

Incorporating Geostationary Lightning Data into a Radar Reflectivity Based Hydrometeor Retrieval Method: An Observing System Simulation Experiment

**Haoliang Wang^{1,2}, Yubao Liu^{2,3}, Tianliang Zhao¹, Mei Xu², Yuewei Liu²,
Fengxia Guo¹, William Y.Y. Cheng², Shuanglei Feng³, Edward R. Mansell⁴,
Alexandre O. Fierro⁵**

¹ Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China 210044

² National Center for Atmospheric Research, Boulder, Colorado, USA 80301

³ China Electric Power Research Institute, Beijing, China 100192

⁴ NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma, USA 73072

⁵ Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma, USA 73072

Corresponding author: Haoliang Wang (haoliang@nuist.edu.cn).

Address: Nanjing University of Information Science & Technology, 210044 Ningliu Road, Nanjing, China 210044.

Manuscript submitted for consideration to *Atmospheric Research*

32

33 **Abstract**

34 A retrieval method for deriving the hydrometeor mixing ratio within mesoscale
 35 convective system (MCS) is presented in this study. The hydrometeor retrieval method
 36 was designed to incorporate the flash extent densities (FED) data from the Feng-Yun-4
 37 geostationary satellite into the S-band radar reflectivity (Z_h) and ambient temperature (T)
 38 data-based hydrometeor retrieval method. Total lightning data are utilized to better
 39 discern regions containing graupel in clouds. In the quantitative estimation of rain mixing
 40 ratio, different intercept parameters are used for different ranges of Z_h and different
 41 estimated precursors of raindrop in cold-cloud microphysical processes (i.e., graupel and
 42 snow aggregate). The hydrometeor retrieval method was evaluated through an observing
 43 system simulation experiment (OSSE) in which the pseudo-input-data for the
 44 hydrometeor retrieval (i.e., the FED, Z_h and T data) were obtained from the cloud-scale
 45 (1-km) simulation of an MCS using explicit electrification implemented within the
 46 Weather Research and Forecasting model. By incorporating the FED data as an
 47 additional input data source into the Z_h and T -based hydrometeor retrieval method, the
 48 hydrometeor retrieval accuracy was improved. The hydrometeor retrievals were then
 49 assimilated into the model using the Real-Time Four-Dimensional Data Assimilation
 50 (RTFDDA) system. Assimilating more accurate hydrometeor fields slightly improved the
 51 analyses and forecasts of convective precipitation in the test MCS case. The improvement
 52 could be due to the more accurate hydrometeor analysis, which further affected the
 53 strength of the cold pool and gust front.

54

55 **Key words:** Lightning; Hydrometeor retrieval; Data assimilation; Numerical weather
 56 prediction; Observing system simulation experiment.

57

58 **1. Introduction**

59 The retrieval of hydrometeor within convective clouds is useful to provide a more
 60 accurate estimate of latent heat release and to improve hydrometeor analyses for the
 61 initialization of convection-allowing numerical weather prediction (NWP) models,
 62 among other applications. These applications motivated several studies aimed at
 63 developing and testing hydrometeor retrieval methods (e.g., Dawson and Xue 2006; Hu
 64 and Xue 2007; Kain et al. 2010; Ziegler et al., 2013; Xue et al. 2014).

65 Owing to its high spatial and temporal resolution, weather radar remains the
 66 primary data source for hydrometeor retrieval. Previous studies have shown that
 67 polarimetric radars, which provide a variety of variables (e.g. reflectivity Z_h , differential
 68 reflectivity Z_{DR} , specific differential phase K_{DP} , and correlation coefficient ρ_{HV}), has the
 69 ability to identify bulk hydrometeor types of convective clouds and improve the
 70 quantitative estimate of liquid water content (LWC) and ice water content (IWC; e.g.
 71 Vivekanandan et al. 1999; Straka et al., 2000; Zrnic et al. 2001).

72 For areas solely within the range of non-polarimetric radars, reflectivity (Z_h) and
 73 temperature (T) based hydrometeor retrieval methods have been developed by several
 74 investigators (e.g., May et al., 2005; Hu et al., 2006; Lerach et al., 2010). The single Z_h

75 threshold (e.g., 32 dBZ c.f. Lerach et al., 2010; Pan et al., 2016) is often used to classify
76 the graupel-dominated regions and snow aggregates-dominated regions above the
77 freezing level. Because the possible ranges of Z_h for graupel and snow aggregates
78 partially overlap (i.e., the Z_h range of graupel and snow aggregates are typically 25 – 50
79 dBZ and 0 – 35 dBZ, respectively; Straka et al., 2000), single Z_h threshold could
80 introduce uncertainty in distinguishing the graupel-dominated versus snow
81 aggregates-dominated regions. Cazenave et al. (2016) tested the sensitivity of the
82 polarimetric radar-based classification of graupel and snow aggregates to the bias in Z_h ,
83 and found that a positive bias in Z_h of 3 dBZ changed the respective percentages of
84 graupel-dominated regions and snow aggregates-dominated regions from 8% and 32.9%
85 to 13.1% and 28.4% in the classification results of a squall line case, respectively. It can
86 be inferred that the sensitivity of the classification of graupel-dominated regions and
87 snow aggregates-dominated regions to the Z_h bias would be even larger without the
88 additional information supplied by polarimetric radar variables (e.g., K_{DP} and Z_{DR}) in the
89 simple Z_h and T -based hydrometeor retrieval method. Additionally, the classification of
90 graupel-dominated and snow aggregates-dominated regions were found to be highly
91 sensitive to the selected Z_h threshold in the Z_h and T -based hydrometeor retrieval method
92 (include reference here).

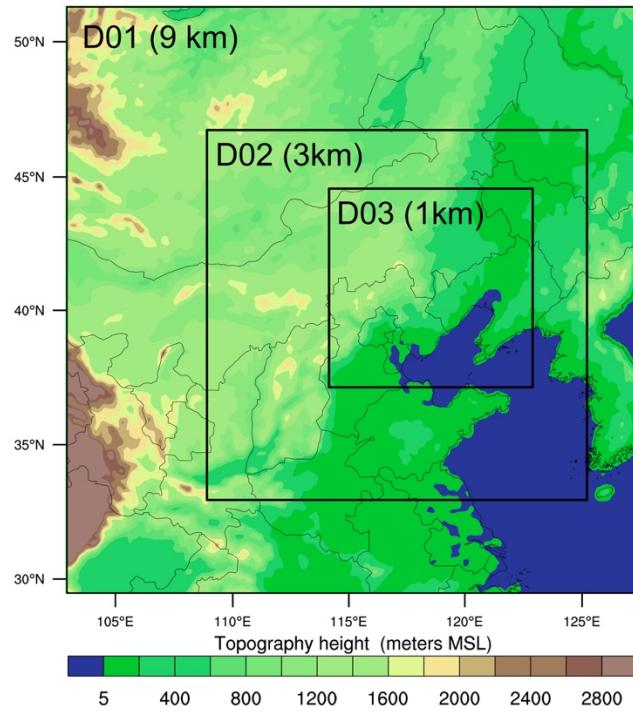
93 It is generally accepted that the primary charge separation mechanism in
94 thunderstorms arises from elastic collisions between graupel and ice crystals in the
95 presence of supercooled water, known as riming electrification. This charging mechanism
96 has been long supported by research based on laboratory experiments (e.g. Reynolds et
97 al., 1957; Takahashi, 1978; Saunders et al., 1991;) and field observations (e.g., Dye et al.,
98 1986; Lang et al., 2004; Qie et al., 2005a,b, 2009; MacGorman et al., 2005, 2008).
99 Lightning discharge, which is a by-product of electrification and charge, is thus closely
100 related to graupel content (e.g., Goodman et al., 1988; Carey and Rutledge, 1996, Fierro et
101 al. 2006). Based on field observations, researchers found that the majority of lightning
102 initiation occurs within or close to regions containing graupel (e.g. Bruning et al., 2007;
103 Lund et al., 2009; Ribaud et al, 2016). Additionally, studies found that the regions
104 without graupel (e.g., pure snow aggregates regions) are characterized by weak electric
105 fields and lightning activity (Ribaud et al., 2016; Takahashi et al., 2017). These findings
106 highlight the promising aspect of lightning data for indicating regions containing graupel.

107 Owing to recent developments of lightning detection technique, lightning data
108 have been used as a proxy for rainfall (e.g., Alexander et al., 1999; Chang et al., 2001;
109 Pessi and Businger, 2009), water vapor content (e.g., Fierro et al., 2012, 2014, 2015,
110 2016) and hydrometeor mixing ratio (e.g., Qie et al., 2014; Wang et al., 2017). China
111 recently launched the Feng-Yun-4 (FY-4) geostationary satellite (Yang et al., 2016). One
112 of the instruments aboard FY-4 is the Lightning Mapping Imager (LMI), which is able to
113 detect total lightning (i.e., in-cloud plus cloud-to-ground flashes) over China and its
114 adjacent regions with a spatial resolution of about 8-km at nadir with a detection
115 efficiency nearing 90-% in real time (Yang et al., 2016). Most operational weather radars
116 in China, however, are non-polarimetric, which imposes a stringent limitation for
117 identifying graupel and snow aggregates. In this work, we demonstrate that the lightning
118 data provided by the FY-4 geostationary satellite may, in some circumstances, help to
119 improve the accuracy of the non-polarimetric radar based hydrometeor retrieval within
120 mesoscale convective systems (MCSs).

121 This study presents a hydrometeor retrieval method, which incorporates the
122 lightning data from the FY-4 geostationary satellite as an additional input data source into
123 the Z_h and T based hydrometeor retrieval method. The hydrometeor retrieval method was
124 evaluated via an observing system simulation experiment (OSSE). The impacts of the
125 hydrometeor retrieval method on the short-term forecasts of an MCS at
126 convection-resolving scale ($1 \text{ km} \times 1 \text{ km}$) were evaluated through the use of the National
127 Center for Atmospheric Research (NCAR) Real-Time Four-Dimensional Data
128 Assimilation (RTFDDA) system.

129

130 **2. Case description and model setup**


131 *2.1 Brief description of the severe convective event*

132 An MCS, which took place in the North China Plain on 13 June 2010 was
133 selected as the OSSE case. The MCS initially developed over the northwestern Hebei
134 province around 0500 UTC and gradually moved southeastward toward Beijing around
135 1200 UTC. The MCS dissipated shortly before moving over the Bo Sea by 1800 UTC.
136 The severe convective event lasted for more than 15 h. It was influenced by a deep low
137 (996 hPa) situated over eastern Inner Mongolia. Convective available potential energy
138 (CAPE) exceeded 2200 J/kg throughout much of Hebei, Beijing and Tianjin during this
139 time, while convective inhibition (CIN) was overall weak (approximately -30 to -200
140 J/kg), indicating an environment favorable for severe convection.

141

142 *2.2 Model setup*

143 The numerical model used for this work is the Weather Research and Forecasting
144 - Electrification (referred to as E-WRF; Mansell et al., 2005; Fierro et al., 2013) model.
145 The simulation domains included two nested grids (Fig. 1). The horizontal grid spacings
146 were 9 km, 3 km (i.e., convection-allowing scale) and 1 km (i.e., cloud-resolving scale)
147 for each of the three domains, respectively. Hydrometeor retrieval and data assimilation
148 were only performed in the innermost, cloud-resolving domain. Two-way nesting
149 between parent and inner nests were activated, so the impact of data assimilation can
150 feedback from the innermost cloud-resolving domain to its parent domains. Each domain
151 features 43 vertical eta levels with a model top set at around 50 hPa. The “true simulation”
152 used the ERA-Interim reanalysis produced by the European Centre for Medium-Range
153 Weather Forecasts (ECMWF; Dee et al., 2011) as initial and lateral boundary conditions.
154 The simulations were initialized at 0600 UTC, 0700 UTC, 0900 UTC for the D01, D02
155 and D03, respectively, and were ended at 0000 UTC, 14 June 2010. The initial fields for
156 the nested domain were interpolated from their parent domain. The MCS was well
157 captured by the innermost cloud-resolving domain (i.e., D03) during the entirety of the
158 simulation (i.e., 15 hours).

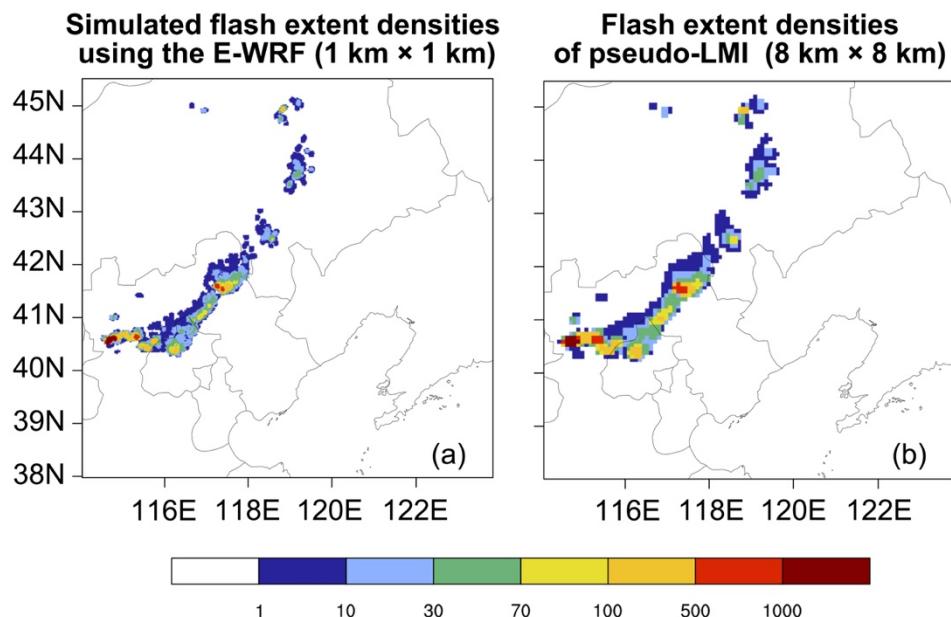
159

160 **Fig. 1.** Configuration of the WRF parent domain (D01: 9-km) and the two nested
 161 domains (D02: 3-km and D03: 1-km) for the OSSE case study. Terrain heights are shown
 162 in colored shades.

163 The physical schemes employed in this study included the NSSL double-moments
 164 bulk microphysics (Ziegler et al., 1985; Mansell et al., 2010a,b), the Noah land surface
 165 model (Chen and Dudhia 2001), the Mellor–Yamada–Janjic turbulence kinetic energy
 166 (TKE) scheme for the planetary boundary layer (Janjic 1994), and the Rapid Radiative
 167 Transfer Model GCMs (RRTMG) for shortwave and longwave radiation (Iacono et al.,
 168 2008). The Grell-Freitas convective parameterization scheme (CPS; Grell et al., 2013)
 169 was only activated in the parent domain (D01).

170

171 **3. Methods**


172 *3.1 Simulated observations*

173 The pseudo-LMI flash extent density (FED) observations were simulated using
 174 explicit electrification and lightning physics (Mansell et al., 2005; Fierro et al., 2013)
 175 which are coupled with the NSSL double-moment bulk microphysics scheme within
 176 WRF (E-WRF). The flash origin density and FED are explicitly simulated by E-WRF,
 177 which resolves the three-dimensional field of charge and solves for the three components
 178 of the ambient electric potential and, thus, ambient electric field. For more details on
 179 E-WRF, the reader is invited to consult Mansell et al. (2005) and Fierro et al. (2013). The
 180 areal extents of the simulated flash origin density were found to be reasonably consistent
 181 with the observations from the Earth Networks Total Lightning Network (ENTLN; Fierro
 182 et al., 2013).

183 In this set of simulations, the Saunders and Peck Scheme (Saunders and Peck,
 184 1998; Mansell et al., 2005) was selected as the non-inductive charging scheme; for
 185 breakdown, the vertical electric field profile of Dwyer et al., (2003) was employed; the
 186 screening layer parameterization was de-activated; the size of the discharge cylinders was
 187 set to 6-km; the fraction of the net charge removed/superposed within the cylinder
 188 volumes upon bulk discharge was set to 60%.

189 The simulated 1-km FED were accumulated over a 15-min period and centered
 190 around the radar sampling time. The pseudo-LMI FED at each 8-km pixel was generated
 191 by selecting the maximum 1-km FED within the 8-km pseudo-LMI pixel (Fig. 2). The
 192 8-km FED obtained using this approach likely are underestimated, as multiple lightning
 193 flashes could propagate into an 8-km pixel without overlapping each other on the 1-km
 194 pixel (Mansell et al., 2014). However, as the hydrometeor retrieval method presented in
 195 this study is essentially a binary function of lightning coverage, it is expected that the
 196 quantitative value of the FED fields has little impact on the retrieval results. The
 197 detection efficiency of the LMI was assumed as “perfect” for this study.

198 The pseudo- Z_h observation of S-band ($\lambda = 10.5$ cm) non-polarimetric radar
 199 reflectivity was simulated from the truth simulation by using a radar simulator coupled
 200 with the NSSL double-moments bulk microphysics scheme, which utilized the mixing
 201 ratios and number concentrations of rain, snow aggregates and graupel to calculate the
 202 equivalent reflectivity factor, Z_e ($\text{mm}^6 \text{ m}^{-3}$; Ferrier et al., 1994; Mansell et al., 2010a).
 203 When a double-moment microphysics scheme is used, number concentration is allowed
 204 to vary independent of the mixing ratio, which can significantly improve the analysis of
 205 particle size distributions (PSD) and the computation of radar reflectivity. Cloud ice and
 206 cloud water were not considered when computing Z_e due to their negligible contributions.
 207 It was assumed that the effect of the 0 °C layer bright band has been corrected during the
 208 quality control process and the observations of Z_h were perfect. The Z_h data were
 209 interpolated from the radar polar coordinate onto the 1-km, Cartesian grid of D03.

211 **Fig. 2.** Horizontal cross sections of (a) simulated FED fields in D03 ($1 \times 1 \text{ km}^2$, 15 min^{-1})
212 and (b) the pseudo-LMI FED ($8 \times 8 \text{ km}^2$, 15 min^{-1}).

213

214 *3.2 Identification of the dominant hydrometeor type*

215 The hydrometeor retrieval algorithm presented here is based on algorithms for
216 non-polarimetric radar developed by Lerach et al. (2010), Gao et al. (2012) and Pan et al.
217 (2016), which use the S-band Z_h and T . In the hydrometeor retrieval method presented
218 here, the FED data were combined with Z_h and T to identify the hydrometeor type and to
219 determine the intercept parameters of raindrop when quantitatively estimating rain mass
220 mixing ratio (q_r).

221 The hydrometeor categories in the retrieval method contain rain, graupel and
222 snow aggregates. The category of snow aggregates here refers to aggregated-ice and the
223 category of graupel refers to rimed ice and heavily rimed snow, which is consistent with
224 the definition in most bulk microphysical parameterization (BMP) schemes and
225 dual-polarimetric radar based hydrometeor retrieval algorithms. Hail is not classified, as
226 hail and graupel are not always explicitly treated separately in microphysics schemes.

227 Before describing the hydrometeor retrieval method, the information regarding
228 which regions of a storm are favorable for frequent lightning initiation and propagation
229 are introduced. The initiation and propagation of lightning is driven by the ambient
230 electric field and electric potential, which are determined by the three-dimensional
231 distribution of electric charge (e.g., Mansell et al., 2002, 2010a; Tan et al., 2014; Bruning
232 et al., 2013; Wang et al., 2016). It is generally accepted that most of the electric charge in
233 convective clouds is generated by the non-inductive mechanism, which requires the
234 presence of graupel pellets. Therefore, it is reasonable to expect that lightning channels
235 will follow the distribution of graupel particles, and graupel echo volume has been used as
236 a proxy for lightning channel density (i.e., the FED; Allen et al., 2016). As convection
237 matures, some charged ice crystals and snow aggregates are advected rearward into the
238 anvil or trailing stratiform region (e.g., Carey et al., 2005) allowing some lightning
239 flashes to propagate beyond the graupel regions in the updraft core into regions where the
240 charge density is sufficient for continued propagation of lightning (e.g., Carey et al.,
241 2005). Lightning can also occur in MCS stratiform regions and anvils of mature storms
242 where graupel contents are low (Kuhlman et al., 2009). However, the FED rates in such
243 regions generally are noticeably lower than in the vicinity of updraft cores (Carey et al.,
244 2005; Calhoun et al., 2013). It was thus assumed that regions where the FEDs are
245 significantly smaller than the average FED over the entire convective cell (F_AVG),
246 would more likely be characterized by low charge density regions consisting of charged
247 snow aggregates advected from the non-inductive electrification regions. The following
248 approach was devised to filter the FED in those regions.

249 (i) In the FED map ($8 \text{ km} \times 8 \text{ km}$), we clustered convective cell by using the
250 accumulated FED data within a 15-min interval. If a pixel with non-zero FED is
251 connected with other pixels with non-zero FED value, they are grouped into the same
252 convective cell.

253 (ii) Computing the average FED for each clustered convective cell within a time
254 window of 15-min (F_AVG).

255 (iii) Filtering the pixels with large negative deviations of FED from F_AVG. In
256 this study, the pixels with FED less than 0.16-F_AVG were filtered out. We use the
257 relative values instead of the absolute values as the filter parameter is designed to prevent
258 the low FED convective cells from being filtered out. Since this filter threshold is
259 somewhat arbitrary, it is challenging to exactly filter the low charge density regions
260 consisting of charged ice crystals and snow aggregates advected from the non-inductive
261 electrification regions. More accurate calibration of this parameter needs to be
262 investigated in future study using real FED observations from the FY-4 geostationary
263 satellite.

264 In order to jointly use the FED and Z_h data, the coverage of filtered 8-km FED
265 was mapped onto the 1-km grid, i.e., if one 8-km pixel has a non-zero FED, all the 1-km
266 pixels within that 8-km pixel will be assigned a non-zero FED value.

267 In the follow-on steps, graupel is classified in grid cells located in the cold cloud
268 regions ($T < 0$ °C), when one of the following criteria is met:

269 (i) The grid cell lies within the filtered FED outlines and $Z_h > 25$ dBZ.

270 (ii) The grid cell lies outside the filtered FED outlines and $Z_h > 35$ dBZ.

271 Similarly, snow aggregate is classified as follows:

272 (i) The grid cell lies within the filtered FED outlines and the 0 dBZ $< Z_h \leq 25$ dBZ.

273 (ii) The grid cell lies outside the filtered FED outlines and the 0 dBZ $< Z_h \leq 35$
274 dBZ.

275 The philosophy behind the choice of these particular criteria is that the regions
276 inside the filtered FED outlines are those most likely to contain graupel particles.
277 Therefore, the Z_h threshold used to differentiate between graupel and snow aggregates is
278 set to the lower limit of the Z_h range of graupel (25 dBZ). For a time period of 15-min,
279 the regions outside the filtered FED outlines are relatively less likely to contain graupel
280 particles. In this case, the Z_h threshold used to differentiate between graupel and snow
281 aggregates is set to the upper limit of the Z_h range of dry snow aggregates (35 dBZ), as
282 Z_h hardly exceeds this threshold without the existence of graupel in cold-cloud regions.

283 The in-situ observations indicated that the regions of pure graupel are rare, and
284 most cold-cloud regions consist of pure snow aggregates or mixed graupel/snow
285 aggregates (e.g. Sukovich et al., 2009). Therefore, in cold-cloud regions, the grid cells
286 identified as being dominated by graupel are regarded as mixed graupel/snow aggregates
287 regions, and the grid cells identified as being dominated by snow aggregates are regarded
288 as pure snow aggregates regions.

289 Because graupel and snow aggregates could coexist in the melting layer, their
290 threshold temperatures are extended below the freezing level, namely: up to 5 °C and 3 °C

291 respectively. The remaining hydrometeor species below the freezing level is classified as
292 rain.

293

294 *3.3 Quantitative estimations of hydrometeor mixing ratio*

295 For the regions only containing one class of hydrometeor (e.g., pure rain or pure
296 snow aggregates), the mixing ratio was simply computed using the Z_e - q equations. When
297 multiple species coexist in the mixed regions, the measured total equivalent reflectivity
298 factor (Z_e , mm^6m^{-3}) is partitioned and allotted to each hydrometeor species based on
299 empirical observation results.

300 In the mixed graupel/snow aggregates regions, graupel and snow aggregates
301 contribute to Z_e . The equivalent reflectivity factor of graupel ($\hat{Z}_e^{\text{graupel}}$) is computed as
302 follows,

303
$$\hat{Z}_e^{\text{graupel}}(i, j, k) = p \cdot Z_e(i, j, k) \quad (1)$$

304 where p ($0 \leq p \leq 1$) is the fraction of the Z_e from graupel.

305 Because graupel has a larger terminal fall speed than snow aggregate, it is
306 reasonable to expect that graupel and snow aggregates in the mixed graupel/snow
307 aggregates regions show differences in their vertical distribution. The trapezoidal
308 weighting functions corresponding to ambient temperature profile for graupel and snow
309 aggregates, which were used in Zrnic et al. (2001), were employed to consider the
310 vertical distributions of graupel and snow aggregates. The equivalent reflectivity factor of
311 graupel that takes into account the vertical distribution of graupel (Z_e^{graupel}) can be
312 expressed as:

313
$$Z_e^{\text{graupel}}(i, j, k) = \frac{p \cdot W_{\text{graupel}}[T(k)]}{p \cdot W_{\text{graupel}}[T(k)] + (1-p) \cdot W_{\text{snow}}[T(k)]} \cdot Z_e(i, j, k) \quad (2)$$

314 where i, j, k represent the horizontal and vertical coordinate dimensions, $T(k)$ is the
315 ambient temperature profile, and $W_{\text{graupel}}[T(k)]$ and $W_{\text{snow}}[T(k)]$ are the trapezoidal
316 weighting functions (between 0 and 1) corresponding to ambient temperature profile for
317 graupel and snow aggregates.

318 The equivalent reflectivity factor of snow aggregates (Z_e^{snow}) in the mixed
319 graupel/snow aggregates regions is computed as follows:

320
$$Z_e^{\text{snow}}(i, j, k) = \frac{(1-p) \cdot W_{\text{snow}}[T(k)]}{p \cdot W_{\text{graupel}}[T(k)] + (1-p) \cdot W_{\text{snow}}[T(k)]} \cdot Z_e(i, j, k) \quad (3)$$

321 In convective clouds, the fraction of graupel in the mixed graupel/snow
322 aggregates regions varies from case to case. Here, we assumed p is 0.9 in the mixed
323 graupel/snow regions. The upper limit of Z_e^{snow} was set to $10^{3.5} \text{ mm}^6\text{m}^{-3}$, as the Z_h for
324 snow aggregates hardly exceeds 35 dBZ (e.g., Straka et al., 2000). If the calculated
325 Z_e^{snow} exceeded $10^{3.5} \text{ mm}^6\text{m}^{-3}$, the grid cells were reallocated to graupel. The graupel
326 mixing ratio (q_g) and snow aggregates mixing ratio (q_s) in the mixed graupel/snow
327 aggregates regions were computed using Z_e - q relationships where Z_e^{graupel} and Z_e^{snow}
328 were determined.

329 In the melting layer, q_g and q_s were estimated using a linear function with their
 330 values at the cold-cloud regions used as the starting value. Because it was assumed that
 331 the effects of the bright band near the freezing level has been corrected during the quality
 332 control, the graupel and snow aggregates were assumed to be dry. The Z_e^{rain} in the
 333 melting layer was calculated after subtracting the $Z_e^{graupel}$ and Z_e^{snow} .

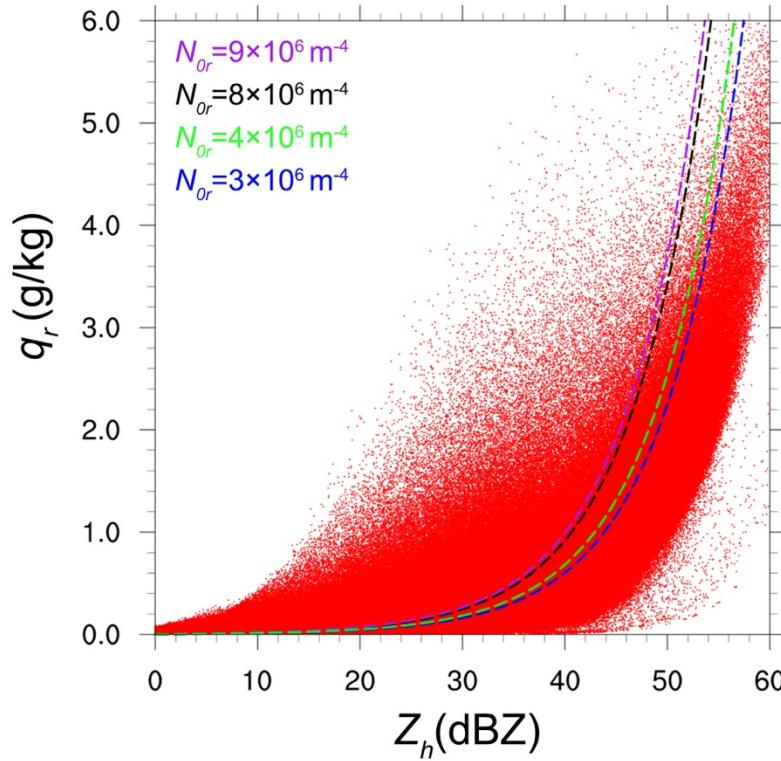
334 When using Z_e - q relationship to quantitatively estimate the hydrometeor mixing
 335 ratio, the PSD were assumed to be exponential shape (Eq. 4).

$$336 \quad N_x(D) = N_{0x} \exp(-\lambda_x D_x) \quad (4)$$

337 where x represents the hydrometeor species (i.e., graupel, snow aggregates, rain),
 338 $N_x(D)\delta D$ is the drop numbers per unit volume between diameters D and $D + \delta D$, N_{0x}
 339 is the intercept parameter, which is the value of N_x for $D = 0$, λ_x is the slope
 340 parameter, which is diagnosed as

$$341 \quad \lambda_x = \left(\frac{\rho_x \pi N_{0x}}{\rho q_x} \right)^{0.25} \quad (5)$$

342 where ρ_x is the bulk density of hydrometeor, ρ is the air density, and q_x is the
 343 hydrometeor mixing ratio.


344 The intercept parameters and the densities of graupel and snow aggregates (Table
 345 1) were assumed constant. Although this assumption was used in previous studies (e.g.,
 346 Xue et al., 2006; Tong et al., 2008), it is important to highlight that there exist
 347 uncertainties in these assumptions, as the PSD varies significantly in space and time.

348 **Table 1.** A summary of the intercept parameters and bulk densities of each hydrometeor
 349 categories used in the hydrometeor retrieval method.

Categories	Intercept parameter (m^{-4})	Density (kg m^{-3})
Graupel	3×10^6	400
Snow aggregates	2×10^7	100
Rain	8×10^6 / Variable	1000

350
 351 The relationship between the Z_h for rain computed using the double-moment
 352 microphysics parameters (i.e., mixing ratio and number concentration) and q_r were
 353 analyzed throughout the life cycle of a simulated MCS (Fig. 3). It was found that with the
 354 increase of Z_h^{rain} , q_r tended to be overestimated when the intercept parameter of rain
 355 (N_{0r}) was set to $8 \times 10^6 \text{ m}^{-4}$, which value has been widely used for representing raindrop
 356 PSD (e.g., Lin et al. 1983; Hong et al. 2004). When N_{0r} was set to $3 \times 10^6 \text{ m}^{-4}$, such
 357 overestimation was partially alleviated (Fig. 3). This is consistent with past studies that
 358 the high Z_h regions are more likely to be associated with relatively low number
 359 concentrations, which is an indication of larger drop size (e.g., Schuur et al. 2001; Carlin
 360 et al., 2016). Cold rain processes contribute significantly to the total rainfall within MCS
 361 (e.g. Houze et al., 1997). The other factor that affects raindrop size was found to be the
 362 precursor of raindrop in cold cloud microphysical processes (e.g., Waldvogel et al., 1974;

363 Fabry and Zawadzki, 1995). In the case of equal Z_h value, raindrops resulting from the
 364 melting of snow aggregates tend to have a larger size than those which melted from
 365 graupel (e.g., Waldvogel et al., 1974).

366

367 **Fig. 3.** Comparison of the Z_e - q equation (Z_e is converted to Z_h herein) for
 368 raindrops when assuming an exponential shape PSD (Eq. 4) with different N_{0r} (dash
 369 curves) and q_r versus Z_h from rain (red dots) computed using the double-moment
 370 microphysics parameters throughout the life cycle of the simulated MCS. The formulae
 371 used to compute Z_h from rain with the double-moment microphysics parameters was the
 372 same as in the radar simulator coupled in the NSSL double-moments bulk microphysics
 373 scheme. The values of N_{0r} corresponding to each curve are marked with colored font.

374 Infused from these findings, N_{0r} was not assumed constant in this hydrometeor
 375 retrieval method.

376 (i) In the column where only snow aggregates exist above 0 °C:

$$N_{0r} = \begin{cases} 8 \times 10^6 m^{-4}; 0 < Z_h \leq 35 \text{ dBZ} \\ (43 - Z_h) \times 10^6 m^{-4}; 35 < Z_h \leq 40 \text{ dBZ} \\ 3 \times 10^6 m^{-4}; Z_h > 40 \text{ dBZ} \end{cases}$$

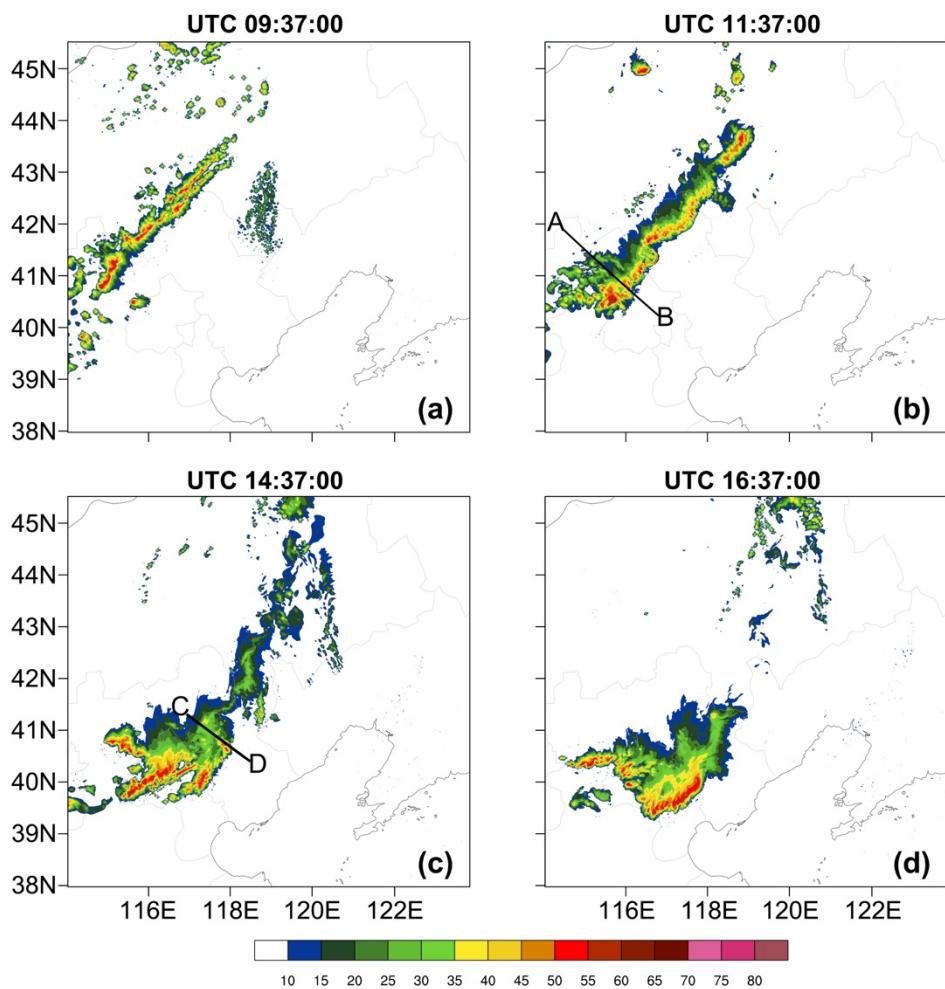
377 (ii) Similarly, in the column where graupel exists above 0 °C:

$$N_{0r} = \begin{cases} 9 \times 10^6 m^{-4}; 0 < Z_h \leq 35 \text{ dBZ} \\ (44 - Z_h) \times 10^6 m^{-4}; 35 < Z_h \leq 40 \text{ dBZ} \\ 4 \times 10^6 m^{-4}; Z_h > 40 \text{ dBZ} \end{cases}$$

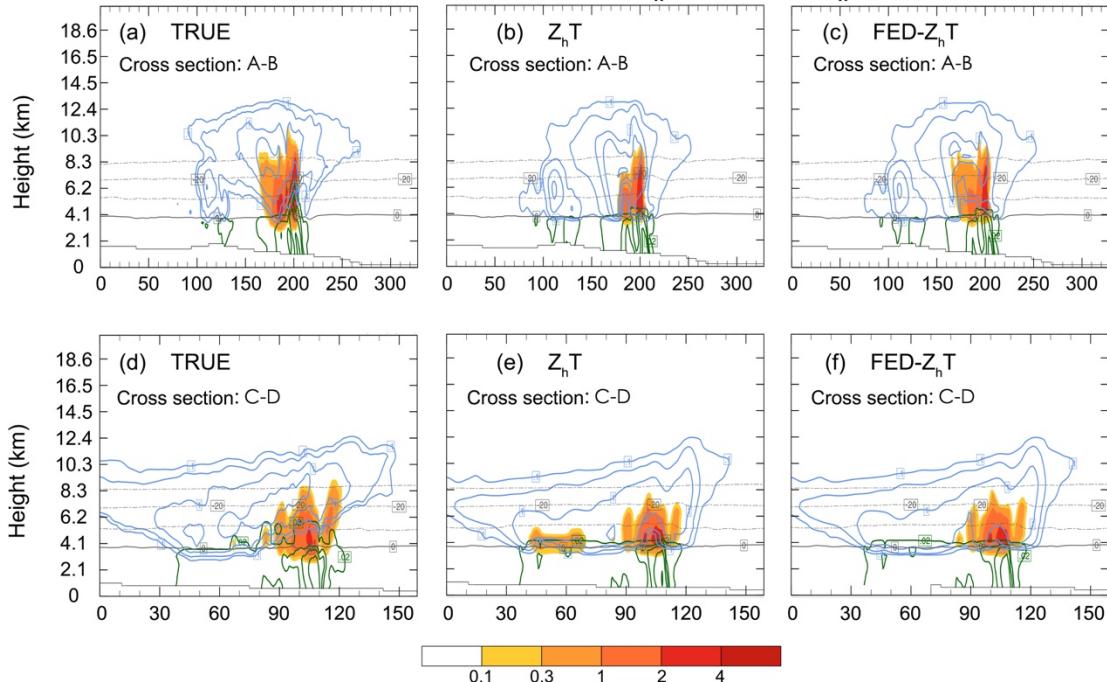
378 Since the slope of the rain PSD is proportional to N_{0r} , decreasing N_{0r} shifts the
379 peak of raindrops PSD towards bigger drops. The best-fitted relationship between N_0 and
380 Z_h was not derived using the model simulations, as such a relationship is sensitive to the
381 microphysics scheme used.

382

383 **4. Results**


384 *4.1 The evaluation of the hydrometeor retrieval method*

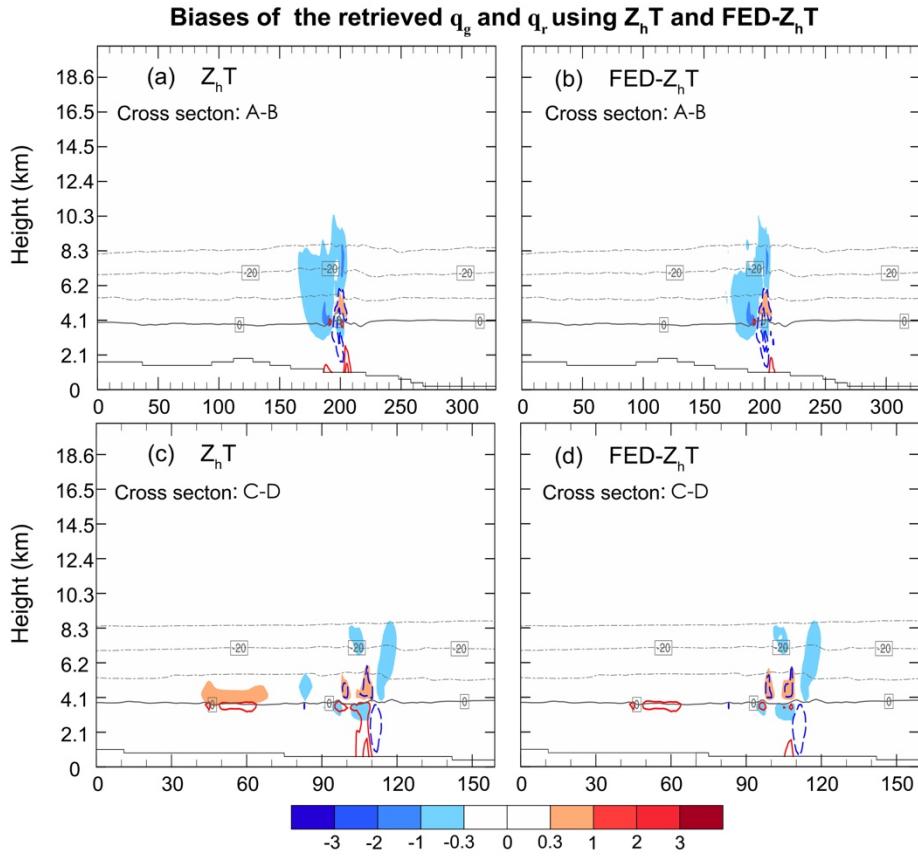
385 To evaluate the effects of incorporating FED as an additional data source into the
386 Z_h and T based hydrometeor retrieval method, two main experiments were devised
387 namely, “FED- Z_hT ” wherein FED, Z_h and T are used in the hydrometeor retrieval and
388 “ Z_hT ” where only Z_h and T are used via the OSSE approach. For Z_hT , the thresholds
389 used to identify hydrometeor types were the same as in Lerach et al. (2010), e.g., the
390 snow aggregates and graupel were segregated using a fixed Z_h threshold of 32 dBZ.


391 The simulated FED, Z_h and T from the true simulation were used as the input data
392 for FED- Z_hT and Z_hT . The hydrometeor retrievals were performed every 15-min starting
393 when the simulated MCS began to produce lightning at 1-h forecast. The retrieved
394 hydrometeor mixing ratios (i.e. q_r , q_g , q_s) from the two different retrieval methods were
395 compared to those from the true simulation. The evolution of the MCS in the true
396 simulation is shown in Fig. 4.

397

398 **Composite radar reflectivity of the true simulation**

The hydrometeor fields in the true simulation and their retrievals using $Z_h T$ and FED- $Z_h T$



402

403 **Fig. 5.** Vertical cross-sections of the hydrometeor mixing ratio fields: q_g (color shadings),
 404 q_s (blue contours), q_r (green contours) from (a), (d) true simulation; (b), (e) $Z_h T$ and (c),
 405 (f) FED- $Z_h T$. Legend for the color shadings for q_g (g kg^{-1}) is shown on the bottom. The
 406 contour intervals of q_s (g kg^{-1}) are 0.1, 0.3, 1.0, 2.0, 4.0. The contour intervals of q_r (g
 407 kg^{-1}) are 0.02, 0.5, 1.0, 2.0, 4.0. The locations of the vertical cross sections are denoted by
 408 the black lines in Figs. 4.

409

410 In general, the regions of rain, graupel and snow aggregates were reasonably well
 411 classified by $Z_h T$ (Figs. 5b,e). The areal extents of some graupel regions, however, were
 412 smaller than those in the true simulation (Figs. 5b), as Z_h of the regions consisting of
 413 small graupel particles might be less than 32 dBZ, which was the threshold used to
 414 identify the graupel-dominated regions in the $Z_h T$. In FED- $Z_h T$, a relatively lower Z_h
 415 threshold was employed in lightning regions for identifying areas containing graupel
 416 particles. Overall, this approach improved the graupel estimations (Figs. 5c,f). The snow
 417 aggregates regions where Z_h exceeded 32 dBZ were misidentified as graupel regions in
 418 $Z_h T$ (Fig. 5e). In FED- $Z_h T$, the relatively higher Z_h threshold for identifying graupel was
 419 applied in the regions outside the filtered FED outlines, which reduced the
 420 misidentification of graupel (Fig. 5f). As a result, the retrieval biases of graupel in $Z_h T$
 421 were alleviated in some cases in FED- $Z_h T$ (Fig. 6).

422

423 **Fig. 6.** Vertical cross-sections of the biases in the retrievals of q_g (color shadings), q_r (red
424 and blue contours) relative to the true simulation values for (a), (c) $Z_h T$ and (b), (d)
425 FED- $Z_h T$. A positive value indicates overestimation, and vice versa. Legend for the color
426 shadings ($g kg^{-1}$) is shown on the bottom. Red solid (blue dash) contours denote positive
427 (negative) values ($g kg^{-1}$) at intervals of $\pm 0.3, \pm 1, \pm 2, \pm 3$ respectively. The locations of the
428 vertical cross sections are the same as in Figs. 5.

429 In convective clouds, in-situ observations from aircraft revealed that supercooled
430 raindrops can often be lofted above $0^\circ C$ up to $-10^\circ C$ by sufficiently strong updrafts (e.g.,
431 Brandes et al., 1995; Bringi et al., 1997). This observation was corroborated by the
432 discovery of “ Z_{DR} columns” above $0^\circ C$ with polarimetric radars (e.g., Conway and Zrnić,
433 1993). In the true simulation, it was found that the raindrops were lofted above $0^\circ C$,
434 while the raindrops above $0^\circ C$ were neglected in both $Z_h T$ and FED- $Z_h T$, which resulted
435 in an underestimation of q_r above $0^\circ C$ (Fig. 6). Past studies found that supercooled
436 raindrops between $0^\circ C$ and $-10^\circ C$ typically have large size (e.g. Hubbert et al. 1998;
437 Carlin et al., 2016), and thus have a significant contribution to Z_h . When raindrops were
438 neglected above $0^\circ C$, the Z_h contribution from the raindrops is allocated to graupel and
439 snow aggregates, which resulted in overestimations of q_g and q_s where supercooled
440 raindrops should exist (Fig. 6).

441 In the regions below $0^\circ C$, the primary source of error in the retrieval of q_r
442 originates from the variations of raindrop size. In the $Z_h T$, a constant N_{0r} was used in the

443 Z_e - q retrieval equation for rain. This resulted in a noteworthy overestimation of q_r in
 444 some regions (Figs. 6a,c) due to the existence of large size raindrops. By employing a
 445 variable N_{0r} to account for the variations of the raindrop size in different regions, the
 446 overestimation of q_r retrievals were reduced (Figs. 6b,d).

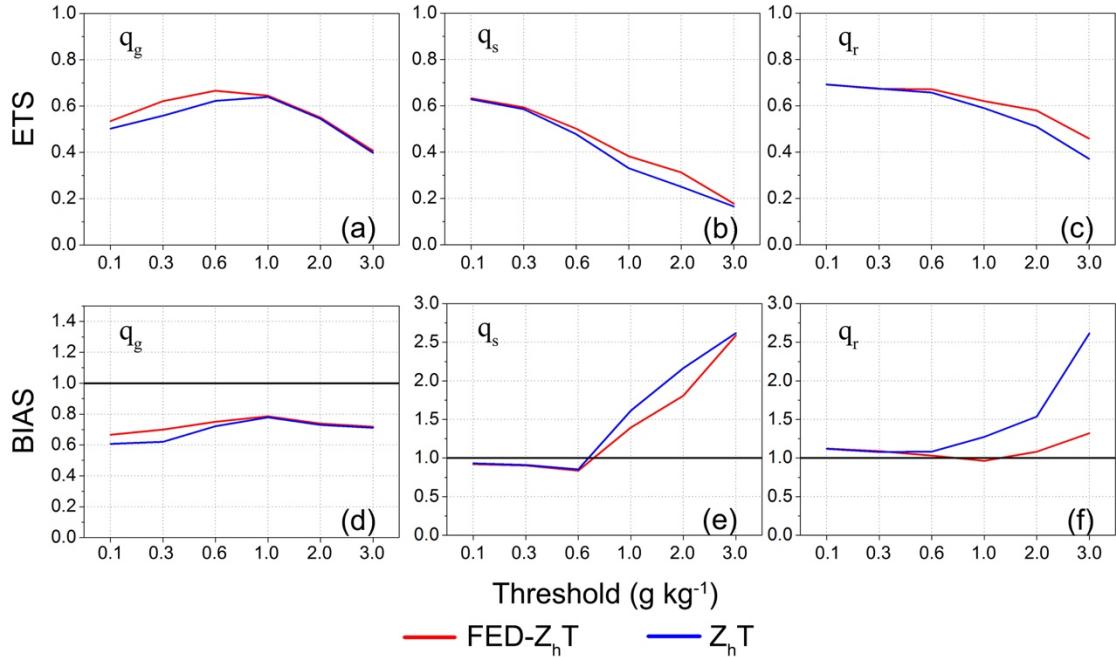
447 To quantify the performance of FED-Z_hT, the equitable threat score (ETS, Clark
 448 et al. 2010) and frequency bias (BIAS) were computed for the retrievals of q_g , q_s and q_r
 449 from the FED-Z_hT and Z_hT, respectively. When computing the ETS and BIAS, the true
 450 simulation was regarded as the reference. The ETS and BIAS were computed at different
 451 mass mixing ratio thresholds (0.1, 0.3, 0.6, 1.0, 2.0, 3.0 g kg⁻¹) for the entire domain (D03)
 452 over the entire duration of the simulation.

453 The ETS in Clark et al. (2010) is calculated using four parameters, namely: “Hits”
 454 (the number of correct forecasts of occurrence), “Misses” (the number of occurrences
 455 which were missed by forecast), False Alarms (the number of false forecasts of
 456 nonoccurrence), and Correct Rejections (the number of correct forecasts of
 457 nonoccurrence), as below:

$$ETS = \frac{Hits + Chance}{Hits + Misses + False Alarms - Chance}$$

458 where,

$$Chance = \frac{(Hits + False Alarms)(Hits + Misses)}{Hits + Misses + False Alarms + Correct Rejections}$$


459

460 The ETS ranges between 0 to 1, where 0 indicates no skill, and 1 indicates perfect
 461 skill. The equation to compute the BIAS is:

$$BIAS = \frac{Hits + False Alarms}{Hits + Misses}$$

462 A BIAS above (below) 1, indicates that the algorithm over(under)-estimates the
 463 mass mixing ratios.

464 Before analyzing the quantitative evaluations of the retrievals, it is useful to
 465 re-iterate the major sources of the error in hydrometeor retrieval, namely: (i) The
 466 misidentification of the dominant hydrometeor type; (ii) the uncertainties in the assumed
 467 intercept parameters and bulk densities of hydrometeors, which were used in the Z_e - q
 468 equations and (iii) the fraction assumptions of each class of hydrometeor in the
 469 mixed-hydrometeor regions (e.g., the mixed graupel/snow aggregates regions) in the
 470 retrieval method.

471

472 **Fig. 7.** The ETS and BIAS at different thresholds for the retrievals of (a), (d) q_g ; (b), (e)
 473 (c), (f) q_r for FED- Z_hT (in red) and Z_hT (in blue) relative to the true simulation.

474 The retrievals of q_g in FED- Z_hT are associated with higher ETS compared to Z_hT
 475 (Figs. 7a,d), which was traced back to FED- Z_hT having more “Hits” and less “False
 476 Alarms” (not shown). The improvement was mainly seen for thresholds ranging between
 477 0.1 and 0.6 g kg⁻¹, as the graupel particles, which have similar Z_h to snow aggregates,
 478 typically have small q_g . A systematic underestimation of q_g was still present in
 479 FED- Z_hT , which could be caused by the uncertainties in the assumed intercept parameter
 480 and bulk density of graupel used in the Z_e - q equation and the fraction assumptions.
 481 Compared with the retrievals of q_g and q_r , the retrievals of q_s exhibits relatively lower
 482 ETS at most thresholds in both methods (Figs. 7b,e), as more uncertainties existed in the
 483 PSD of snow aggregates (Zhang et al., 2016). The improvement of q_s retrievals was
 484 mainly seen for thresholds exceeding 1 g kg⁻¹, as the snow aggregates, which have similar
 485 Z_h to graupel particles, typically have large q_s .

486 For a given value of Z_h , snow aggregates exhibited a higher ice water content
 487 (IWC) than graupel, due to the differences in their respective PSDs. If graupel particles
 488 were mistakenly classified as snow aggregates (i.e., “Miss” event of graupel), the IWC
 489 would be overestimated, and vice versa. The BIAS of q_g and q_s (Figs. 7a,b,d,e) indicate
 490 that the FED- Z_hT alleviated more “Misses” than “False Alarms” of graupel (what about
 491 q_s ?). As a result, the overall IWC in the retrievals with Z_hT were larger than those of
 492 FED- Z_hT (not shown).

493 When assuming a variable N_{0r} , the ETS of q_r was improved relative to the
 494 experiment using a constant N_{0r} . This improvement was mainly seen for thresholds above
 495 0.6 g kg⁻¹ (Figs. 7c,f). The q_r above 0.6 g kg⁻¹ was systematically overestimated with Z_hT ,
 496 while such overestimation was reduced in FED- Z_hT .

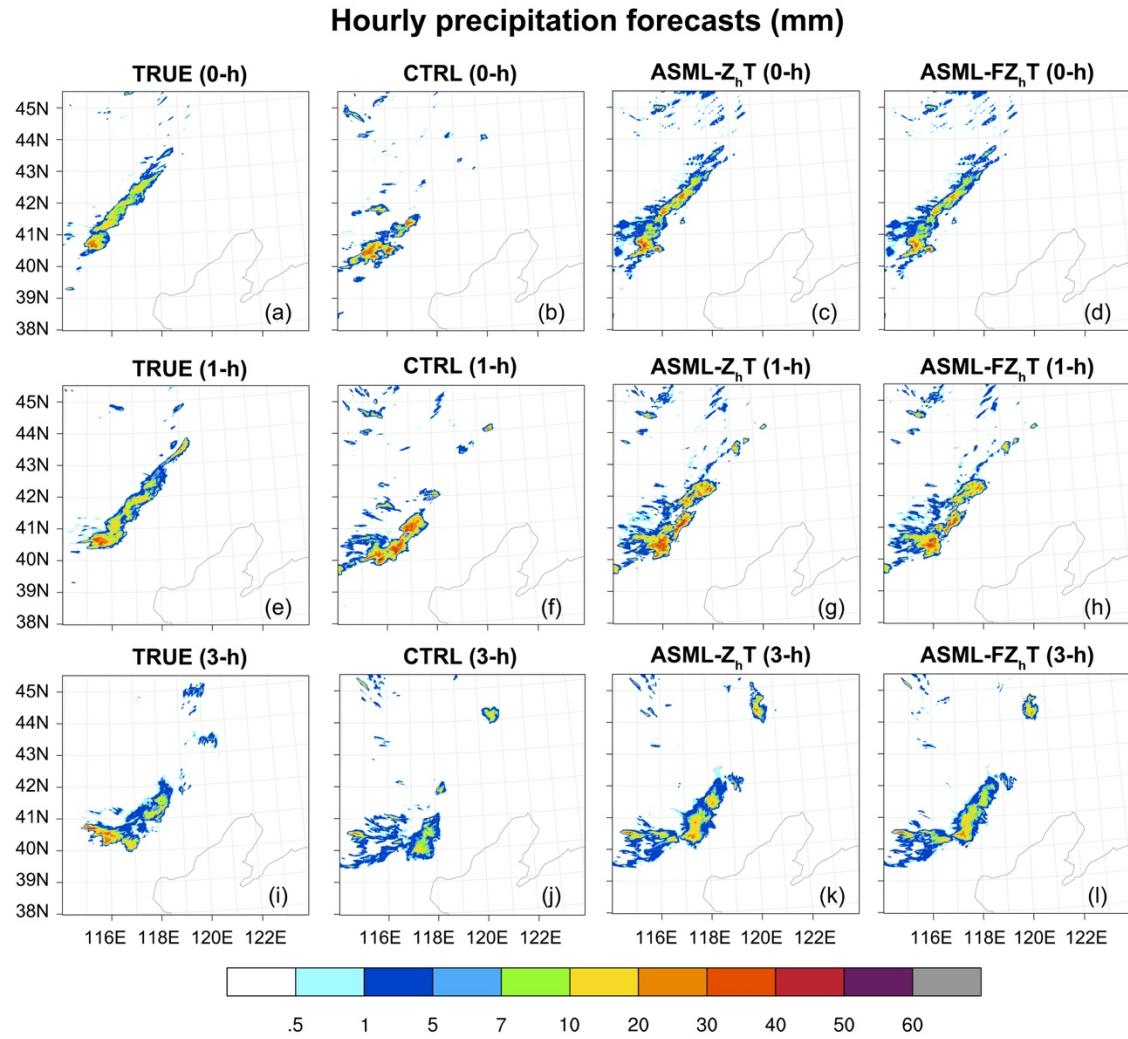
497 *4.2 Short-term forecasts with the data assimilation of hydrometeor retrievals*

498 To test the effects of the improved hydrometeor retrievals on the short-term
 499 forecast of the MCS, the hydrometeor retrievals using $Z_h T$ and FED- $Z_h T$ were
 500 respectively assimilated into the model using the NCAR WRF-RTFDDA system. This
 501 data assimilation (DA) tool makes use of Newtonian relaxation nudging based on
 502 four-dimensional data DA. There are two types of DA methods currently implemented in
 503 WRF-RTFDDA (Stauffer and Seaman, 1990; Liu et al., 2006): the observation nudging
 504 and grid nudging. The grid nudging method was designed to assimilate three-dimensional
 505 data with high temporal-spatial resolution. In the grid nudging, background fields are
 506 nudged toward the observations/analyses at the corresponding analysis-model grid points,
 507 following Eq. (6):

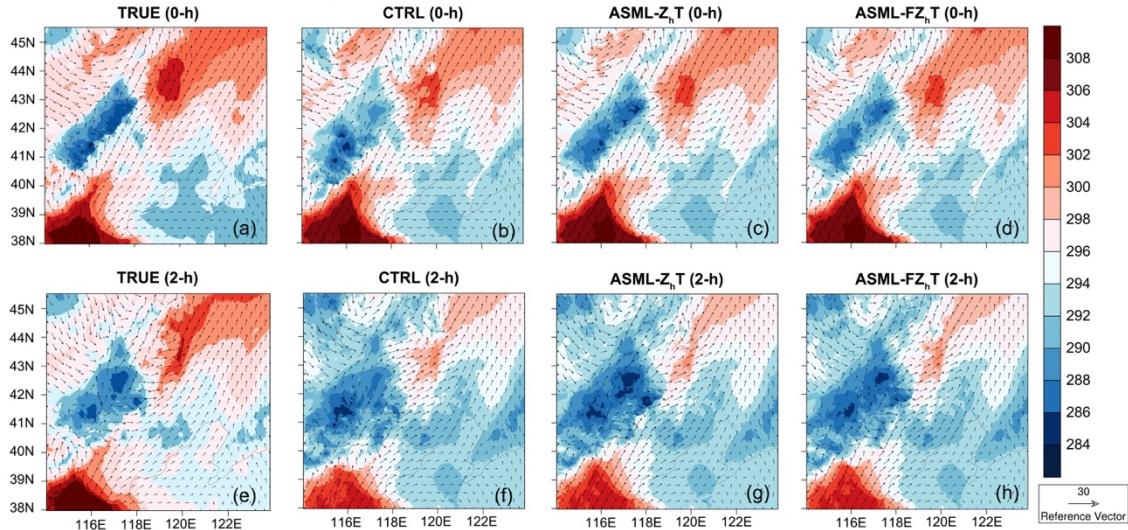
$$508 \quad \frac{\partial X_g}{\partial t} = P(X_g, t) + G_X \cdot T_X \cdot (Y_g - X_g) \quad (6)$$

509 where X_g is the model-state variable, $P(X_g, t)$ is the model original prognostic equation,
 510 G_X is the relaxation time scale used to reduce noise induced by instantaneous change of
 511 the model fields, T_X is a time weight, which is a function of the time lags between the
 512 observation and model state, Y_g is the observation or analysis value on the model grids.

513 When assimilating the mixing ratio of each class of the hydrometeor, the
 514 corresponding latent heat releases were also computed and assimilated into the model
 515 using the latent heat nudging module of WRF-RTFDDA.

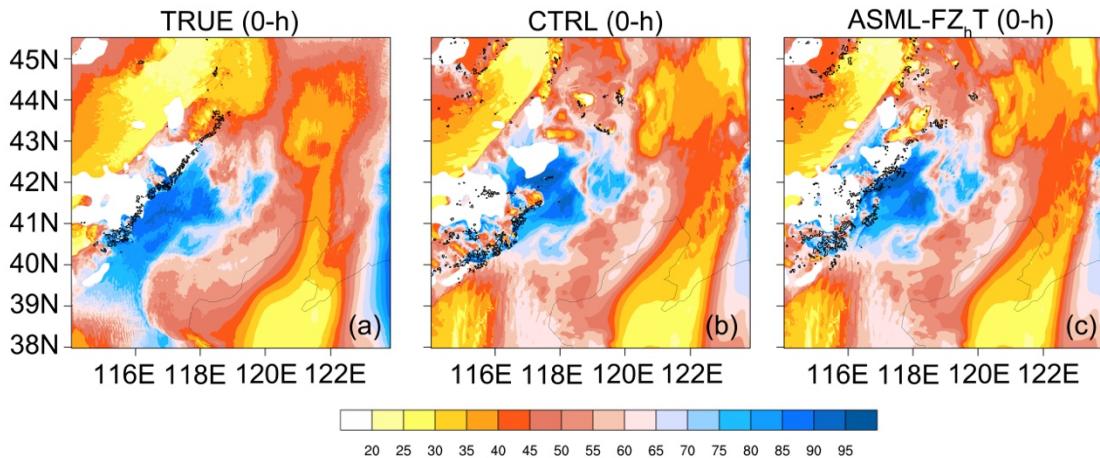

516 The true simulation used here was the same as in Section 2.2. The configurations
 517 of the control (no DA) and the DA experiment were the same as in the true simulation
 518 except for the initial conditions. The initial conditions of the control and the DA run were
 519 generated by randomly perturbing the ERA-Interim reanalysis at the initial time. The
 520 perturbations were obtained by a stochastic sampling the background error covariance
 521 from the WRF-DA (Barker et al. 2004), and were applied to the air temperature, wind,
 522 and water vapor. The descriptions and acronyms of all the experiments are summarized in
 523 Table 2. In ASML- $Z_h T$ and ASML-F $Z_h T$, the hydrometeor retrievals were continuously
 524 assimilated in the innermost domain for 2-h from the initialization of that domain at 0900
 525 UTC. From the end of the analysis at 1100 UTC, 4-h forecasts were performed in each
 526 experiment.

527 **Table 2.** The descriptions and acronyms of each set of forecast experiment.


Experiment names	Initial condition	Data used for hydrometeor retrieval	Descriptions
TRUE	ERA-Interim reanalysis	\	True simulation
CTRL	ERA-Interim reanalysis with a random perturbation	\	Control run without data assimilation
ASML- $Z_h T$	The same as in CTRL	Z_h, T	Data assimilation run using the hydrometeor retrievals from Z_h and T
ASML-F $Z_h T$	The same as in CTRL	FED, Z_h, T	Data assimilation run using the hydrometeor retrievals from FED, Z_h and T

528 Since precipitation is an accumulated field, while radar reflectivity is
529 instantaneous, it is expected that precipitation will be more sensitive to the analysis of
530 hydrometeor fields compared to radar reflectivity. Therefore, the hourly precipitation for
531 each experiment was analyzed (Fig. 8). Overall, both assimilation experiments (i.e.,
532 ASML-Z_hT and ASML-FZ_hT) performed better than CTRL, indicating that assimilating
533 the observation-based hydrometeor retrievals can improve short-term precipitation
534 forecast of this MCS. The displacement errors in CTRL were reduced in the assimilation
535 experiments. The areal coverage of the MCS was smaller in CTRL. The northwestern
536 portion of the precipitation field of the MCS was absent in CTRL (Figs. 8a,b,e,f), due to
537 weak temperature gradients coupled with marginal convergence there (Fig. 9b). In the
538 assimilation experiments, appreciable updrafts were induced in those regions through
539 latent heat nudging (Fig. 10c). The assimilated hydrometeors produced more rainfall
540 there, which resulted in a stronger cool pool and outflow front (Figs. 9c,d). The outflow
541 front continuously lifted the warmer and moister air ahead of it, sustaining convection
542 there. During the forecast, both assimilation experiments exhibit weaker rainfall amounts
543 relative to the true simulation to the southwest, but have larger rainfall to the northeast
544 (Figs. 8i,k,l). This could be explained by the humidity field in the initial conditions (Fig.
545 10): by the end of the analysis time, the air ahead of the southwest portion of the MSC
546 was drier in the assimilation experiments than in the true simulation, while the air ahead
547 of the northeast portion of the MSC was moister in the assimilation experiments
548 compared to the true simulation (Figs. 10a,c). These humidity biases at larger scales did
549 have a pronounced effect on the accumulated precipitation forecasts in the assimilation
550 experiments.

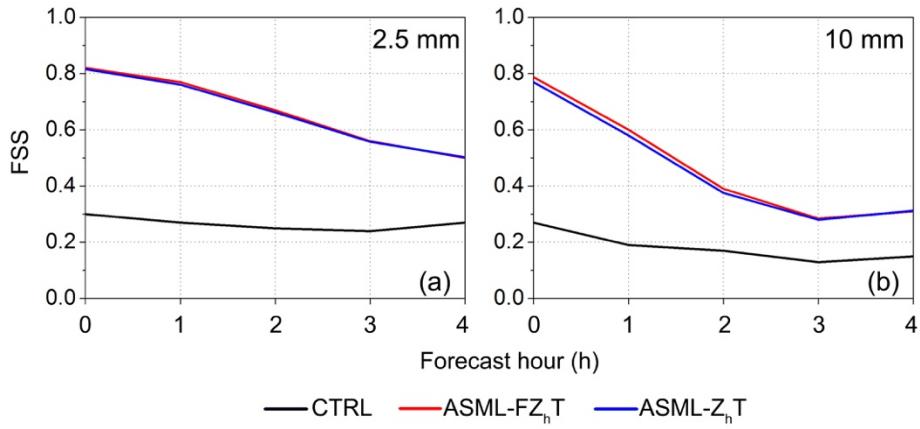
551 In the analysis period, the morphology and location of the MCS in ASML-FZ_hT
552 were similar to those of ASML-Z_hT. The convective precipitation of ASML-Z_hT,
553 however, was stronger than in ASML-FZ_hT and presented a larger bias than ASML-FZ_hT
554 when taking the true simulation as the reference (Figs. 8a,c,d). This was partly due to the
555 analysis fields in ASML-Z_hT exhibiting higher LWC and IWC, as explained in Section
556 3.1. Additionally, the latent heat releases were proportional to the increments of LWC
557 and IWC, which resulted in larger temperature increments in ASML-Z_hT, and a
558 correspondingly stronger thermodynamic forcing. Other background fields would also be
559 adjusted through the kinematic and microphysics to accommodate the changes in
560 thermodynamic forcing. Compared to ASML-Z_hT, the convective region of the analysis
561 fields in ASML-FZ_hT contained more graupel, which was more prone to precipitate than
562 snow aggregate. Snow aggregate, however, could gradually undergo riming wherever
563 supercooled water subsisted, to eventually convert into graupel. In summary, ASML-Z_hT
564 could produce more precipitable ice due to the overestimation of the IWC and the gradual
565 riming of snow aggregates.


Potential temperature at 2 m and horizontal wind vectors

579

580 **Fig. 9.** 2-m potential temperature fields (shading; K) overlaid with the 850-hPa horizontal
 581 wind (wind arrows; m s^{-1}) for (a), (e): TRUE; (b), (f): CTRL; (c), (g): ASML-Z_hT; (d),
 582 (h): ASML-FZ_hT. The forecast time is shown above each panel with 0-h representing the
 583 end of the analysis time.

850-hPa relative humidity and vertical averaged updrafts between 3 km and 10 km MSL


584

585 **Fig. 10.** 850-hPa relative humidity fields (shading; %) overlaid with the averaged vertical
 586 velocities between 3 km and 10 km MSL (black contours; contour of 2 m s^{-1}) for (a):
 587 TRUE; (b): CTRL and (c): ASML-FZhT at the end of the analysis time.

588

589 To quantitatively compare the precipitation forecast of different experiments, the
 590 Fractions Skill Score (FSS, Roberts and Lean, 2008) at different thresholds and different
 591 neighborhood radii from 1 – 30 km (i.e., 1 – 30 neighborhood grid cells) were calculated
 592 for hourly-accumulated precipitation forecasts for each experiment. Since the FSS is
 593 more tolerant to small displacement errors compared to the ETS, it is more appropriate

594 for the evaluation of the simulation with fine resolution grids (e.g., Fierro et al. 2015).
 595 The precipitation from the true simulation was regarded as the reference when computing
 596 the FSS for each experiment. For the sake of brevity, only the results for the 15-km
 597 neighborhood radius at the rainfall thresholds of 2.5 and 10 mm were presented herein
 598 (Fig. 11). In general, the assimilation experiments (i.e., ASML- Z_h T, ASML-F Z_h T)
 599 achieved higher FSS compared to CTRL at all thresholds in both the analysis and forecast
 600 periods (Fig. 11). CTRL produced a low FSS, due to the large displacement errors of the
 601 simulated MCS, as well as the selected small neighborhood radius for the FSS
 602 computation. The more accurate analysis of the hydrometeor fields in ASML-F Z_h T
 603 resulted in slightly higher FSS compared with ASML- Z_h T. The improvement was clearer
 604 at the threshold of 10 mm (Fig. 11b) compared to 2.5 mm (Fig. 11a), indicating the
 605 improvement of hydrometeor analysis had more impact on the forecast of convective
 606 precipitation than those of stratiform precipitation.

607
 608 **Fig. 11.** FSS of the hourly-accumulated precipitation forecasts for the thresholds of (a)
 609 2.5 mm; (b) 10 mm for CTRL (in black), ASML-F Z_h T (in red) and ASML- Z_h T (in blue).
 610 This evaluation begins at the last hour of the analysis time.

611

612 5. Conclusions

613 This study presents a hydrometeor retrieval method, which combines S-band Z_h , T
 614 and FED data. The hydrometeor retrieval method is based on those proposed by Lerach et
 615 al. (2010), Gao et al. (2012) and Pan et al. (2016), who employed S-band Z_h and ambient
 616 T to retrieve hydrometeors. Since the ranges of Z_h of graupel and snow aggregates are
 617 partially overlapping, uncertainties exist in distinguishing the graupel-dominated and
 618 snow aggregates-dominated regions when only using Z_h and T data. The hydrometeor
 619 retrieval method presented in this study incorporates lightning data into the Z_h and T
 620 based hydrometeor retrieval algorithm. Lightning data are utilized to better discern
 621 regions containing graupel in clouds. Different Z_h thresholds are then applied to different
 622 regions to identify the graupel-dominated and snow aggregates-dominated regions. For
 623 the quantitative estimation of q_r , different N_{0r} are used for different ranges of Z_h and
 624 different estimated precursors of raindrop in cold-cloud microphysical processes (i.e.,
 625 graupel or snow aggregate).

626 The hydrometeor retrieval method was tested with the observing system
627 simulation experiment (OSSE) in which the input data for the hydrometeor retrieval (i.e.,
628 the FED, Z_h and T data) were obtained from a MCS simulation using explicit
629 electrification implemented in the WRF model, which couples an explicit charging and
630 bulk discharge lightning scheme in the NSSL double-moment microphysics, at
631 cloud-resolving scale (1-km). By incorporating the FED as additional input data source
632 into the Z_h and T based hydrometeor retrieval method, the hydrometeor retrieval accuracy
633 was improved. However, uncertainties still existed in the quantitative retrieval of
634 hydrometeor mixing ratio, which primarily arise from the assumptions behind the
635 hydrometeor PSD and the fraction of each class of hydrometeor in the
636 mixed-hydrometeor regions. The graupel PSD may evolve in response to changing
637 lightning rate, as both the graupel PSD and total lightning rate are related to the updraft
638 strength. For example, decreasing total lightning rate may indicate the decrease of updraft
639 strength, which may shift the peak of the graupel PSD towards the smaller particles. The
640 relationship between graupel PSD and total lightning rate could be incorporated into the
641 lightning data based-hydrometeor retrieval method when such relationships are better
642 understood, which remains the subject of future research endeavors.

643 The hydrometeor retrievals (with and without lightning information) were
644 respectively assimilated into WRF using the NCAR-RTFDDA assimilation and forecast
645 system. Both of the assimilation experiments performed better than the control
646 experiment. Assimilating the hydrometeor retrievals with the added information from
647 lightning slightly improved the analyses and forecasts of precipitation in a test MCS case.
648 Overall, the improvement was more pronounced for the convective precipitation. The
649 improvement could be due to the more accurate hydrometeor analysis, which further
650 affected the strength of cold pool and gust front. The cold pool and gust front feedbacked
651 with the subsequent evolution of MCS by impacting the storm thermodynamic
652 environment. Because the evolution of convective systems is affected by complex
653 nonlinear processes, future research should be devoted to the testing and evaluation of
654 additional cases, preferably spanning different regimes.

655 The current lightning-based hydrometeor retrieval method is not expected to serve
656 as a surrogate for hydrometeor retrieval methods based on polarimetric radar, which
657 contains a larger wealth of information to infer the characteristics of hydrometeor species.
658 For instance, when using polarimetric radar based hydrometeor retrieval method, Z_{DR}
659 above 0 °C can be used to indicate the existence of supercooled raindrops (e.g., Kumjian
660 and Ryzhkov 2008); Z_{DR} and K_{DP} can be used to estimate the Z_h associated with rain and
661 perceptible ice particles in the mixed-phase region, respectively, (e.g., Carey et al., 2000).
662 Achieving such level of detail is beyond the capabilities of the current lightning-based
663 hydrometeor retrieval method. Until present, however, most of the operational weather
664 radars in China have not yet been upgraded to polarimetric technology, and under the
665 circumstances that the real-time nationwide detection of lightning will be provided by the
666 recently-launched FY-4 geostationary satellite, it is expected that incorporating total
667 lightning data into the non-polarimetric radar-based hydrometeor retrieval methods could
668 add value to the hydrometeor retrieval and short-term forecast of MCS at small additional
669 expenses. Because only case was analyzed with an OSSE, this study should be viewed as
670 a “proof-of-concept” for a tentative lightning based hydrometeor retrieval method.

671 Consequently, the applicability of this method to realistic settings (i.e., non-OSSE)
672 requires further testing with real observation data, namely: the FED data from the FY-4
673 geostationary satellite, dual-polarimetric radar data, and other surface based datasets.

674

675 Acknowledgments

676 This work was supported by the State Grid Corporation of China under the Sciences and
677 Technology Project: SGTYHT/14-JS-188, the Postgraduate Research and Innovation
678 Projects of Jiangsu Province: KYLX16_0939, the National Key Basic Research Program
679 of China: Grant No. 2014CB441403. We would like to acknowledge high-performance
680 computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's
681 Computational and Information Systems Laboratory, sponsored by the National Science
682 Foundation. ERA-Interim data provided courtesy ECMWF.

683 References

- 684 Alexander, G.D., Weinman, J.A., Karyampudi, V.M., Olson, W.S. and Lee, A.C.L., 1999. The effect
685 of assimilating rain rates derived from satellites and lightning on forecasts of the 1993
686 superstorm. *Mon. Wea. Rev.* 127(7), 1433-1457.
- 687 Allen, B.J., Mansell, E.R., Dowell, D.C. and Deierling, W., 2016. Assimilation of pseudo-GLM data
688 using the ensemble Kalman filter. *Mon. Wea. Rev.* 144(9), 3465-3486.
- 689 Barker, D.M., Huang, W., Guo, Y.R., Bourgeois, A.J. and Xiao, Q.N., 2004. A three-dimensional
690 variational data assimilation system for MM5: Implementation and initial results. *Mon. Wea. Rev.*
691 132(4), 897-914.
- 692 Brandes, E.A., Vivekanandan, J., Tuttle, J.D. and Kessinger, C.J., 1995. A study of thunderstorm
693 microphysics with multiparameter radar and aircraft observations. *Mon. Wea. Rev.* 123(11),
694 3129-3143.
- 695 Bringi, V.N., Knupp, K., Detwiler, A., Liu, L., Taylor, I.J. and Black, R.A., 1997. Evolution of a
696 Florida thunderstorm during the Convection and Precipitation/Electrification Experiment: The
697 case of 9 August 1991. *Mon. Wea. Rev.* 125(9), 2131-2160.
- 698 Bruning, E.C. and MacGorman, D.R., 2013. Theory and observations of controls on lightning flash
699 size spectra. *J. Atmos. Sci.* 70(12), 4012-4029.
- 700 Bruning, E.C., Rust, W.D., Schuur, T.J., MacGorman, D.R., Krehbiel, P.R. and Rison, W., 2007.
701 Electrical and polarimetric radar observations of a multicell storm in TELEX. *Mon. Wea. Rev.*
702 135(7), 2525-2544.
- 703 Calhoun, K.M., MacGorman, D.R., Ziegler, C.L. and Biggerstaff, M.I., 2013. Evolution of lightning
704 activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm.
705 *Mon. Wea. Rev.* 141(7), 2199-2223.
- 706 Carey, L. D., & Rutledge, S. A., 1996. A multiparameter radar case study of the microphysical and
707 kinematic evolution of a lightning producing storm. *Meteorol. Atmos. Phys.* 59(1-2), 33-64.
- 708 Carey, L.D. and Rutledge, S.A., 2000. The relationship between precipitation and lightning in tropical
709 island convection: A C-band polarimetric radar study. *Mon. Wea. Rev.* 128(8), 2687-2710.
- 710 Carey, L.D., Murphy, M.J., McCormick, T.L. and Demetriades, N.W., 2005. Lightning location
711 relative to storm structure in a leading line, trailing stratiform mesoscale convective system. *J.*
712 *Geophys. Res. Atmos.* 110(D3).
- 713 Carlin, J.T., Ryzhkov, A.V., Snyder, J.C. and Khain, A., 2016. Hydrometeor Mixing Ratio Retrievals
714 for Storm-Scale Radar Data Assimilation: Utility of Current Relations and Potential Benefits of
715 Polarimetry. *Mon. Wea. Rev.* 144(8), 2981-3001.
- 716 Cazenave, F., Gosset, M., Kacou, M., Alcoba, M., Fontaine, E., Durore, C. and Dolan, B., 2016.
717 Characterization of hydrometeors in Sahelian convective systems with an X-band radar and

- 718 comparison with in situ measurements. Part I: Sensitivity of polarimetric radar particle
719 identification retrieval and case study evaluation. *J. Appl. Meteor. Climatol.* 55(2), 231-249.
- 720 Chang, D.E., Weinman, J.A., Morales, C.A. and Olson, W.S., 2001. The effect of spaceborne
721 microwave and ground-based continuous lightning measurements on forecasts of the 1998
722 Groundhog Day storm. *Mon. Wea. Rev.* 129(8), 1809-1833.
- 723 Chen, F., and Dudhia J., 2001. Coupling an Advanced Land Surface-Hydrology Model with the Penn
724 State-NCAR MM5 Modeling System, Part I: Model Implementation and Sensitivity. *Mon. Wea.*
725 *Rev.*, 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:caalsh>2.0.co;2.
- 726 Clark, A. J., Gallus Jr, W. A., & Weisman, M. L., 2010. Neighborhood-based verification of
727 precipitation forecasts from convection-allowing NCAR WRF model simulations and the
728 operational NAM. *Wea. and Forecasting*, 25(5), 1495-1509.
- 729 Conway, J.W. and Zrnić, D.S., 1993. A study of embryo production and hail growth using
730 dual-Doppler and multiparameter radars. *Mon. Wea. Rev.* 121(9), 2511-2528.
- 731 Dawson, D.T. and Xue, M., 2006. Numerical forecasts of the 15-16 June 2002 Southern Plains
732 mesoscale convective system: impact of mesoscale data and cloud analysis. *Mon. Wea. Rev.*
733 134(6), 1607-1629.
- 734 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
735 Balmaseda, M.A., Balsamo, G., Bauer, P. and Bechtold, P., 2011. The ERA-Interim reanalysis:
736 Configuration and performance of the data assimilation system. *Q. J. Roy. Meteor. Soc.* 137(656),
737 553-597.
- 738 Dye, J.E., Jones, J.J., Winn, W.P., Cerni, T.A., Gardiner, B., Lamb, D., Pitter, R.L., Hallett, J. and
739 Saunders, C.P.R., 1986. Early electrification and precipitation development in a small, isolated
740 Montana cumulonimbus. *J. Geophys. Res. Atmos.* 91(D1), 1231-1247.
- 741 Fabry, F. and Zawadzki, I., 1995. Long-term radar observations of the melting layer of precipitation
742 and their interpretation. *J. Atmos. Sci.* 52(7), 838-851.
- 743 Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I:
744 Description. *Journal of the Atmospheric Sciences*, 51(2), 249-280.
- 745 Fierro, A. O., Gilmore, M. S., Mansell, E. R., Wicker, L. J., & Straka, J. M., 2006. Electrification and
746 lightning in an idealized boundary-crossing supercell simulation of 2 June 1995. *Mon. Wea.*
747 *Rev.* 134(11), 3149-3172.
- 748 Fierro, A.O., Leslie, L.M., Mansell, E.R. and Straka, J.M., 2008. Numerical simulations of the
749 microphysics and electrification of the weakly electrified 9 February 1993 TOGA COARE squall
750 line: Comparisons with observations. *Mon. Wea. Rev.* 136(1), 364-379.
- 751 Fierro, A.O., Mansell, E.R., Ziegler, C.L. and MacGorman, D.R., 2012. Application of a lightning
752 data assimilation technique in the WRF-ARW model at cloud-resolving scales for the tornado
753 outbreak of 24 May 2011. *Mon. Wea. Rev.* 140(8), 2609-2627.
- 754 Fierro, A.O., Mansell, E.R., MacGorman, D.R. and Ziegler, C.L., 2013. The implementation of an
755 explicit charging and discharge lightning scheme within the WRF-ARW model: Benchmark
756 simulations of a continental squall line, a tropical cyclone, and a winter storm. *Mon. Wea. Rev.*
757 141(7), 2390-2415.
- 758 Fierro, A. O., Gao, J., Ziegler, C. L., Mansell, E. R., MacGorman, D. R., & Dembek, S. R., 2014.
759 Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the
760 analysis and short-term forecast of the 29 June 2012 derecho event. *Monthly Weather*
761 *Review*, 142(1), 183-202.
- 762 Fierro, A.O., Clark, A.J., Mansell, E.R., MacGorman, D.R., Dembek, S.R. and Ziegler, C.L., 2015.
763 Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during
764 the 2013 warm season over the contiguous United States. *Mon. Wea. Rev.* 143(3), 757-777.
- 765 Fierro, A.O., Gao, J., Ziegler, C.L., Calhoun, K.M., Mansell, E.R. and MacGorman, D.R., 2016.
766 Assimilation of Flash Extent Data in the Variational Framework at Convection-Allowing Scales:
767 Proof-of-Concept and Evaluation for the Short-Term Forecast of the 24 May 2011 Tornado
768 Outbreak. *Mon. Wea. Rev.* 144(11), 4373-4393.
- 769 Gao, J. and Stensrud, D.J., 2012. Assimilation of reflectivity data in a convective-scale, cycled
770 3DVAR framework with hydrometeor classification. *J. Atmos. Sci.* 69(3), 1054-1065.

- 771 Gilmore, M.S. and Wicker, L.J., 1998. The influence of midtropospheric dryness on supercell
772 morphology and evolution. *Mon. Wea. Rev.* 126(4), 943-958.
- 773 Goodman, S. J., Buechler, D. E., Wright, P. D., and Rust, W. D., 1988. Lightning and precipitation
774 history of a microburst-producing storm. *Geophys. Res. Lett.* 15(11), 1185-1188.
- 775 Grell, G. A., and Freitas, S. R., 2013. A scale and aerosol aware stochastic convective
776 parameterization for weather and air quality modeling, *Atmos. Chem. Phys.*, 2014, 14(10):
777 5233-5250. doi:10.5194/acpd-13-23845-2013.
- 778 Hong, S.Y., Dudhia, J. and Chen, S.H., 2004. A revised approach to ice microphysical processes for
779 the bulk parameterization of clouds and precipitation. *Mon. Wea. Rev.* 132(1), pp.103-120.
- 780 Houze Jr, R.A., 1997. Stratiform precipitation in regions of convection: A meteorological paradox?.
781 *Bull. Amer. Meteor. Soc.* 78(10), 2179-2196.
- 782 Hu, M., Xue, M. and Brewster, K., 2006. 3DVAR and cloud analysis with WSR-88D level-II data for
783 the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its
784 impact. *Mon. Wea. Rev.* 134(2), 675-698.
- 785 Hu, M. and Xue, M., 2007. Implementation and evaluation of cloud analysis with WSR 88D
786 reflectivity data for GSI and WRF ARW. *Geophys. Res. Lett.* 34(7).
- 787 Hubbert, J., Bringi, V.N., Carey, L.D. and Bolen, S., 1998. CSU-CHILL polarimetric radar
788 measurements from a severe hail storm in eastern Colorado. *J. Appl. Meteor.* 37(8), 749-775.
- 789 Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and Collins,
790 W. D., 2008. Radiative forcing by long-lived greenhouse gases: Calculations with
791 the AER radiative transfer models, *J. Geophys. Res. Atmos.*, 113,
792 doi:10.1029/2008jd009944.
- 793 Janjić, Z. C. A. I., 1994. The Step-Mountain Eta Coordinate Model: Further Developments of the
794 Convection, Viscous Sublayer, and Turbulence Closure Schemes, *Mon. Wea. Rev.*, 122, 927-945,
795 doi:10.1175/1520-0493(1994)122<0927:tsmecm>2.0.co;2.
- 796 Kain, J.S., Dembek, S.R., Weiss, S.J., Case, J.L., Levit, J.J. and Sobash, R.A., 2010. Extracting unique
797 information from high-resolution forecast models: Monitoring selected fields and phenomena
798 every time step. *Wea. Forecasting* 25(5), 1536-1542.
- 799 Kuhlman, K.M., MacGorman, D.R., Biggerstaff, M.I. and Krehbiel, P.R., 2009. Lightning initiation in
800 the anvils of two supercell storms. *Geophys. Res. Lett.* 36(7).
- 801 Kumjian, M.R. and Ryzhkov, A.V., 2008. Polarimetric signatures in supercell thunderstorms. *J. Appl.*
802 *Meteor. Climatol.* 47(7), 1940-1961.
- 803 Lang, T.J., Miller, L.J., Weisman, M., Rutledge, S.A., Barker III, L.J., Bringi, V.N., Chandrasekar, V.,
804 Detwiler, A., Doesken, N., Helsdon, J. and Knight, C., 2004. The severe thunderstorm
805 electrification and precipitation study. *Bull. Amer. Meteor. Soc.* 85(8), 1107-1125.
- 806 Lerach, D.G., Rutledge, S.A., Williams, C.R. and Cifelli, R., 2010. Vertical structure of convective
807 systems during NAME 2004. *Mon. Wea. Rev.* 138(5), 1695-1714.
- 808 Lin, Y.L., Farley, R.D. and Orville, H.D., 1983. Bulk parameterization of the snow field in a cloud
809 model. *J. Clim. Appl. Meteorol.* 22(6), 065-1092.
- 810 Liu, Y., Chen, F., Warner, T. and Basara, J., 2006. Verification of a mesoscale data-assimilation and
811 forecasting system for the Oklahoma City area during the Joint Urban 2003 field project. *J. Appl.*
812 *Meteor. Climatol.* 45(7), pp.912-929.
- 813 Lund, N.R., MacGorman, D.R., Schuur, T.J., Biggerstaff, M.I. and Rust, W.D., 2009. Relationships
814 between lightning location and polarimetric radar signatures in a small mesoscale convective
815 system. *Mon. Wea. Rev.* 137(12), 4151-4170.
- 816 MacGorman, D.R., Rust, W.D., Krehbiel, P., Rison, W., Bruning, E. and Wiens, K., 2005. The
817 electrical structure of two supercell storms during STEPS. *Mon. Wea. Rev.* 133(9), 2583-2607.
- 818 MacGorman, D.R., Rust, W.D., Ziegler, C.L., Mansell, E.R., Schuur, T.J., Biggerstaff, M.I., Straka,
819 J.M., Bruning, E.C., Kuhlman, K.M., Lund, N.R. and Payne, C., 2008. TELEX the thunderstorm
820 electrification and lightning experiment. *Bull. Amer. Meteor. Soc.* 89(7), 997-1013.
- 821 Mansell, E.R., MacGorman, D.R., Ziegler, C.L. and Straka, J.M., 2002. Simulated three dimensional
822 branched lightning in a numerical thunderstorm model. *J. Geophys. Res. Atmos.* 107(D9).

- 823 Mansell, E.R., MacGorman, D.R., Ziegler, C.L. and Straka, J.M., 2005. Charge structure and lightning
824 sensitivity in a simulated multicell thunderstorm. *J. Geophys. Res. Atmos.* 110(D12).
- 825 Mansell, E.R., Ziegler, C.L. and Bruning, E.C., 2010a. Simulated electrification of a small
826 thunderstorm with two-moment bulk microphysics. *J. Atmos. Sci.* 67(1), 171-194.
- 827 Mansell, E.R., 2010b. On sedimentation and advection in multimoment bulk microphysics. *J. Atmos.*
828 *Sci.* 67(9), 3084-3094.
- 829 Mansell, E.R., 2014. Storm-scale ensemble Kalman filter assimilation of total lightning flash-extent
830 data. *Mon. Wea. Rev.* 142(10), 3683-3695.
- 831 May, P.T. and Keenan, T.D., 2005. Evaluation of microphysical retrievals from polarimetric radar
832 with wind profiler data. *J. Appl. Meteor.* 44(6), 827-838.
- 833 Pan, Y., Xue, M. and Ge, G., 2016. Incorporating diagnosed intercept parameters and the graupel
834 category within the ARPS cloud analysis system for the initialization of double-moment
835 microphysics: Testing with a squall line over south China. *Mon. Wea. Rev.* 144(1), 371-392.
- 836 Pessi, A.T. and Businger, S., 2009. Relationships among lightning, precipitation, and hydrometeor
837 characteristics over the North Pacific Ocean. *J. Appl. Meteor. Climatol.* 48(4), 833-848.
- 838 Qie, X., Kong, X., Zhang, G., Zhang, T., Yuan, T., Zhou, Y., Zhang, Y., Wang, H. and Sun, A., 2005a.
839 The possible charge structure of thunderstorm and lightning discharges in northeastern verge of
840 Qinghai-Tibetan Plateau. *Atmos. Res.* 76(1), 231-246.
- 841 Qie, X., Zhang, T., Chen, C., Zhang, G., Zhang, T. and Wei, W., 2005b. The lower positive charge
842 center and its effect on lightning discharges on the Tibetan Plateau. *Geophys. Res. Lett.* 32(5).
- 843 Qie, X., Zhang, T., Zhang, G., Zhang, T., Kong, X., 2009. Electrical characteristics of thunderstorms
844 in different plateau regions of China. *Atmos. Res.* 91 (2-4), 244-249.
- 845 Qie, X., Zhu, R., Yuan, T., Wu, X., Li, W. and Liu, D., 2014. Application of total-lightning data
846 assimilation in a mesoscale convective system based on the WRF model. *Atmos. Res.* 145,
847 255-266.
- 848 Reynolds, S.E., Brook, M. and Gourley, M.F., 1957. Thunderstorm charge separation. *Journal of*
849 *Meteorology*, 14(5), 426-436.
- 850 Ribaud, J.F., Bousquet, O. and Coquillat, S., 2016. Relationships between total lightning activity,
851 microphysics and kinematics during the 24 September 2012 HyMeX bow echo system. *Q. J.*
852 *Roy.* 142(S1), 298-309.
- 853 Roberts, N.M. and Lean, H.W., 2008. Scale-selective verification of rainfall accumulations from
854 high-resolution forecasts of convective events. *Mon. Wea. Rev.* 136(1), 78-97.
- 855 Saunders, C.P.R. and Peck, S.L., 1998. Laboratory studies of the influence of the rime accretion rate
856 on charge transfer during crystal/graupel collisions. *J. Geophys. Res. Atmos.* 103(D12),
857 13949-13956.
- 858 Saunders, C.P.R., Keith, W.D. and Mitzeva, R.P., 1991. The effect of liquid water on thunderstorm
859 charging. *J. Geophys. Res. Atmos.* 96(D6), 11007-11017.
- 860 Schuur, T.J., Ryzhkov, A.V., Zrnić, D.S. and Schönhuber, M., 2001. Drop size distributions measured
861 by a 2D video disdrometer: Comparison with dual-polarization radar data. *J. Appl. Meteor.* 40(6),
862 1019-1034.
- 863 Stauffer, D.R. and Seaman, N.L., 1990. Use of four-dimensional data assimilation in a limited-area
864 mesoscale model. Part I: Experiments with synoptic-scale data. *Mon. Wea. Rev.* 118(6),
865 1250-1277.
- 866 Straka, J.M., Zrnić, D.S. and Ryzhkov, A.V., 2000. Bulk hydrometeor classification and quantification
867 using polarimetric radar data: Synthesis of relations. *J. Appl. Meteor.* 39(8), 1341-1372.
- 868 Sukovich, E.M., Kingsmill, D.E. and Yuter, S.E., 2009. Variability of graupel and snow observed in
869 tropical oceanic convection by aircraft during TRMM KWAJEX. *J. Appl. Meteor. Climatol.*
870 48(2), 185-198.
- 871 Takahashi, T., 1978. Rimming electrification as a charge generation mechanism in thunderstorms. *J.*
872 *Atmos. Sci.* 35(8), 1536-1548.
- 873 Takahashi, T., Sugimoto, S., Kawano, T. and Suzuki, K., 2017. Rimming Electrification in Hokuriku
874 Winter Clouds and Comparison with Laboratory Observations. *J. Atmos. Sci.* 74(2), 431-447.

- 875 Tan, Y., Tao, S., Liang, Z. and Zhu, B., 2014. Numerical study on relationship between lightning
876 types and distribution of space charge and electric potential. *J. Geophys. Res. Atmos.* 119(2),
877 1003-1014.
- 878 Tong, M. and Xue, M., 2008. Simultaneous estimation of microphysical parameters and atmospheric
879 state with simulated radar data and ensemble square root Kalman filter. Part I: Sensitivity
880 analysis and parameter identifiability. *Mon. Wea. Rev.* 136(5), 1630-1648.
- 881 Vivekanandan, J., Ellis, S.M., Oye, R., Zrnic, D.S., Ryzhkov, A.V. and Straka, J., 1999. Cloud
882 microphysics retrieval using S-band dual-polarization radar measurements. *Bull. Amer. Meteor.*
883 *Soc.* 80(3), 381-388.
- 884 Waldvogel, A., 1974. The N 0 jump of raindrop spectra. *J. Atmos. Sci.* 31(4), 1067-1078.
- 885 Wang, H., Guo, F., Zhao, T., Qin, M. and Zhang, L., 2016. A numerical study of the positive
886 cloud-to-ground flash from the forward flank of normal polarity thunderstorm. *Atmos. Res.* 169,
887 183-190.
- 888 Wang, H., Liu, Y., Cheng, W., Zhao, T., Xu, M., Shen, S., Calhoun, K.M., 2017. Improving Lightning
889 and Precipitation Prediction of Severe Convection using Lightning Data Assimilation with
890 NCAR WRF-RTFDDA. *J. Geophys. Res. Atmos.* 122(22), 12296-12316.
- 891 Xue, M., Tong, M. and Droege, K.K., 2006. An OSSE framework based on the ensemble square
892 root Kalman filter for evaluating the impact of data from radar networks on thunderstorm
893 analysis and forecasting. *J. Atmos. Oceanic Technol.* 23(1), 46-66.
- 894 Xue, M., Hu, M. and Schenkman, A.D., 2014. Numerical prediction of the 8 May 2003 Oklahoma
895 City tornadic supercell and embedded tornado using ARPS with the assimilation of WSR-88D
896 data. *Wea. Forecasting* 29(1), 39-62.
- 897 Yang, J., Zhang, Z., Wei, C., Lu, F. and Guo, Q., 2016. Introducing the new generation of Chinese
898 geostationary weather satellites—FengYun 4 (FY-4). *Bull. Amer. Meteor. Soc.* (2016).
- 899 Zhang, G., 2016. Weather radar polarimetry. CRC Press.
- 900 Ziegler, C.L., 2013. A diabatic Lagrangian technique for the analysis of convective storms. Part I:
901 Description and validation via an observing system simulation experiment. *J. Atmos. Oceanic
902 Technol.* 30(10), 2248-2265.
- 903 Zrnić, D.S., Ryzhkov, A., Straka, J., Liu, Y. and Vivekanandan, J., 2001. Testing a procedure for
904 automatic classification of hydrometeor types. *J. Atmos. Oceanic Technol.* 18(6), 892-913.