QC 807.5 .U6 E2 no.30

NOAA Technical Memorandum ERL ESG-30

THE OKLAHOMA-KANSAS PRELIMINARY REGIONAL EXPERIMENT FOR STORM-CENTRAL (O-K PRE-STORM)

VOLUME III. AIRCRAFT MISSION SUMMARY

José G. Meitín, Jr.

Environmental Sciences Group Boulder, Colorado February 1988

QC 807.5 .U6 E2

NOAA Technical Memorandum ERL ESG-30

THE OKLAHOMA-KANSAS PRELIMINARY REGIONAL EXPERIMENT FOR STORM-CENTRAL (O-K PRE-STORM)

VOLUME III. AIRCRAFT MISSION SUMMARY

José G. Meitín, Jr.

Weather Research Program Environmental Sciences Group Boulder, Colorado February 1988

LIBRARY

SEP 2 7 1988

U.S. Dept. of Commerce

UNITED STATES
DEPARTMENT OF COMMERCE

C.William Verity Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

Environmental Research Laboratories

Vernon E. Derr, Director

NOTICE

Mention of a commercial company or product does not constitute an endorsement by NOAA Environmental Research Laboratories. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

CONTENTS

Abs	tract	••••••	1
1.	Introduc	tion	1
2.	Aircraft	Subprogram	1
3.	Data Arc	chives	6
4.	Acknowl	edgements	6
5.	Reference	ces	7
App	endix A:	NOAA Aircraft Mission Summary	9
App	endix B:	University of Wyoming Aircraft Mission Summary	91
App	endix C:	PRECP Aircraft Mission Summary	95

The Oklahoma-Kansas Preliminary Regional Experiment for STORM -Central Volume III. Aircraft Mission Summary

José G. Meitín, Jr.

Abstract

The aircraft missions during the PRE-STORM experiment are summarized. Flight tracks and related radar charts for the NOAA aircraft are presented. Tables of data collected by NOAA aircraft instrumentation are included.

1. Introduction.

The purpose of this document is to provide researchers with a synopsis of the flights taken during May and June of 1985 as part of the Oklahoma-Kansas Preliminary Regional Experiment for STORM-Central (PRE-STORM). This technical memorandum is the final publication in the series which describes the activities and catalogs the data collected during the field phase of the PRE-STORM project. Weather conditions and an overview of operations can be found in Volume I, Daily Operations Summary (Meitin and Cunning, 1985). A description of the radar subprogram and the radar data collected is published in Volume II, Radar Data Summary (Meitin, 1987). Scientific goals and objectives for PRE-STORM are discussed in an article by Cunning (1986).

2. Aircraft Subprogram.

The principal goals of the aircraft subprogram were to (1) gather aircraft data in the vicinity of developing and mature convective systems in order to better define their structure, evolution, and physical processes, and (2) develop and test observational strategies for optimal use of long-range research aircraft in the mesoscale convective system (MCS) environment in order to help define measurement techniques, for example, the use of airborne Doppler radar in coordination with ground-based Doppler radars.

Stormscale Operational and Research Meteorology

The aircraft program for PRE-STORM consisted of two NOAA WP-3 research aircraft and the University of Wyoming King Air research airplane. One aircraft (NOAA-43) flew missions during May and June of 1985. The University of Wyoming King Air aircraft participated in PRE-STORM during May 1985. The second P-3 (NOAA-42) was available only during June. The two P-3 aircraft flew a total of 195 hours during the project. The missions are summarized in Appendix A. The King Air flew nine missions; these are summarized in Appendix B. The highest priority missions for the NOAA planes were to operate within the densely instrumented network. On a few occasions, weather systems traveled through the network and the aircraft continued monitoring them outside of the PRE-STORM observational network. The primary goals of the Wyoming King Air were to investigate the inflow structure into MCSs and the development of the nocturnal low-level jet. Both NOAA planes were similarly instrumented (see Table 1) with the exception of the tail Doppler radar onboard NOAA-43. Characteristics of the NOAA airborne radars are listed in Table 2.

A separate research program sponsored by the Department of Energy was conducted during June in conjunction with PRE-STORM. The program, termed PRECP (Processing of Emissions by Clouds and Precipitation), used three aircraft to measure certain chemical constituents of the inflow and outflow air of an MCS. Aircraft from Brookhaven Laboratory, the National Center for Atmospheric Research (NCAR), and the National Oceanic and Atmospheric Administration's (NOAA) Air Quality Division participated in the PRECP program sharing the operations base with PRE-STORM. A brief summary of the PRECP flights is given in Appendix C. A description of the goals and objectives of the PRECP program during PRE-STORM can be found in Appendix B of the PRE-STORM Design and Operations plan. Dates and times that PRE-STORM aircraft flew missions during May and June, 1985 are summarized in Figures 1 and 2.

Parameter	Instrument	Manufacturer	Accuracy	Resolution
Positioning	Inertial Navigation Equip.	Northrop/Delco	1.5 km	8.3x10 ⁻⁸ °
Temperature	Platinum resistance	Rosemount	0.2°C	0.03°C
Dewpoint	Cooled Mirror	General Eastern	0.5°C	0.03°C
Static Pressure	Transducer	Garrett	0.2 mb	0.1 mb
Dynamic Pressure	Transducer	Garrett, Rosemount	0.1 mb	0.1 mb
Attack Pressure	Transducer	Rosemount	0.15%	0.1 mb
Sideslip Pressure	Transducer	Rosemount	0.15%	0.1 mb
Absolute Altitude	Radar Altimeter	APN-59	0.01%	1 meter
Cloud Water Meter	Hot-Wire	Johnson-Williams	0.2%	0.1 g m ⁻³
Cloud Temperature	CO ₂ radiometer	Barnes/OAO	0.2°C	0.1°C
Sea Sfc Temp	CO ₂ radiometer	Barnes	0.2°C	0.1°C
Ground Speed	INE accelerometers	Northrop/Delco	0.5 ms ⁻¹	0.06 m s ⁻¹
Track Angle	INE accelerometers	Northrop/Delco	0.2°	0.005°
Heading Angle	INE accelerometers	Northrop/Delco	0.1°	0.005°
Pitch Angle	INE accelerometers	Northrop/Delco	0.06°	0.005°
Roll Angle	INE accelerometers	Northrop/Delco	0.06°	0.005°
Hydrometer Size	Optical Spectrometer	Knollenberg		50 microns

Table 2 Character	istics of P-3 Airborne	e Radars
Parameter	LF Radar	TA Radar
Transmitter Frequency	5370 ±6.7 MHz	9315 ±11.6 MHz
Transmitter Wavelength	5.59 cm	3.22 cm
Transmitter Pulse Width	1800 m	150 m
Pulse Repetition Frequency	200 s ⁻¹	1600 s ⁻¹
Peak Transmitter Power	70 kW	60 kW
Receiver Dynamic Range	80 dB	80 dB
Gain, Main Beam	37.5 dB	40 dB
Gain, Sidelobe	23 dB down	23 dB down
Horizontal Beam Width	1.1°	1.35°
Vertical Beam Width	4.1°	1.9°
Antenna Stabilization	±10°	±25°
	pitch and roll	pitch and drift
Maximum Range	371 km	93 km
Nyquist Velocity	N/A	12.89 m s ⁻¹
Antenna Rotation Rate	4 RPM	8 RPM

WED THU 2 FRI 3 SAT 4 121 122 123 124	01 6	128 129 130 131	14 17 18	135 136 137 138	21 22 23 24 25 -0918 -0545	142 143 144 145	28 29 30 31 N43 0813-1754 UW 1740-2030	149 150 151
TUE	L	127	η,	134	21 N43 0404-0918 UW 0420-0545	141	58	148
MOM	9	552 126	13 N43 0307-1225 UWa 0105-0415 UWb 0645-0920	133	20 UW 1935-2230	140	27 N43 0155-1014	147
SUN	r.	N43 2156-0552	12	132	19	139	56	146

Figure 1. PRE-STORM aircraft missions during May 1985.

10	
∞	
0	
-	
UNE	

SAT 1	8 QA 1745-1959 KA 1745-2024 SL 1757-1850 159	2205-0717 N42 0540-1046 QA 1029-1405 SL 1107-1312 166	22 N43 0400-1300 N42 0604-1350 QA 1020-1224 KA 0452-0756 Sla 1715-1955 Slb 2207-0015	29
FRI	7 KA 2009-2100	14 N43	21	28
THU	6 QA 2133-0000 KA 2140-2340 157	13 QA 2000-2151 SL 1705-1943 164	20 SL 2005-2243 171	27 2128-0730 N42 0108-1021 QA 0004-0110 KA 0042-0336 SLa 0006-0210 SLb 1949-2208 178
WED	5 N43 0109-0923 QA 1424-1651 SL 1803-2058 156	12	19	26 N43 QA 2012-2200 KA 2042-2311 SL 1954-2229
TUE	N43 0044-0944 N42 0334-1220	11 2210-0750 N42 0230-1031 162	18 SL 1750-2018 169	25 QA 2220-0000 KA 2306-0244 SL 2300-0000
NOM	3 N43 0225-0621 154	10 N43 SQA 2059-2358 SLa 1723-1955 SLb 2108-2328 161	N43 0020-0733 QA 1227-1530 KA 2035-2330 SLa 1256-1540 SLb 2200-0030	24 N43 0555-1430 N42 0740-1600 175
SUN	153	9 091	16 QA 2017-2348 KA 2040-0039 SL 2056-2347 167	23

Figure 2. PRE-STORM aircraft missions during June 1985.

3. Data Archives.

All P-3 magnetic tapes, flight logs and mission summaries are archived at NOAA's Weather Research Program in Boulder, Colo. A computer workstation is available at WRP for researchers wishing to analyze aircraft data. Duplication and distribution of data is performed at cost to interested scientists. Inquiries about the P-3 data archives and use of the workstation should be addressed to the PRE-STORM data coordinator.

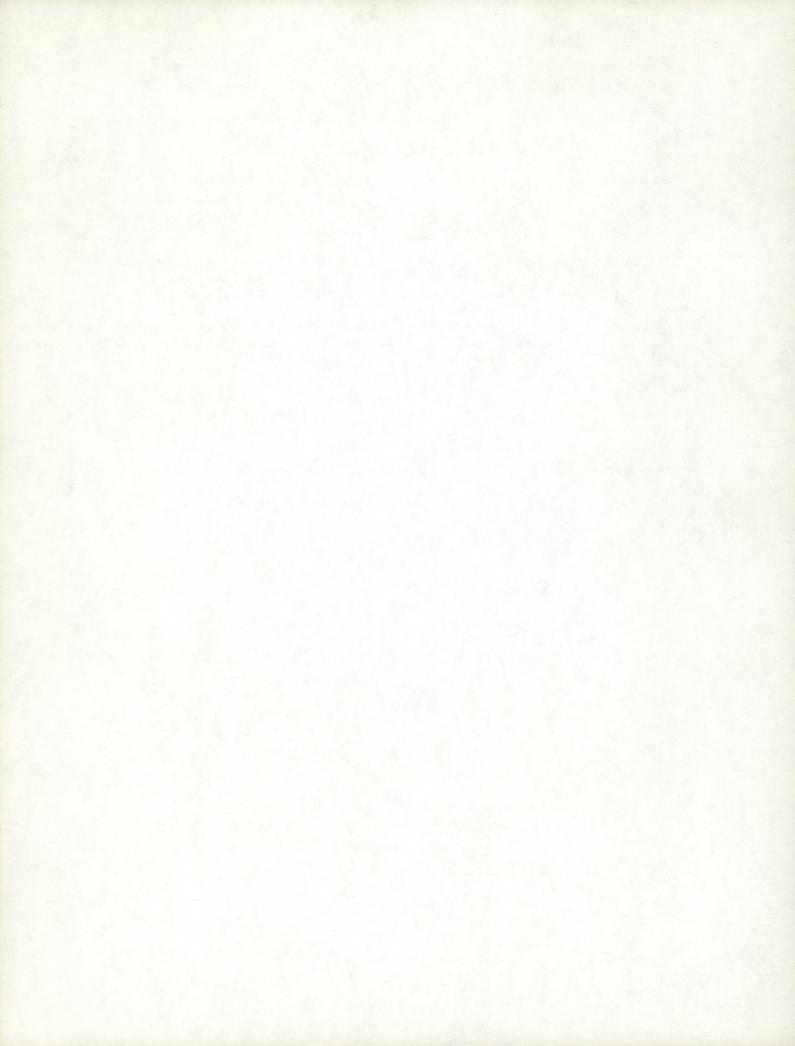
José Meitín NOAA/ERL/Weather Research Program 325 Broadway Boulder, CO 80303 (303) 497-6341 FTS: 320-6341

The University of Wyoming aircraft data collected during PRE-STORM is available from the principal investigator.

Prof. John Marwitz
Dept. of Atmospheric Science
University of Wyoming
Laramie, WY 82071

For inquiries about PRECP aircraft data availability, contact:

Data Manager PRECP Project Battelle P.N.L. Richland, WA 99352


4. Acknowledgments.

The airborne scientists are commended for the comprehensive summaries, excellent note-taking and detailed logs without which this document could not have been compiled. The aircraft subprogram was a success, in part, due to the personnel and flight crews from the Office of Aircraft Operations, NOAA; their contribution is gratefully acknowledged. Equally, the contribution of the aircrews for the PRECP program are duly noted. The Wyoming King Air mission summaries were provided courtesy of Professor John Marwitz. The summaries for the PRECP aircraft were provided by Dr. Joe Boatman (NOAA/Air Quality Division), Dr. Russ

Dickerson (University of Maryland), and Tom Kelly (Brookhaven Labs). The instrumentation logs were transcribed by Sandie Chandler and Aileen Cárdenas. The final document was expertly prepared by Wanda Gilmer.

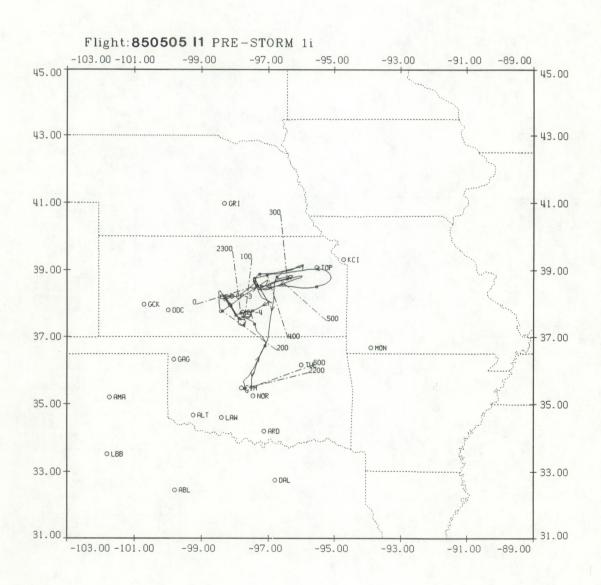
5. References.

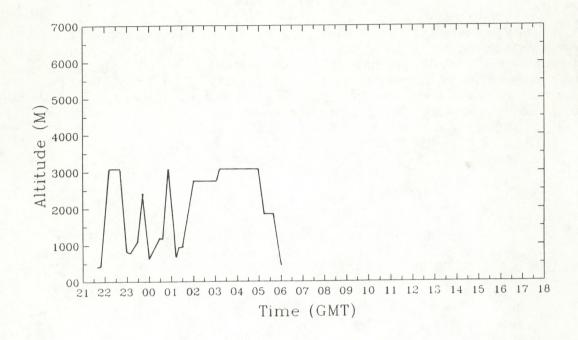
- Cunning, J.B., 1986: The Oklahoma-Kansas preliminary regional experiment for STORM-Central. Bull. Amer. Meteor. Soc., 67, 1478-1486.
- Meitin, J.G. and J.B. Cunning, 1985: The Oklahoma-Kansas preliminary regional experiment for STORM-Central (O-K PRE-STORM) Volume I. Daily Operations Summary. NOAA Tech Memo. ERL ESG-20, 313 pp.
- Meitin, J.G., 1987: The Oklahoma-Kansas preliminary regional experiment for STORM-Central (O-K PRE-STORM) Volume II. Radar Data Summary. NOAA Tech Memo. ERL ESG-26, 84 pp.

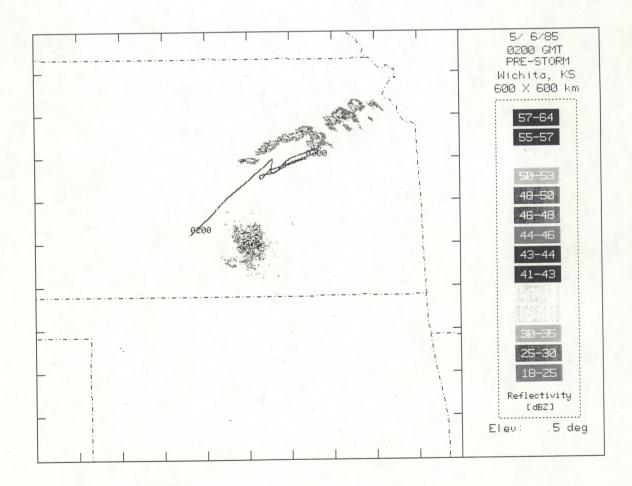
Appendix A

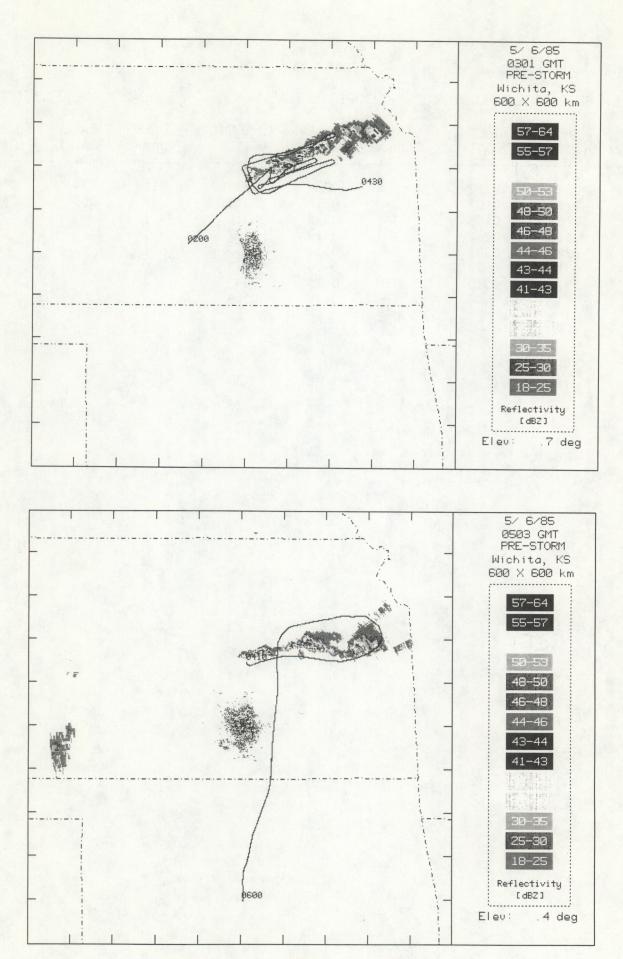
NOAA AIRCRAFT MISSION SUMMARY

NOAA Mission Summaries.


Fifteen mission days had aircraft flights by the NOAA P-3s during the PRE-STORM experiment. Table 3 list the dates and flight times for these missions. Each summary contains a brief description of the flight, a plot of the flight track, a time series of the different flight levels used during the mission, sections of flight tracks overlayed on ground-based radar plan position indicator (PPI) scans, and a data log of the archived tapes.


Table 3. OKLAHOMA-KANSAS PRE-STORM PROGRAM NOAA P-3 FLIGHT SUMMARY

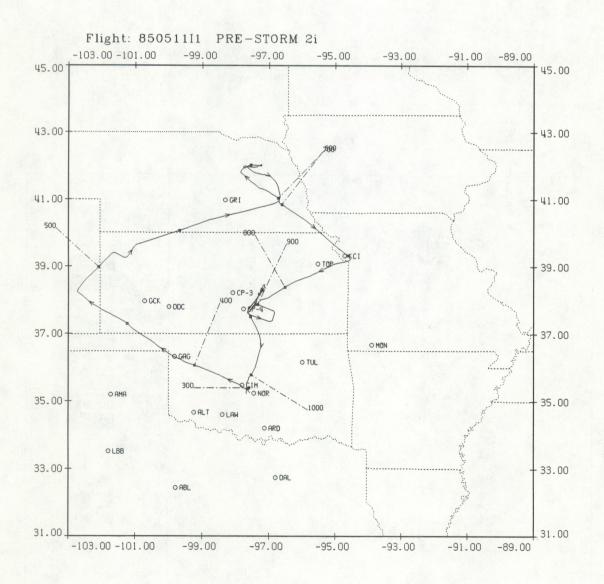

Date	Flight Number	A/C ID	Take Off (Time in	Return GMT)	
5-6 May	1	N43	2156	0552	
10-11 May	2	N43	0300	1015	
12-13 May	3	N43	0307	1225	
20-21 May	4	N43	0404	0918	
26-27 May	5	N43	0155	1014	
28-29 May	6	N43	0813	1754	
2-3 June	7	N43	0225	0621	
3-4 June	8	N43 N42	0044 0334	0944 1220	
4-5 June	9	N43	0109	0923	
10-11 June	10	N43 N42	2210 0230	0750 1031	
14-15 June	11	N43 N42	220 <i>5</i> 0540	0717 1046	
16-17 June	12	N43	0020	0733	
21-22 June	13	N43 N42	0400 0604	1300 1350	
23-24 June	14	N43 N42	0555 0740	1430 1600	
26-27 June	15	N43 N42	2128 0108	0730 1021	

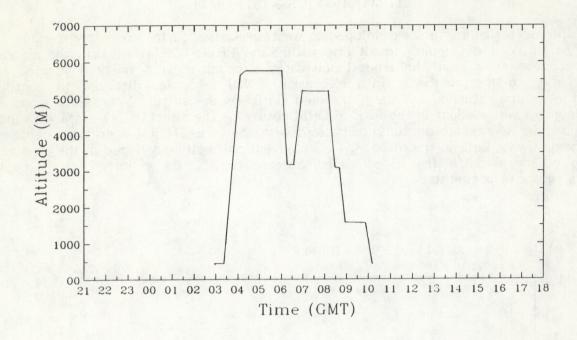

Mission # 1 NOAA-43 5-6 May 1985 (2156-0552 GMT)

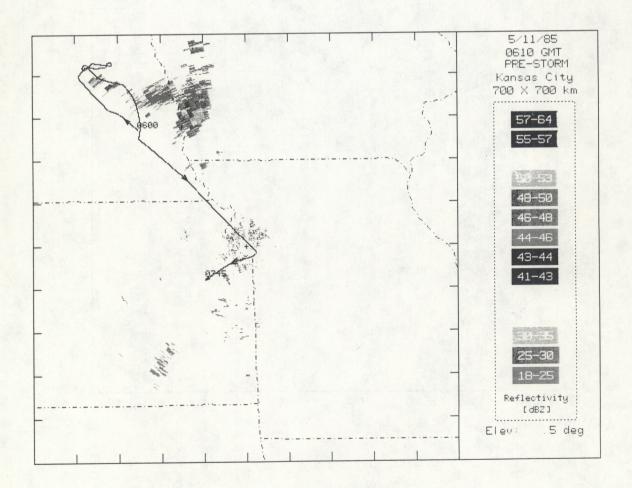
Primary interest of the mission was to monitor the pre-convective environment near a surface convergence zone, and then continue to study the convective organization as storms developed. Flight pattern was coordinated with the Kansas Doppler radars in order to maintain the aircraft within radar range of CP-3 and CP-4. The region produced a number of active areas but it was difficult to monitor the complete evolution since convection dissipated quickly and refired elsewhere.

5 MAY 1985 NOAA 43

LOWER FUSELAGE RADAR	LOWER	FUSELAGE	RADAR
----------------------	-------	----------	-------

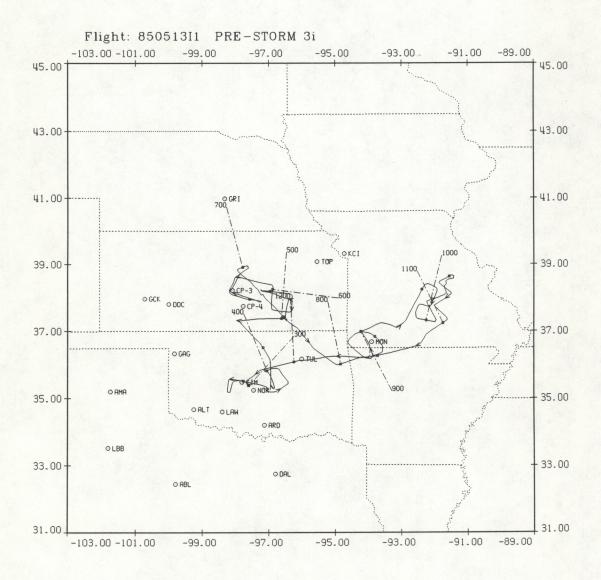

DOPPLER RADAR

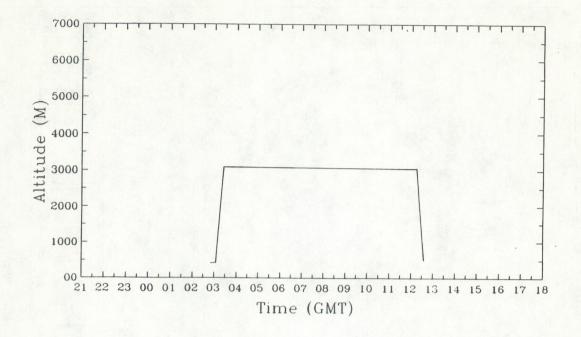

2-D KNOLLENBERG

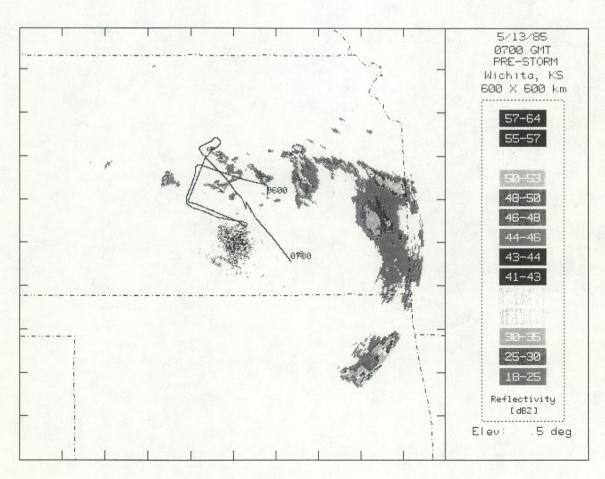

Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2322	0012	1	0220	0234	1	2343	0501
2	0112	0102	2	0237	0255	2	0501	0511
3	0102	0153	3	0258	0316			
4	0153	0242	4	0319	0337			
5	0242	0331	5	0339	0357			
6	0331	0422	6	0406	0423			
7	0422	0513	7	0425	0443			
			8	0446	0504			

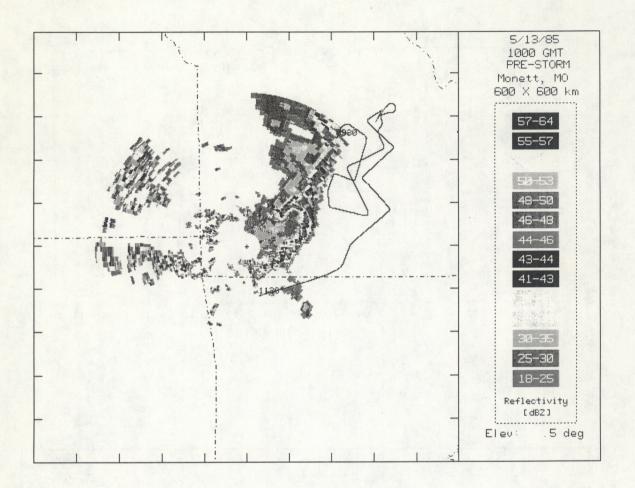
Mission # 2 NOAA-43 11 May 1985 (0300-1015 GMT)

Intense tornadic storms developed in western Kansas during the early evening. In anticipation of a developing squall line within the PRE-STORM network, the aircraft flew cross-sections near the frontal boundary, although most activity developed and propagated to the northeast into Nebraska. NOAA-43 was directed to continue monitoring the storms as they traveled into south-central Nebraska, since no development was evident in the PRE-STORM network. The aircraft flew towards Kansas City in order to reestablish communications with the PRE-STORM operations center in Oklahoma City. Late in the mission, weak convection finally developed in the area near CP-4 and the aircraft flew a few coordinated patterns in the vicinity of the Doppler radars before returning to base.




11 MAY 1985 NOAA 43

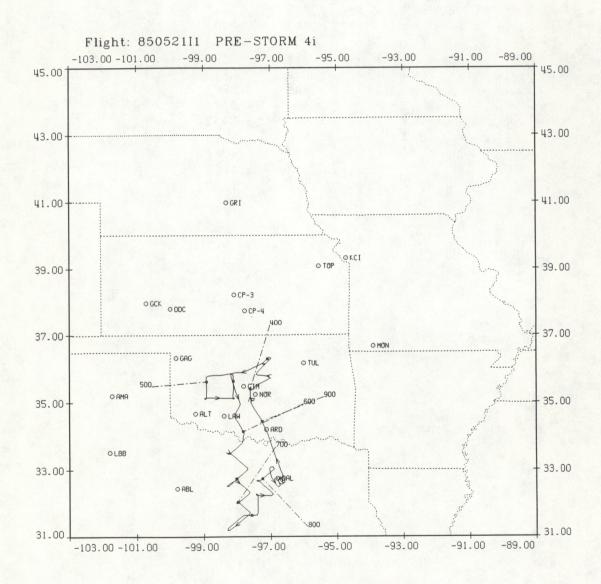

LOWER	FUSELAGI	ERADAR	DC	PPLER RA	NDAR	2-D KNOLLENBERG			
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	
1	0547	0637	1	0610	0630	1	0626	0714	
2	0637	0727	2	0636	0645	2	0714	0724	
3	0727	0817	3	0827	0846	3	0724	0732	
4	0817	0906	4	0854	0909	4	0732	0738	
5	0906	0930				5	0738	0746	
						6	0746	0754	
						7	0754	0810	
						8	0810	0857	

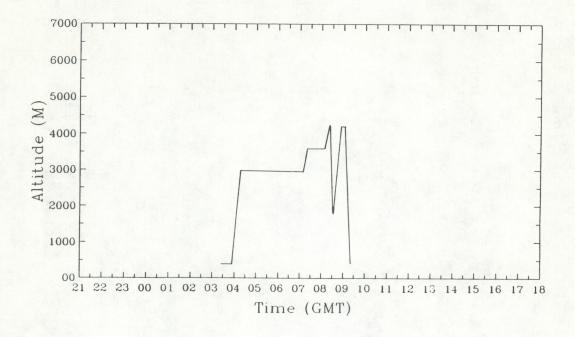

Mission # 3 NOAA-43 13 May 1985 (0307-1225 GMT)

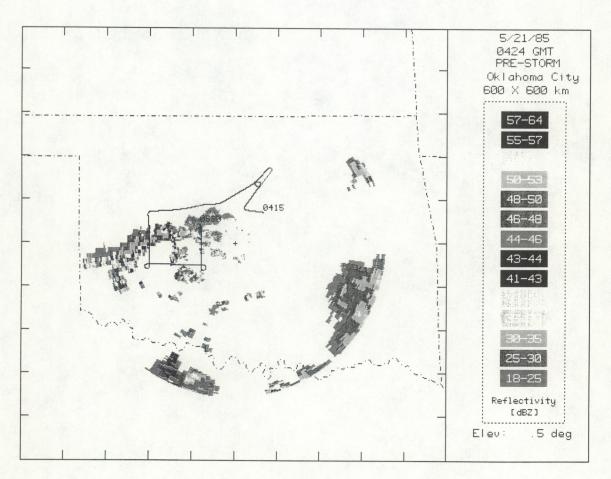
Takeoff was delayed by 2 hours due to intense thunderstorms in the Oklahoma City area. The first portion of the mission was coordinated with the NSSL Doppler radar network in the study of convective cells to the south and southeast of Oklahoma City. Of primary interest was the stratiform precipitation dynamics with secondary emphasis on storm-scale cells and interactions. With this in mind, the flight pattern was changed to east-west legs through the stratiform region which had developed from southwest Missouri to south-central Kansas. Several mesoscale "hook echoes" were noted on aircraft radar.

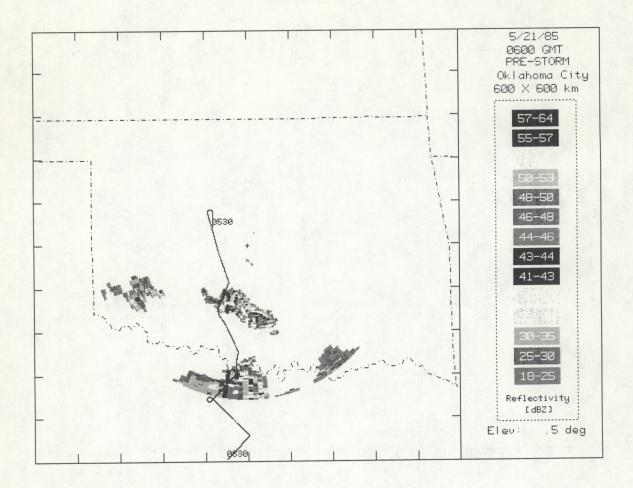
13 MAY 1985 NOAA 43

1	1	0	LY/	F	D	FI	ICE	7	Δ	CE	D	Δ	7	Δ	D	
		. ,	W		K	F 1	17	٠,	A		K	A	1)	H	K	

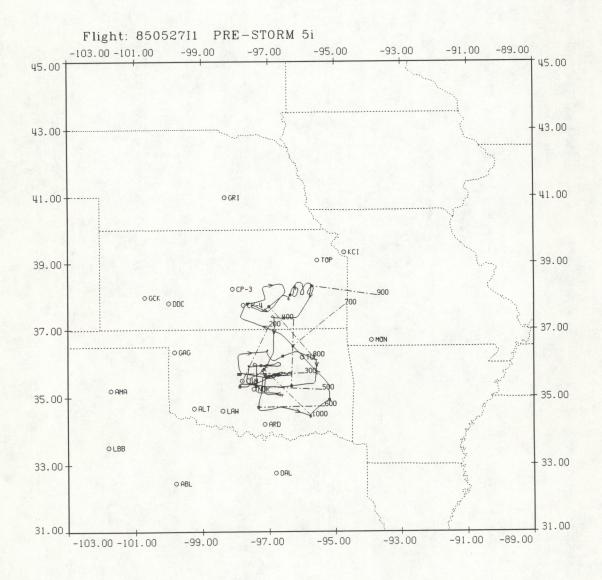

DOPPLER RADAR

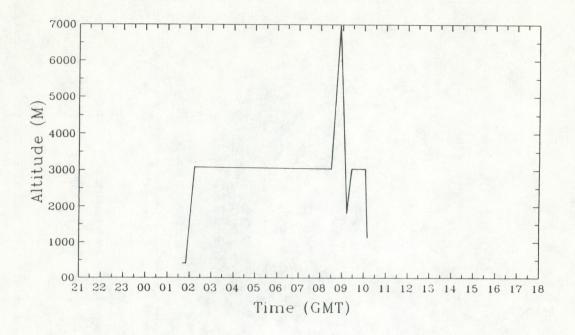

2-D KNOLLENBERG


Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0314	0404	1	0338	0356	1	0313	0459
2	0404	0454	2	0405	0412	2	0459	0628
3	0454	0544	3	0446	0502	2 3	0628	0849
4	0544	0634	4	0504	0524	4	0849	0914
5	0634	0725	5	0528	0544	5	0914	1142
6	0725	0815	6	0547	0604			11/2
7	0815	0905	7	0607	0625			
8	0905	0956	8	0628	0645			
9	0956	1047	9	0648	0702			
10	1047	1145	10	0751	0810			
		60 194	11	0812	0821			
			12	0824	0842			
			13	0845	0903			
			14	0906	0923			
			15	0935	0953			
			16	0956	1016			
			17	1019	1041			
			18	1043	1103			
			19	1105	1122			

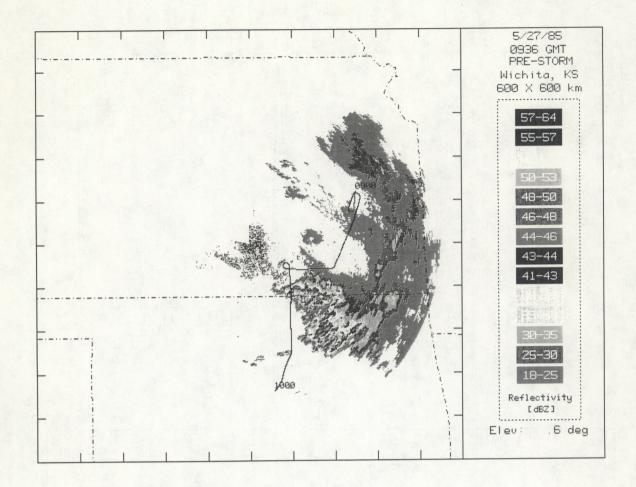

Mission # 4 NOAA-43 21 May 1985 (0404-0918 GMT)

Although convective activity was present in Kansas early on 20 May, the flight mission was to conduct microphysical experiment in conjunction with the NSSL Doppler radars. As the activity in Oklahoma weakened, there remained a mesoscale system in northern Texas, near Dallas. The remainder of the flight was spent monitoring stratiform precipitation and transition zone microphysics in that region.

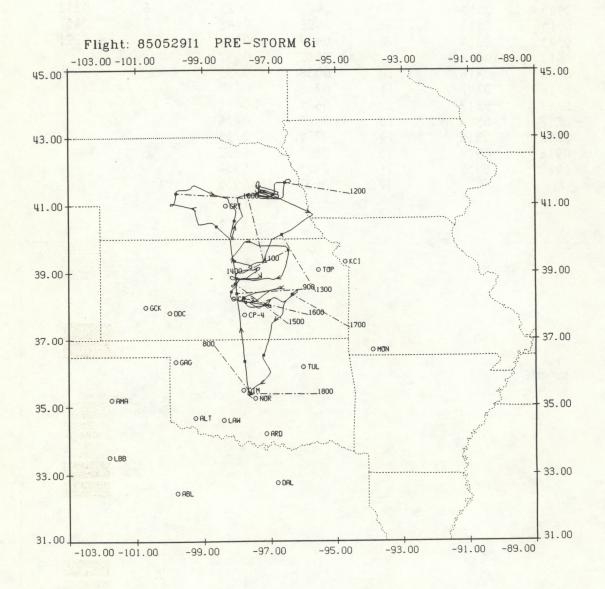


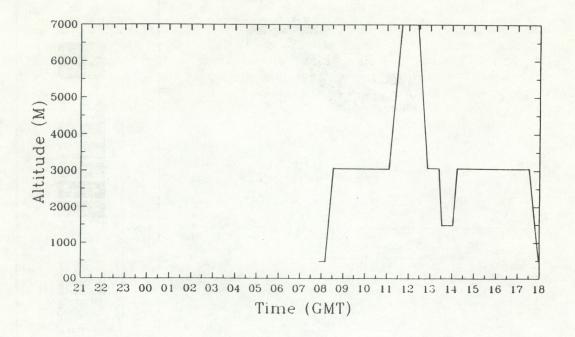

21 MAY 1985 NOAA 43

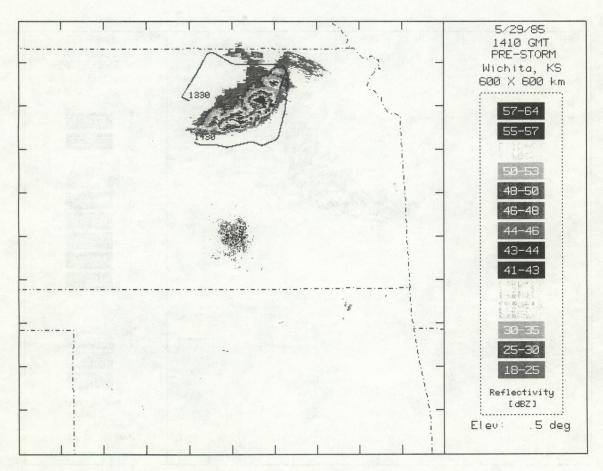
LOWER FUSELAGE RADAR			DOPPLER RADAR			2-D KNOLLENBERG		
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1 2 3 4 5 6	0426 0517 0608 0656 0742 0830	0517 0608 0636 0742 0830 0906	1 2 3 4 5 6 7 8 9 10	0458 0522 0557 0615 0642 0700 0720 0742 0759 0822	0518 0549 0612 0632 0657 0714 0740 0756 0819 0840	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	0406 0606 0620 0628 0637 0644 0649 0656 0704 0716 0722 0728 0733 0739 0744 0750 0754 0759 0804 0809 0814 0819 0823 0842 0847 0852 0857 0903	0606 0620 0628 0637 0644 0649 0656 0704 0716 0722 0728 0733 0739 0744 0750 0754 0759 0804 0809 0814 0819 0823 0842 0847 0852 0857 0903 0909

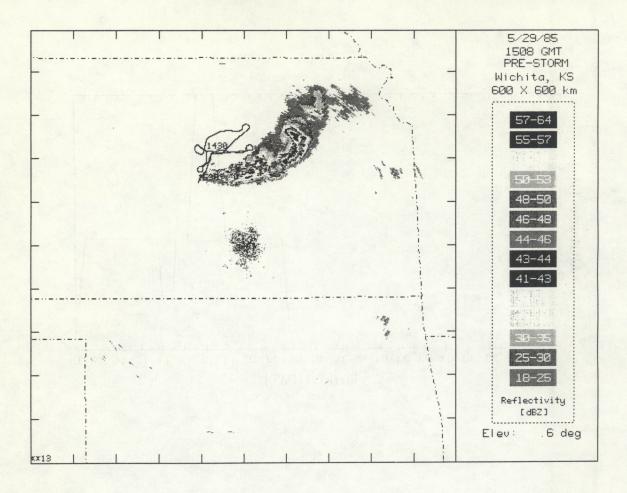

Mission # 5 NOAA-43 27 May 1985 (0155-1014 GMT)

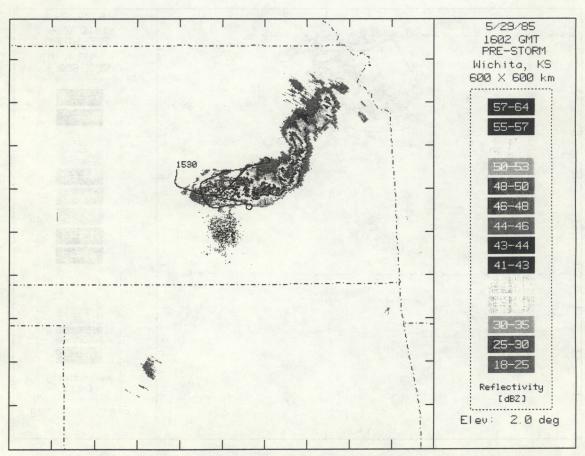
With areas of convection evident over Kansas and Oklahoma, the mission began studying the system in the vicinity of Oklahoma City in coordination with the NSSL radars. As this activity weakened and moved out of radar range (0630 GMT), the flight was redirected to the Kansas radars where a squall line had moved into the area. Before concluding the mission, the aircraft followed the Kansas MCS eastward, out of the PRE-STORM network.

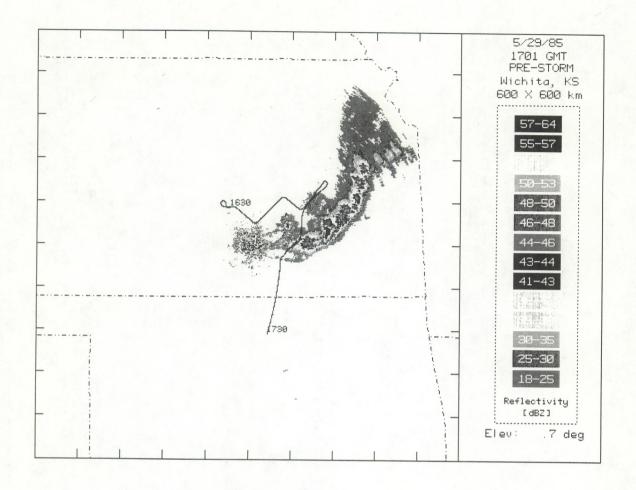


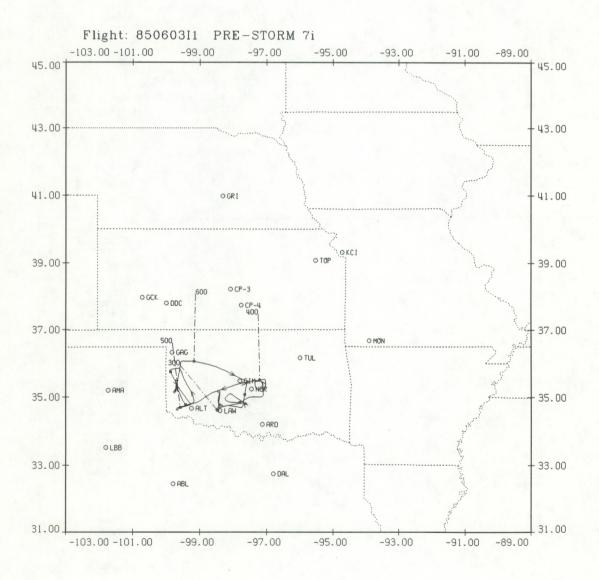

27 MAY 1985 NOAA 43

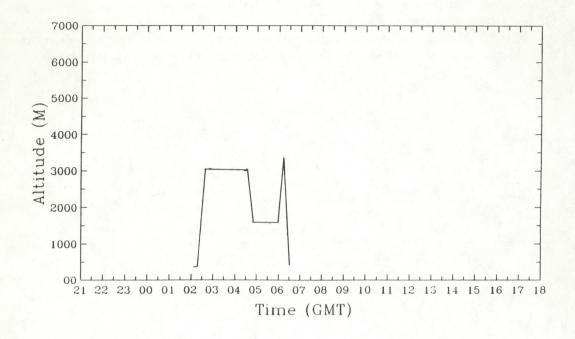

LOWER FUSELAGE RADAR			DC	PPLER RA	ADAR	2-D KNOLLENBERG		
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0205	0236	1	0210	0231	1	0157	0610
2	0236	0306	2	0234	0259	2	0610	0636
3	0313	0344	3	0302	0319	3	0636	0842
4	0344	0415	4	0322	0340	4	0842	0847
5	0415	0445	5	0334	0402	5	0847	0852
6	0445	0515	6	0405	0423	6	0852	0857
7	0515	0545	7	0426	0448	7	0857	0921
8	0545	0615	8	0453	0509	8	0921	0953
9	0615	0646	9	0512	0532			
10	0646	0716	10	0536	0555			
11	0716	0747	11	0558	0617			
12	0747	9817	12	0621	0641			
13	0817	0848	13	0720	0758			
14	0848	0918	14	0737	0758			
15	0918	0948	15	0801	0822			
16	0948	0958	16	0825	0934			
			17	0937	0952			

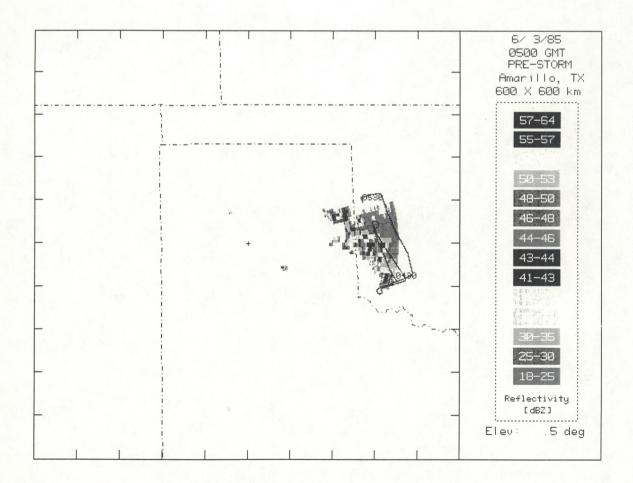

Mission # 6 NOAA-43 29 May 1985 (0813-1754 GMT)


In anticipation of developing conditions over the northern section of the PRE-STORM region, the aircraft take-off was delayed. In route to the planned research area, a squall line formed in central Nebraska and moved rapidly east-northeast; this became the primary mission as the system matured. While returning to base, once near the Kansas Doppler radars, the mission was operated in coordination with the ground-based radars in order to study the dynamics of the transition zone between the convective and stratiform precipitation areas.



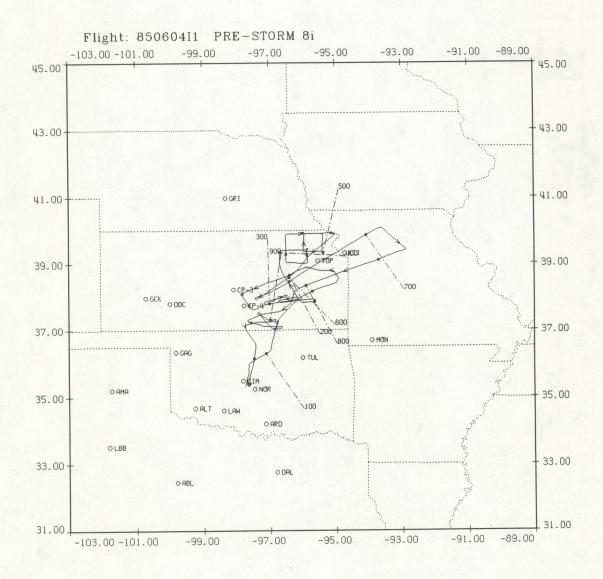


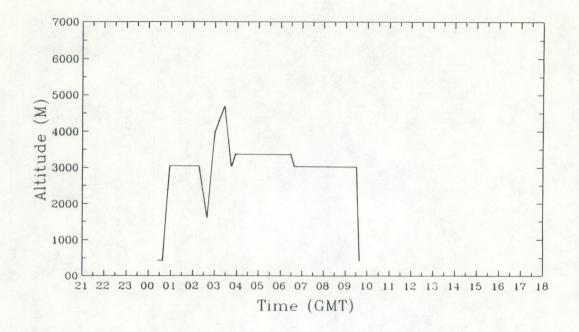

29 MAY 1985 NOAA 43

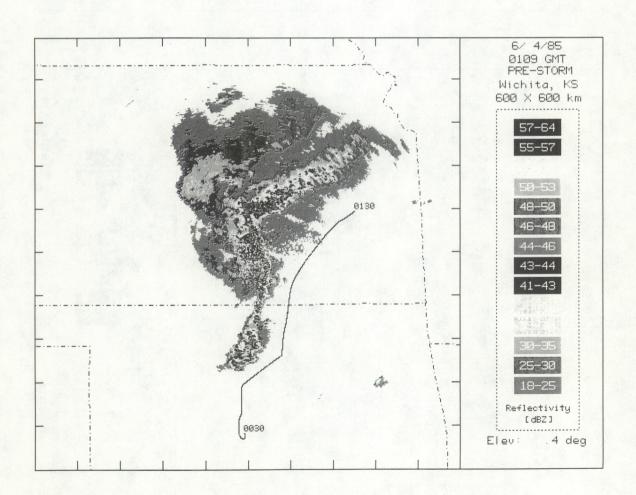

IOWER	LOWER FUSELAGE RADAR		DC	PPLER RA	ADAR	2-D KNOLLENBERG			
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	
1	0919	0948	1	0932	0952	1	0850	1022	
2	0948	1019	2	0956	1016	2	1022	1056	
3	1019	1050	3	1019	1036	3	1056	1105	
4	1050	1120	4	1040	1058	4	1105	1110	
5	1120	1150	5	1101	1124	5	1110	1115	
6	1150	1220	6	1127	1140	6	1115	1119	
7	1220	1250	7	1143	1200	7	1119	1124	
8	1250	1321	8	1204	1223	8	1124	1128	
	1321	1351		1227	1245	9	1128	1134	
10	1351	1421	10	1307	1320	10	1134	1138	
11	1421	1452	11	1323	1341	11	1138	1143	
12	1452	1522	12	1344	1358	12	1143	1148	
13	1522	1552	13	1400	1418	13	1148	1153	
14	1552	1622	14	1422	1443	14	1153	1157	
15	1622	1652	15	1447	1505	15	1157	1203	
16	1652	1722	16	1507	1529	16	1203	1207	
			17	1533	1544	17	1207	1212	
			18	1548	1606	18	1212	1217	
			19	1609	1627	19	1217	1220	
			20	1634	1649	20	1220	1223	
			21	1652	1710	21	1223	1228	
			22	1712	1721	22	1228	1233	
						23	1233	1238	
						24	1238	1323	
						25	1323	1330	
						26	1330	1420	
						27	1420	1505	
						28	1505	1615	
						29	1615	1640	
							1651	1721	

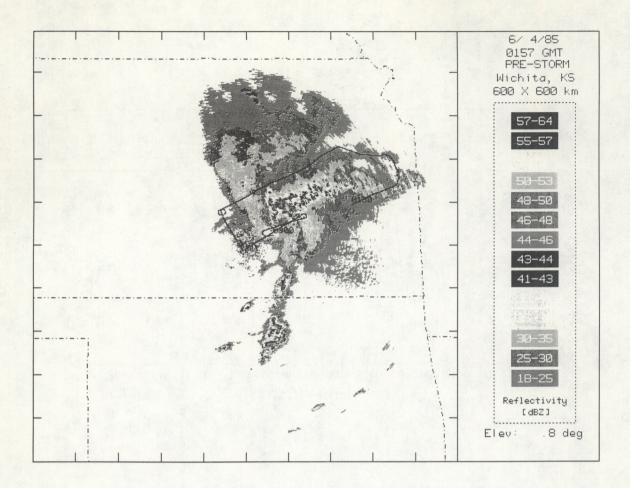
Mission # 7 NOAA-43 3 June 1985 (0225-0621 GMT)

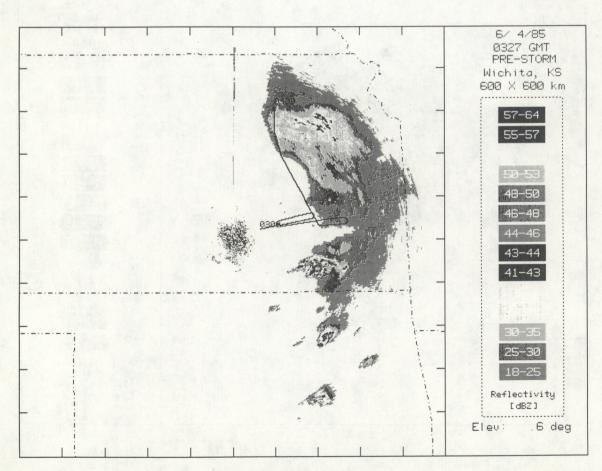
The mission was designed for short duration (6h fuel) since storms had developed and quickly dissipated throughtout the day over western Oklahoma. The aircraft flew patterns designed to study the area of storm genesis near an intense line of convection. The region of origin seemed to be in the Texas panhandle where storms had split earlier in the day.

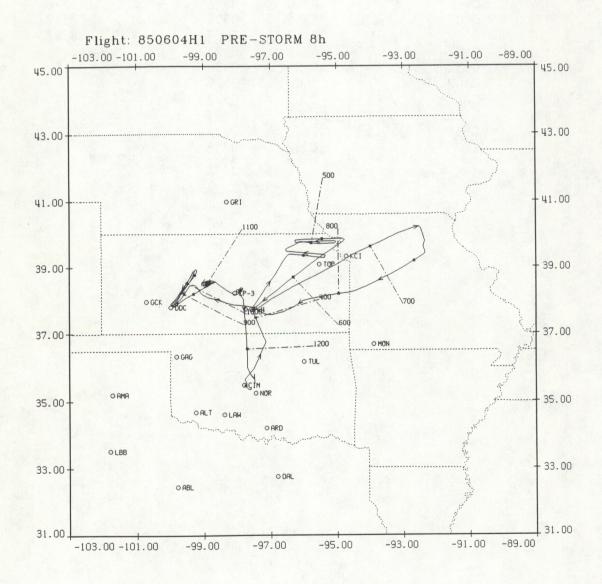



3 JUNE 1985 NOAA 43

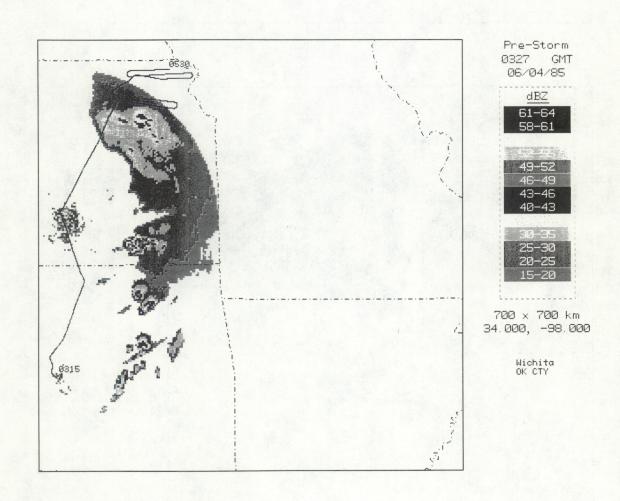

LOWER FUSELAGE RADAR			DC	PPLER RA	NDAR	2-D KNOLLENBERG			
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	
1	0234	0304	1	0233	0257	1	0231	0531	
2	0304	0334	2	0305	0334	2	0531	0623	
3	0334	0404	3	0336	0357			0023	
4	0409	0440	4	0430	0439				
5	0440	0510	5	0443	0455				
6	0510	0540	6	0457	0520				
7	0540	0610	7	0522	0538				
			8	0542	0600				

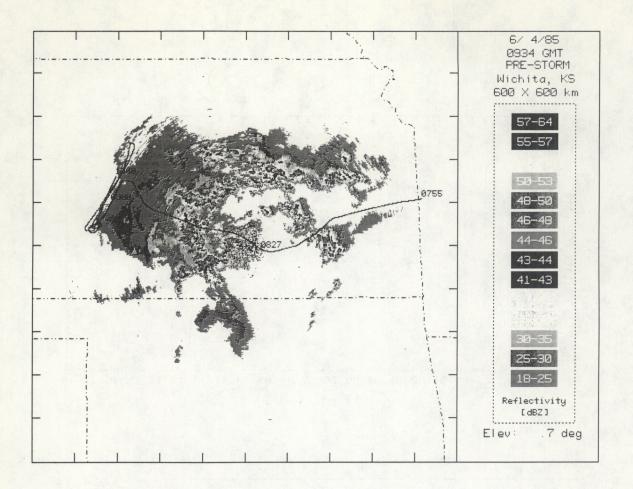

Mission # 8 NOAA-43 4 June 1985 (0044-0944 GMT)

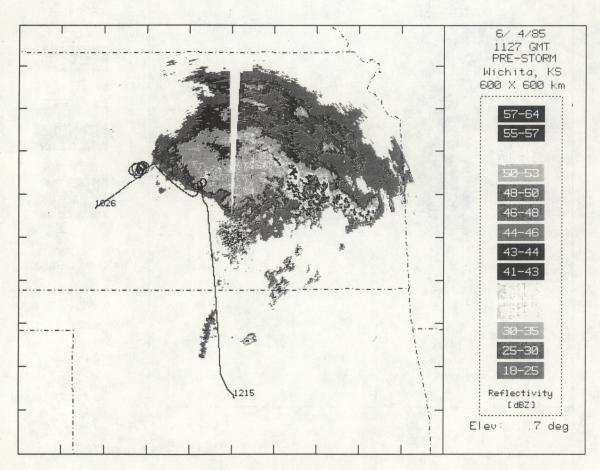

The first aircraft of a two-aircraft mission began monitoring an MCS (second of a series of events) in the area of the Kansas Doppler radars. NOAA-43 had to deviate approximately 200 km to circumvent an intense line of convection. Once behind the line, it began microphysical experiments in the trailing portion of the stratiform precipitation. The system moved rapidly to the northeast and the aircraft followed. NOAA-42 joined the mission over northeast Kansas. The pattern was modified over Missouri into a large-scale butterfly to study circulations in the decaying system. As the third system began in southwest Kansas, the aircraft were recalled to the area of the Kansas radar network.



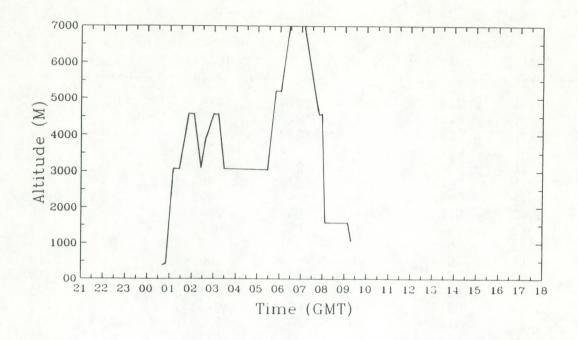

4 JUNE 1985 NOAA 43

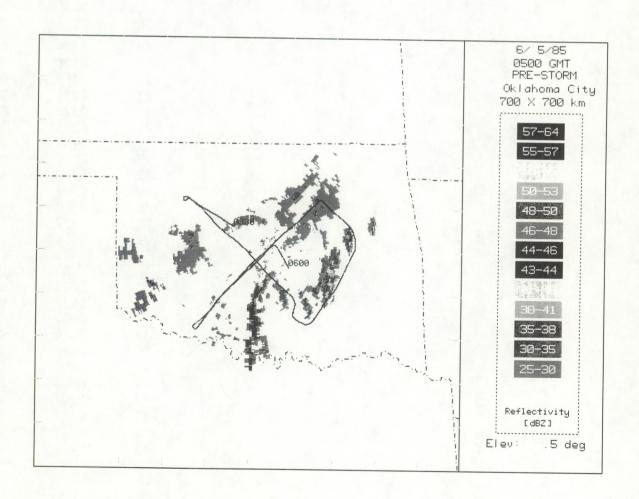

LOWER	FUSELAGE	ERADAR	DC	DOPPLER RADAR			2-D KNOLLENBERG		
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	
1	0048	0120	1	0054	0112	1	0109	0153	
2	0130	0201	2	0114	0132	2	0153	0156	
3	0201	0231	3	0141	0200	3	0156	0201	
4	0301	0331	4	0203	0218	4	0201	0203	
5	0331	0402	5	0229	0246	5	0205	0213	
6	0402	0432	6	0246	0308	6	0213	0326	
7	0402	0432	7	0310	0328	7	0326	0332	
8	0432	0502	8	0331	0350	8	0332	0407	
9	0502	0532	9	0353	0409	9	0527	0932	
10	0532	0602	10	0411	0425				
11	0602	0632	11	0428	0438				
12	0632	0802	12	0440	0459				
13	0807	0837	13	0501	0518				
14	0837	0906	14	0521	0535				
15	0906	0936	15	0814	0834				
			16	0837	0858				
			17	0903	0922				


Mission # 8 NOAA-42 4 June 1985 (0334-1220 GMT)


Early in the mission, the aircraft joined NOAA-43 over northeast Kansas to study a dissipating stratiform rain area. NOAA-42 did microphysical studies at 15,000 and 18,000 feet. As the MCS continued to decay, the flight pattern was enlarged into a butterfly pattern centered over north-central Missouri. New convection was active in the region within the PRE-STORM observational network, therefore the aircraft returned to the vicinity of the Kansas Doppler radars. NOAA-42 worked under the direction of the CP-4 radar, gathering microphysical data in the stratiform region present to the west of the radars.

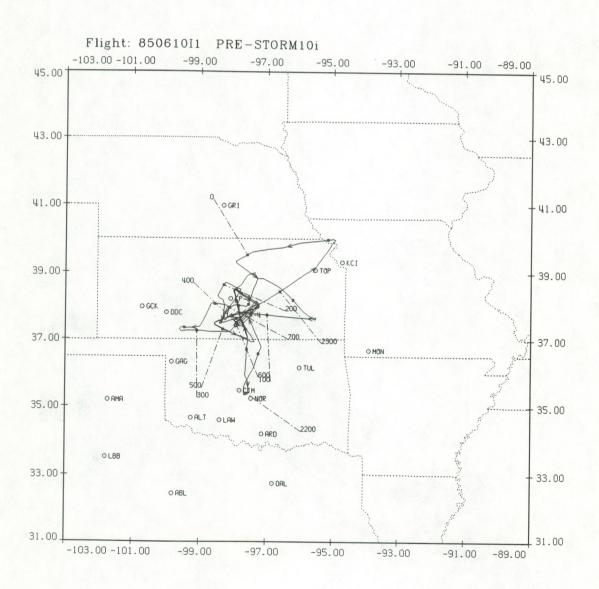

4 JUNE 1985 NOAA 42

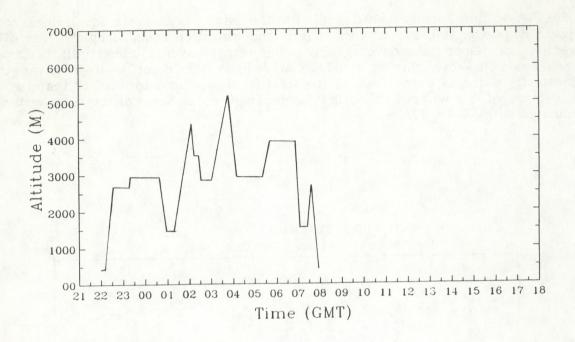

LOWER FUSELAGE RADAR

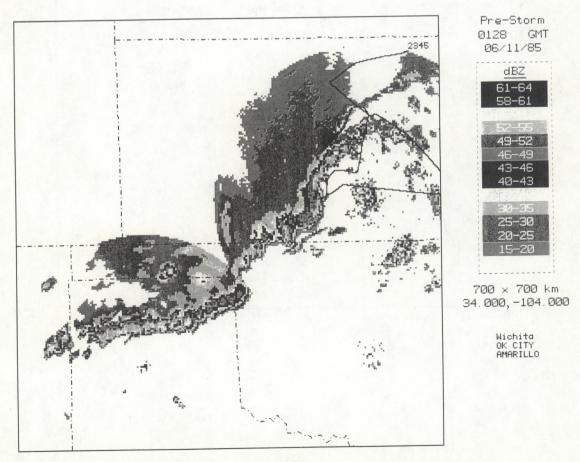

Tape	Time On	Time Off	Tape	Time On	Time Off
Number	(GMT)	(GMT)	Number	(GMT)	(GMT)
1	0337	0454	1	0354	0354
2 3	0454	0548	1 2 3 4 5 6 7	0354	0432
3	0548	0636	3	0432	0438
4	0636	0726	4	0438	0445
5	0726	0813	5	0445	0507
6	0813	0902	6	0507	0531
7	0902	0950	7	0531	0707
8	0950	1040	8	0707	0718
9	1040	1130		0718	0810
10	1130	1158	10	0810	0817
			11	0817	0834
			12	0834	0842
			13	0842	0847
			14	0847	0853
			15	0853	0858
			16	0858	0904
			17	0904	0910
			18	0910	0915
			19	0915	0920
			20	0920	0926
			21	0926	0933
			22	0933	0937
			23	0937	0942
			24	0942	0955
			25	0955	1001
			26	1001	1006
			27	1006	1012
			28	1012	1021
			29	1021	1030
			30	1030	1035
			31	1035	1040
			32	1040	1046
			33	1046	1047
			34	1047	1055
			68	1055	1100
			36	1100	1105
			37	1105	1124
			38	1124	1133
			39	1133	1139
			40	1139	1146
			41	1156	1202

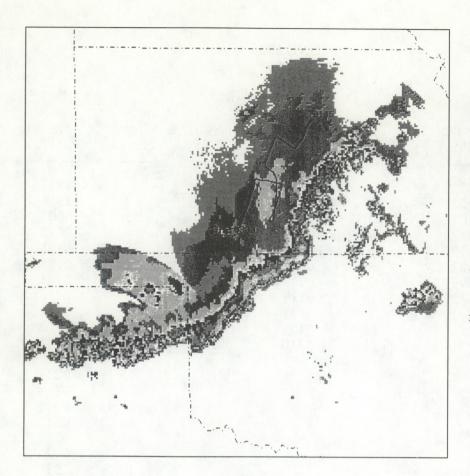
Mission # 9 NOAA-43 5 June 1985 (0109-0923 GMT)

As the weather continued unsettled, the aircraft began a series of patterns coordinated with the NSSL Doppler radars. Microphysical experiments were conducted in an area of optimum dual-doppler coverage. The stratiform rain region was quite extensive, therefore the flight pattern was enlarged. Monitoring continued until out of range of the ground-based radars. A new flight plan was set up to monitor heavy rains falling in a area of weak convergence near Wichita, Kans.




5 JUNE 1985 NOAA 43


				201 20 21	242	2-D KNOLLENBERG			
LOWER	FUSELAGE	ERADAR	DC	PPLER RA	NDAR	Z-D	KNOLLEN	IBERG	
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Of: (GMT)	
1	0101	0131	1	0121	0145	1	0100	0112	
2	0131	0201	2	0152	0212	2	0113	0124	
3	0211	0240	3	0224	0241	3	0124	0130	
4	0240	0311	4	0244	0304	4	0130	0139	
5	0311	0341	5	0308	0336	5	0139	0145	
6	0341	0411	6	0345	0404	6 7	0145	0151	
7	0411	0442	7	0408	0429		0151	0156	
8	0442	0512	8	0432	0447	8	0156	0202	
9	0512	0543	9	0452	0509	9	0204	0209	
10	0543	0614	10	0511	0525	10	0209	0214	
11	0614	0644	11	0550	0608	11	0214 0219	0219	
12	0644	0714	12	0621	0638	12 13	0219	0234	
13	0714	0745	13	0653	0710 0733	14	0234	0239	
14	0745	0816	14	0716 0736	0753	15	0239	0245	
15	0816	0846	15	0810	0826	16	0245	0249	
			16 17	0810	0840	17	0249	0254	
			17	0871	0840	18	0254	0258	
						19	0258	0304	
						20	0304	0308	
						21	0308	0313	
						22	0313	0319	
						23	0319	0324	
						24	0327	0353	
						25	0353	0407	
						26	0407	0426	
						. 27	0426	0452	
						28	0452	0501	
						29	0501	0513	
						30	0513	0552	
						31	0552	0556	
						32	0556	0602	
						33	0602	0607 0623	
						34	0607 0623	0623	
						35 36	0623	0627	
						37	0632	0640	
						38	0640	0646	
						39	0646	0652	
						40	0652	0656	
						41	0658	0704	
						42	0707	0721	
						43	0721	0736	
						44	0736	0815	
						45	0815	0839	


Mission # 10 NOAA-43 10-11 June 1985 (2210-0750 GMT)

NOAA-43 flew northeastward parallel to the leading edge of the squall line, crossed westward near Kansas City and flew, within the transition zone, along the rear of the convective line. Good radar coverage from the aircraft was maintained until the Doppler antenna was struck by lightning at 0330 GMT. From that point, multi-level racetrack and butterfly patterns were flown in the stratiform rain area to monitor features of a rear-to-front jet, but without collecting doppler radar data. Some of these patterns were coordinated with NOAA-42.

Pre-Storm

Wichita OK CITY AMARILLO

Pre-Storm

0351 GMT

06/11/85

dBZ

61-64

58-61

52-55

49-52

46-49

43-46

40-43

30-35

25-30

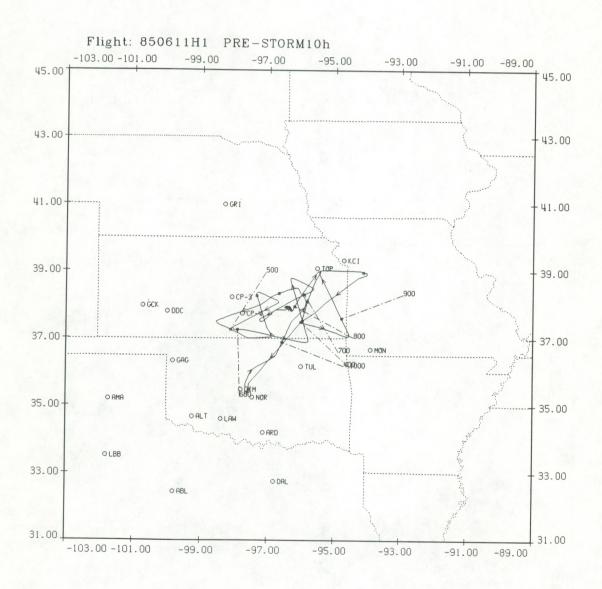
20-25

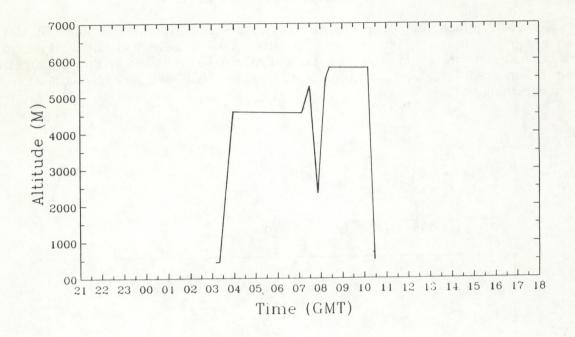
15-20

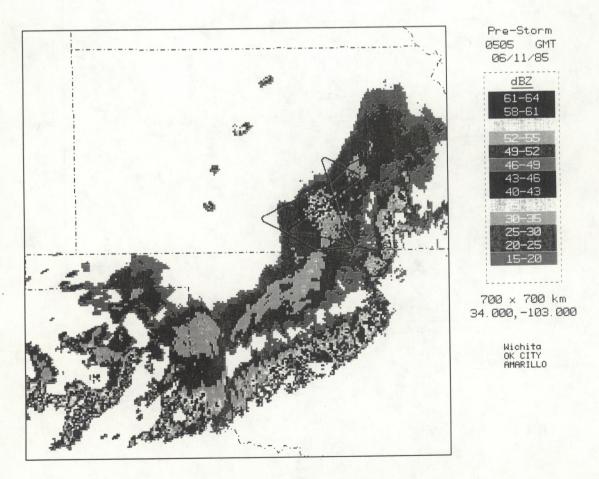
700 x 700 km 34.000,–102.000

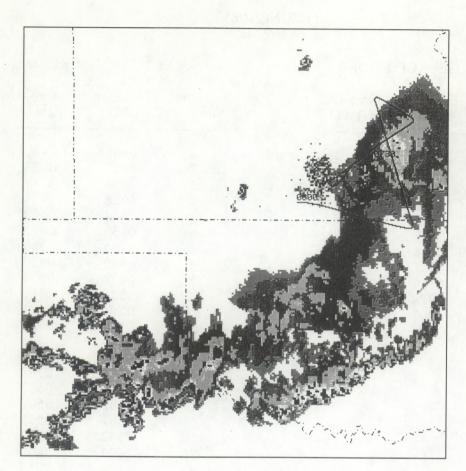
> Wichita OK CITY

10 JUNE 1985 NOAA 43


LOWE	RFI	ISFI	ACF	RA	DAR
L. VV L	1 / 1		IUL	1/1	1 1 1 1 1


DOPPLER RADAR


Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	2221	2352	1	2249	2257	1	2213	2351
2	2352	0022	2	2343	2352	2	2351	0002
3	0022	0052	3	2355	0005	3	0002	0045
4	0052	0122	4	0016	0017	4	0045	0138
5	0122	0153	5	0018	0023	5	0138	0151
6	0153	0225	6	0039	0040	6	0151	0203
7	0225	0437	7	0042	0043	7	0203	0210
8	0445	0729	8	0119	0128	8	0212	0218
			9	0131	0136	9	0218	0223
			10	0150	0207	10	0223	0228
			11	0210	0223	11	0228	0233
						12	0233	0239
						13	0239	0244
						14	0244	0305
						15	0305	0312
						16	0312	0319
						17	0319	0325 0331
						18	0325	0336
						19	0331 0336	0336
						20 21	0341	0346
						22	0347	0352
						23	0352	0357
						24	0357	0402
						25	0402	0407
						26	0407	0412
						27	0412	0420
						28	0420	0438
						29	0438	0448
						30	0448	0507
						31	0507	0518
						32	0518	0527
						33	0527	0546
						34	0546	0551
						35	0551	0556
						36	0556	0624
						37	0624	0739

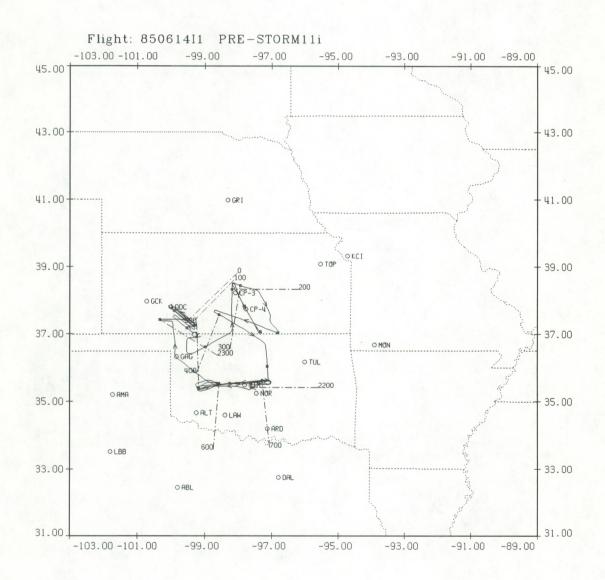

Mission # 10 NOAA-42 11 June 1985 (0230-1031 GMT)

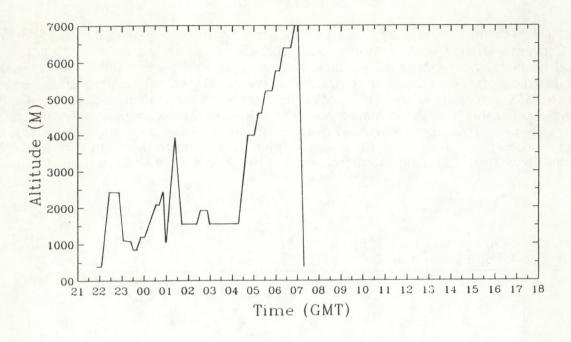
NOAA-42 joined the other P-3 aircraft in a vertically-stacked butterfly pattern. As the squall line continued to drift southeastward, NOAA-42 flew close to the convection, gathering cloud physics data, and NOAA-43 remained within the stratiform precipitation area. NOAA-42 continued to fly in the MCS well into its dissipation stage before returning to Oklahoma City.

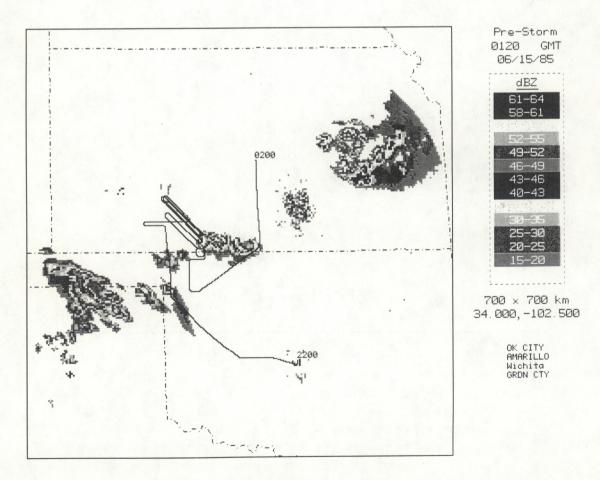
Pre-Storm 0653 GMT 06/11/85

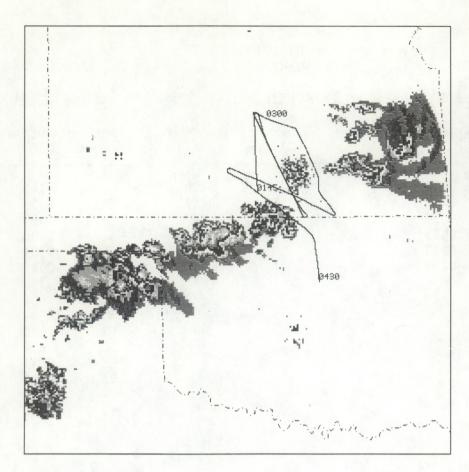
700 x 700 km 33.500,–103.000

Wichita OK CITY AMARILLO

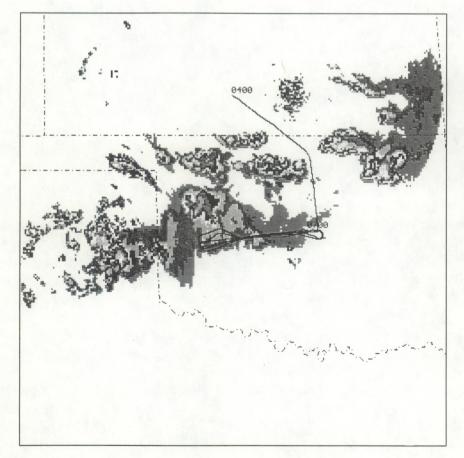

11 JUNE 1985 NOAA 42


LOWER FUSELAGE RADAR


Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1 2	0336 0415	0415 0452	1 2	0408 0420	0420 0428
2 3 4 5 6	0452 0532	0532 0610	3 4	0428	0434
5	0610	0649	5	0434	0439
6	0649	0728	6 7	0439	0445
7	0728	0807		0445	0450
8	0807	0846	8	0450	0459
9	0846	0926	9	0459	0505
10	0926	1005	10	0505	0511
11	1005	1019	11	0511	0515
			12	0515	0520
			13	0520	0525
			14	0525	0531
			15	0531	0537 0542
			16	0537	0547
			17	0542 0547	0553
			18 19	0553	0603
				0603	0608
			20 21	0608	0613
			22	0613	0619
			23	0619	0628
			24	0628	0633
			25	0633	0638
			26	0638	0644
			27	0644	0649
			28	0649	0655
			29	0655	0659
			30	0659	0706
			31	0706	0712
			32	0712	0726
			33	0726	0732
			34	0732	0738
			35	0738	0743
			36	0743	0802
			37	0802	0808
			38	0808	0815
			39	0815	0848
			40	0848	0921
			41	0921	1000


Mission # 11 NOAA-43 14-15 June 1985 (2205-0717 GMT)

NOAA-43 mission strategy was to conduct a boundary layer evolution experiment (Pre-Convective) over southwest Kansas. The aircraft flew numerous legs across the frontal boundary near Dodge City, Kans, beginning at 500 ft and climbing every 1000 ft to an altitude of 6000 ft. A large thunderstorm developed in the area and eventually grew to MCS proportions. At 0115 GMT, the Doppler radar malfunctioned on NOAA-43 and was inoperable for the remainder of the mission. This convective system drifted south into Oklahoma, but NOAA-43 was redirected to fly boundary layer legs near Wichita in coordination with the Kansas Doppler radars. Late in the mission, NOAA-43 returned to western Oklahoma to monitor the dissipation stage of the earlier MCS.



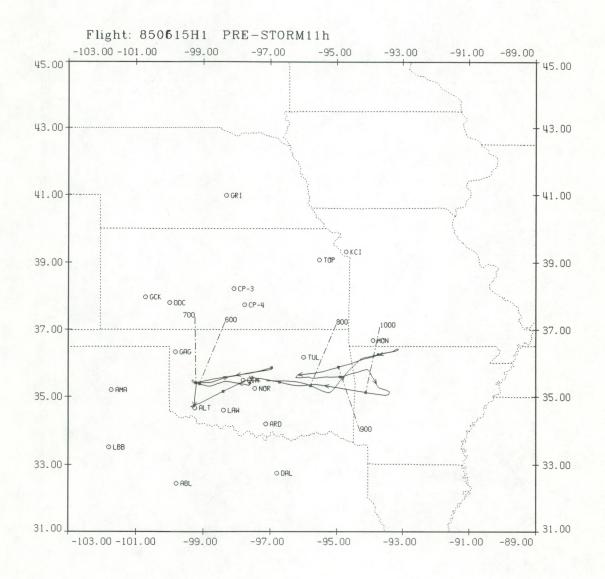
Pre-Storm 0229 GMT 06/15/85

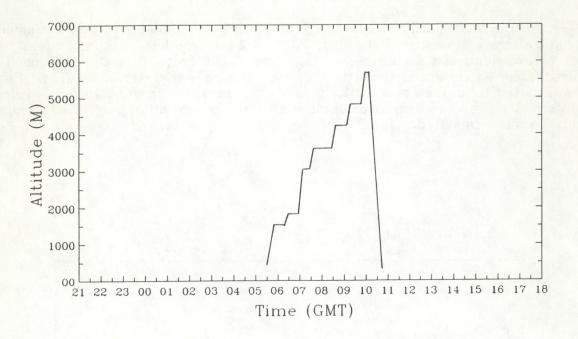
700 x 700 km 33.500,–102.500

OK CITY AMARILLO Wichita GRDN CTY

Pre-Storm 0430 GMT 06/15/85

700 x 700 km 32.500,–102.500

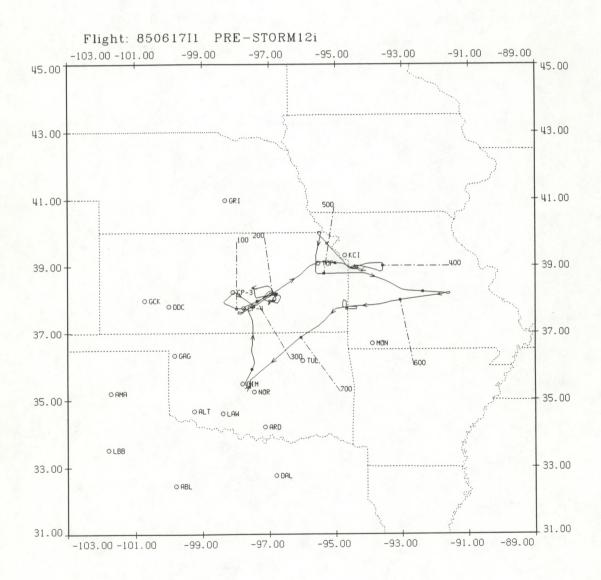

OK CITY AMARILLO Wichita GRDN CTY

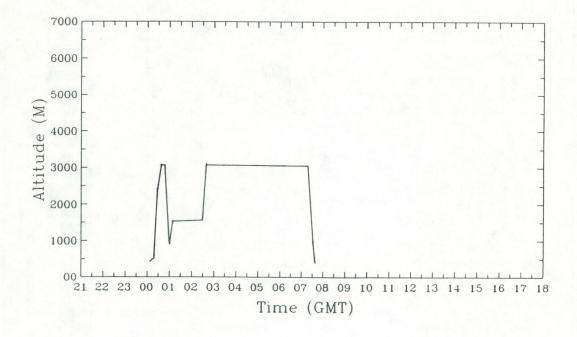

14 JUNE 1985 NOAA 43

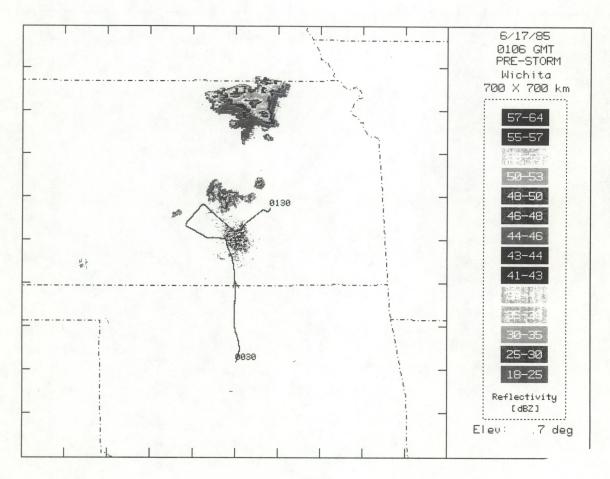
LOWER FUSELAGE RADAR		ERADAR	DOPPLER RADAR			2-D KNOLLENBERG			
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	
1	2247	0030	1	0042	0104	1	0140	0453	
2	0030	0102	2	0111	0117	2	0453	0459	
3	0102	0150				3	0459	0506	
4	0150	0425				4	0506	0531	
5	0425	0502				5	0531	0544	
6	0520	0704				6	0544	0559	
						7	0559	0604	
						8	0604	0624	
						9	0624	0630	
						10	0630	0630	
						11	0634	0640	
						12	0641	0645	
						13	0646	0651	
						14	0651	0706	

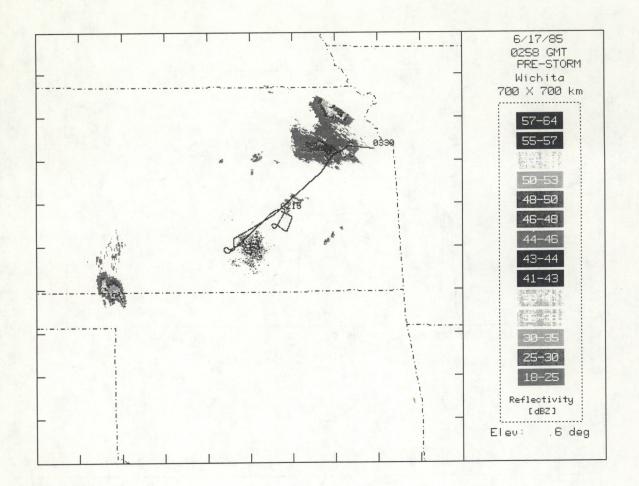
Mission # 11 NOAA-42 15 June 1985 (0540-1046 GMT)

An anvil dynamics and microphysics experiment (mature to dissipating) was planned using both aircraft in western Oklahoma. NOAA-42 flew the low-level inflow legs, with NOAA-43 overflying the same area at 13,000 to 23,000 feet. As NOAA-43 ended its mission, NOAA-42 continued flying in the stratiform rain area at 10,000 feet. Flight plan was moved to an area of stratiform rain which persisted from northeast Oklahoma to western Arkansas. Numerous patterns were flown before all activity dissipated and the mission was terminated.

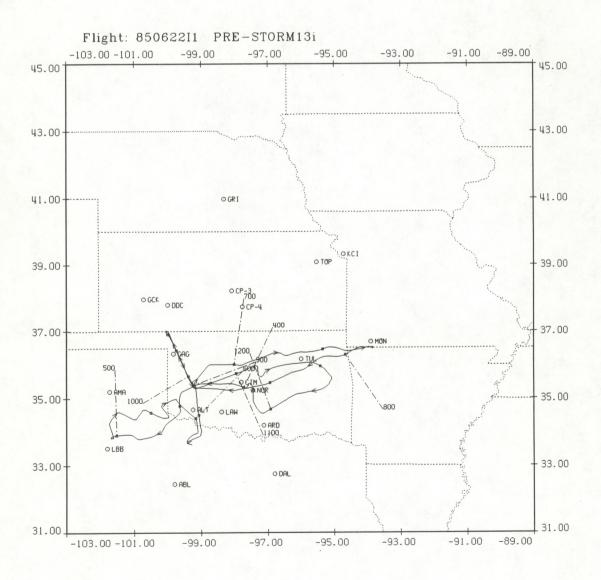

15 JUNE 1985 NOAA 42

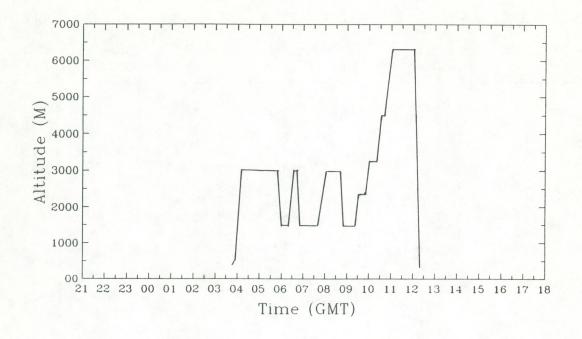

LOWER FUSELAGE RADAR

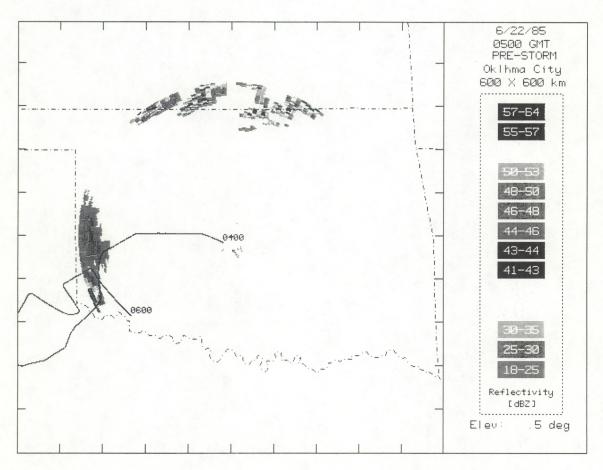

Tape Number	Time On (GMT)	Time Off (GMT)	N	Tape lumber	Time On (GMT)	Time Off (GMT)
1	0545	0624		1	0720	0811
2	0624	0702		2	0811	0817
3	0702	0741		3	0817	0855
4	0741	0821		4	0855	0933
5	0821	0859		5	0933	0943
6	0859	0937		6	0943	0948
7	0937	1016		7	0948	0953
8	1016	1038		8	0953	0958
				9	0958	1004
				10	1004	1023


Mission # 12 NOAA-43 17 June 1985 (0020-0733 GMT)

With a mission of gathering low-level inflow/outflow data before sunset, NOAA-43 flew legs coordinated with the CP-4 radar in an area of weak, multi-cellular thunderstorms, north of Wichita. This activity dissipated further, but other activity existed in northeast Kansas. The aircraft was directed to fly large-scale box patterns around this loosely organized, but intense convection. NOAA-43 followed this meso-alpha scale system into Missouri, out of the PRE-STORM region. The convection did not organize as expected and the mission had no other supporting data systems, therefore the aircraft returned to Oklahoma City.




17 JUNE 1985 NOAA 43

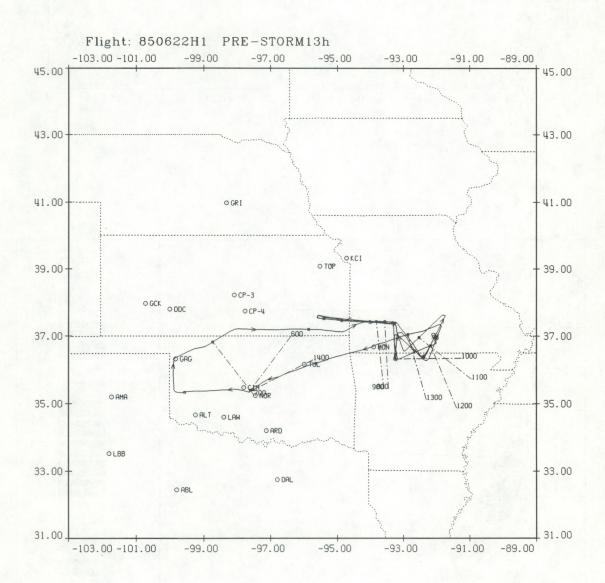

LOWER	FUSELAGE	ERADAR	DC	DOPPLER RADAR			2-D KNOLLENBERG		
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	
1	0051	0122	1	0056	0106	1	0112	0510	
2	0122	0152	2	0112	0119	2	0510	0613	
3	0152	0223	3	0122	0127				
4	0223	0254	4	0131	0143				
5	0254	0402	5	0146	0202				
6	0402	0432	6	0209	0221				
7	0432	0526	7	0221	0224				
8	0526	0630	8	0227	0245				
			9	0247	0255				
			10	0305	0308				
			11	0349	0356				
			12	0359	0416				
			13	0418	0435				
			14	0438	0443				
			15	0517	0530				

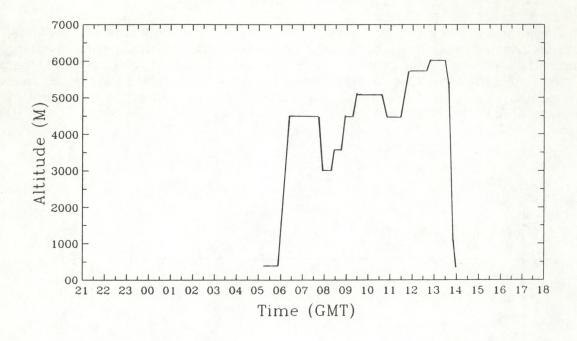
Mission # 13 NOAA-43 22 June 1985 (0400-1300 GMT)

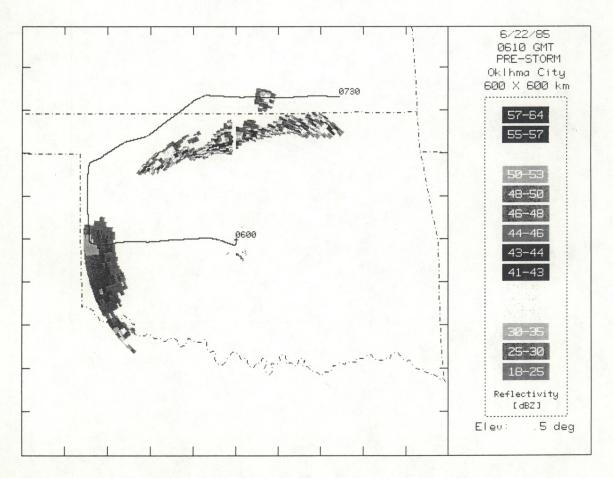
The first two hours of the flight were spent monitoring a convective system in the Texas panhandle. Good aircraft radar coverage was maintained along the convective and stratiform rain regions. Later, a line of thunderstorms developed along the Kansas-Oklahoma border and NOAA-43's flight plan was moved to study the inflow region on the south flank of this activity. The aircraft continued to monitor the southern flank of the system from central Oklahoma to western Arkansas.

22 JUNE 1985 NOAA 43

LOWER FUSELAGE RADAR

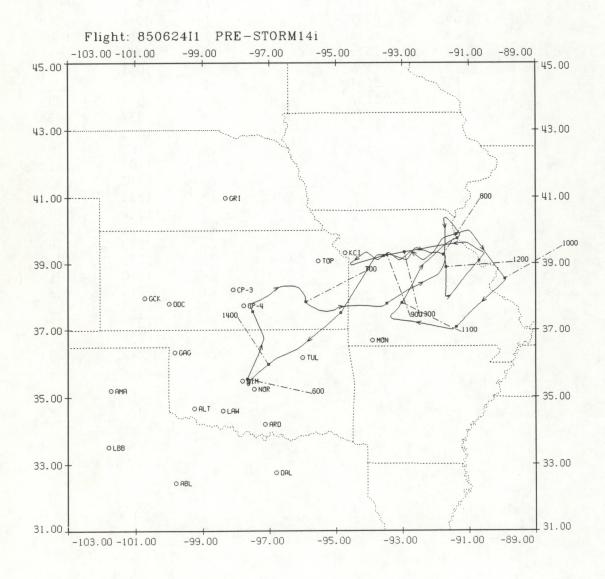

DOPPLER RADAR

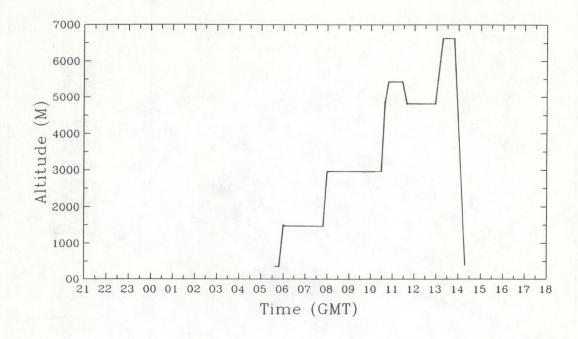

2-D KNOLLENBERG

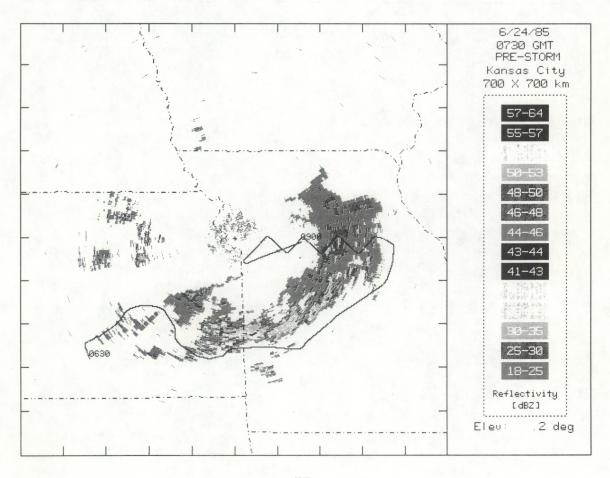

Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0402	0447	1	0425	0442	1	0437	0456
2	0447	0517	2	0445	0501	2	0457	0523
3	0517	0547	3	0504	0521	3	0523	0532
4	0547	0617	4	0523	0534	4	0531	0544
5	0617	0647	5	0536	0553	5	0544	0640
6	0647	0717	6	0556	0606	6	0754	0820
7	0717	0747	7	0615	0632	7	0820	1117
8	0747	0817	8	0652	0708	8	1117	1122
9	0817	0850	9	0711	0728	9	1122	1127
10	0850	1126	10	0732	0748	10	1127	1132
11	1126	1214	11	0751	0808	11	1132	1136
			12	0810	0827	12	1136	1143
			13	0830	0839	13	1143	1147
						14	1147	1153

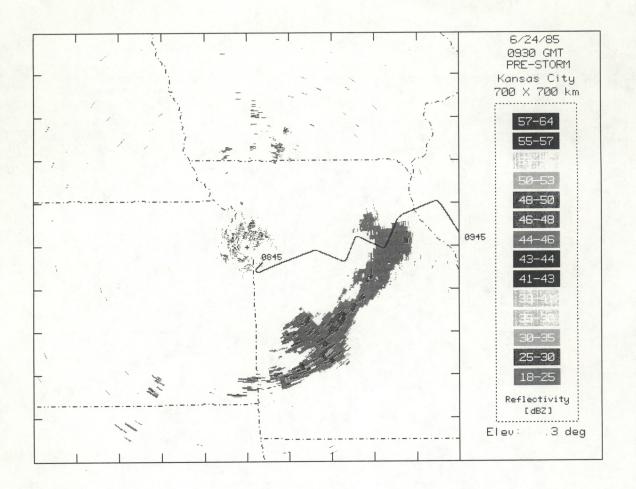
Mission # 13 NOAA-42 22 June 1985 (0604-1350 GMT)

The aircraft flew directly to an area of convection which had developed along the Kansas-Oklahoma border and proceeded to perform microphysical experiments along the northern flank of the line of convection. As the system drifted southeastward, the plan was modified into large-scale butterfly patterns into southern Missouri at altitudes of 10000, 12000, 15000, and 17000 feet. The pattern was adjusted as the movement of the system dictated until the activity was too far from the PRE-STORM area.


22 JUNE 1985 NOAA 42


LOWER FUSELAGE RADAR 2-D KNOLLENBERG

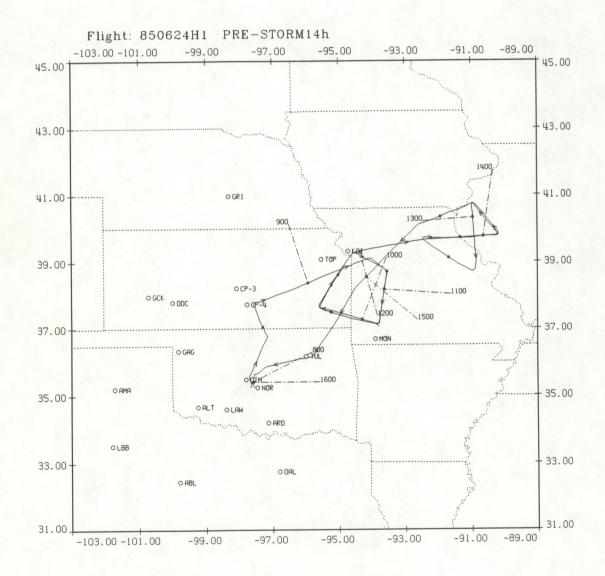

Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0622	0648	1	0627	0634
2	0648	0712		0634	0715
3	0712	0740	2 3	0715	0721
	0740	0806	4	0734	0753
4 5 6	0806	0831	5	0753	0817
6	0831	0857		0817	0927
7	0857	0922	6 7	0947	0954
8	0922	0948		0954	1000
9	0948	1014	8	1000	1005
10	1014	1039	10	1005	1011
11	1039	1104	11	1011	1021
12	1104	1131	12	1021	1027
13	1131	1157	13	1027	1032
14	1157	1222	14	1032	1038
15	1222	1248	15	1038	1043
16	1248	1305	16	1102	1107
			17	1107	1112
			18	1112	1117
			19	1122	1127
			20	1127	1132
			21	1132	1200
			22	1200	1205
			23	1205	1210
			24	1210	1215
			25	1215	1225
			26	1225	1231
			27	1231	1236
			28	1236	1242
			29	1242	1305

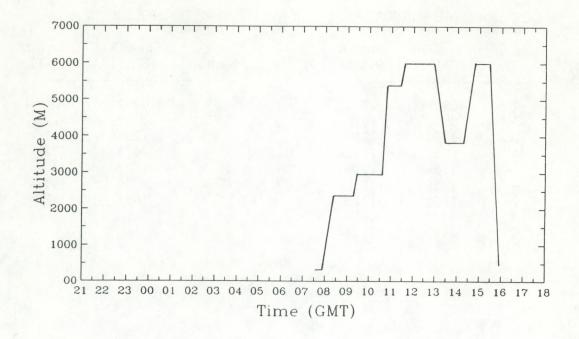

Mission # 14 NOAA-43 24 June 1985 (0555-1430 GMT)

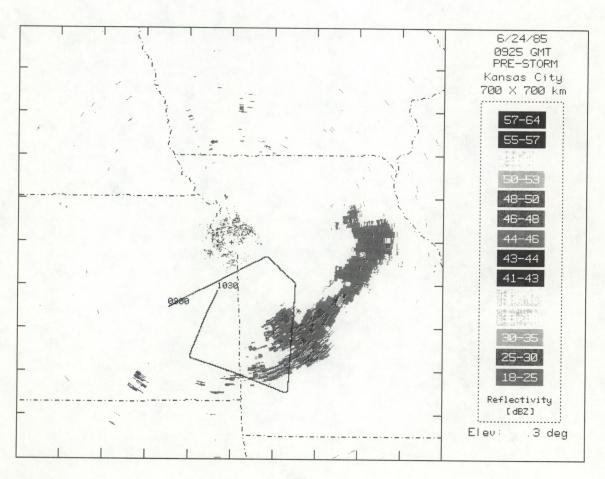
The primary mission was the long-term monitoring of a decaying system which originated in Nebraska. Enroute from Oklahoma City, NOAA-43 flew a low-level inflow experiment at 5000 ft (850 mb), across southeast Kansas to central Missouri, where the aircraft climbed to 10000 ft and began saw-tooth pattern circumnavegating the stratiform rain region. The flight plan was modified to a butterfly pattern at 16000 and 19000 ft before returning to base.

24 JUNE 1985 NOAA 43

LOWER FUSELAGE RADAR


DOPPLER RADAR

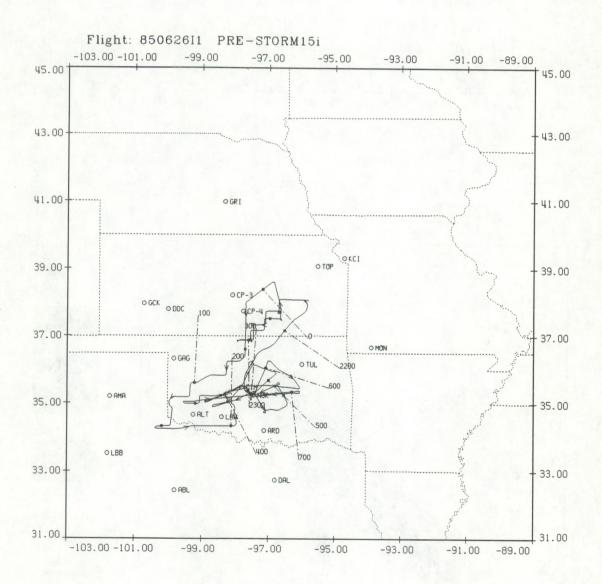

2-D KNOLLENBERG

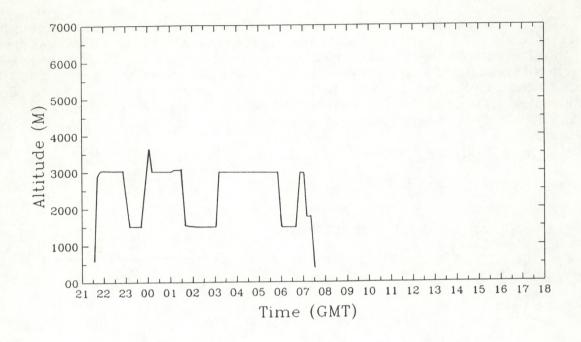

Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0610	0639	1	0641	0658	1	0636	0740
2	0639	0709	2	0700	0717	2	0740	0815
3	0709	0729	3	0720	0737	3	0815	0923
4	0739	0809	4	0739	0757	4	0923	1109
5	0809	0840	5	0759	0814	5	1109	1122
6	0840	0910	6	0817	0833	6	1122	1155
7	0910	0940	7	0835	0906	7	1155	1203
8	0940	1011	8	0908	0925	8	1203	1210
9	1011	1041	9	0928	1123	9	1210	1254
10	1041	1111	10	1126	1203	10	1254	1332
11	1111	1142	11	1205	1223			1772
12	1142	1213	12	1238	1255			
13	1213	1243						
14	1243	1313						
15	1313	1344						

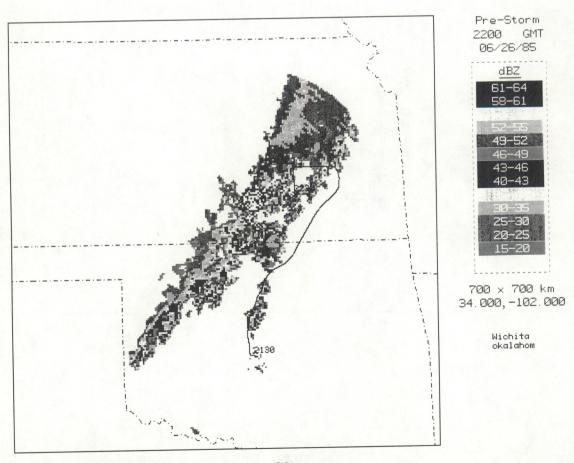
Mission # 14 NOAA-42 24 June 1985 (0740-1600 GMT)

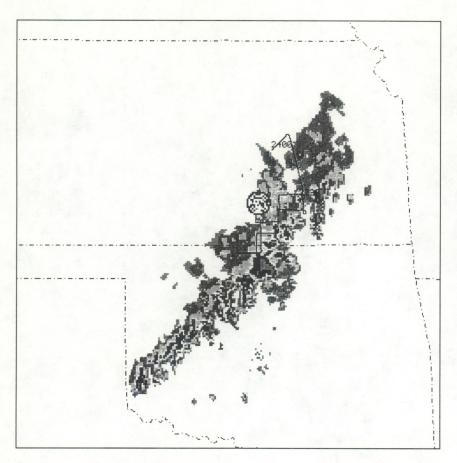
The aircraft flew to the vicinity of Kansas City and began a box pattern at 10000 ft, effectively monitoring the system west of 93°. The size of the box was modified and NOAA-42 ascended to 15000 ft. After NOAA-43 left the research area, NOAA-42 took over the eastern region of the MCS, flying butterfly patterns starting at 20000 ft and descending to 15000 ft on subsequent legs.

24 JUNE 1985 NOAA 42

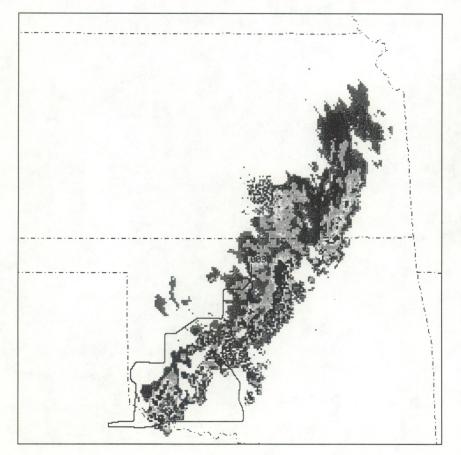

LOWER FUSELAGE RADAR


2-D KNOLLENBERG


Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0902	0941	1	0932	1059
2	0941	1020	2	1059	1224
3	1020	1059	3	1224	1311
4	1059	1138	4	1311	1324
5	1138	1216	5	1328	1354
6	1216	1255	6	1354	1411
7	1255	1335	7	1411	1422
8	1335	1413			
9	1413	1452			


Mission # 15 NOAA-43 26-27 June 1985 (2128-0730 GMT)

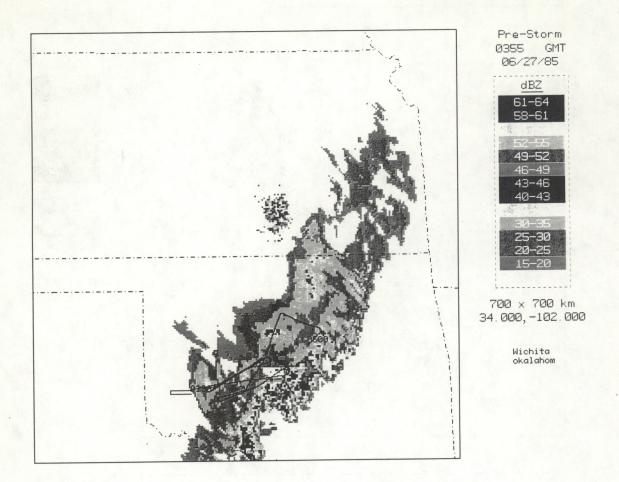
There were two potential areas of study. Convective cells were developing from western Oklahoma to Amarillo, TX, and a large area of organized convection was present in central Kansas. The mission chosen was to set up a transition zone dynamics experiment coordinated with the CP-4 radar; this was performed on the west side of the line. As the convection increased, the pattern was enlarged to include a large part of north-central Oklahoma. After the line had passed Oklahoma City (0430 GMT), The aircraft flew a coordinated mission with the Norman Doppler radar.



Pre-Storm 2330 GMT 06/26/85

700 x 700 km 34.000,–102.000

> Wichita okalahom



Pre-Storm 0134 GMT 06/27/85

700 x 700 km 34.000,–102.000

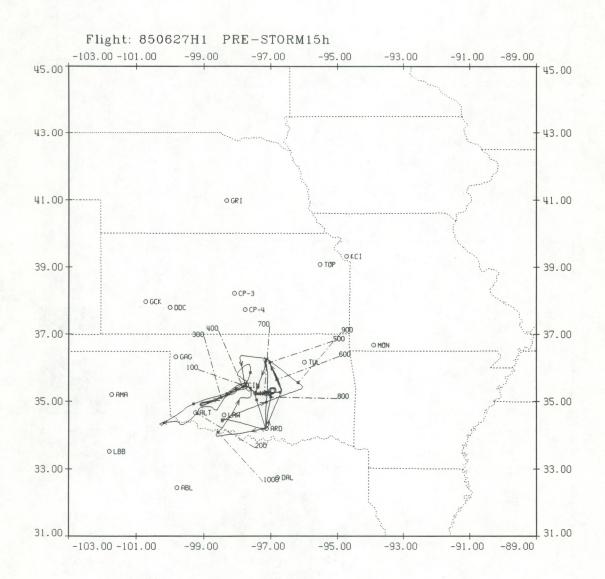
> Wichita okalahom

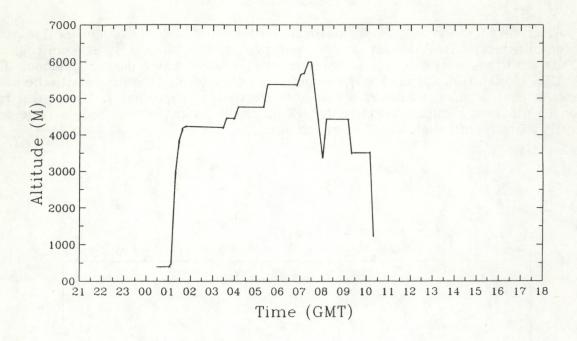
26 JUNE 1985 NOAA 43

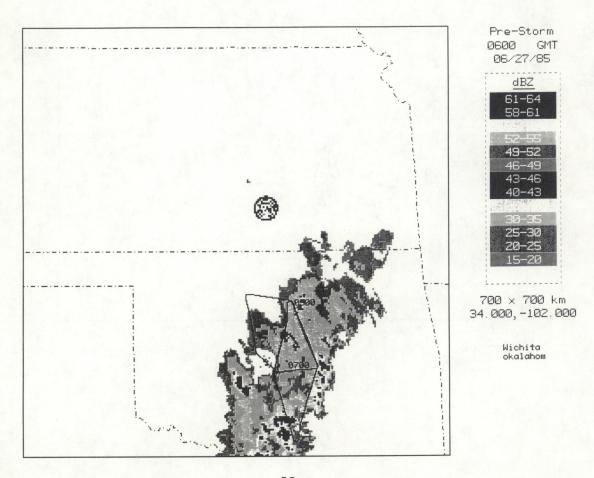
LOWER	FUSFLA	GF	RADAR	
-------	--------	----	-------	--

DOPPLER RADAR

2-D KNOLLENBERG


Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	2135	2209	1	2151	2208	1	2141	2223
2	2209	2240	2	2211	2229	2	2223	2228
3	2240	2310	3	2232	2248	3	2228	2240
4	2310	2341	4	2251	2311	4	2224	2246
5	2341	0012	5	2313	2334	5	2246	2256
6	0012	0042	6	2336	2353	6	2356	2307
7	0042	0113	7	2356	0015	7	2307	2332
8	0113	0144	8	0017	0033	8	2332	2356
9	0144	0214	9	0037	0056	9	2356	2442
10	0214	0245	10	0059	0119	10	2442	2455
11	0245	0315	11	0121	0132	11	2455	0115
12	0315	0346	12	0134	0151	12	0115	0130
13	0346	0416	13	0209	0228	13	0130	0217
14	0416	0447	14	0230	0249	14	0217	0249
15	0447	0517	15	0251	0315	15	0249	0300
16	0517	0548	16	0317	0337	16	0300	0312
17	0548	0618	17	0339	0351	17	0312	0319
18	0618	0648	18	0353	0412	18	0319	0325
19	0648	0719	19	0415	0431	19	0325	0332
			20	0433	0452	20	0332	0336
			21	0454	0515	21	0336	0343
			22	0517	0535	22	0343	0353
			23	0537	0556	23	0353	0402
			24	0558	0620	24	0402	0407
			25	0625	0642	25	0407	0414
			26	0644	0702	26	0414	0423
			27	0704	0722	27	0423	0431
						28	0431	0439
						29	0439	0450
						30	0450	0456
						31	0456	0501
						32	0501	0509
						33	0509	0514
						34	0514	0520
						35	0520	0530
						36	0530	0536
						37	0536	0541
						38	0541	0547
						39	0547	0553
						40	0553	0602
						41	0602	0607
						42	0607	0613
						43	0613	0618
						44	0618	0626


26 JUNE 1985 NOAA 43


LOWER FUSELAGE RADAR	DOPPLER RADAR	2-D KNOLLENBERG		
Tape Time On Time Of Number (GMT) (GMT)	f Tape Time On Time Off Number (GMT) (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
		45	0626	0634
		46	0634	0644
		47	0644	0651
		48	0651	0658
		49	0658	0703
		50	0703	0711
		51	0711	0718
		52	0718	0726

Mission # 15 NOAA-42 27 June 1985 (0108-1021 GMT)

After takeoff, the aircraft found itself on the west side of the convection as the line consolidated. NOAA-42 set up an experiment to monitor the stratiform region at 14000 ft with the other aircraft at lower levels. After the line passed Oklahoma City (0430 GMT), NOAA-42 set up a large scale triangle pattern in the northeast lobe of the Oklahoma dual-doppler area and began a microphysical experiment. The stratiform region to the west dissipated and NOAA-42 modified its flight plan into a large-scale butterfly pattern until the conclusion of the mission.

27 JUNE 1985 NOAA 42

LOWER FUSELAGE RADAR 2-D KNOLLENBERG

EOWER TOSEETIGE RATE		2 B Milobbilibbild			
Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
1	0117	0157	1	0112	0128
2	0158	0323		0128	0141
3	0223	0404	2 3	0141	0157
4	0404	0441	4	0157	0207
5	0441	0521	5	0207	0221
6	0521	0601	6	0221	0230
7	0601	0641	7	0230	0238
8	0641	0720	8	0238	0245
9	0720	0759	9	0245	0251
10	0759	0839	10	0251	0258
11	0839	0919	11	0258	0304
12	0919	0958	12	0304	0310
13	1010	1018	13	0310	0315
			14	0315	0321
			15	0321	0327
			16	0327	0333
			17	0333	0338
			18	0338	0344
			19	0344	0349
			20	0349	0355
			21	0355	0400
			22	0400	0406
			23	0406	0411
			24	0411	0417
			25 26	0417 0423	0423 0428
			27	0423	0428
			28	0434	0434
			29	0439	0444
			30	0444	0450
			31	0450	0455
			32	0455	0500
			33	0500	0506
			34	0506	0517
			35	0517	0523
			36	0523	0528
			37	0530	0535
			38	0535	0549
			39	0549	0554
			40	0554	0600
			41	0600	0605
			42	0605	0610
			43	0610	0616
			44	0616	0621

27 JUNE 1985 NOAA 42

LOWER FUSELAGE RADAR

2-D KNOLLENBERG

Tape Number	Time On (GMT)	Time Off (GMT)	Tape Number	Time On (GMT)	Time Off (GMT)
			45	0621	0626
			46	0626	0632
			47	0632	0637
			48	0637	0643
			49	0643	0648
			50	0648	0653
			51	0653	0700
			52	0700	0706
			53	0706	0711
			54	0711	0716
			55	0716	0722
			56	0722	0729
			57	0729	0735
			58	0735	0740
			59	0740	0745
			60	0745	0751
			61	0751	0800
			62	0800	0806
			63	0806	0811
			64	0811	0816
			65	0816	0822
			66	0822	0839
			67	0839	0844
			68	0844	0850
			69	0850	0856
			70	0856	0902
			71	0902	0907
			72	0907	0916
			73	0916	0918
			74	0918	0925
			75	0925	0937
			76	0937	0946
			77	0946	0952

Appendix B

UNIVERSITY OF WYOMING
AIRCRAFT MISSICN SUMMARY

UNIVERSITY OF WYOMING KING AIR FLIGHT SUMMARY

May 4, 1985 (1955-2052 GMT)

Purpose of this flight was intercomparison with NOAA-43. Segment of flight devoted to formation flying (south to north leg) for time period 2009-2020 GMT, all at altitude 10,500 ft. After breaking formation, roughly over the Oklahoma-Kansas border, radio tests were conducted during a descent to about 3000 ft. The location of the formation flight leg was north of Oklahoma City, extending from about 80 km to 155 km. north of the Norman Doppler radar.

May 12-13, 1985 (0105-0413 GMT)

Flight devoted to inflow/outflow studies, concentrated in time period 0220-0400 GMT, in a 40 by 50 km area centered 60 km east and 5 km south of the Norman Doppler radar. NOAA-43 collected data on a pass by that location at about 0330 GMT. A tornado was sighted and reported near Edmond, Oklahoma shortly after takeoff (0116 GMT).

May 13, 1985 (0645-0917 GMT)

Flight devoted to stratiform precipitation studies, using horizontal passes (heading 040) at levels from -15C to +4C, roughly 3 to 5 miles behind a re-invigorated MCS that was probed in an earlier flight. NOAA-43 flew a box around the N2UW flight leg location, starting at about 0715 GMT. The horizontal pass locations lie approximately between the endpoints 190 km east, 100 km north and 230 km east, 150 km north of the Norman Doppler radar.

May 13, 1985 (2007-2355 GMT)

Flight had three segments: 1) Penetrations of inflow/outflow structure of vigorously developing cell at south end of line of thunderstorms in the vicinity of Gage, Oklahoma. First passes were under pedestal cloud structure before precipitation and echo developed. Location centered at 120 km west and 160 km north of Norman Doppler radar, starting at 2040 GMT 2) Second part of flight was penetrations of non-echo, vigorously growing cumulus tower at -5C level, for microphysics measurements. Updrafts measured up to 16 m/s. Penetrations centered at 85 km west and 175 km north of Norman Doppler radar, from 2155-2208 GMT. (Note: Last part of segment 1 flight and first part of

segment 2 flight, i.e., in/outflow and microphysics segments, missing from data due to mismounted in-flight data tape.) 3) Last part of flight focused on inflow/outflow studies within area of Doppler coverage by CP-3 and CP-4, centered at 75 km west and 280 km north of Norman Doppler radar, from 2220-2300 GMT. Interesting inflow structure, at narrow and shallow "wedge" over a weak outflow regime.

May 16-17, 1985 (2303-0130 GMT)

Purpose of flight was primarily training for new crew. Focus of flight was pointer descent in anvil/stratiform area of precipitation, with the figure-8 pattern centered roughly 315 km west and 15 km north of the Norman Doppler radar.

May 20, 1985 (1937-2228 GMT)

Flight devoted to inflow/outflow penetrations around several cells near CP-3 and CP-4 Doppler radars, generally in a 40 by 50 km box 330 km due north of the Norman Doppler radar. The inflow/outflow boundaries were easily identified in real time by shifts in wind direction, eventhough speeds were relatively light and did not change noticeably across the boundaries. Should have good mapping of multiple, converging, intersecting outflows. Time on station in the CP-3 and CP-4 dual Doppler area was 2035 to 2140 GMT.

May 21, 1985 (0418-0545 GMT)

Flight aimed at studying stratiform precipitation by pointer descent. The initial pointer position was approximately 285 degrees (true north) at 100 km from the Norman Doppler radar, using a descent rate of 200 fpm. The descent lasted from 0449 to about 0537 GMT, and ranged from about -18C to about 0C. The descent was terminated when we observed that most or all of the precipitation had evaporated before reaching the 0°C level. NOAA-43 flew legs at 10,000 ft to give airborne Doppler radar coverage of the N2UW descent.

May 27, 1985 (0500-0626 GMT)

Purpose of flight was to study stratiform precipitation by pointer descent on the north side of a line of convective cells. The convective line extended nearly due east from OKC at time of takeoff. PRE-STORM network became center of much MCS activity as night progressed, with several smaller systems eventually joined into one very large system. N2UW penetrated the stratiform area at 20,000 ft, well behind the active convection (40 to 50 km north of the main convection, in a broad area of NWS radar level-1 echo), and flew some 120 km eastward through uniform, high-concentration aggregate precipitation. The mission was aborted early for two reasons: 1) Complete failure to obtain good images with the PMS 2D-C probe, and 2) Continuous level of electrical activity (cloud-to-cloud lightning) close to the aircraft that was judged by both Sand and Kelly to be too intense for safe operation. Postflight inspection of the aircraft indicated that no direct lightning strikes had been encountered. Future flights into stratiform areas of MCS's will attempt to penetrate at lower altitudes, to see if the electrical activity is reduced at levels closer to the melting zone.

May 29, 1985 (1741-2029 GMT)

Purpose of flight was to penetrate stratiform area of MCS located roughly east of Wichita (by flight time, earlier track of storm was across Nebraska before moving south into PRE-STORM network). We hoped that penetration of the stratiform area at lower altitudes than on 26 May would yield less electrical activity. To the contrary, we encountered at least as much cloud-to-cloud lightning in this case as in the previous case, from -16C level down to the melting level. The controlled pointer descent at a descent rate at 200 fpm (about 1 m/s) was flown from about -16C to about +7C, using a figure 8 pattern initially centered over Iola, Kansas. Some of the PMS probes experienced problems, but it appears on first look that a useful data set was collected. The flight definitely puts us at a decision point as far as future penetrations of MCS stratiform structures are concerned. Neither W. Sand nor R. Kelly feel that further, similar penetrations should be attempted with the King Air. The level of electrical activity, as cloud-to-cloud lightning above the melting layer and as cloud-to-ground lightning closer to the active convection zone, is simply too great to risk further penetrations of the type flown on 26 May and 29 May.

Appendix C

PRECP AIRCRAFT MISSION SUMMARY

BROOKHAVEN LABS QUEEN AIR FLIGHT SUMMARY

June 1, 1985

The Queen Air (QA) made the ferry flight from Islip, Long Island to OKC, making refueling stops in Portsmouth, Ohio and Rolla, Missouri. Weather was clear all the way with the exception of a few thunderstorms encountered in the Tulsa area on the final leg to OKC. Operation of most equipment was satisfactory, with the exception of the ozone sensor and the relative humidity probe, which were clearly non-functional. Data were collected only for the first half of the ferry flight because of a shortage of blank recording tapes.

Data not available: O3, relative humidity; no data at all second half of flight.

June 4, 1985 (1502-1757 GMT)

The QA made a midday flight in the vicinity of OKC for the purpose of testing all equipment at the onset of the PRE-STORM/PRECP measurement program. The flight was conducted largely in clear air, though some small fair-weather cumulus clouds were encountered. Three filter pack samples were taken, and one filter for metals analysis. No cloudwater samples were collected. The data acquisition system (DAS) failed to record, apparently because of the high ambient temperature. In addition, problems were experienced with the ozone, NO_X , and relative humidity instruments. The sulfate detector responded but drifted a great deal.

Data not available: DAS data, O3, RH, SO4=.

June 5, 1985 (1424-1651 GMT)

The QA made a rainwater collection flight north and east of OKC. This flight was conducted in a steady rain which had begun the day before and which covered a broad area of Texas and Oklahoma. Rain was encountered throughout the flight, falling from a high cloud deck (cloud base >10k ft). Twelve rain samples were collected, three filter pack samples and one filter sample for metals analysis were taken. The data system and nearly all instrumentation on the QA worked perfectly, the exceptions being the RH sensor, which continued giving erroneous readings, and the NO channel of the NO_X detector, which had been improperly connected to the data system.

Data not available: RH, NO.

June 6, 1985 (2133-0000 GMT)

The flight on June 6 was very similar to that of the previous day. The QA flew east of OKC to collect rain samples below a high cloud layer in the Tulsa area. Most sampling was done along flight legs between Tuisa and Okmulgee, OK. Nine rain samples were collected, two filter packs and a metals filter were taken. Only minor problems were experienced: the RH sensor operated intermittently, the NO channel data connection had not yet been corrected and some drift was evident in the SO_4 detector. The data acquisition system operated properly.

Data not available: RH, NO.

June 8, 1985 (1745-1959 GMT)

A clear air intercomparison flight was performed with the QA and the other PRECP aircraft, the NOAA King Air (KA) and NCAR Sabreliner (SL), west of OKC. The data system failed because of the high temperatures on this day, which also resulted in considerable drift in the CO and SO_2/SO_4 response. The QA and the KA flew side-by-side at both 4k ft and 10k ft for intercomparison of data, however due to the data system failure the intercomparison is limited to chemical data. Two filter packs were taken on this flight. The RH sensor was not functional at all on this mission.

Data not available: DAS data; CO and SO2/SO4 during second half of flight.

June 10, 1985 (2059-2358 GMT)

The PRECP aircraft attempted a coordinated flight to sample around a convective cell. Convection was forecast SW of OKC, so the QA initially flew to the Hobart VOR. Weather in that area was clear, so the QA then returned east of OKC where a line of small cells had been sighted by the NCAR Sabreliner. However, those cells had dissipated by the time the QA arrived. The flight was continued as a clear air documentation flight, with filter packs taken at each of 3k, 6k, and 9k ft altitudes. The data system operated intermittently, apparently responding to temperature changes in the aircraft cabin. The RH sensor continued to give faulty readings, and was finally replaced after this flight. All other equipment operated properly. A metals analysis filter was taken.

Data not available: DAS data (intermittently).

June 13, 1985 (2000-2151 GMT)

The QA made a clear air chemical documentation flight flying south of OKC to Wichita Falls, Texas and back. All instrumentation worked properly on this flight. Two filter pack samples and a filter for metals analysis were taken.

Data not available: none.

June 15, 1985 (1029-1405 GMT)

The QA made an early morning flight to sample inflow air of thunderstorm cells in the Tulsa area. The entire flight was made under VFR conditions, with orientation of the flight track around the cells done visually. Two large cells were located in the Tulsa area, and were followed as far east as Fort Smith, Ark. The QA flew on the south side of these cells at various altitudes, sampling the inflow air for over an hour before the cells dissipated. Brief rain showers were encountered, but these were not of sufficient duration to allow collection of water samples. Three filter pack samples and a filter for metals were taken. The data system operated properly, as did all chemical instrumentation with the exception of the SO_4^{\pm} detector.

Data not available: SO_4 =.

June 16, 1985 (2017-2348 GMT)

The QA made a clear air flight to characterize the inflow air to a frontal system expected to move through the OKC area overnight. The flight took place along east-west legs north of OKC. Weather was clear, sunny, and hot, $T = 90^{\circ}$ F. The data system operated properly for about the first half of the flight, then went off-line due to the cabin temperature. Drift was observed in the response of the CO and SO_4^- detectors, also because of the heat, but all other equipment functioned well. Three filter pack samples and a metals filter were taken on this flight.

Data not available: DAS data (second half of flight), CO and SO_4^- (partial loss).

June 17, 1985 (1227-1530 GMT)

A morning flight was conducted east of OKC for the purposes of sampling inflow air and precipitation in thunderstorms in the Tulsa area. Most of the flight consisted of sampling around and below a broken line of small cells oriented in a north-south direction south of Tulsa. Precipitation from these clouds was very spotty, only three rain samples were collected. One filter pack and metals filter were taken. The data system and all instruments operated properly. A problem in the aircraft research power supply occurred early in the flight, apparently resulting from a failure in the aircraft starboard alternator, and requiring complete shutdown of the sampling equipment for about one half hour. However, the alternator resumed proper operation, and power was restored for the remainder of the flight.

Data not available: all data 13:00 to 13:40.

June 20, 1985 (1952-2103 GMT)

The QA made a clear air test flight west of OKC in the afternoon. Weather was clear, warm, with winds gusty from the south. This flight had two purposes: to test the behavior of the port engine on the QA, and to make clear air documentary measurements. Although not designed as an intercomparison flight, this mission may allow some comparison of data with that from the KA, which also made a flight in the same area on this day. All instruments worked well, but the data acquisition system was again troubled by overheating during the second half of the flight. No filter samples were taken.

Data not available: DAS data (second half of flight).

June 22, 1985 (1020-1224 GMT)

An early morning flight was conducted on June 22 north and east of OKC for the purposes of sampling air and collecting rain associated with passage of a cold front through Oklahoma on this day. Considerable lightning activity was observed which prevented the QA from entering the areas of significant precipitation; as a result, no rain samples were collected. Two filter packs were sampled. All instruments functioned properly, with the exception of the data system, which showed intermittent error messages indicating recurrence of the overheating problem.

Data not available: DAS data (intermittent).

June 25, 1985 (2220-0000 GMT)

The QA flew a test and intercomparison flight with the KA on the afternoon of June 25. One purpose of this flight was to test the effectiveness of modifications of the data system in relieving the temperature-related failure of data collection. Weather was clear and warm, $T = 90^{\circ}F$ at takeoff. The actual intercomparison with the KA took place from 23:14 to 23:23. The $SO_4^{=}$ detector exhibited drifting response, but all other equipment on the QA worked properly, including the data system. One filter pack was sampled on this flight.

Data not available: none.

June 26, 1985 (2012-2200 GMT)

This flight was conducted northwest of OKC to sample inflow air and collect precipitation near thunderstorms associated with a front extending through western Kansas. Strong lightning activity forced the QA away from the precipitation area, and severe turbulence was encountered during the flight. All instruments and the data system worked properly throughout the flight. One filter pack sample was taken.

Data not available: none.

June 27, 1985 (0004-0110 GMT)

The purpose of the flight was to sample inflow air to thunderstorms present in northwest Oklahoma. Because the QA compass had been damaged by turbulence encountered on the previous flight, this flight was shortened by the requirement to fly only in daylight VFR conditions. All instruments including the data system functioned properly. One filter pack sample was taken.

Data not available: none.

June 28, 1985

The QA made the return ferry flight from OKC to Islip, with refueling stops in St. Louis, Mo. and Columbus, Ohio. No measurements were made on the first leg of the flight. Sampling was performed on the latter two legs, in conditions of rain and broken clouds. Several rain and cloudwater samples were collected, and four filter pack samples were taken all instruments including the data system worked properly.

Data not available: none.

NCAR SABRELINER FLIGHT SUMMARY

June 5, 1985 (1803-2058 GMT)

High altitude flight from Oklahoma City to Wichita, Kans. and return. Flight levels 37K, 25K, 18K, 8K, and 3K feet.

Data not available: UV radiometer.

June 8, 1985 (1757-1850 GMT)

Aircraft intercomparison mission. Only 27 minutes of data collected. No data tape recorded.

Data not available: DAS tape, top total radiometer.

June 10, 1985 (1723-1955 GMT)

Flew mission to the west of OKC approximately 75 miles. Flight levels flown 37K, 25K, 18K, 8 K, and 3K feet.

Data not available: UV radiometer, top total radiometer.

June 10, 1985 (2108-2328 GMT)

Second flight flew west again to point 35°N, 100°W at 33K, 25K, and 18K feet.

Data not available: UV radiometer, top total radiometer.

June 13, 1985 (1705-1943 GMT)

Flew mission north of OKC to a point between Wichita and Salina, Kans. Sounding taken between 15000 to 3000 feet. Levels flown were 18K, 25K, 35K, 10K, and 3K feet.

Data not available: None.

June 15, 1985 (1107-1342 GMT)

MCS in the vicinity of Ft Smith, AK. Flew through anvil of storm at 33000 ft. Also flight levels at 25K, 19K, and 3K feet.

Data not available: None.

June 16, 1985 (2056-2347 GMT)

Flew to area south of Hays, Kans.; north-south tracks to the east of convective cells. Flight levels flown were 35K, under anvil at 25K, 37K just in anvil, and profiles from 19-3K feet.

Data not available: None.

June 17, 1985 (1256-1540 GMT)

Flew in the vicinity of Tulsa, OK at 23K, 31K, in cloud, then east of growing convective towers at 3K and 10.5K feet.

Data not available: None, tape gap (1403-1408).

June 17-18, 1985 (2200-0030 GMT)

Flew mission southeast of OKC in clouds forming along a cold front. Box pattern around clouds at 23K, 27K, 31K, and 29K feet, plus sounding from 17.5K to 3K feet.

Data not available: None.

June 18, 1985 (1750-2018 GMT)

Flew southeast out of OKC to vicinity of Texarkana at flight levels 27k, 23K, and 20K feet. Dallas-Ft Worth controller would not allow flight into anvil cloud. Profile taken from 17.5K to 3K feet.

Data not available: None.

June 20, 1985 (2005-2243 GMT)

Intercomparison flight with NOAA's P-3 to the west of OKC at flight levels 28K, 4.5K, 9.5K feet. A/C sounding from 3K to 17.5K feet.

Data not available: None.

June 22, 1985 (1715-1955 GMT)

Mission was to fly to Little Rock, Ark. in the stratiform region of a dissipating thunderstorm. Sounding taken between 17.5K-3K feet. Flight legs at 29K, 34K, and 26K feet.

Data not available: Grab sampling pump inoperative.

June 22-23, 1985 (2207-0015 GMT)

Flight to east of OKC. Sounding taken from 17.5K to 3K feet. Levels flown 23K and 35K feet, encountered tropopause fold.

Data not available: Grab sampling pump inoperative.

June 25, 1985

Convective cell too large for monitoring of outflows for any length of time. Flew at 31K, 27K, 24K, and 3K feet. Performed intercomparison with NOAA's King Air.

Data not available: None.

June 26, 1985 (1954-2229 GMT)

Flew to the northwest of OKC at 28K, 33K, and 31K feet.

Data not available: Aerosol filters.

June 27, 1985 (0006-0210 GMT)

Sampling a large meso-beta system west of OKC at 33K, 25K, and at 18K feet.

Data not available: Aerosol filters.

June 27, 1985 (1949-2208 GMT)

Mission was to collect ice from high, fair-weather cirrus clouds at 35K, 24K, and 21K feet.

Data not available: None.

NOAA AIR QUALITY DIVISION KING AIR FLIGHT SUMMARY

June 5, 1985 (1534-1726 GMT)

Test flight #1. Data acquisition system (DAS) recording problems encountered during flight operations. When functioning, data OK and available.

Data not available: DAS intermittent, NO_X , O_3 , sulfur, no filter packs or water samples, CO.

June 6, 1985 (2140-2340 GMT)

Test Flight #2. Continued DAS problems. Found and fixed at end of flight. VOR navigation malfunction, possibly need a new antenna. VFR flights only until further notice. Data rate entered incorrectly.

Data not available: VOR, DAS intermittent, sulfur, O_3 , CO, NO_X , winds. No filter pack or water samples.

June 7, 1985 (2009-2100 GMT)

Test Flight #3. DAS working properly. No aircraft intercomparisons. Successful test flight.

Data not available: Sulfur, O₃, NO_x, no filter packs or water samples.

June 8, 1985 (1745-2024 GMT)

A good sampling flight. QueenAir and Sabreliner attempted coordinated intercomparison, but both had DAS problems. Some intercomparison in clear air was possible. Test run on filter pack but flow meter was broken. Winds are in error when Heading sticks.

Data not available: No filter packs or water samples.

June 10-11, 1985 (2132-0126 GMT)

Initially, flew to the west, then diverted east of Oklahoma City to sample dissipating Cb. Continued to west of OKC to measure inflow air into squall line which passed OKC near midnight. Mission coordinated with NCAR Sabreliner and Brookhaven QueenAir. Good mission. Four filter packs taken.

Data not available: Dew point temperature appears high, winds and a/c heading questionable.

June 15, 1985 (1101-1514 GMT)

Flight landed in Ft. Smith, AK then returned to OKC. Performed constant altitude flight patterns in residual meso-beta system. Found high FSSP and ASASP counts above 10000 ft level. Apparently, boundary layer air is reprocessed and moved upward. Still have problems with VOR navigation. Sulfur box malfunction. One filter pack taken.

Data not available: Error condition on CO, sulfur.

June 16-17, 1985 (2040-0039 GMT)

Flight legs sampled area to the southeast of an approaching meso-beta convective system.

Data not available: Overheated dew point temp. O_3 too hot after 2248. Sulfur operational below 15000 ft.

June 17, 1985 (2035-2330 GMT)

Boundary layer flight through inflow area of a weak MCS. No precipitation samples collected. One filter pack taken.

Data not available: Dew point temperature from 2119-2307.

June 18, 1985 (1750-1934 GMT)

Flew south then east of OKC. Attempted to collect precipitation samples but none available. One filter pack taken, then returned to OKC.

Data not available: Water samples. Dew point temperature intermittent.

June 21-22, 1985 (0452-0756 GMT)

Nocturnal squall line sampled. Flew in the vicinity of night-time jet between 3500-5000 ft. Aircraft cabin temperature very high. DAS may have recording problems. Some precipitation collected on the ground. Two filter packs taken.

Data not available: Dew point temperature inoperative.

June 25-26, 1985 (2306-0244 GMT)

Inflow flight in vicinity of meso-beta system. Collected one precipitation sample after the inflow study. Two filter packs taken.

Data not available: Dew point temperature inoperative.

June 26, 1985 (2042-2311 GMT)

Low-level flight to study inflow region of squall line. One filter pack taken.

Data not available: Dew point temperature.

June 27, 1985 (0042-0336 GMT)

Continuation of low-level flight in region of squall line inflow. This flight passed on backside of squall line before returning to OKC. Two filter packs taken.

Data not available: No water samples. No dew point temperature.