremes, and occurrences of precipitation. These variables were a subset of the CLIMDEX 

indices (Zhang et al., 2011, Bronaugh, 2014) calculated using the “climdex.pcic” package 

in the R software language (https://CRAN.R-project.org/package=climdex.pcic). The 

chosen CLIMDEX variables were: the total precipitation (prcptot), the number of days with 

precipitation (r1mm), the maximum dry spell length (cdd), the maximum wet spell length 

10 

https://cran.r-project.org/package=climdex.pcic


(cwd), and the maximum 1-day precipitation (rx1day). These variables (calculated per year) 

were those requested by stakeholders for impacts assessments across the study region. 

The historical period used for downscaling was 1981-2005. Thirty-year averaging 

periods are a standard for climatological normals, as they encompass a range of climate 

variability; however, the PRISM gridded observations were only available from 1981 

onward, so the other gridded observations and GCM historical data were trimmed to match 

PRISM’s 25-year period (Table 1). 

3. Methods 

To investigate the impact of training data and SD techniques on the resulting climate 

projections, the publicly available GCM and gridded observations were first interpolated to 

a common grid with bilinear interpolation applied at a daily timescale using the NCAR 

Command Language (NCAR et al., 2018) Earth System Modeling Framework regridding 

functions (NCAR, 2019). These functions interpolated each GCM and observation dataset 

to a 0.1° latitude by 0.1° longitude rectilinear grid, resulting in >19,000 grid points within a 

study domain which included the Upper Rio Grande, Red, and Canadian River basins 

(Figure 1). We used a conservative interpolation for coastal grid points where there was 

inadequate information in gridded observations for a bilinear interpolation. The resulting 

interpolated GCMs and gridded observations were the inputs for two SD techniques 

(detailed below). The interpolation is a key component of the downscaling procedure, but 
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the same interpolation is used to allow the differences between SD techniques (also referred 

to as bias correction techniques) to be the focus of this study. 

Conventions used herein are that MF (model future) refers to the GCM precipitation 

during the future time period, and MH (model historical) and OH (observed historical) refer 

to the GCM and observation-based precipitation during the corresponding historical time 

window. Downscaled output (DS) represents refined future precipitation. 

3.1. Ratio Delta Method (DeltaSD) 

Variants of a simple technique commonly referred to as the delta method (Maraun et 

al., 2010; Fowler et al., 2007; Räty et al., 2014) combine information from observations and 

GCMs to produce climate projections. In general, delta methods (including the DeltaSD 

version used here) operate by first determining a GCM-simulated time-mean change signal 

over some specified time range. Next, delta methods apply that change signal to the 

observations to yield an adjusted future projection. Therefore, the downscaled output time 

series produced using DeltaSD exhibits daily weather sequences that resemble those of the 

observations used in the statistical processing (Teutschbein and Seibert, 2012). 

How the time-mean signal is computed and applied can differ across applications of 

the delta approach. In this study, we implemented a multiplicative scaling (ratio) approach 

for precipitation adjustments. Accordingly, for each time period, DeltaSD calculated the 

ratio (∆) at each grid point based upon the GCM being used: 
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∆ (𝑀𝐹) = 𝑚𝑒𝑎𝑛 (𝑀𝐻) 𝑚𝑒𝑎𝑛 
(1)

Ratios were computed for the future period (2070-2099) relative to the 1981-2005 historical 

period. In our implementation of the DeltaSD method, the seasonal cycle was captured by 

using 12 time windows of three months each for which the means of MH and MF are 

calculated over the multi-decadal period. For training (calibration) purposes, we used 

three-month time windows to obtain an adequate sample size of wet days in arid regions of 

the domain. These MH and MF means were used to calculate the change ratio (∆) that is 

applied to the daily observations of the center month of each time window. The appropriate 

OH time series was multiplied by the ratio (∆) to calculate the final downscaled 

precipitation values (DS): 

𝐷𝑆 = 𝑂𝐻 * ∆ (2) 

Following the multiplicative adjustments performed by DeltaSD, any projection values less 

than the standard U.S. daily trace amount (0.01 inches day-1 = 0.254 mm day-1) were set as 

dry days (i.e., 0.00 inches) in the output. 

For example, to generate the adjusted daily April precipitation values for the late 

21st century, the ratio (∆) was calculated using the three-month means (March, April, and 

May) during 1981-2005 (MH) and 2070-2099 (MF), then applied to the series of historical 

observations (OH) for all Aprils during the historical period to calculate DS. Therefore, if a 
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GCM’s simulation exhibited a 21 percent increase in mean precipitation amounts for 

March-April-May of 2070-2099 relative to its simulation for March-April-May of 

1981-2005, then the April daily observations were multiplied by 1.21 to generate the 

downscaled future time series. Because the GCM future simulations span 94 years (2006 

through 2099, inclusive) and the observational time series cover only 25 years, DeltaSD 

output was generated by recycling the observational sequence starting with 1 Jan 1981 

being the basis for 1 Jan 2006. Accordingly, 2070-2080 DeltaSD outputs are based on 

scaled versions of the 1995-2005 observational sequence, and 2081-2099 outputs are based 

on scaled versions of the 1981-1999 observations. Variants of the ratio delta approach 

downscale daily precipitation to ensure values of zero or greater; an additive delta approach 

is more common for variables such as daily temperatures. 

3.2. Equi-ratio Quantile Mapping (ERQM) 

Equi-ratio quantile mapping (ERQM) was designed to retain the relative change 

signal at all quantiles of the precipitation distribution while performing bias correction (Li 

et al., 2010; Wang and Chen, 2014; Cannon et al., 2015). This approach was distinct from 

that of DeltaSD, which only retained the change signal of monthly mean precipitation. Our 

implementation of ERQM used the QDM (quantile delta mapping) code of Cannon and 

colleagues from the R-language MBC (multivariate bias correction) package 

(https://CRAN.R-project.org/package=MBC). However, configuration choices here differed 

enough from those used by Cannon et al. (2015) to warrant our adoption of a different 
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acronym to avoid confusion. Many of these choices aligned with earlier pilot studies across 

the Arkansas-Red River basin (Bertrand and McPherson, 2018, 2019), facilitating 

comparisons. Like other SD methods that employ a bias correction approach, the weather 

sequences present in ERQM future projections resemble those of the future GCM used as 

input. 

Prior to execution of ERQM, we applied a trace adjustment (similar to Pierce et al. 

[2015]) to correct the wet-day fraction of the MH precipitation data to match that of the OH 

training data. Then we applied a cube-root transformation on daily precipitation values 

from all GCM inputs to yield a more Gaussian distribution. 

First, the ERQM method calculated τ , the non-exceedance probability of the MF
𝑀𝐹 

value (xMF) at day t: 

(𝑡)τ (𝑡   
 )  = 𝐹  [ 𝑥 (𝑡) 

𝑀𝐹 𝑀𝐹 ] (3)
𝑀𝐹 

The inverse cumulative distribution functions (CDFs) of the MH and MF precipitation were 

used then to define a relative change factor at the quantile corresponding to the GCM future 

precipitation value at day t. 

−1𝐹  [ τ (𝑡 ) 
𝑀𝐹 𝑀𝐹 ]

∆ ( 𝑡) = (4)
𝑀 −1𝐹  [τ (𝑡 ) 

𝑀𝐻 𝑀𝐹 ]
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This equation defined a relative change at the quantile of the GCM value. ERQM also used 

the inverse CDF of OH used for training to bias correct the MF for day t as follows: 

𝑥^
𝑂:𝑀,𝐻:𝐹

( )𝑡 = 𝐹
𝑂𝐻[ ( )𝑡 , (5)−1 τ

𝑀𝐹 ] 

where was the bias-corrected value of the GCM future precipitation. The 𝑥^
𝑂:𝑀,𝐻:𝐹 

calculated value from ERQM for a future GCM value at day t is 

𝑡 𝑡 , (6)𝑡 ( )∆
𝑀
( ) 𝑥

𝐷𝑆
( ) = 𝑥^

𝑂:𝑀,𝐻:𝐹 

where xDS is the DS value for day t. 

We patterned our time-window approach for ERQM calibration training and 

output-generation steps after that of the aforementioned Arkansas-Red River work, 

including using the same training period (1981-2005). It differs from that used with the 

DeltaSD herein and that used for QDM in Cannon et al. (2015). In our ERQM processing, 

the seasonal cycle was represented by calculating ( )𝑡 for each of four non-overlapping∆
𝑀 

three-month seasonal periods. For example, ( )𝑡 for March-April-May was calculated∆
𝑀 

using the inverse CDFs of March-April-May precipitation from MH and MF. The ∆
𝑀
( )𝑡 

value for March-April-May was then multiplied by the bias-corrected GCM precipitation in 
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March-April-May to produce the final result. We applied the trained ERQM to the entire 

future period (2006-2099), rather than using non-overlapping 30-year periods (as in 

DeltaSD) or overlapping 30-year future periods (as in Cannon et al. 2015). 

3.3. Technique differences 

DeltaSD and ERQM are relatively simple techniques that have one common feature 

– they use the relative change between GCM historical and future simulations to refine 

future projections in a manner that is informed by historical observations. However, there 

are two noteworthy differences between these downscaling techniques. First, while both 

techniques use ratios representing relative change, DeltaSD preserves only the relative 

change in the monthly mean precipitation, while ERQM preserves the relative change at the 

quantiles of the precipitation distribution. This methodological difference impacts the 

variability of daily precipitation that results from ERQM and DeltaSD. 

Consider Figure 2, an example of October precipitation using MPI-ESM-LR and 

PRISM. Using the DeltaSD approach, the mean of the three-month, GCM-simulated 

precipitation totals is 21 percent greater in the future period than in the historical period. 

That is, the relative change from the historical period to the future period is 1.21 at all 

quantiles for the DeltaSD approach. In contrast, ERQM calculates the relative change at 

each quantile; here, the GCM-simulated climate change-induced relative increases are 

greater at the right-hand tail of the distribution (e.g., ∆ =1.97 at the 95th percentile). Thus, 

although ERQM and DeltaSD yield similar values at the 50th percentile (10 mm/day and 8 
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mm/day, respectively), there is roughly a 60 percent difference in precipitation at the 95th 

percentile using ERQM (78 mm/day) versus DeltaSD (48 mm/day). While this example is 

not necessarily representative for all seasons and locations, it demonstrates that ERQM can 

produce substantially different projected changes for extreme values of precipitation 

compared to DeltaSD. 

Second, the DeltaSD method is designed such that the output is time synchronous 

with the training data, while ERQM’s output is time synchronous with the GCM-simulated 

future daily weather variations. Thus, the two methods likely will represent the time 

sequence of daily precipitation and the length of dry and wet spells differently. Using the 

OH time series as the basis for the future time sequence also constrains the output of 

DeltaSD to reflect a similar frequency of wet days between the historical and future time 

periods. That is, DeltaSD ignores GCM-simulated dynamical changes that influence 

weather sequences, while ERQM incorporates those dynamic changes. Some users of 

SD-generated daily precipitation projections prefer using downscaled data products that 

have weather sequences based on observations (as produced by DeltaSD and other “change 

factor” methods), especially if a GCM’s historical weather sequence characteristics (e.g., 

wet or dry spells) differ markedly from observations. Other practitioners may prefer to use 

bias correction types of SD methods that, like ERQM, produce future projections based on 

GCM weather sequences, and hence can represent climate change-induced changes in spell 

lengths not represented by methods such as DeltaSD (Teutschbein and Seibert, 2012). 
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Though the techniques used here do not encompass all downscaling methods used 

in climate studies, ERQM and DeltaSD are two techniques that provide insight into 

sensitivities of the downscaled output to differing objectives for representing the change 

signal in climate projections. We expect that the differing objectives will affect the 

projected change signal for precipitation spells and extremes and be compounded by the 

differing observational choices available for training data. Also, by using three different 

gridded observations for training, the experimental design allows quantitative exploration 

of additional factors that influence the results of the two downscaling methods. 

Though not very sophisticated, methods like DeltaSD are used by some impacts 

researchers in studies that support decision-making, such as climate scenario development 

for the Netherlands and Switzerland (KNMI, 2014; Kotlarski et al., 2018), ecological 

modeling of climate impacts (Bucklin et al., 2013), and addressing data availability 

limitations (Walsh et al., 2018). Given the many users of DeltaSD and similar methods, it is 

important to compare it to more sophisticated methods, such as ERQM, if only to remind 

users of its limitations. 

4. Results and Discussion 

We used this suite of downscaled projections (created with two downscaling 

techniques, three GCMs and three sets of gridded observations) to address several 

questions. We focused on precipitation and several derived variables to answer these 

questions because many stakeholders in the south-central U.S. are keenly interested in 
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future changes of precipitation. As SD-generated output is affected by both the gridded 

observations and the GCMs, we set the context of how these inputs affect the downscaled 

projections, detailed in section 4.1. In section 4.2, we discuss our findings related to 

questions 1 and 2. Finally, section 4.3  more broadly examines our last question. 

4.1. Input Data Context 

Among the gridded observations used for training purposes, Daymet and PRISM 

used daily precipitation amounts recorded at any time during the day to represent the daily 

total for the period from midnight to midnight local time. However, Livneh apportioned 

observations of daily precipitation based on their time of observation, prorating the 

precipitation total by the number of hours overlapping the date of the gridded observation 

(Livneh et al., 2013). For example, if the daily total were recorded at 8AM local time, 

representing the past 24 hours, the Livneh method apportioned two-thirds of the total 

precipitation to the previous day and the remaining third to the recorded date of 

observation. 

Livneh’s apportioning approach affected each daily precipitation amount, but not 

the annual total precipitation (prcptot). Figure 3a displays averages of prcptot across the 

south-central U.S. for the historical period 1981–2005 (see also Figure 4). Visual inspection 

revealed that differences between the observations are similar to those between 

observations and GCMs and among the three GCMs. The areal-average for Daymet, 

Livneh, and PRISM was 782.7 mm, 753.4 mm, and 653 mm, respectively. The 
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GCM-calculated values (areal averages of 814.4 mm for CCSM4, 701.5 mm for MIROC5, 

and 696.1 mm for MPI-ESM-LR) and spatial patterns across this region also were similar 

among GCMs during the historical period (Figure 4), including the known wet bias in the 

western portion of the domain (e.g., Mejia et al., 2018). The range (maximum minus 

minimum grid point values) of prcptot across the region, however, was consistently smaller 

for the GCMs than for the observations. The known tendency for GCMs to underestimate 

precipitation (Pendergrass and Hartmann, 2014; Stephens et al., 2010) results in fewer 

extreme precipitation values and prompts the need for bias correction. 

Unlike annual total precipitation, the gridded observations showed marked 

differences in the annual number of days with precipitation (r1mm). The Livneh gridded 

observations have about 60 percent more days with precipitation (mean = 99.7 days) 

compared to Daymet and PRISM (mean = 62.1 days and 62.5 days, respectively, Figure 

3b). In contrast, the GCMs tended to overestimate the observed number of days with 

precipitation, with CCSM4 having the largest r1mm (mean = 143.4 days) and 

MPI-ESM-LR having the smallest r1mm (mean = 104.1 days). The known tendency for 

GCMs to overestimate the number of days with light precipitation (Stephens et al. 2010; 

Pendergrass and Hartmann, 2014) also caused the GCM climatology for the total number of 

precipitation events to be larger than observed. This overestimation is another issue that SD 

attempts to correct, while retaining the differing future change signals from the GCMs. 

Although Livneh’s apportioning process improved the temporal alignment and 

spatial coherence, this adjustment also increased the frequency and decreased the intensity 
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of events (Oyler and Nicholas, 2018). For large, single-day events (rx1day), this 

apportioning process divided precipitation across two days, decreasing the amounts on a 

single day (Figure 5). This effect was mitigated for multi-day events, as any single day 

receives prorated precipitation amounts from two days. The known tendency for GCMs to 

underestimate variance for daily precipitation also caused GCM estimates of precipitation 

extremes to be smaller than observed. Therefore, the OH training data likely will influence 

the downscaled number of wet and dry days, along with rainfall amounts for single-day 

extreme events. 

Livneh’s precipitation adjustment (apportioning) also affected the length of dry and 

wet spells in its gridded observations. For example, when a single day’s precipitation was 

split over two days and both days had values larger than 1 mm, then two wet days were 

counted for Livneh rather than one for Daymet and PRISM. Since the apportioning 

separated rain across two consecutive days, the average length of the longest wet spell in a 

year (cwd) was larger in Livneh (mean 8.2 days) than Daymet (mean 5.6 days) or PRISM 

(mean 5.6 days; Figure 6a). Dry spells (consecutive days with precipitation less than 1 mm) 

also decreased in length for a similar reason. Although the apportioning effect is limited, 

the average length of the longest dry spell in a year (cdd) in Livneh was still smaller (mean 

37.7 days) than Daymet (mean 42.6 days) and PRISM (mean 41.7 days; Figure 6b). The 

GCM’s bias toward overestimating the number of rain days also caused the wet (dry) spells 

represented by most GCMs to be larger (smaller) than observations (Figure 6), though the 

climate change signal was slightly different among GCMs. This result suggested that while 
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the GCM change signal had a strong influence on the downscaled output, the training data 

also had some influence on the downscaled projections of cdd and cwd. 

Figures 3, 5, and 6 display the undownscaled future projection (2070-2099) from 

each GCM for each variable. The simulated climate change signals range from minimal 

(CCSM4) to large (MPI-ESM-LR) model-simulated changes for all variables. The future 

GCM values had less spatial variability and overestimate the frequency of rain days as 

compared to the gridded observations. This result stems in part from the coarse resolution 

of the GCMs that reduced precipitation variability across complex topography or coastal 

boundaries. SD attempted to correct these aspects based on the training data; yet, these 

gridded observations exhibited marked differences resulting in part from the choice of 

precipitation adjustment used to create them. Therefore, it is likely that the choice of 

training data, GCM, and downscaling technique influenced the projected precipitation 

output. 

4.2. Sensitivities in the Downscaled Projections 

The GCMs and training data were two inputs for SD, but the downscaling technique 

also played a critical role in the resulting high-resolution climate projections. For the 

temporal subsamples used in a given SD training step, DeltaSD applied a single ratio to 

translate relative change from each GCM to local scales across the entire precipitation 

distribution of the training data, while ERQM used quantile-specific ratios to translate 

change across all quantiles and maintain the GCM weather sequence. 
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From Figure 7 it is apparent that, for the annual number of precipitation days 

(r1mm), the change signal was highly sensitive to the GCM, training data, and downscaling 

technique. When downscaled using Daymet as training data, the DeltaSD-downscaled 

MPI-ESM-LR indicated an increase in r1mm (~+1 day), whereas ERQM-downscaled 

MPI-ESM-LR (also trained with Daymet) and the raw MPI-ESM-LR indicated a decrease 

in r1mm (~-7 and ~-16 days respectively; Figure 7, left). The difference in climate signal 

sign resulted from the different relative change calculations for the two methods. For 

DeltaSD, the ratios were generally > 1, causing future precipitation values less than 1 mm 

to sometimes become greater than 1 mm, slightly increasing r1mm. For ERQM, the ratios 

at low quantiles were generally < 1, causing the r1mm to decrease. This effect was not 

limited to the MPI-ESM-LR-forced results, but also occurred for the other two GCMs 

(Figure 7, right). Thus, ERQM better preserved the r1mm change signal at low quantiles 

provided by the trace-adjusted GCM (see Supporting Information) than the DeltaSD 

method. The resulting ERQM change signal was more than double that of the DeltaSD 

change signal for 75.3% of the domain on average (Table 2). In addition, switching from 

DeltaSD to ERQM caused the r1mm change signal to switch from increasing to decreasing 

for 25.5% of the domain on average. 

The choice of gridded observations for training data also influenced the r1mm 

climate change signal. Recall that, following the CLIMDEX conventions, “wet days” in our 

analyses were those with more than 1 mm day-1 (~0.04 inches day-1). For example, using 

MPI-ESM-LR and ERQM, downscaled output trained with Daymet, Livneh, and PRISM 
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projected a mean decrease of 7.5 days, 14.4 days, and 8.6 days, respectively, for r1mm. All 

of the statistically downscaled projections created using Livneh projected a decrease in the 

number of precipitation days that was up to twice as large as those created with the other 

training data. Using Livneh in place of Daymet or PRISM for training caused the r1mm 

climate change signal to be twice as large (or larger) for 41.5% of the domain on average 

(Table 2). Again, as the Livneh apportioning caused the single-day precipitation amounts to 

become smaller (i.e., closer to the trace value), ratios < 1 caused more rain days to be 

converted to dry days and a larger decrease in r1mm compared to PRISM- and 

Daymet-trained projections. Table 3 shows the mean and interquartile range for the 

projected changes across the study domain for all simulations. We examine the sensitivity 

of the results to each GCM, downscaling technique, or gridded dataset by comparing the 

difference between the maximum and minimum values of the mean projected change, or 

the range of mean projected change (RMC). For example, the sensitivity of r1mm to the 

choice in GCMs is represented by the RMC for each GCM across all downscaling 

techniques and training data, or -0.9 days (CCSM4 average) – (-5.8 days, MPI-ESM-LR 

average) = 4.9 days. The RMC is calculated using the mean values in Table 3. Overall, for 

the SD-generated output, the projected number of days with precipitation was sensitive to 

the GCM (RMC = 4.9 days), downscaling technique (RMC = 5 days), and training data 

(RMC = 3.5 days) used (Table 3). 

As one may suspect, the different ratios used by DeltaSD and ERQM also affect 

precipitation extremes. For example, although the raw MPI-ESM-LR output projected an 
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area-averaged mean increase of 8 mm in 1-day maximum precipitation (rx1day) by the end 

of the century, the DeltaSD downscaled MPI-ESM-LR trained with Daymet projected a 

mean decrease of 1 mm (Figure 8, left). This difference was broadly consistent with ERQM 

applying larger relative change to the right tail of the GCM’s precipitation distribution than 

for the middle of the distribution, due to the previously mentioned tendency for GCMs to 

underestimate daily precipitation amount variances (Figure 8). The sign of the change 

signal switched for rx1day based on the downscaling technique used in 58.7% of the 

domain on average (Table 2). On the other hand, ERQM trained with Daymet had a slightly 

higher positive change (mean change of +11 mm) compared to the GCM (Table 3). 

The training data also appeared to have less influence on rx1day than the 

downscaling technique and GCM. The effect of apportioning on precipitation extremes is 

mitigated in the raw output by prorating over two days and further diminished in the change 

signal. For example, using the MPI-ESM-LR downscaled with ERQM, the mean change in 

rx1day was +11.2 mm, +9.3 mm, and +11.4 mm for Daymet, Livneh, and PRISM, 

respectively. In our example with MPI-ESM-LR, the Livneh based projected change was 

80% of the Daymet or PRISM based changes. For 45.9% of the domain on average, the 

Livneh-based projected change to rx1day was 80% or less of the Daymet- or PRISM-based 

changes (Table 2). Though the training data used influenced the future projections, we 

found that the downscaling technique (RMC = 9.9 mm) and GCMs (RMC = 2.2 mm) had 

the largest influence on the change signal for rx1day (Table 3). 
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Similarly, the differences between DeltaSD and ERQM influenced the annual 

longest dry and wet spells (cdd and cwd). For cwd (Figure 9), the GCMs projected a mean 

change of -0.85 to 0.21 days, DeltaSD projected a mean change of -0.39 to 0 days, and 

ERQM projected a mean change of -0.66 to 0.54 days (Table 3). For cdd (Figure 10), the 

three GCMs projected a mean change of one to three days and their downscaled projections 

using DeltaSD and ERQM projected a mean change of zero to two days, and two to six 

days, respectively (Table 3). For cdd and cwd, the ERQM based projected change was 

twice as large (or larger) than the DeltaSD based changes for 73.6% and 71.6% of the 

domain on average respectively (Table 2). The ERQM result exhibits a larger range across 

the domain in the downscaled output than DeltaSD for both metrics (Figures 9 and 10). 

For the cdd and cwd metrics, the Livneh-based projected change was twice as large 

(or larger) than Daymet- or PRISM-based changes for 20.2% and 59.2% of the domain on 

average, respectively (Table 2). That the DeltaSD future spell length metrics cdd and cwd 

were not much different from those of the observations’ was expected because the DeltaSD 

future weather sequence was simply based on the observed OH time series multiplied by 

ratio scale factors (Table 3). For DeltaSD, spell length change signals arose largely from 

when the ratio multiplication caused the output value to cross the trace-value threshold. In 

contrast, the ERQM future values were scaled versions of the GCM’s future time 

sequences, thus changes in spell lengths simulated by the dynamical models were reflected 

in the ERQM downscaled future projections (also reflected by the interquartile range, Table 

3). We found that downscaled projections of cdd were most sensitive to the downscaling 
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technique (RMC = 2.3 days) and GCM (RMC = 1.8 days, Table 3). Also, downscaled 

projections of cwd were most sensitive to the GCM (RMC = 0.5 days) and training data 

(RMC = 0.2 days, Table 3). 

For the annual total precipitation (prcptot), the mean change from the GCMs was 

-68 to -19 mm, the mean change from DeltaSD across all GCMs and training data was -68 

to -6 mm, and the mean change across all GCMs and training data from ERQM was -72 to 

6 mm (Figure 11).  In addition, regardless of the training data or downscaling technique 

used, the projections for prcptot were nearly identical for 48-56% of the domain on average 

when the GCM is held fixed (Table 2). We find that projections of prcptot are less sensitive 

to the training data (RMC = 10.4 mm) and downscaling technique (RMC = 7.5 mm) and far 

more sensitive to the GCM used (RMC = 63.0 mm, Table 3). 

4.3. Broader Issues 

Although limited in geographic region and downscaling methods examined, this 

study illustrates the types of uncertainties present in SD-generated precipitation projections 

produced by a broader range of statistical methods for various regions using different input 

data sources. Our analyses of downscaled precipitation climate projections for the 

south-central United States are broadly consistent with studies that focused on other regions 

(e.g., Bürger et al. [2013]).  Accordingly, our results can help guide and inform users of 

downscaled precipitation projections, especially those who use output from the projections 

as input to their climate impacts-related model of interest. 
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First, analyses demonstrate that both SD techniques examined here are sensitive to 

the training data used. Second, variables such as the occurrence and extremes of 

precipitation are more sensitive to the choice of training data or downscaling technique than 

the GCM used. These results can be especially relevant for users (e.g., water managers, 

agricultural producers) who care about number of precipitation days and the daily 

maximum amount. 

Third, the analyses suggest that developers of gridded observations should be 

strategic in selecting how they treat once-a-day precipitation station data (e.g., Section 4.1), 

as that choice can drive the sensitivity for several downscaled precipitation variables. The 

apportioning used to create Livneh data product results in more rain days with 

simultaneously smaller values. The effect of this apportioning increases the number of rain 

days and decreased the intensity of single day extreme events. However, for the number of 

rain days, we also find that the ERQM and DeltaSD were similar with respect to how 

sensitive they are to the training data. Using Livneh in place of Daymet or PRISM caused 

the change signal to decrease by 3.28 days and 2.24 days on average in ERQM and 

DeltaSD, respectively. 

Finally, although the DeltaSD and ERQM approaches generally were similar in the 

middle of the precipitation distribution, they could be significantly different at both high 

and low quantiles. The differences in the SD-generated climate change signal at high and 

low quantiles is related to how each downscaling approach incorporated the GCM projected 

change. For the south-central U.S., ERQM projected a future increase in precipitation at the 
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high quantiles. In contrast, DeltaSD projected a decrease in large, daily precipitation 

amounts. This difference at high quantiles resulted from the use of one change factor at all 

quantiles (as in DeltaSD) versus a unique, and typically varying, change factor at each 

quantile (as in ERQM). 

These findings return us to a broader research question: With increasing demand for 

projections in climate impact assessments and adaptation planning, are certain training data 

or SD techniques better suited than others to refine climate projection data for use in 

impacts modeling? Based on our analyses, we answer with a qualified “yes,” noting that it 

is important to carefully consider how projected precipitation variables are affected by the 

modeling choices made to produce a set of downscaled projections. The qualification arises 

in part from recognizing that different climate impacts applications are sensitive to different 

precipitation-related characteristics. For example, an application driven by changes in 

annual mean precipitation would be less sensitive to different statistically downscaled data 

products than one sensitive to changes in the length of wet or dry spells. Also, our results 

illustrate that practitioners should be cautious about using a single statistically downscaled 

data product without considering how sensitive their particular application is to the SD 

technique’s characteristics and limitations. The degree to which any of these downscaling 

choices (GCM, downscaling technique, and training data) influences the projection depends 

on the variable in question. Here, we found that the annual number of days with 

precipitation was the most sensitive, while the annual total precipitation was the least 

sensitive to these downscaling choices. One must account for the varying sensitivity when 
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using these variables either to make decisions or as input to impacts models, such as those 

commonly used to project future streamflow, crop yield, or species distribution. If an 

adaptation decision or impacts model requires daily precipitation values (where the number 

of days with rain, precipitation intensity, and dry- or wet-spell length would be important) 

or exceedance thresholds, we have demonstrated that certain training data or downscaling 

techniques are more appropriate than others. 

To illustrate this, let us consider a practitioner and impacts researcher interested in 

changes to stream discharge under a changing climate. Calculating streamflow and 

discharge generally requires daily precipitation as an input to a hydrology model (Devi et 

al., 2015). To assess changes to stream discharge or streamflow in a changing climate 

requires the use of downscaled (or bias-corrected) projections of precipitation (e.g. 

Mizukami et al., 2016; Sunde et al., 2017). The question is, what is important to the 

practitioner? If the practitioner were only concerned with annual total discharge, then this 

study indicates that a sufficient number of GCMs (to account for model uncertainty) could 

be employed with any combination of downscaling technique and gridded observations. If, 

however, the practitioner were concerned with peak daily discharge, then they will plan for 

changes to precipitation extremes. This study indicates then that using downscaled 

projections created with DeltaSD or trained with the Livneh observations can dampen the 

projected intensity of single-day events, reducing the likelihood the impacts researcher will 

develop a simulation that adequately guides the practitioner. Generally, an impacts 

researcher or practitioner should ask themselves: “Do heavy precipitation events, 
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precipitation occurrence, the length of dry and wet spells, or seasonality matter for my 

problem?” If so, then it is important to select climate projections that represent each of 

these variables in the historical and future periods. 

More broadly, there are several recommendations based on this study. First, when 

using downscaled projections for impact assessments, one should carefully consider how 

the training data were created. In many cases, it is advisable to consider using downscaled 

projections based on more than one training dataset so that the uncertainty associated with 

the different options for training data is included for a more complete assessment of risk. 

We recognize that many times the choices of training data and downscaling technique are 

meant to meet specific needs (such as capturing the effect of complex topography or 

reflecting an important time period); however, at a minimum, users need to acknowledge 

the uncertainty associated with these choices. 

Second, our study focuses on the precipitation adjustment used to create the gridded 

observations, but that adjustment is only one component in the creation of gridded 

observations that could be translated into downscaled projections. Methods to account for 

wind-induced undercatch, wetting, or evaporation losses in station measurements of 

precipitation (Yang et al., 1998) also have been used to create gridded observations. There 

are also numerous interpolation techniques and elevation corrections that have been applied 

with differing station networks to create gridded observation-based datasets. We have not 

analyzed all these corrections or interpolations here, and it was beyond the scope to 

completely isolate and determine which components of the gridded observations affected 
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the precipitation projections. To our knowledge, current literature does not document any 

sensitivities in statistically downscaled climate projections that are caused by the many 

components of generating gridded observations. Therefore, we recommend that future 

studies examine the sensitivity of SD techniques to these other choices made during the 

creation of gridded observations. 

Finally, DeltaSD and ERQM represent two simple downscaling techniques, but they 

do not represent the breadth of publicly available downscaled projections. More recent 

datasets have been created with complex techniques such as the Multivariate Adaptive 

Constructed Analogs (MACA, Abatzoglou et al., 2012) and the Localized Constructed 

Analogs (LOCA, Pierce et al., 2014). We recommend examining the effect of downscaling 

choices with these more complex downscaling techniques and impacts-specific variables, 

given that small changes may result in effects to the projected change signal not shown 

using simpler SD techniques. 

The results from this study disagree somewhat with those of Pourmoktharian et al. 

(2016) that found that the training data had more influence on the change signal than the 

downscaling technique. The results from this study agree with Alder and Hostetler (2019) 

with respect to downscaling technique and training data as well as with Timmermans et al. 

(2019) with respect to precipitation extremes in gridded observations. However, 

Pourmoktharian et al. (2016) and Alder and Hostetler (2019) focused on the results 

projected by an ecosystem model and a hydrology model respectively using downscaled 

projections. It is plausible that the non-linear physical relationships between climate and 
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impacts modeling could magnify the effect of the training data over the choice of 

downscaling technique. Therefore, a question raised by this study, is how far the effect of 

training data is conveyed from downscaling through impact modeling. 

Pourmoktharian et al. (2016) and Alder and Hostetler (2019) are both natural 

extensions of this study, focusing on the effect of modeling choices in the climate 

projections on impact modeling. The work of Timmermans et al. (2019) focused on the 

gridded observations with respect to precipitation extremes. While this study went beyond 

precipitation extremes, we agree with the note of Timmermans et al. (2019), that one should 

be particularly cautious of the gridded observations used. The gridded observations used in 

this study are “standard” products used for SD and other research activities. The influence 

of the gridded observations upon downscaled projections documented in this study 

alongside the work of other recent studies implies the need to continuing probing the 

uncertainty involved and emphasize caution when using gridded observations for SD of 

precipitation. 

5. Conclusions 

This study examines the effects of the choices that climate scientists make in 

developing projections of multiple precipitation variables, in this case, using two simple 

downscaling techniques (DeltaSD and ERQM) and three gridded observations (Livneh, 

PRISM, and Daymet) for training. The domain of interest was the south-central United 

States. For simplicity, we use three GCMs (CCSM4, MIROC5, MPI-ESM-LR) that 
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exhibited sufficient spread in their future projections while also generating a representative 

simulation of this region’s historical climatology. 

This study finds that downscaled projections of precipitation variables can be 

sensitive to the training data used in SD. This effect is apparent in results generated by both 

SD techniques. Specifically, the precipitation adjustment (apportioning) used to create the 

Livneh observations leads to an increased frequency of days with measurable precipitation 

and decreased intensity of daily events, matching the results of Oyler and Nicholas (2018). 

The apportioning also causes Livneh to have shorter dry spells, longer wet spells, and less 

intense precipitation extremes then Daymet or PRISM. These differences between gridded 

observations are translated into projections that use SD, causing the effects present in the 

Livneh observations to be present in the historical output, future output, and change signal 

for both downscaling techniques regardless of the GCM used. This finding is important for 

those who apply results from the Fourth National Climate Assessment (Easterling et al., 

2017), as the LOCA-based downscaled climate projections were trained using Livneh 

gridded observations. 

The ERQM and DeltaSD methods show marked differences for projected changes of 

the number of days with rain, longest dry spells, longest wet spells, and precipitation 

extremes. This result is caused by the different approaches to translating relative change 

with each downscaling technique. Although ERQM preserves the change signal at all 

quantiles of a distribution, DeltaSD only preserves the change in the mean. Therefore, other 
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methods which preserve the change signal at all quantiles will likely produce change 

signals different from a ratio delta method for many of the variables in this study. 

Although the choice of GCM, downscaling technique, and gridded observations 

used for training all affect projections of precipitation, we find that there are varying 

degrees of influence depending on the variable. Annual total precipitation is the least 

sensitive and the annual number of days with precipitation is the most sensitive variable. 

Annual total precipitation is sensitive primarily to the GCM, while the annual number of 

days with precipitation is sensitive to the GCM, downscaling technique, and training data. 

Given that we find some projected variables are more sensitive than others, certain 

training data or downscaling techniques appear to be better suited than others to use in 

specific types of impacts modeling and adaptation planning efforts. As the use of climate 

projections grows across multiple applications, impacts researchers should carefully 

consider the potential effects of training data and downscaling technique when selecting 

downscaled datasets for impacts modeling in agriculture, ecology, and other fields. Such 

additional studies will allow the climate science community to identify potential issues 

where overconfidence may exist, expand the breadth of climate model evaluation, and 

provide users of climate information with more robust guidance for impact assessments and 

adaptation planning. 
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Figure Captions 

Figure 1. Study domain overlaid with annual average precipitation (mm) from Daymet v. 

2.1 (Thornton et al. 1997; Thornton et al. 2017). 

Figure 2. Daily precipitation cumulative distribution functions (CDFs) from PRISM (thick 

black line), MPI-ESM-LR historical values (thin, dark blue line) and future projections (red 

line with open circles), and the ERQM (light blue line with diamonds) and DeltaSD (purple 

line with triangles) downscaled results. The historical period is 1981-2005 and the future 

period is 2070-2099 with RCP8.5. The horizontal dashed lines correspond to the 50th and 

95th percentiles. 

Figure 3. Boxplots of the (a) climatology of the annual total precipitation (prcptot, in mm) 

and (b) climatology of the annual number of days with precipitation (r1mm) for the gridded 

observations during the historical period (1981-2005; left set), the GCMs used during the 

historical period (center set), and the GCMs during the future period (2070-2099; right set). 

Open circles indicate the minimum and maximum for each boxplot, and horizontal lines 

reflect the 5th, 25th, 50th (median; thickest line), 75th, and 95th percentiles, from bottom to top 

of each box plot. The domain average is the asterisk overlaid on each boxplot. 
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Figure 4. Average annual total precipitation (prcptot, in mm) during the historical period 

(1981–2005) for the three GCMs (top row) and three gridded observation datasets (bottom 

row). From left to right on the top row: CCSM4, MIROC5, and MPI-ESM-LR. From left to 

right on the bottom row: Daymet, Livneh, and PRISM. Domain-wide maximum, mean, and 

minimum are plotted in the lower left of each map. Note the similarities within GCMs and 

within gridded observations, but the large differences between the GCMs and gridded 

observations. 

Figure 5. As in Figure 3 except for the annual 1-day maximum precipitation (rx1day). 

Figure 6. Boxplots of the (a) climatology of the annual longest wet spell (cwd; left half) and 

(b) climatology of the annual longest dry spell (cdd; right half) for the gridded observations 

during the historical period (1981-2005; left set for each variable), the GCMs used during 

the historical period (center set for each variable), and the GCMs during the future period 

(2070-2099; right set for each variable). Open circles indicate the minimum and maximum 

for each boxplot, and horizontal lines reflect the 5th, 25th, 50th (median; thickest line), 75th , 

and 95th percentiles, from bottom to top of each box plot. The domain average is the 

asterisk overlaid on each boxplot. Note the different scales for cwd and cdd. 

Figure 7. Left, the projected change (2070-2099 values minus 1981-2005 values) of the 

annual average of the number of days with precipitation (r1mm, in days) for MPI-ESM-LR 
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(top; not downscaled), MPI-ESM-LR downscaled with DeltaSD using Daymet for training 

(middle), and MPI-ESM-LR downscaled with ERQM using Daymet for training (bottom). 

Positive (negative) values indicate more (fewer) rain days in the future. Domain-wide 

maximum, mean, and minimum are plotted in the lower left of each map. Right, boxplots of 

projected change of r1mm for all GCMs and downscaling experiments. Open circles 

indicate the minimum and maximum for each boxplot, and horizontal lines reflect the 5th,  

25th, 50th (median; thickest line), 75th, and 95th percentiles, from bottom to top of each box 

plot. The domain average is the asterisk overlaid on each boxplot. 

Figure 8. As in Figure 7 except for the annual average of the maximum 1-day precipitation 

(rx1day, in mm). Positive (negative) values indicate higher (lower) values for rx1day in the 

future. 

Figure 9. As in Figure 7 except for the annual average of the longest wet spell (cwd, in 

days). Positive (negative) values indicate longer (shorter) duration of the longest wet spell 

in the future. 

Figure 10. As in Figure 7 except for the annual average of the longest dry spell (cdd, in 

days). Positive (negative) values indicate longer (shorter) duration of the longest dry spell 

in the future. 
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Figure 11. As in Figure 7 except for the annual total precipitation (prcptot). Positive 

(negative) values indicate more (less) precipitation in the future. 
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Dataset 
(Citation) 

 Interpolation  or gridding 
method 

Precipitation 
Adjustments 

Native 
resolution 

 Time Period 
Available 

Daymet 
 version 2.1 

 (Thornton et 
 al. 1997; 

 Thornton  et al. 

 Geographically weighted 
regression 

 No adjustment   1 km2  1980 -

2017) 

Uniform 
 Livneh version 

 1.2  (Maurer et 
 al. 2002; 

 Livneh  et al. 
2013) 

 Synergraphic  mapping system 
 (SYMAP), precipitation 

 scaled  to  match PRISM 
climatology 

adjustment 
 similar  to that 

 tested by 
 Oyler and 

Nicholas 
(2018) 

 1/16 degree 
 (~6 km2)  1950  - 2013 

PRISM 
version 

 AN81d (Daly 
 et  al. 2008; 

 Daly  et al. 
2013). 

 Geographically and 
elevation-weighted 

 regression,  station weighting 
 by  topography,  distance to 

 coast,  atmospheric factors. 

 No adjustment  2.5  min (~4 
km2) 1981-

Tables 

Table 1. Gridded observation-based datasets used in this study. 
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Table 2. Mean percentage of study domain where switching between training data or 

downscaling techniques causes the magnitude of the change signal to more than double, 

become 80% or less, remains approximately the same, or causes the sign of the change 

signal to reverse. Where the training dataset is changed, the value is the mean percentage 

across GCMs and downscaling technique. Where the downscaling technique is changed, 

the value is the mean percentage across GCMs and training datasets. 

Variable of 
Interest 

Changing training 
data to Livneh from 
Daymet or PRISM 

Changing downscaling 
technique to ERQM from 

DeltaSD 

Mean percentage of 
the domain where the 
change signal more 

than doubles in 
magnitude 

r1mm 
rx1day 

cdd 
cwd 

prcptot 

41.5 
8.2 
20.2 
59.2 
8.0 

75.3 
55.8 
73.6 
71.6 
11.4 

Mean percentage of 
the domain where the 

change signal 
becomes 80% or less 

in magnitude 

r1mm 
rx1day 

cdd 
cwd 

prcptot 

12.2 
45.9 
50.3 
16.8 
18.4 

7.7 
19.8 
11.0 
11.9 
28.6 

Mean percentage of 
the domain where the 
change signal within 

25% of the same. 

r1mm 
rx1day 

cdd 
cwd 

prcptot 

15.7 
44.0 
19.6 
10.5 
56.0 

6.3 
11.8 
6.8 
7.3 
48.0 

Mean percentage of 
the domain where the 

sign of the change 
signal reverses 

r1mm 
rx1day 

cdd 
cwd 

prcptot 

15.7 
7.2 
21.4 
31.6 
5.0 

25.5 
58.7 
32.7 
45.4 
8.2 
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Table 3. Means and Interquartile ranges (IQR) for projected changes of r1mm (days), rx1day (mm), cdd (days), cwd (days), and 

prcptot (mm) across the study domain for each GCM and downscaled projection in this study. 

r1mm rx1day cdd cwd prcptot 

DS GCM Training Data 
mea IQR mean IQR mean IQR mean IQR mean IQR n 

CCSM4 -5.1 10.4 1.2 5.4 1.2 3.3 0.2 2.2 -20.2 67.8 

N/A 
MIROC5 N/A 

-10. 
8 

5.2 6.8 5.9 3.0 4.0 -0.2 1.3 -69.1 54.2 

MPI-ESM-LR 
-16. 

3 
9.3 7.7 4.6 2.9 7.3 -0.9 1.2 -51.1 99.3 

Daymet 0.6 1.5 0.8 3.0 0.1 1.4 0.0 0.2 -7.0 47.1 

CCSM4 Livneh -1.8 2.7 0.5 2.5 1.4 2.1 -0.1 0.3 -8.2 45.0 

PRISM -1.1 1.4 0.6 2.9 1.3 1.9 -0.1 0.2 -7.5 38.0 

Daymet 0.0 1.2 -4.2 6.7 0.5 1.3 0.0 0.1 -68.4 79.7 

DeltaSD MIROC5 Livneh -3.1 2.3 -3.4 4.9 2.1 2.5 -0.1 0.4 -66.3 77.1 

PRISM -1.7 1.4 -4.9 6.5 1.8 2.1 -0.1 0.2 -62.5 73.0 

Daymet 0.7 1.8 -1.4 8.7 -0.1 1.5 0.0 0.1 -35.0 98.3 

MPI-ESM-LR Livneh -3.5 5.8 -1.6 7.4 1.6 2.6 -0.4 0.6 -38.3 103.4 

PRISM -1.7 2.3 -1.1 8.3 1.6 2.4 -0.1 0.2 -28.4 74.8 

Daymet -0.2 4.3 4.6 7.5 2.0 6.0 0.4 0.8 1.3 50.7 

CCSM4 Livneh -2.0 5.7 3.8 6.2 2.2 5.2 0.5 1.2 -1.4 45.2 

PRISM -1.0 4.0 4.6 7.6 2.5 6.0 0.3 0.8 6.0 44.1 

ERQM 
MIROC5 

Daymet 
Livneh 

-6.7 

-9.1 

6.2 

5.7 

10.4 

8.7 

11.8 

9.8 

5.3 

4.5 

7.4 

5.7 

-0.1 

-0.2 

0.6 

0.9 

-73.2 

-65.7 

98.7 

75.9 

PRISM -7.5 5.8 10.5 12.8 5.9 7.7 -0.1 0.6 -58.7 83.0 

MPI-ESM-LR 
Daymet -7.5 4.9 11.2 13.1 2.8 10.5 -0.3 0.7 -27.8 104.1 

1 



Livneh 
-14. 

4 
7.3 9.3 10.8 2.8 8.0 -0.7 1.0 -36.4 95.8 

PRISM -8.7 4.7 11.4 13.6 3.4 10.6 -0.3 0.7 -11.4 82.0 
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