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ABSTRACT: Unusually high western Pacific Ocean oceanic heat content often leads to El Nifio about 1 year later, while
unusually low heat content leads to La Nifa. Here, we investigate if El Nifio-Southern Oscillation (ENSO) predictability
also depends on the initial state recharge, and we discuss the underlying mechanisms. To that end, we use the CNRM-CM5
model, which has a reasonable representation of the main observed ENSO characteristics, asymmetries, and feedbacks.
Observations and a 1007-yr-long CNRM-CMS5 simulation indicate that discharged states evolve more systematically into La
Nifia events than recharged states into neutral states or El Nifio events. We ran 70-member ensemble experiments in a
perfect-model setting, initialized in boreal autumn from either recharged or discharged western Pacific heat content,
sampling the full range of corresponding ENSO phases. Predictability measures based both on spread and signal-to-noise
ratio confirm that discharged states yield a more predictable ENSO outcome one year later than recharged states. As
expected from recharge oscillator theory, recharged states evolve into positive central Pacific sea surface temperature
anomalies in boreal spring, inducing stronger and more variable westerly wind event activity and a fast growth of the
ensemble spread during summer and autumn. This also enhances the positive wind stress feedback in autumn, but the effect
is offset by changes in thermocline and heat flux feedbacks. The state-dependent component of westerly wind events is thus
the most likely cause for the predictability asymmetry in CNRM-CMS, although changes in the low-frequency wind stress
feedback may also contribute.

KEYWORDS: Pacific Ocean; Atmosphere—ocean interaction; ENSO; Seasonal forecasting; Climate models; Interannual
variability

1. Introduction theory inspired from Wyrtki (1985) and formulated by Jin
(1997) articulates the key role of the western equatorial Pacific
heat content, measured by the volume of water warmer than
20°C (WWVyy) or the depth-averaged temperature in the up-
per 300 m (T300y; see the appendix) as an ENSO precursor. At
the peak of an El Nifio, there are westerly wind anomalies
and negative heat content anomalies (or ‘“discharge”) in the
western Pacific. This induces a poleward Sverdrup transport
that progressively builds up negative heat content anomalies in
the central Pacific, leading to cold SSTA through the thermo-
cline and advective feedbacks (Jin and An 1999). These SSTA
are then amplified into a La Nifia event at the end of the year
through the Bjerknes air-sea coupled feedback loop (Bjerknes
1969), involving a positive feedback from the atmospheric wind
response (the wind stress feedback) and negative feedback
from air-sea fluxes (the heat flux feedback). Atmospheric high-
frequency variability, mainly in the form of synoptic short-
lived westerly wind events (WWEs; Lengaigne et al. 2004) that
are unpredictable at long lead times, is thought to be one of the
key elements that introduces some irregularity to this cycle.
Representing stochastic forcing associated with WWE in the
recharge oscillator model leads to less regular oscillations, as in

El Nifio-Southern Oscillation (ENSO) is the most energetic
climate phenomenon at interannual time scales on Earth [see
McPhaden et al. (2020) for a review]. The positive El Nifio
phase of ENSO is characterized by positive sea surface tem-
perature anomalies (SSTA) in the central and eastern equa-
torial Pacific, which generally start in late spring, peak at the
end of the calendar year and recede during the following
winter. The cold La Nifia phase of ENSO broadly exhibits an
opposite SSTA signature. ENSO can significantly affect the
global atmospheric circulation (Taschetto et al. 2020), causing
droughts and floods (Goddard and Gershunov 2020), modulating
globally averaged annual surface air temperature and tropical
cyclone activity (Lin et al. 2020), and impacting ecosystems
and agriculture worldwide (Bertrand et al. 2020; Holbrook
et al. 2020).

Because of its many global impacts, it is critical to accurately
predict ENSO as early as possible. The recharge oscillator

Planton’s current affiliation: NOA A/Pacific Marine Environmental

Laboratory, Seattle, Washington. the real world (Jin et al. 2007), and therefore limits ENSO
predictability.

Corresponding author: Yann Y. Planton, yann.planton@locean-ipsl. This role of the oceanic state for ENSO predictability has

upmc.fr enabled skillful dynamical and statistical ENSO forecasts three

DOI: 10.1175/JCLI-D-20-0633.1

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright

Policy (www.ametsoc.org/PUBSReuseLicenses).
Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/27/21 08:31 PM UTC


mailto:yann.planton@locean-ipsl.upmc.fr
mailto:yann.planton@locean-ipsl.upmc.fr
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

5776

seasons or more before its peak (e.g., Barnston et al. 2019;
L’Heureux et al. 2020). However, these predictions exhibit a
rapid decrease in skill when forecasts are initiated in spring or
before, due to the so-called spring predictability barrier (e.g.,
Webster and Yang 1992; Barnston et al. 2019). A clear and
recent illustration is the situation during early 2014, when a
high recharge prompted speculation of an upcoming strong El
Nifio that never materialized (McPhaden 2015), while the same
early-year conditions led to a strong event in 2015. On the
other hand, large discharges (i.e., negative equatorial Pacific
heat content anomalies) appear to be associated with predict-
able evolution toward La Nifia up to 2 years in advance
(DiNezio et al. 2017a,b). This raises an important question. Is
ENSO future evolution more predictable from a discharged than
from a recharged equatorial Pacific? Answering this question
has a considerable practical utility, as this would give forecasters
additional information on the reliability of forecasts.

There is to date no consensus about a potential dependence
of ENSO predictability on ENSO state. Some analyses based
on observations (Timmermann et al. 2018) and ensemble ex-
periments in a perfect model framework (Larson and Kirtman
2019) suggest that El Nifio is more predictable than La Niiia.
Alternatively, other studies using the conceptual recharge os-
cillator model (Jin et al. 2007), a simplified model (Dommenget
et al. 2013), and coupled general circulation models (Lopez and
Kirtman 2014; DiNezio et al. 2017a,b; Planton et al. 2018; Yu
and Fedorov 2020) point toward an enhanced predictability of
La Nifla events. Finally, real-time seasonal ENSO forecasts
initialized using oceanic observations indicate that El Nifio and
La Nifia events are equally predictable (Larson and Pegion
2020). Some of the studies above address the potential asym-
metry in predictability by exploring 1) which phase of ENSO is
most predictable, while others instead investigate 2) which ini-
tial states are associated with most predictability. As discussed in
Larson and Pegion (2020), we believe that the second question is
better posed and more useful in a real-time prediction scenario.
Knowing the current state of the ocean, we want to know how
predictable the following ENSO evolution is and not whether a
particular event was predictable once it has occurred.

The current study is based on Planton et al. (2018). This study
investigated potential asymmetries in the predictability of ENSO
phase transitions by looking at the statistical relationship be-
tween T300y, anomalies (T300A) and the upcoming ENSO
amplitude. T300 A was used, rather than the more widely used
anomalies of T300 averaged over the entire equatorial Pacific
(EP T300A), because several studies indicate it is a better indi-
cator of the low-frequency “memory” from the previous ENSO
phase (e.g., Wyrtki 1985; Jin 1997; McGregor et al. 2016; Neske
and McGregor 2018; Tzumo et al. 2019). Planton et al. (2018)
found that discharged boreal autumn T300 A generally leads
to a La Nifia about 1 year later, but that a recharged state leads
to a much wider distribution of ENSO outcomes. They found
this asymmetry both in observations and models from phase 5
of the Coupled Model Intercomparison Project (CMIP5; Taylor
et al. 2012) database. While this statistical analysis suggests a
more predictable evolution toward La Nifia in presence of a
discharged T300w/A, it did not address the question of what
mechanisms accounted for the asymmetry in predictability.
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Several ENSO mechanisms are nonlinear [see An et al.
(2020) for a review] and may therefore lead to asymmetries in
ENSO properties and predictability. First, there are nonline-
arities in the Bjerknes air—sea feedback loop, and hence to the
low-frequency stability of the system. While the thermocline
feedback (e.g., Jin and An 1999) usually has similar amplitude
during both phases of ENSO (e.g., Guan et al. 2019), the
positive wind stress feedback and negative heat flux feedback
are both stronger during El Nifio, due to the enhanced acti-
vation of atmospheric deep convection at high surface tem-
peratures (e.g., Guilyardi et al. 2009; Frauen and Dommenget
2010; Choi et al. 2013; Im et al. 2015; Takahashi and Dewitte
2016) and enhanced cloud cover (e.g., Lloyd et al. 2012; Im
et al. 2015). Second, stochastic forcing associated with WWEs
is also nonlinear and dependent on the ENSO state. WWEs are
indeed modulated by the zonal extension of the warm pool and
are more frequent and/or more intense during El Nifio than
during La Nifia (e.g., Lengaigne et al. 2004; Eisenman et al.
2005; Gebbie et al. 2007). This nonlinearity, also referred to
as a multiplicative or state-dependent noise forcing, induces
larger (e.g., Levine et al. 2016; Martinez-Villalobos et al. 2019)
and less predictable (Jin et al. 2007; Lopez and Kirtman 2014)
El Nifio than La Nifia events in conceptual models of ENSO.

In this paper, we explore the influence of the western equa-
torial Pacific heat content T300,/A on ENSO predictability and
its mechanism in the CNRM-CMS5 climate model. This model
reproduces the main ENSO main characteristics reasonably well,
including its asymmetry and the asymmetrical relationship be-
tween T300 A and the upcoming ENSO amplitude found in
Planton et al. (2018). We perform a number of 70-member en-
semble experiments, where ensembles are generated through
infinitesimal perturbations of initial conditions. Initial conditions
from these experiments either correspond to recharged or dis-
charged boreal autumn T300y A, and we run a total of six en-
sembles that span different ENSO phases (a recharged T300,,/A
can for instance correspond to neutral, El Nifio or strong El Nifio
phases). In section 2, we briefly present the datasets and method
used in the paper (a more detailed description is provided in the
appendix). In section 3, we assess ENSO in CNRM-CMS5 versus
the rest of the CMIP database and observations, focusing on
important ENSO properties and feedbacks for the current study.
In section 4, we present the results of the ensemble experiments
and propose a mechanism explaining the asymmetry in predict-
ability. In section 5 we provide a summary, and in section 6 we
compare our results with those of previous studies.

2. Data and methods
a. Models and datasets

This study uses a 1007-yr simulation (after a 200-yr spinup)
with the CNRM-CMS5 model [see the appendix and Voldoire
et al. (2013) for more description of the model], with green-
house gas concentrations and solar irradiance fixed to their
observed value for 1850, as in CMIPS5 preindustrial control
(piControl) simulations (Taylor et al. 2012). To evaluate
CNRM-CMS with respect to other coupled climate models and
observations, we compare its performance with 44 CMIP5
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models and 36 CMIP6 models (Eyring et al. 2016) for which a
piControl simulation was available at the time of writing this
paper (see Table 1 for the list of models and data availability).
These simulations are evaluated against the NCEP GODAS
oceanic reanalysis data (Saha et al. 2006) for T300 anomalies
(T300A) and TropFlux dataset (Praveen Kumar et al. 2012,
2013) for SSTA, zonal wind stress anomalies (TauxA), and net
heat flux anomalies at the air-sea interface (NHFA). We use
monthly values of these products for the period 1980-2018,
except for the detection of WWE, which is based on daily zonal
wind stress. Interannual anomalies are computed by removing
the mean monthly seasonal cycle, except for the warm pool
eastern edge (WPEE) and WWE index discussed below, for
which absolute values are shown.

b. Ensemble experiments design

ENSO ensemble forecasts experiments are designed in a
perfect model setting. Ensembles consist of 70-member ex-
periments starting on 1 November, and lasting for 17 months
(i.e., until the end of March, two years later), generated by
applying small-amplitude random white noise perturbations on
the initial SST as in Puy et al. (2019). This perfect model
forecast setting provides a ‘‘best case scenario” for predictions,
where the spread essentially arises from the coupled system
chaotic behavior. This setting hence does not include the ef-
fects of uncertainties in initial oceanic conditions nor the effect
of model errors, which are a limitation in real-time seasonal
ENSO forecasts (as in Larson and Pegion 2020). We chose to
start our ensemble on 1 November to test whether the long-
lead memory of the ocean can lead to asymmetrical predict-
ability of El Nifio and La Niiia, building on Planton et al.
(2018). The set of oceanic initial conditions from which the
ensemble experiments are initiated is picked from the 1007-yr-
long control simulation and detailed in section 4.

¢. ENSO and preconditioning indices

We define the ENSO state using the average boreal winter
[November-January ( NDJ)] Nifio-3 (N3; 90°-150°W, 5°S—
5°N) SSTA normalized by the dataset’s standard deviation.
The ENSO state is defined as an extreme La Nifia event for N3
SSTA below —1.5, a moderate La Nifia event between —1.5
and —0.5, a neutral ““‘event” between —0.5 and 0.5, a moderate
El Nifio event between 0.5 and 1.5, and an extreme El Nifio
event above 1.5. We define the ocean preconditioning from the
T300wA, averaged over the western equatorial Pacific and
normalized by their standard deviation (see the appendix for
details). To account for the model “cold tongue bias” (see
Fig. Al in the appendix), the western Pacific box in CNRM-
CMS model (120°E-180°, 5°S-5°N) has a westward-shifted
eastern boundary relative to that commonly used for obser-
vations (120°E-155°W, 5°S-5°N). We use similar thresholds to
those above for defining extreme discharge, moderate dis-
charge, neutral preconditioning, moderate recharge, and ex-
treme recharge based on the normalized T300y/A value.

d. Essential ENSO characteristics

A set of metrics that evaluate essential ENSO properties
(including asymmetries between El Nifio and La Nifia events)
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in the CNRM-CMS5 model is used in this paper. These metrics
are defined as follows:

¢ amplitude: standard deviation of N3 SSTA during NDJ,

e seasonality: standard deviation of N3 SSTA during NDJ
divided by March-May (MAM),

amplitude symmetry: Fisher—Pearson coefficient of skewness
(Kokoska and Zwillinger 2000),

duration asymmetry: mean duration of La Nifia events
divided by that of El Nifio events, where the duration is
the number of consecutive months with normalized absolute
SSTA above 0.25 ENSO amplitude (i.e., the value of the first
metric), and

transition asymmetry: percentage of El Nifio events followed
the next winter by La Nifia events divided by the percentage of
La Nifia events followed the next winter by El Nifio events.

e. Diagnosing ENSO processes

The three feedbacks used in this paper are defined as the
linear regression coefficient of: averaged Nifio-4 (N4; 160°E~
150°W, 5°S-5°N) TauxA onto averaged N3 SSTA (wind stress
feedback; e.g., Bellenger et al. 2014), N3 NHFA onto averaged
N3 SSTA (heat flux feedback; e.g., Lloyd et al. 2009), and av-
eraged N3 T300A onto averaged N3 SSTA (thermocline
feedback; e.g., Bayr et al. 2019),

The Puy et al. (2016) method is applied to detect WWEs in
observations and our CNRM-CM5 simulations. WWEs are
detected as 2°N-2°S average intraseasonally filtered (5-90-day
period) daily wind stress exceeding 0.04 N m ™2 over more than
10° longitude and 5 days. WWE separated by less than 3° and
3 days and are grouped as a single event. Weighted averages
are used to define the locations and dates of WWEs. The in-
tensity of each WWE is defined as the space-time integration
of the intraseasonally filtered TauxA over the wind event
patch. The intensity of each WWE is then normalized by its
standard deviation to create a ‘“‘wind event intensity” (WEI)
index, as in Puy et al. (2016), who showed that it is a proxy of
the oceanic Kelvin wave response. Some previous authors
(e.g., Chiodi et al. 2014; Yu and Fedorov 2020) have argued
that wind events should be detected based on interannual wind
stress forcing rather than intraseasonally filtered forcing like
we do. One of our motivations for using intraseasonally filtered
wind stress to detect WWE is to reduce the WEI dependency
on the interannual wind stress signal and hence on the Bjerknes
wind stress feedback. We checked our results using both defi-
nitions and found that our conclusions do not fundamentally
change (not shown).

As mentioned in the introduction, WWE activity is modu-
lated by the zonal displacements of the warm pool (e.g.,
Lengaigne et al. 2004; Eisenman et al. 2005; Gebbie et al. 2007).
The WPEE is defined as the location of the 28.5°C isotherm in
observations and the 27.5°C isotherm in the model, because of
the ~1°C cold equatorial bias in CNRM-CM5 (Voldoire et al.
2013; Planton et al. 2020).

Recent studies have suggested that easterly wind events
(EWESs) could also play a role for triggering La Nifia events
(e.g., Chiodi and Harrison 2015). This aspect is, however,
less documented than the very clear WWE-ENSO two-way



5778

JOURNAL OF CLIMATE

VOLUME 34

TABLE 1. CMIP5 and CMIP6 model names and associated modeling centers. Expansions for many of the models and modeling centers can

be found online (https://www.ametsoc.org/PubsAcronymList).

CMIP5 CMIP6
Modeling center Model Run length (yr) Model Run length (yr)

AWI — — AWI-CM-1-1-MR® 500
BCC BCC_CSM1.1 500 BCC-CMS2-MR 600
BCC_CSM1.1(m) 400 BCC-EMSI1° 451

BNU BNU-ESM" 558 — —
CAMS — — CAMS-CSM1-0 500
CAS — — FGOALS-f3-L.*¢ 561
— — FGOALS-g3° 700
CCCma CanESM2 996 CanESM5 1000
CCCR-IITM — — IITM-ESM 200
CMCC CMCC-CESM 277 — —
CMCC-CM 290 — —

CMCC-CMS 500 — —
CNRM-CERFACS CNRM-CM5° 850 CNRM-CM6-1 500
CNRM-CMS5-2 359 CNRM-CM6-1-HR 500
— — CNRM-ESM2-1 300
CSIRO-ARCCSS and CSIRO-BoM ACCESS1.0 500 ACCESS-CM2%b¢ 500
ACCESS1.3 500 — —

CSIRO-QCCCE CSIRO MKk3.6.0 500 — —
E3SM-Project — — E3SM-1-0¢ 500
— — E3SM-1-1 165

FIO-QLNM and FIO FIO-ESM? 800 FIO-ESM-1-0 575
ICHEC EC-EARTH** 452 — —
INM INM-CM4 500 — —
IPSL IPSL-CM5A-LR 430 IPSL-CM6A-LR® 2000
IPSL-CM5A-MR 300 — —

IPSL-CM5B-LR 300 — —

LASG-CESS FGOALS-g2 700 — —
MIROC MIROC-ESM® 630 MIROC-ES2L* 500
MIROC-ESM-CHEM® 255 MIROC6® 800

MIROC4h® 100 — —

MIROC5¢ 870 — —

MOHC HadGEM2-CC 240 HadGEM2-GC31-LL 500
HadGEM2-ES 336 HadGEM2-GC31-MM¢ 500

— — UKSEM-1-0-LL 750

MPI MPI-ESM-LR 1000 MPI-ESM1-2-HR 500
MPI-ESM-MR 1000 — —

MPI-ESM-P 1156 — —

MRI MRI-CGCM3° 500 MRI-ESM2-0° 701
NASA-GISS GISS-E2-H 540 GISS-E2-1-G 851
GISS-E2-H-CC 251 — —

GISS-E2-R 550 — —

GISS-E2-R-CC 251 — —

NCAR and NSF-DOE-NCAR CCSM4 501 CESM2 1200
CESM1(BGC) 500 CESM2-FV2 500

CESM1(CAMS) 319 CESM2-WACCM 499

CESM1(FASTCHEM) 222 CESM2-WACCM-FV2 500

CESM1(WACCM) 200 — —

NCC NorESM1-M 501 NorCPM1 500
NorESM1-ME® 252 NorESM1-F¢ 200

— — NorESM2-LM* 501

NIMR-KMA HadGEM2-AO**¢ 700 — —
NOAA-GFDL GFDL CM3 500 GFDL-CM4?* 500
GFDL-ESM2G 500 GFDL-ESM4* 500

GFDL-ESM2M 500 — —

NUIST — — NESM3? 300
SNU — — SAMO-UNICON 700
UA — — MCM-UA-1-0* 500

#Models for which data for the computation of heat flux feedbacks were not available.
® Models for which data for the computation of wind stress feedbacks were not available.
¢ Models for which data for the computation of thermocline feedbacks were not available.
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FIG. 1. Scalar measures of key ENSO properties: ENSO ampli-
tude and seasonality; El Nifio-La Nifia asymmetries in amplitude,
duration, and transition; and heat flux, wind stress, and thermocline
feedbacks (see the appendix for the definition of these metrics) in
the observations (black triangles), the CNRM-CMS5 (red triangles),
and 80 CMIP models (44 CMIP5 and 36 CMIP6 datasets) (green
box-and-whiskers plots; the list of models is in Table 1). Whiskers
delineate the Sth and 95th percentiles, boxes delineate the 25th and
75th percentiles, lines within the boxes mark the median, and dots
indicate models that fall outside the whiskers.

interaction. In addition, Puy et al. (2016) showed that the EWE
activity modulation by the WPEE displacement depends on
the wind event detection method: there is no modulation when
EWE:s are detected based on filtered wind stress. For these
reasons, we decided to focus on the better documented WWE-
ENSO interaction and EWEs are not discussed further in
this paper.

f- Predictability metrics

In this paper, we use two different metrics of ENSO pre-
dictability, computed from the ensemble boreal winter N3
SSTA (NDJ). One metric is based on the spread of the en-
semble relative to the climatological spread [potential pre-
dictability (PP)] and another one on the signal-to-noise ratio
(SNR; with signal estimated from the ensemble mean and
noise from the ensemble spread; see the appendix for the exact
definitions). In both cases, the ensemble spread is quantified
through the interquartile range (IQR): IQR = Q3 — Q1, where
Q1 and Q3 are respectively the first and the third quartiles of
the distribution. Both metrics are defined in such a way that a
large value indicates higher predictability. We chose to use
these two definitions as recent studies have argued that SNR
is a better measure of predictability than the spread (e.g.,
Larson and Kirtman 2019; Larson and Pegion 2020).

3. Model evaluation

Figure 1 provides a brief comparison of ENSO simulated in
CNRM-CMS5 and other climate models with observations.
ENSO amplitude and seasonality are relatively well simulated
in CNRM-CMS (respectively 1.1°C and 1.7 in the model; 1.2°C
and 1.9 in the observations), as it is among the top 10% of
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CMIP models for both. The asymmetries between El Nifio and
La Nifia in terms of amplitude, duration, and transition are
underestimated by CNRM-CMS5 (respectively 0.4°C, 1.0, and
1.5 in the model; 1.0°C, 1.3, and 2.8 in the observations) but it is
still among the top 50% of CMIP models for the three asym-
metries. The wind stress feedback is underestimated by 40% in
CNRM-CMS, while the heat flux feedback is very close to the
observed estimate. This deviates from what generally happens
in the CMIP database, where there is an error compensation
between these two underestimated feedbacks (Bayr et al.
2019). The realistic ENSO amplitude in CNRM-CMS5 may
rather result from an error compensation between the under-
estimated wind stress and overestimated thermocline feedback
(by 30%). Despite these errors, the model CNRM-CMS is
among the top 30% of CMIP models for the three feedbacks.

Given the importance of WWE for ENSO dynamics and
predictability, we also evaluate how they are reproduced in the
CNRM-CMS5 model. Figure 2 provides a quantitative evalua-
tion of WWE dependence on ENSO phase. As already dis-
cussed in Puy et al. (2019), there is an ~0.7 correlation between
the March-December integrated WEI (a proxy of the oceanic
response) and the NDJ N3 SSTA in observations and the
CNRM-CMS5 model (Figs. 2a,b). The model reproduces the
observed tendency to have more frequent and/or intense
WWEs during El Nifio than during La Nifia events (not
shown). Previous studies have related this intensification of
WWE during El Nifio events to the displacements of the
WPEE (e.g., Puy et al. 2016). Figure 2c shows the monthly
mean WEI for a given WPEE location and indicates that
WWEs become progressively more frequent and/or intense as
the WPEE moves eastward in observations and CNRM-CMS5.
A more detailed evaluation of wind events in CNRM-CMS5 can
be found in Puy (2016).

In this study, we want to investigate the asymmetric relation
between the oceanic preconditioning in boreal autumn and
ENSO peak amplitude one year later discussed by Planton
et al. (2018). The CNRM-CMS5 model captures the tendency
for El Nifio events to be preceded by positive T300A and La
Nina events to be preceded by negative T300y A (e.g., Meinen
and McPhaden 2000; Planton et al. 2018; Izumo et al. 2019) 10
to 16 months before the ENSO peak (correlations around 0.5;
Fig. 3a; note that while T300/A is the best long-term precursor
of ENSO, it only explains 15%-35% of its variance at such long
lead times). As shown by the transition asymmetry metric,
CNRM-CMS is, however, too biennial, resulting in an over-
estimation of the correlation between SSTA and ENSO am-
plitude 1 year later (—0.4 in CNRM-CMS5 and —0.1 in the
observations, outside observational uncertainties). Figure 3b
reproduces the observed diagnostic of the relationship be-
tween boreal autumn T300,A and ENSO event one year later
discussed in Planton et al. (2018). This suggests an asymmet-
rical relationship, with an almost linear relation between dis-
charged T300y A and La Nifla amplitude one year later, but a
wide range of outcomes (ranging from moderate La Nifia to
extreme El Nifio) after recharged T300wA.

The CNRM-CMS5 model reproduces essential ENSO prop-
erties (amplitude and seasonality), asymmetries, and feed-
backs reasonably well. In this regard, it ranks among the best of
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FIG. 2. Scatterplots of ENSO peak amplitude (NDJ; N3 SSTA) vs March;—December; total WEI index for (a) observations and
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CMIP models (Fig. 1; see also Bellenger et al. 2014; Planton
et al. 2020). Of particular importance for this study, it repro-
duces the asymmetrical boreal autumn T300y/A lead relation
with ENSO 1 year later, and the ENSO state dependence of
WWE. This indicates that this model is well suited to investi-
gate the asymmetry in ENSO predictability. It is, however,
important to keep in mind that this model underestimates
observed ENSO asymmetries and the wind stress feedback and
overestimates the frequency of the transition from La Nifa
events to El Nifio events. The potential impacts of these defi-
ciencies on our results are discussed in section 6.

4. Results

The goals of this study are 1) to confirm using a dynamical
framework the statistical results of Planton et al. (2018) indi-
cating that a discharged western Pacific is more likely to lead
to a La Nifia one year after than a recharged western Pacific to
an El Nino and 2) to propose a mechanism explaining this
asymmetry. To that end, we designed ENSO ensemble forecast
experiments in a perfect model setting where the predictability
is only limited by the chaotic growth of infinitesimal initial
errors. Below, we first describe how we selected the set of
initial states for the ensemble experiments and then show that
experiments starting from discharged states have a more pre-
dictable ENSO evolution. We then propose a mechanism that
explains this asymmetry in predictability.

a. Ensemble experiments design and results

The correlation between T300,A and ENSO amplitude at
its peak (NDJ N3 SSTA) is maximum when T300y A leads by
about 1 year in the CNRM-CMS5 model (Fig. 3a), in broad
agreement with observations (e.g., Planton et al. 2018; Izumo
et al. 2019). We hence decided to start our set of ensemble
experiments on 1 November, from either recharged or dis-
charged T300wA. In observations, there is a tendency for re-
charged T300yA to occur during La Nifia, and discharged
during El Nifio, but this is not a one-to-one relation (e.g.,
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Meinen and McPhaden 2000). Figure 3c provides a scatterplot
of October (monthly average) N3 SSTA (i.e., ENSO state)
versus October T300A (i.e., ENSO preconditioning). As
expected, the preconditioning is anticorrelated (r = —0.76)
with the ENSO state, with a tendency for western Pacific dis-
charge at the peak of El Nifio and recharge for La Nifia. A
recharged T300y A (normalized T300y A > 0.5) can, however,
be associated with different ENSO conditions: extreme La
Nina, moderate La Nifa, neutral state, and a few rare instances
of weak El Nifo (Fig. 3c). For a discharged T3001A (normalized
T300wA < —0.5), the Pacific can be in a neutral ENSO, mod-
erate El Nifio, and an extreme El Nifio state, which is associated
with an extreme discharge (that we define as normalized
T300wA < —1.5). The observations display very similar features
to those in the model (not shown). Our goal is to define two sets
of contrasting initial states that are characteristic of recharged
and discharged T300y/A. Figure 3c indicates that this broadly
corresponds to six situations in total: three recharged (extreme
La Nifia, La Nifia, and neutral) and three discharged (neutral, E1
Nifio, and extreme El Nifio, also corresponding to an extreme
discharge) states. There are many possible initial conditions from
our 1007-yr-long control simulation for each of those six cases
(delineated by dashed lines on Fig. 3c that are based on the 0.5 X
STD and 1.5 X STD thresholds for T300 A and N3 SSTA,
where STD is the standard deviation). In each case, we picked
the initial condition that was closest to the centroid of the dis-
tribution within the box. We then pair the chosen recharged and
discharged restarts as follows:

e neutral ENSO states, hereinafter NEUg (R for recharged;
dark-red cross) and NEU, (D for discharged; dark-turquoise
Cross),

e moderate El Nifio/La Nifia states, hereinafter MODp, (dark-
red left-pointing triangle) and MODp, (dark-turquoise right-
pointing triangle), and

o extreme El Nifio/La Nifia states, hereinafter EXTg (dark-
red upward-pointing triangle) and EXTp (dark-turquoise
downward-pointing triangle).
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FIG. 3. (a) Lead correlations between T300yA (red), anomalies of T300 averaged over the entire equatorial
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confidence interval. (b) Scatterplot of normalized NDJ; [gray shading in (a)] N3 SSTA vs normalized OND,
[purple shading in (a)] T300wA. (c) Scatterplot of normalized October, T300yA vs normalized Octobery N3 SSTA.
This figure is used is to select initial states for our ensemble predictability experiments. In (b) and (c), the dashed
lines indicate the —1.5 X STD (deep blue; limit between extreme and moderate La Nifa/discharges), —0.5 X STD
(light blue; limit between moderate and neutral La Nifia/discharges), 0.5 X STD (orange; limit between neutral and
moderate El Nifio/recharge), and 1.5 X STD (red; limit between moderate and extreme El Nifio/recharge)
thresholds. In (b) and (c), the black solid line represents the linear regression slope, and the corresponding r and s
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In the “extreme” experiments (EXTg and EXT)p), the recharged/
discharged states are not symmetrical because extreme El
Niflo events generally correspond to extreme discharges in the
model, whereas extreme La Nifia events generally correspond
to more moderate recharges, as in observations and most CMIP5
models (Planton et al. 2018).

Figure 4 illustrates the evolution of N3 SSTA in these six
ensemble experiments (Figs. 4a,b.f,g,k 1), including the statis-
tics of NDJ N3 SSTA after one year (Figs. 4c,h,m) and the
associated predictability metrics (Figs. 4d,e,i,j,n,0). In all
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experiments, the ensemble spread initially increases slowly and
generally picks up during or after boreal summer. The maxi-
mum spread is reached during boreal winter (NDJ;; gray
shading in Figs. 4a,b.f,g.k,]). Experiments starting from a re-
charged state in November often evolve into a neutral or El
Nifio state after one year (>77% of the cases, whatever the
initial ENSO phase), whereas the experiments starting from a
discharge preferentially mostly yield a neutral or La Nifia state
(>84% of the cases; Figs. 4c,h,m). The experiments starting
from extreme ENSO phases do not mirror each other in terms
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ferent values at the 95% confidence level between the recharged and discharged experiments.

of mean SSTA evolution: the one starting from a recharge
(extreme La Nifia) is most likely to evolve into a neutral state
(53%), while the experiment starting from a discharge (ex-
treme El Nifio) is most likely to evolve into a moderate or
extreme La Nifia (97%). For each pair of experiments, the N3
SSTA distribution at the ENSO peak one year later is sys-
tematically wider in the recharged experiments than in the dis-
charged experiments (see box-and-whisker plots in Figs. 4c,h,m).
This translates into differences in the predictability metrics be-
tween recharged and discharged experiments. For each pair of
experiments, the potential predictability (PP; Figs. 4d.i,n) is sig-
nificantly smaller in the recharged than in the discharged ex-
periments, at the 95% significance level. This indicates that
recharged states lead to a broader ENSO distribution 1 year later
than discharged states. This measure of predictability, however,
does not take the amplitude of the ENSO signal into account.
In section 4b, we first compare the evolution of experiments
starting from ENSO-neutral initial states (NEUz and NEU}p,).
On this basis, we propose a physical interpretation of why
experiments starting from a discharged state are more pre-
dictable. In section 4c, we show that the same mechanism
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applies for ENSO transitions (i.e., MOD and EXT experi-
ments) and generalize these results to experiments initialized
with a broader set of initial conditions.

b. Neutral initial ENSO conditions

Figures 5a and 5b illustrate the evolution of the equatorial
SSTA (shading), T300A (black contours), WPEE (gray lines),
and WWE activity (red dots) ensemble mean, and Figs. Sc and
5d show the spread in the NEUy (Figs. 5a,c) and NEUp
(Figs. 5b,d) experiments. Figure 6 further compares the evo-
lution of essential variables and feedbacks for this pair of ex-
periments. NEUg and NEU, (Figs. 5a,b and 6a) both start
from near-neutral SSTA in the N3 region (~0.2°C in NDJ).
The eastern equatorial Pacific ensemble mean SSTA remain
stable and similar in the two experiments until boreal spring
(MAM;). In late boreal spring and early summer, the N3 re-
gion anomalously warms in NEUg and anomalously cools in
NEUp. The classical explanation of the emergence of these
SSTA in the recharge oscillator framework is that anomalous
western Pacific recharge favors the development of positive
SSTA, and anomalous discharge favors the development of
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negative SSTA, through the thermocline and zonal advective
feedbacks (e.g., Jin and An 1999). The thermocline feedback
indeed strongly intensifies after boreal spring in both experi-
ments (Fig. 6e), allowing subsurface thermal anomalies to
connect with the surface, and explaining the progressive
warming of NEUpg and cooling of NEU,. We did not diagnose
the zonal advective feedback, but it probably also contributes
to the differential heating in the central Pacific between the
two experiments, as underlined by the much stronger eastward
displacement of the WPEE in NEUy during boreal spring
(Fig. 6b). These contrasting ensemble mean SSTA after early
summer in the two experiments are associated with marked
differences in the ENSO spread. The SSTA ensemble spread is
similar in NEUg and in NEUp up to mid boreal summer but
then it increases much more in NEUg than in NEU), (Figs. 5c,d
and 6a). At the end of the year, the SSTA ensemble spread of
NEUfy, is almost twice as large as that of NEUp (1.7° and 0.9°C
respectively). At the time of the ENSO peak, NEU g has mostly
evolved into neutral (37%) or El Nifio (49%, including mod-
erate and extreme events) states (Fig. 4c), while NEU , mostly
yields neutral (32%) or La Nifia (52 %, including moderate and
extreme events) states (Fig. 4c). Below, we first comment on
the differences in ENSO feedbacks and WWE ENSO state
dependence between NEUg and NEUp, and then propose a
mechanism for the enhanced spread in NEUR.

ENSO feedbacks play an essential role in ENSO growth. We
thus start by discussing differences in essential ENSO feed-
backs between NEUg and NEU . Figure 6d indicates that the
wind stress feedback is larger in NEUg than in NEU, during
boreal spring to autumn, this difference being significant at the
95% confidence level only at the end of the calendar year. This
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larger wind stress feedback is likely due to the warmer en-
semble mean SSTA in NEUy, after boreal spring (Figs. Sc,d and
6a,b). Previous studies have indeed underlined that the exis-
tence of a threshold for deep atmospheric convection in the
tropics (e.g., Gadgil et al. 1984; Graham and Barnett 1987)
induces a larger convective and wind stress response for posi-
tive than for negative SSTA (e.g., Lloyd et al. 2009; Frauen and
Dommenget 2010; Choi et al. 2013; Dommenget et al. 2013; Im
et al. 2015; Takahashi and Dewitte 2016). The negative heat
flux feedback is also stronger (i.e., more negative) in NEUg
from the end of the summer season (Fig. 6), this difference
being significant at the 95% confidence level at the end of the
calendar year as for the wind stress feedback. This larger heat
flux feedback in NEUg can also be related to the nonlinearity
of the convective response to surface temperature. The ther-
mocline feedback is very similar between the two experiments
until late boreal autumn, when it briefly becomes slightly
weaker in NEUg (Fig. 6e). We did not attempt to estimate the
overall Bjerknes feedback, which is a complex balance be-
tween many terms (e.g., Jin et al. 2006). The effect of the
stronger wind stress feedback in NEUy is, however, probably
partially offset by the stronger stabilizing heat flux feedback. In
addition, these differences in ENSO feedback only become
statistically significant near the end of the calendar year
(Figs. 6d—f), once the spread of the NEUg experiment has al-
ready become larger (Fig. 6a). While the difference in those
low-frequency feedbacks may contribute to the reduced pre-
dictability in the NEUg experiment, especially toward the end
of the year, it is thus most likely not the primary cause.
WWEs also play a key role in the growth of ENSO and Jin
et al. (2007) demonstrated that their state dependence could
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ments, at the 95% confidence level.

lead to a more predictable cold ENSO phase in the recharge
oscillator conceptual model. To assess their impact, we use the
WETI or “wind event intensity”” index, which is a proxy of the
oceanic impact of WWEs (see methods section). The WEI is
significantly higher in NEUg very early in the calendar year,
namely from boreal spring onward (Fig. 6¢). This increase of
the WWE activity can be related to a more eastward WPEE in
NEUfg (Figs. 5a,b and 6b). The WELI is not only larger in NEU g
ensemble mean, but also more variable between members,
especially during the event onset in late boreal spring and early
summer [see IQR in Fig. 6¢ (dashed line)]. Figure 2¢ indeed
shows that the WEI not only becomes larger when the WPEE
moves eastward, but also more variable (see the red error bars,
which measure the WEI stochasticity), leading to more spread in
the N3 SSTA (Fig. 6a). WWE ENSO state dependence is thus a
likely explanation of the reduced predictability in NEUk.

To summarize, the thermocline and zonal advective feed-
backs yield an anomalously warm N3 SSTA (0.5°C) and east-
ward WPEE in the NEUg experiment from boreal spring
onward while the feedbacks produce anomalously cold SST
(—0.5°C) and westward WPEE in the NEU, experiment. The
ENSO state dependence of WWE in our model (Fig. 2c) then
leads to more active WWE in the ensemble mean and more
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WWE stochasticity across the members in NEUg, in agree-
ment with results found in the recharge oscillator model (Jin
et al. 2007). Warmer surface temperatures also induce a larger
wind stress feedback in the recharged experiment relative to
the discharged experiment. However, the wind stress feedback
only becomes significantly larger in NEUg during boreal au-
tumn and early winter, after the increase in spread. In addition,
at the same time the heat flux feedback is more negative in
NEUg (implying greater damping), offsetting the wind stress
feedback change. For those two reasons, the most likely
mechanism that accounts for the less-predictable evolution in
the NEU g relative to the NEU, experiment is thus associated
with the ENSO state dependence of WWE. We cannot exclude
the possibility, however, that the stronger wind stress feedback
induced by warmer surface temperatures in the recharged ex-
periment also contributes. We will come back to this point in
section 6.

c. El Nifio/La Nifia initial conditions and generalization

In section 4b, we investigated the mechanisms that could
explain the weaker ENSO predictability after recharged states
than discharged states, in the case of ENSO-neutral initial
conditions. Here, we show that the same mechanisms explain
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in Fig. 3c.

the weaker predictability associated with recharged initial
states, in the case of ENSO phase transitions—that is, after
moderate (MODg vs MODp; Fig. 7) and extreme (EXTg vs
EXTp; Fig. 8) ENSO. In both cases, warmer ensemble mean
N3 SSTA appears from boreal summer onward in the re-
charged experiments (Figs. 7a and 8a), probably due to the
thermocline and zonal advective feedbacks (see WPEE dis-
placement in Figs. 7b and 8b) (MOD and EXTg). As a result,
similar to the NEU experiments, the ensemble mean WEI and
its spread are significantly larger from early boreal summer to
winter in the recharged than in the discharged experiments
(Figs. 7c and 8c). Consistent with Jin et al.’s (2007) results, this
is probably the main factor that contributes to lower predict-
ability in recharged experiments. The wind stress feedback in
the recharged relative to the discharged experiments is signif-
icantly larger during boreal autumn in the MOD experiments
(Fig. 7d), and almost never significantly larger in the EXT
experiments (Fig. 8d; difference significant during NDJ,). Its
effect on the Bjerknes feedback is also partially offset by a
significantly stronger negative heat flux feedback in the re-
charged experiments after boreal summer (Figs. 7f and 8f), as
was the case in the NEU experiments. One notable difference
with the NEU experiments is that there is a statistically sig-
nificant difference in the thermocline feedback in the MOD
and EXT experiments from boreal summer onward (Figs. 7e
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and 8e). However, as for the heat flux feedback change, it goes
in the “wrong direction” as the stronger thermocline feedback
in the discharged experiments would tend to enhance the
Bjerknes feedback (Jin et al. 2006), making the coupled system
more unstable, and enhancing the spread (which could ex-
plain why the spread is larger in the discharged experiments
until late summer, before the situation reverses). Overall, the
clearest factor to explain the weaker predictability of recharged
states during ENSO phase transitions is thus the ENSO state
dependence of WWE, but the wind stress feedback may also
play a role in MOD experiments. The processes highlighted here
are in general agreement with Dommenget el al. (2013), who
showed that El Nifio events are mostly wind driven while La
Nifia events are thermocline driven.

The analysis of this set of six ensemble experiments has thus
highlighted 1) that western Pacific recharged states lead to less
ENSO predictability than discharged states, irrespective of the
previous ENSO state, and 2) that this weaker predictability is
most likely caused by the ENSO state dependence of WWEs
(i.e., the tendency of WWEs to become more numerous and
more stochastic as the Pacific warms) and may be enhanced by
the wind stress feedback. Now we show that our physical inter-
pretation is not limited to the six specific initial states we con-
sidered for our ensemble experiments but can apply to a more
general context. To this end, we introduce eight additional
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FIG. 8. Asin Fig. 6, but for 70-member ensemble experiments starting on 1 November, from either an extreme La Nifia recharged T300, A
(EXTg; dark red) or an extreme El Nifio discharged T300A (EXTp; dark turquoise). The EXTx and EXT), experiments respectively
correspond to initial states marked by the dark-red upward-pointing and dark-turquoise downward-pointing triangles in Fig. 3c.

ensemble experiments, with initial states designed to cover a
broader spectrum of initial conditions (Fig. 9a). This extra set of
experiments includes three experiments starting from a neutral
T300wA (during either a moderate La Niiia, neutral state, or
moderate El Nifio), two experiments with an intermediate
T300wA between neutral and recharged (during either a mod-
erate La Nifia or neutral state), two experiments similar to
MODx, (i.e., moderate La Nifia and recharge), and one experi-
ment similar to MOD), (i.e., moderate discharge and El Nifio).

Figures 9b and 9c respectively relate the increase in N3
SSTA spread between boreal spring and winter to the wind
stress feedback and to the WEI spread across the ensemble.
Figure 9b first confirms that recharged experiments tend to be
less predictable than discharged experiments (i.e., the red sym-
bols tend to have higher IQR than the turquoise ones). The
spread is low in all discharged experiments, but it covers a wider
range of values in recharged experiments (e.g., extreme La Nifa
recharged T300 A states are almost as predictable as discharged
states, evolving quite predictably into neutral event in our model;
Figs. 4k,m). Across the experiments, there is a highly statistically
significant link (r ~0.9) between the spread increase during
summer/autumn and both the wind stress feedback and WWE
stochasticity. While this statistical link does not imply causality, it
is consistent with the role of the multiplicative noise forcing and
possible role of the wind stress feedback that we highlighted in
the NEU, MOD, and EXT case studies.
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5. Summary

The recharge oscillator theory (Jin 1997) indicates that a re-
charged equatorial western Pacific heat content (here defined by
the depth averaged temperature in the upper 300 m; T300y)
promotes the occurrence of an El Nifio a few seasons later,
whereas a discharged heat content favors the occurrence of a La
Nina. Recent studies (Planton et al. 2018; Larson and Kirtman
2019; Larson and Pegion 2020) debated whether the next ENSO
phase is more predictable after a discharge than after a recharge,
reaching no consensus. Further, these studies did not analyze the
physical mechanisms that could lead to such a predictability
asymmetry. The goal of the present study was to revisit this
possible predictability asymmetry, and to propose an underlying
mechanism. To do so, we designed a set of perfect model en-
semble experiments with the CNRM-CMS5 climate model, start-
ing from either recharged or discharged western Pacific during
boreal autumn and sampling the full range of corresponding
ENSO phases. Our ensemble experiments demonstrate that, in
the CNRM-CMS5 model, discharged western Pacific initial con-
ditions evolve more predictably into a neutral or La Nifa state
than recharged conditions into a neutral or El Nifio state, re-
gardless of the initial ENSO phase. This result is robust irre-
spective of whether we use a predictability metric that only
accounts for the spread of the ensemble (PP) or also accounts for
the SNR (although statistical significance is lower in that case).
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FIG. 9. (a) Asin Fig. 3c but including the initial states of the additional ensemble experiments used in (b) and (c).
Also shown are scatterplots between the ensemble spread evolution during boreal summer/autumn (NDJ; N3
SSTA IQR minus MAM; N3 SSTA IQR) and (b) April;-December; wind stress feedback and (c) April;—
December; integrated WEI index IQR. Black solid lines indicate the linear regression slopes. The corresponding
and s are indicated at the top of each panel, with the 95% confidence interval within parentheses.

The mechanisms that can explain the less predictable ENSO e During boreal autumn (growth phase in Fig. 10), the warmer
evolution in the recharged than in the discharged ensemble surface temperature background also favors a stronger
experiments can be summarized as follows (Fig. 10): wind stress feedback in the recharged experiment dur-
ing boreal autumn (e.g., Frauen and Dommenget 2010;
Choi et al. 2013; Dommenget et al. 2013; Im et al. 2015;
Takahashi and Dewitte 2016), but its effect is offset by a
larger negative heat flux feedback (also related to the
warmer background; e.g., Lloyd et al. 2012; Im et al. 2015)
and weaker positive thermocline feedback (due to the deeper
thermocline).

o Irrespective of the initial ENSO phase, the anomalously high
western Pacific oceanic heat content in the recharged (dis-
charged) experiments leads to warm (cold) central Pacific
SSTA in boreal spring (preconditioning phase in Fig. 10),
due to the thermocline and zonal advective feedbacks (Jin
and An 1999; Jin et al. 2006). During this phase the ensemble
spread of SSTA is similar in both types of experiments.

e During boreal spring, summer, and autumn (onset/growth By the end of the year (peak in Fig. 10), this results in a
phase in Fig. 10), the anomalously eastward WPEE in the larger spread and a less predictable ENSO state in the re-
recharged ensemble experiments leads to more active and  charged than in the discharged ensemble experiments. In
more stochastic WWE (state-dependent forcing; e.g., Levine ~ other words, a recharged state evolves less predictably
et al. 2016), promoting a larger growth of the ensemble toward a neutral or El Nifio state than does a discharged state
spread (Fig. 4; see also Jin et al. 2007; Puy et al. 2019). (toward a La Nifa).
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lower predictability of recharged states relative to discharged states.

6. Discussion and perspectives

The influence of oceanic preconditioning on asymmetries in
long-term ENSO predictability has recently been debated,
reaching no clear consensus. The potential asymmetry in ENSO
predictability can be studied either based on predictability di-
agnostics in a perfect model setting (e.g., DiNezio et al. 2017a,b;
Larson and Kirtman 2019; Yu and Fedorov 2020), like in the
current study, or based on actual ENSO forecasts (e.g., Larson
and Pegion 2020; Tippett et al. 2020). Let us discuss these ap-
proaches separately.

Our results with the CNRM-CMS5 model confirm the statistical
analyses of the CMIP database by Planton et al. (2018) and
indicate a higher ~1-yr-lead predictability when starting from
discharged rather than from recharged initial states. Jin et al
(2007) obtained similar results when they added a multiplicative
noise forcing in the highly idealized recharge oscillator model. Yu
and Fedorov (2020) found that the ENSO evolution in the
CESM1.2 climate model was less predictable when starting from a
recharged rather than from a neutral or discharged initial oceanic
heat content. Our results also agree with those of DiNezio et al.
(2017a,b), pointing to the high likelihood of a La Nifia 1 year after
an extreme discharge. Our ensemble experiment initialized from
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such conditions (EXTp; Fig. 4m) indeed evolves into a moderate
or extreme La Nifia one year later in 97% of the cases. Lopez and
Kirtman (2014) performed predictability experiments with the
CCSM3 coupled models, in which a state-dependent WWE pa-
rameterization was added to compensate for the model’s poor
ability to reproduce observed WWE. When this parameterization
is active, they find a more predictable cold phase, in agreement
with our results, both in terms of the asymmetry predictability and
of the role of WWE in this asymmetry. Larson and Kirtman
(2019) also find a smaller spread in ensemble experiments with
the CCSM4 model initialized from a discharge than in those ini-
tialized from a recharge (but defined using EP T300A). In con-
trast to our study, however, they find that the larger amplitude
warm events result in a more favorable signal-to-noise ratio, and
hence enhanced predictability when starting from a recharged
state. The only study that partially differs with ours, by attributing
a more predictable ENSO evolution after a recharged state, is
thus that of Larson and Kirtman (2019). Their experimental setup
is very similar to ours, so the difference must be attributable to
model dependence of the results, arguing for more ENSO pre-
dictability studies using other models.

All of the studies above, however, focus on ENSO predict-
ability, not actual predictions, and do not consider the effects of
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model errors, or those of initial oceanic condition uncer-
tainties, which can also significantly contribute to ENSO
forecast skill. Larson and Pegion (2020) used initialized pre-
dictions reproducing the setup of real-time seasonal ENSO
forecasts. Using this more realistic setup, they pointed to
equivalent ENSO predictability for recharged and discharged
initial states. It is more difficult to know if this different result
arises from the model they use or from the effect of oceanic
initial condition uncertainties. Tippett et al. (2020) note that
“false alarms” (when a forecast simulates a tendency that does
not materialize) occur mostly in association with warming
tendencies, which points toward a more predictable evolution
toward negative SST anomalies, in agreement with our results.

Despite the relatively good performance of the CNRM-
CMS5 model in comparison with other CMIP5 and CMIP6
models, it does underestimate several aspects of the observed
ENSO asymmetry and the wind stress feedback. The strongly
underestimated wind stress feedback in our model may for
instance result in an underestimation of the role of the seasonal
Bjerknes feedback relative to the ENSO state dependence of
WWE in the mechanisms responsible for the asymmetry in
predictability. Our model also overestimates the ENSO bien-
nial tendency, largely due to too frequent La Nifia to El Nifio
transitions (43% of the La Nifia events in the model, 21 % in the
observations), while the El Nifio to La Nifia transitions are well
represented (around 60% in the model and observations;
Fig. 1). The too-frequent La Nifia to El Nifio transitions imply a
more predictable evolution from initial western Pacific re-
charged states in CNRM-CMS than in nature and thus do not
challenge our result on the predictability asymmetry.

Our results highlight two processes able to enhance the
spread of SSTA in recharged experiments: the seasonal wind
stress feedback and the WWE. We emphasize more strongly
the effect of WWE because 1) the differences in wind stress
feedback between the recharged and discharged experiments
tend to become significant after those in WEI and its spread
and 2) the stronger (destabilizing) wind stress feedback occurs
in conjunction with a stronger (stabilizing) heat flux feedback
in all experiments, although we did not quantify the overall
effect on predictability. In addition, WWE are associated with
seasonal mean westerly winds, and hence contribute to the low-
frequency wind stress feedbacks during El Nifio events. The
wind stress feedback changes between discharged and re-
charged experiments become even less significant if we remove
WWE before computing the wind stress feedback (not shown).
While this strengthens our hypothesis about the dominant ef-
fect of the multiplicative noise, we admit there is some ambi-
guity and recognize that more research will be needed to
further quantify the relative contributions of the seasonal
Bjerknes feedback and the ENSO state dependence of WWE.

Our analysis indicates that asymmetrical WWE forcing, and
possibly wind stress feedback, is likely to play a central role in
the asymmetry of ENSO predictability. Such asymmetries arise
from nonlinearities in ocean—atmosphere coupled dynamics.
We did not, however, consider the full range of nonlinear
coupled feedbacks that may contribute to asymmetries in
ENSO predictability. The nonlinear dynamical heating (e.g.,
An and Jin 2004; Su et al. 2010) contribution to the advective
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feedback is indeed a warming process during both El Nifio and
La Nifa; that is, it enhances the instability (and error growth)
during warm events development and reduces it during cold
events. It could thus also contribute to the less predictable
recharged states evolution in the CNRM-CMS5 model. Tropical
instability waves (TIWs) also induce an asymmetrical heating
in the cold tongue region between El Nifio and La Nifia (Wang
and McPhaden 2000, 2001; Vialard et al. 2001). While TITWs
provide a negative feedback to ENSO during both its warm
and cold phases, this negative feedback is weaker during El
Niiio, favoring larger El Nifio than La Nifa events (e.g., An
2008). This enhanced warm event instability could therefore
also contribute to the reduced predictability we see in the
CNRM-CMS5 model. But, on the other hand, the recent study
by Holmes et al. (2019) also points out oceanic internal vari-
ability associated with TIWs in the eastern Pacific as a non-
negligible contributor to the ensemble spread in idealized
experiments with a hybrid coupled model. This effect would
work in the opposite direction, as TIWs are enhanced during
La Nifia. Clearly, more studies on the flow-dependent pre-
dictability of ENSO with various models and predictions sys-
tems are needed to fully understand the sign of the asymmetry
in ENSO predictability and the underlying mechanisms.
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data can be downloaded from https://incois.gov.in/tropflux/.
GODAS data can be downloaded from https://www.esrl.noaa.gov/
psd/. Data from our simulations with the CNRM-CMS5 global
climate model, relevant to this paper, are published in Planton
(2020), available at https://doi.org/10.17632/bsnd8md962.1.

APPENDIX

Additional Details
a. CNRM-CMS5 climate model

The numerical simulations performed in this study use the
CNRM-CMS global climate model (Voldoire et al. 2013), one
of the models that took part in the CMIP5 exercise (Taylor
et al. 2012). Its oceanic component is the NEMO v3.2
(“Nucleus for European Modelling of the Ocean’; Madec
et al. 2017) ocean general circulation model in its ORCA1
configuration (Hewitt et al. 2011). This configuration has a 1°
horizontal resolution, with a 1/3° meridional refinement near
the equator and 42 vertical levels, with a resolution ranging
from 10m near the surface to 300 m at 5000-m depth. The
vertical mixing parameterization uses a turbulent kinetic en-
ergy closure scheme (Blanke and Delecluse 1993). It is coupled
to the atmospheric spectral general circulation model ARPEGE-
Climat v5.2 (“Action de Recherche Petite Echelle Grande
Echelle”; Déqué et al. 1994) through the OASIS v3 coupler
(Valcke 2013). The global spectral ARPEGE-Climat configura-
tion has a 1.4° horizontal resolution and 31 vertical levels, with
resolution ranging from 10 m at the surface to 70km at height.
Deep atmospheric convection is parameterized following a mass
convergence scheme (Bougeault 1985) with a humidity conver-
gence closure. Large-scale precipitations are computed with a
statistical precipitation scheme described by Smith (1990). A
more detailed description of CNRM-CMS5 can be found in
Voldoire et al. (2013).

b. Upper-ocean heat content

The warm water volume of the entire equatorial Pacific region
(WWYV; volume of water warmer than 20°C within 120°E-80°W,
5°S§-5°N) has been widely used as an index of the long-term re-
charge conceptualized in the recharge oscillator (Meinen and
McPhaden 2000). Recent studies have, however, demonstrated that
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subsurface thermal anomalies in the western Pacific better en-
compass the lower-frequency ENSO dynamics (Ramesh and
Murtugudde 2013; Lai et al. 2015; Ballester et al. 2016; Petrova et al.
2017; Planton et al. 2018; Izumo et al. 2019), as initially underlined
by the seminal studies of Wyrtki (1985) and Jin (1997). Following
these studies, the western equatorial Pacific index is used in this
paper as a measure of the long-term oceanic preconditioning. We
chose to measure subsurface thermal anomalies using the depth
averaged temperature in the upper 300 m (T300) as it is easier to
compute than WWYV, and both quantities are highly correlated
(above 0.9; e.g., Izumo et al. 2019; Larson and Pegion 2020; see also
https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-
enso). Throughout this paper, “T300A” describes the spatio-
temporal variability of T300 anomalies (used in Figs. 5a,b), “EP
T300A” refers to the anomalies of T300 averaged over the
entire equatorial Pacific region (index equivalent to WWYV;
used only in Fig. 3a or to compare our results with other stud-
ies), “T300wA” refers to the anomalies of T300 averaged over
the western equatorial Pacific region (used to define the
recharge/discharge level of the initial conditions of the en-
semble experiments), and “N3 T300A” refers to the anomalies
of T300 averaged over the Niflo-3 region (used as a measure of
thermocline depth anomalies to diagnose the thermocline
feedback). Like many other models, CNRM-CMS5 suffers
from a “cold tongue bias” (e.g., Bellenger et al. 2014; Planton
et al. 2020) that results in a westward shift of statistical link
between T300A and ENSO 1 year later (Fig. Al). To account
for this bias, the region over which T300yA is averaged was
defined differently for CNRM-CMS5 model (120°E-180°, 5°S—
5°N) and observations [120°E-155°W, 5°S-5°N, as in Meinen
and McPhaden (2000)].

¢. Metrics for ENSO predictability

To estimate the predictability of ENSO events at the end of
the ensemble experiments (predictability of NDJ N3 SSTA),
we used two metrics:

e Potential predictability, defined as PP = 1 — (IQRexpe/
IQR. 1), where IQR.ype and IQRy are, respectively, the
IQR of the given ensemble experiment (NDJ N3 SSTA at
the end of the experiment) and that of the control simulation
(every NDJ N3 SSTA of the control simulation). PP is thus
similar to Kleeman (2002) but is based on IQR instead of
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variance. The idea is that when the ensemble has a spread
(IQR«pe) as large as that of the control simulation (IQR.1),
predictability is lost and PP = 0. The higher the PP value is,
the more predictable is the experiment.

Signal-to-noise ratio (SNR), defined as SNR = |meancyp/
IQR cxpe|, Where meaneype and IQRpe are, respectively, the
ensemble mean value and the IQR of the given ensemble
experiment and vertical bars indicate that the absolute value is
taken. The idea is that if the ensemble mean is large, the ENSO
signal is easily detectable even if the spread is large. The higher
the SNR value is, the more predictable is the experiment.

Note that similar results are obtained if we use the standard
deviation or the variance instead of the IQR to compute the
predictability metrics, but we chose to show the computations
with the IQR because several distributions are skewed.

d. Statistical significance

A nonparametric Monte Carlo method is used to estimate
the statistical significance: 100000 random selections (with
replacement) of any given sample are generated, providing the
2.5th and 97.5th percentiles of the distribution to obtain the
95% confidence level. The same approach is used for esti-
mating the statistical significance of the difference of the mean
of the two distributions (e.g., the wind stress feedback in each
experiment in Figs. 6, 7, and 8): the two samples are both
randomly sampled 100 000 times, the mean of their difference
is computed, and the resulting distribution is used to compute
the statistical significance.
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