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ABSTRACT: Unusually high western Pacific Ocean oceanic heat content often leads to El Niño about 1 year later, while

unusually low heat content leads to La Niña. Here, we investigate if El Niño–Southern Oscillation (ENSO) predictability

also depends on the initial state recharge, and we discuss the underlying mechanisms. To that end, we use the CNRM-CM5

model, which has a reasonable representation of the main observed ENSO characteristics, asymmetries, and feedbacks.

Observations and a 1007-yr-long CNRM-CM5 simulation indicate that discharged states evolvemore systematically into La

Niña events than recharged states into neutral states or El Niño events. We ran 70-member ensemble experiments in a

perfect-model setting, initialized in boreal autumn from either recharged or discharged western Pacific heat content,

sampling the full range of corresponding ENSO phases. Predictability measures based both on spread and signal-to-noise

ratio confirm that discharged states yield a more predictable ENSO outcome one year later than recharged states. As

expected from recharge oscillator theory, recharged states evolve into positive central Pacific sea surface temperature

anomalies in boreal spring, inducing stronger and more variable westerly wind event activity and a fast growth of the

ensemble spread during summer and autumn. This also enhances the positive wind stress feedback in autumn, but the effect

is offset by changes in thermocline and heat flux feedbacks. The state-dependent component of westerly wind events is thus

the most likely cause for the predictability asymmetry in CNRM-CM5, although changes in the low-frequency wind stress

feedback may also contribute.

KEYWORDS: Pacific Ocean; Atmosphere–ocean interaction; ENSO; Seasonal forecasting; Climate models; Interannual

variability

1. Introduction

El Niño–Southern Oscillation (ENSO) is the most energetic

climate phenomenon at interannual time scales on Earth [see

McPhaden et al. (2020) for a review]. The positive El Niño
phase of ENSO is characterized by positive sea surface tem-

perature anomalies (SSTA) in the central and eastern equa-

torial Pacific, which generally start in late spring, peak at the

end of the calendar year and recede during the following

winter. The cold La Niña phase of ENSO broadly exhibits an

opposite SSTA signature. ENSO can significantly affect the

global atmospheric circulation (Taschetto et al. 2020), causing

droughts and floods (Goddard and Gershunov 2020), modulating

globally averaged annual surface air temperature and tropical

cyclone activity (Lin et al. 2020), and impacting ecosystems

and agriculture worldwide (Bertrand et al. 2020; Holbrook

et al. 2020).

Because of its many global impacts, it is critical to accurately

predict ENSO as early as possible. The recharge oscillator

theory inspired from Wyrtki (1985) and formulated by Jin

(1997) articulates the key role of the western equatorial Pacific

heat content, measured by the volume of water warmer than

208C (WWVW) or the depth-averaged temperature in the up-

per 300m (T300W; see the appendix) as anENSOprecursor. At

the peak of an El Niño, there are westerly wind anomalies

and negative heat content anomalies (or ‘‘discharge’’) in the

western Pacific. This induces a poleward Sverdrup transport

that progressively builds up negative heat content anomalies in

the central Pacific, leading to cold SSTA through the thermo-

cline and advective feedbacks (Jin and An 1999). These SSTA

are then amplified into a La Niña event at the end of the year

through the Bjerknes air–sea coupled feedback loop (Bjerknes

1969), involving a positive feedback from the atmospheric wind

response (the wind stress feedback) and negative feedback

from air–sea fluxes (the heat flux feedback). Atmospheric high-

frequency variability, mainly in the form of synoptic short-

lived westerly wind events (WWEs; Lengaigne et al. 2004) that

are unpredictable at long lead times, is thought to be one of the

key elements that introduces some irregularity to this cycle.

Representing stochastic forcing associated with WWE in the

recharge oscillator model leads to less regular oscillations, as in

the real world (Jin et al. 2007), and therefore limits ENSO

predictability.

This role of the oceanic state for ENSO predictability has

enabled skillful dynamical and statistical ENSO forecasts three
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seasons or more before its peak (e.g., Barnston et al. 2019;

L’Heureux et al. 2020). However, these predictions exhibit a

rapid decrease in skill when forecasts are initiated in spring or

before, due to the so-called spring predictability barrier (e.g.,

Webster and Yang 1992; Barnston et al. 2019). A clear and

recent illustration is the situation during early 2014, when a

high recharge prompted speculation of an upcoming strong El

Niño that nevermaterialized (McPhaden 2015), while the same

early-year conditions led to a strong event in 2015. On the

other hand, large discharges (i.e., negative equatorial Pacific

heat content anomalies) appear to be associated with predict-

able evolution toward La Niña up to 2 years in advance

(DiNezio et al. 2017a,b). This raises an important question. Is

ENSO future evolutionmore predictable froma discharged than

from a recharged equatorial Pacific? Answering this question

has a considerable practical utility, as this would give forecasters

additional information on the reliability of forecasts.

There is to date no consensus about a potential dependence

of ENSO predictability on ENSO state. Some analyses based

on observations (Timmermann et al. 2018) and ensemble ex-

periments in a perfect model framework (Larson and Kirtman

2019) suggest that El Niño is more predictable than La Niña.
Alternatively, other studies using the conceptual recharge os-

cillator model (Jin et al. 2007), a simplified model (Dommenget

et al. 2013), and coupled general circulation models (Lopez and

Kirtman 2014; DiNezio et al. 2017a,b; Planton et al. 2018; Yu

and Fedorov 2020) point toward an enhanced predictability of

La Niña events. Finally, real-time seasonal ENSO forecasts

initialized using oceanic observations indicate that El Niño and

La Niña events are equally predictable (Larson and Pegion

2020). Some of the studies above address the potential asym-

metry in predictability by exploring 1) which phase of ENSO is

most predictable, while others instead investigate 2) which ini-

tial states are associatedwithmost predictability.As discussed in

Larson and Pegion (2020), we believe that the second question is

better posed and more useful in a real-time prediction scenario.

Knowing the current state of the ocean, we want to know how

predictable the following ENSO evolution is and not whether a

particular event was predictable once it has occurred.

The current study is based on Planton et al. (2018). This study

investigated potential asymmetries in the predictability ofENSO

phase transitions by looking at the statistical relationship be-

tween T300W anomalies (T300WA) and the upcoming ENSO

amplitude. T300WA was used, rather than the more widely used

anomalies of T300 averaged over the entire equatorial Pacific

(EP T300A), because several studies indicate it is a better indi-

cator of the low-frequency ‘‘memory’’ from the previous ENSO

phase (e.g., Wyrtki 1985; Jin 1997; McGregor et al. 2016; Neske

and McGregor 2018; Izumo et al. 2019). Planton et al. (2018)

found that discharged boreal autumn T300WA generally leads

to a La Niña about 1 year later, but that a recharged state leads

to a much wider distribution of ENSO outcomes. They found

this asymmetry both in observations and models from phase 5

of the Coupled Model Intercomparison Project (CMIP5; Taylor

et al. 2012) database. While this statistical analysis suggests a

more predictable evolution toward La Niña in presence of a

discharged T300WA, it did not address the question of what

mechanisms accounted for the asymmetry in predictability.

Several ENSO mechanisms are nonlinear [see An et al.

(2020) for a review] and may therefore lead to asymmetries in

ENSO properties and predictability. First, there are nonline-

arities in the Bjerknes air–sea feedback loop, and hence to the

low-frequency stability of the system. While the thermocline

feedback (e.g., Jin and An 1999) usually has similar amplitude

during both phases of ENSO (e.g., Guan et al. 2019), the

positive wind stress feedback and negative heat flux feedback

are both stronger during El Niño, due to the enhanced acti-

vation of atmospheric deep convection at high surface tem-

peratures (e.g., Guilyardi et al. 2009; Frauen and Dommenget

2010; Choi et al. 2013; Im et al. 2015; Takahashi and Dewitte

2016) and enhanced cloud cover (e.g., Lloyd et al. 2012; Im

et al. 2015). Second, stochastic forcing associated with WWEs

is also nonlinear and dependent on the ENSO state.WWEs are

indeed modulated by the zonal extension of the warm pool and

are more frequent and/or more intense during El Niño than

during La Niña (e.g., Lengaigne et al. 2004; Eisenman et al.

2005; Gebbie et al. 2007). This nonlinearity, also referred to

as a multiplicative or state-dependent noise forcing, induces

larger (e.g., Levine et al. 2016; Martinez-Villalobos et al. 2019)

and less predictable (Jin et al. 2007; Lopez and Kirtman 2014)

El Niño than La Niña events in conceptual models of ENSO.

In this paper, we explore the influence of the western equa-

torial Pacific heat content T300WA on ENSO predictability and

its mechanism in the CNRM-CM5 climate model. This model

reproduces themainENSOmain characteristics reasonablywell,

including its asymmetry and the asymmetrical relationship be-

tween T300WA and the upcoming ENSO amplitude found in

Planton et al. (2018). We perform a number of 70-member en-

semble experiments, where ensembles are generated through

infinitesimal perturbations of initial conditions. Initial conditions

from these experiments either correspond to recharged or dis-

charged boreal autumn T300WA, and we run a total of six en-

sembles that span different ENSO phases (a recharged T300WA

can for instance correspond to neutral, El Niño or strong El Niño
phases). In section 2, we briefly present the datasets and method

used in the paper (a more detailed description is provided in the

appendix). In section 3, we assess ENSO in CNRM-CM5 versus

the rest of the CMIP database and observations, focusing on

important ENSOproperties and feedbacks for the current study.

In section 4, we present the results of the ensemble experiments

and propose a mechanism explaining the asymmetry in predict-

ability. In section 5 we provide a summary, and in section 6 we

compare our results with those of previous studies.

2. Data and methods

a. Models and datasets

This study uses a 1007-yr simulation (after a 200-yr spinup)

with the CNRM-CM5 model [see the appendix and Voldoire

et al. (2013) for more description of the model], with green-

house gas concentrations and solar irradiance fixed to their

observed value for 1850, as in CMIP5 preindustrial control

(piControl) simulations (Taylor et al. 2012). To evaluate

CNRM-CM5with respect to other coupled climate models and

observations, we compare its performance with 44 CMIP5
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models and 36 CMIP6 models (Eyring et al. 2016) for which a

piControl simulation was available at the time of writing this

paper (see Table 1 for the list of models and data availability).

These simulations are evaluated against the NCEP GODAS

oceanic reanalysis data (Saha et al. 2006) for T300 anomalies

(T300A) and TropFlux dataset (Praveen Kumar et al. 2012,

2013) for SSTA, zonal wind stress anomalies (TauxA), and net

heat flux anomalies at the air–sea interface (NHFA). We use

monthly values of these products for the period 1980–2018,

except for the detection ofWWE, which is based on daily zonal

wind stress. Interannual anomalies are computed by removing

the mean monthly seasonal cycle, except for the warm pool

eastern edge (WPEE) and WWE index discussed below, for

which absolute values are shown.

b. Ensemble experiments design

ENSO ensemble forecasts experiments are designed in a

perfect model setting. Ensembles consist of 70-member ex-

periments starting on 1 November, and lasting for 17 months

(i.e., until the end of March, two years later), generated by

applying small-amplitude randomwhite noise perturbations on

the initial SST as in Puy et al. (2019). This perfect model

forecast setting provides a ‘‘best case scenario’’ for predictions,

where the spread essentially arises from the coupled system

chaotic behavior. This setting hence does not include the ef-

fects of uncertainties in initial oceanic conditions nor the effect

of model errors, which are a limitation in real-time seasonal

ENSO forecasts (as in Larson and Pegion 2020). We chose to

start our ensemble on 1 November to test whether the long-

lead memory of the ocean can lead to asymmetrical predict-

ability of El Niño and La Niña, building on Planton et al.

(2018). The set of oceanic initial conditions from which the

ensemble experiments are initiated is picked from the 1007-yr-

long control simulation and detailed in section 4.

c. ENSO and preconditioning indices

We define the ENSO state using the average boreal winter

[November–January ( NDJ)] Niño-3 (N3; 908–1508W, 58S–
58N) SSTA normalized by the dataset’s standard deviation.

The ENSO state is defined as an extreme La Niña event for N3

SSTA below 21.5, a moderate La Niña event between 21.5

and20.5, a neutral ‘‘event’’ between20.5 and 0.5, a moderate

El Niño event between 0.5 and 1.5, and an extreme El Niño
event above 1.5. We define the ocean preconditioning from the

T300WA, averaged over the western equatorial Pacific and

normalized by their standard deviation (see the appendix for

details). To account for the model ‘‘cold tongue bias’’ (see

Fig. A1 in the appendix), the western Pacific box in CNRM-

CM5 model (1208E–1808, 58S–58N) has a westward-shifted

eastern boundary relative to that commonly used for obser-

vations (1208E–1558W, 58S–58N). We use similar thresholds to

those above for defining extreme discharge, moderate dis-

charge, neutral preconditioning, moderate recharge, and ex-

treme recharge based on the normalized T300WA value.

d. Essential ENSO characteristics

A set of metrics that evaluate essential ENSO properties

(including asymmetries between El Niño and La Niña events)

in the CNRM-CM5 model is used in this paper. These metrics

are defined as follows:

d amplitude: standard deviation of N3 SSTA during NDJ,
d seasonality: standard deviation of N3 SSTA during NDJ

divided by March–May (MAM),
d amplitude symmetry: Fisher–Pearson coefficient of skewness

(Kokoska and Zwillinger 2000),
d duration asymmetry: mean duration of La Niña events

divided by that of El Niño events, where the duration is

the number of consecutive months with normalized absolute

SSTA above 0.25 ENSO amplitude (i.e., the value of the first

metric), and
d transition asymmetry: percentage of El Niño events followed

the next winter byLaNiña events divided by the percentage of
La Niña events followed the next winter by El Niño events.

e. Diagnosing ENSO processes

The three feedbacks used in this paper are defined as the

linear regression coefficient of: averaged Niño-4 (N4; 1608E–
1508W, 58S–58N) TauxA onto averaged N3 SSTA (wind stress

feedback; e.g., Bellenger et al. 2014), N3 NHFA onto averaged

N3 SSTA (heat flux feedback; e.g., Lloyd et al. 2009), and av-

eraged N3 T300A onto averaged N3 SSTA (thermocline

feedback; e.g., Bayr et al. 2019),

The Puy et al. (2016) method is applied to detect WWEs in

observations and our CNRM-CM5 simulations. WWEs are

detected as 28N–28S average intraseasonally filtered (5–90-day

period) daily wind stress exceeding 0.04Nm22 over more than

108 longitude and 5 days. WWE separated by less than 38 and
3 days and are grouped as a single event. Weighted averages

are used to define the locations and dates of WWEs. The in-

tensity of each WWE is defined as the space–time integration

of the intraseasonally filtered TauxA over the wind event

patch. The intensity of each WWE is then normalized by its

standard deviation to create a ‘‘wind event intensity’’ (WEI)

index, as in Puy et al. (2016), who showed that it is a proxy of

the oceanic Kelvin wave response. Some previous authors

(e.g., Chiodi et al. 2014; Yu and Fedorov 2020) have argued

that wind events should be detected based on interannual wind

stress forcing rather than intraseasonally filtered forcing like

we do. One of our motivations for using intraseasonally filtered

wind stress to detect WWE is to reduce the WEI dependency

on the interannual wind stress signal and hence on the Bjerknes

wind stress feedback. We checked our results using both defi-

nitions and found that our conclusions do not fundamentally

change (not shown).

As mentioned in the introduction, WWE activity is modu-

lated by the zonal displacements of the warm pool (e.g.,

Lengaigne et al. 2004; Eisenman et al. 2005;Gebbie et al. 2007).

The WPEE is defined as the location of the 28.58C isotherm in

observations and the 27.58C isotherm in the model, because of

the ;18C cold equatorial bias in CNRM-CM5 (Voldoire et al.

2013; Planton et al. 2020).

Recent studies have suggested that easterly wind events

(EWEs) could also play a role for triggering La Niña events

(e.g., Chiodi and Harrison 2015). This aspect is, however,

less documented than the very clear WWE–ENSO two-way
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TABLE 1. CMIP5 andCMIP6model names and associatedmodeling centers. Expansions formany of themodels andmodeling centers can

be found online (https://www.ametsoc.org/PubsAcronymList).

CMIP5 CMIP6

Modeling center Model Run length (yr) Model Run length (yr)

AWI — — AWI-CM-1-1-MRc 500

BCC BCC_CSM1.1 500 BCC-CMS2-MR 600

BCC_CSM1.1(m) 400 BCC-EMS1c 451

BNU BNU-ESMb 558 — —

CAMS — — CAMS-CSM1-0 500

CAS — — FGOALS-f3-La,c 561

— — FGOALS-g3c 700

CCCma CanESM2 996 CanESM5 1000

CCCR-IITM — — IITM-ESM 200

CMCC CMCC-CESM 277 — —

CMCC-CM 290 — —

CMCC-CMS 500 — —

CNRM-CERFACS CNRM-CM5c 850 CNRM-CM6-1 500

CNRM-CM5-2 359 CNRM-CM6-1-HR 500

— — CNRM-ESM2-1 300

CSIRO-ARCCSS and CSIRO-BoM ACCESS1.0 500 ACCESS-CM2a,b,c 500

ACCESS1.3 500 — —

CSIRO-QCCCE CSIRO Mk3.6.0 500 — —

E3SM-Project — — E3SM-1-0c 500

— — E3SM-1-1 165

FIO-QLNM and FIO FIO-ESMa 800 FIO-ESM-1-0 575

ICHEC EC-EARTHa,c 452 — —

INM INM-CM4 500 — —

IPSL IPSL-CM5A-LR 430 IPSL-CM6A-LRc 2000

IPSL-CM5A-MR 300 — —

IPSL-CM5B-LR 300 — —

LASG-CESS FGOALS-g2 700 — —

MIROC MIROC-ESMc 630 MIROC-ES2Lc 500

MIROC-ESM-CHEMc 255 MIROC6c 800

MIROC4hc 100 — —

MIROC5c 870 — —

MOHC HadGEM2-CC 240 HadGEM2-GC31-LL 500

HadGEM2-ES 336 HadGEM2-GC31-MMc 500

— — UKSEM-1-0-LL 750

MPI MPI-ESM-LR 1000 MPI-ESM1-2-HR 500

MPI-ESM-MR 1000 — —

MPI-ESM-P 1156 — —

MRI MRI-CGCM3c 500 MRI-ESM2-0c 701

NASA-GISS GISS-E2-H 540 GISS-E2-1-G 851

GISS-E2-H-CC 251 — —

GISS-E2-R 550 — —

GISS-E2-R-CC 251 — —

NCAR and NSF-DOE-NCAR CCSM4 501 CESM2 1200

CESM1(BGC) 500 CESM2-FV2 500

CESM1(CAM5) 319 CESM2-WACCM 499

CESM1(FASTCHEM) 222 CESM2-WACCM-FV2 500

CESM1(WACCM) 200 — —

NCC NorESM1-M 501 NorCPM1 500

NorESM1-MEc 252 NorESM1-Fc 200

— — NorESM2-LMc 501

NIMR-KMA HadGEM2-AOa,c 700 — —

NOAA-GFDL GFDL CM3 500 GFDL-CM4a 500

GFDL-ESM2G 500 GFDL-ESM4a 500

GFDL-ESM2M 500 — —

NUIST — — NESM3a 300

SNU — — SAM0-UNICON 700

UA — — MCM-UA-1-0a 500

aModels for which data for the computation of heat flux feedbacks were not available.
bModels for which data for the computation of wind stress feedbacks were not available.
c Models for which data for the computation of thermocline feedbacks were not available.
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interaction. In addition, Puy et al. (2016) showed that the EWE

activity modulation by the WPEE displacement depends on

the wind event detection method: there is no modulation when

EWEs are detected based on filtered wind stress. For these

reasons, we decided to focus on the better documentedWWE–

ENSO interaction and EWEs are not discussed further in

this paper.

f. Predictability metrics

In this paper, we use two different metrics of ENSO pre-

dictability, computed from the ensemble boreal winter N3

SSTA (NDJ). One metric is based on the spread of the en-

semble relative to the climatological spread [potential pre-

dictability (PP)] and another one on the signal-to-noise ratio

(SNR; with signal estimated from the ensemble mean and

noise from the ensemble spread; see the appendix for the exact

definitions). In both cases, the ensemble spread is quantified

through the interquartile range (IQR): IQR5Q32Q1, where

Q1 and Q3 are respectively the first and the third quartiles of

the distribution. Both metrics are defined in such a way that a

large value indicates higher predictability. We chose to use

these two definitions as recent studies have argued that SNR

is a better measure of predictability than the spread (e.g.,

Larson and Kirtman 2019; Larson and Pegion 2020).

3. Model evaluation

Figure 1 provides a brief comparison of ENSO simulated in

CNRM-CM5 and other climate models with observations.

ENSO amplitude and seasonality are relatively well simulated

in CNRM-CM5 (respectively 1.18C and 1.7 in the model; 1.28C
and 1.9 in the observations), as it is among the top 10% of

CMIP models for both. The asymmetries between El Niño and

La Niña in terms of amplitude, duration, and transition are

underestimated by CNRM-CM5 (respectively 0.48C, 1.0, and
1.5 in the model; 1.08C, 1.3, and 2.8 in the observations) but it is

still among the top 50% of CMIP models for the three asym-

metries. The wind stress feedback is underestimated by 40% in

CNRM-CM5, while the heat flux feedback is very close to the

observed estimate. This deviates from what generally happens

in the CMIP database, where there is an error compensation

between these two underestimated feedbacks (Bayr et al.

2019). The realistic ENSO amplitude in CNRM-CM5 may

rather result from an error compensation between the under-

estimated wind stress and overestimated thermocline feedback

(by 30%). Despite these errors, the model CNRM-CM5 is

among the top 30% of CMIP models for the three feedbacks.

Given the importance of WWE for ENSO dynamics and

predictability, we also evaluate how they are reproduced in the

CNRM-CM5 model. Figure 2 provides a quantitative evalua-

tion of WWE dependence on ENSO phase. As already dis-

cussed in Puy et al. (2019), there is an;0.7 correlation between

the March–December integrated WEI (a proxy of the oceanic

response) and the NDJ N3 SSTA in observations and the

CNRM-CM5 model (Figs. 2a,b). The model reproduces the

observed tendency to have more frequent and/or intense

WWEs during El Niño than during La Niña events (not

shown). Previous studies have related this intensification of

WWE during El Niño events to the displacements of the

WPEE (e.g., Puy et al. 2016). Figure 2c shows the monthly

mean WEI for a given WPEE location and indicates that

WWEs become progressively more frequent and/or intense as

the WPEE moves eastward in observations and CNRM-CM5.

Amore detailed evaluation of wind events in CNRM-CM5 can

be found in Puy (2016).

In this study, we want to investigate the asymmetric relation

between the oceanic preconditioning in boreal autumn and

ENSO peak amplitude one year later discussed by Planton

et al. (2018). The CNRM-CM5 model captures the tendency

for El Niño events to be preceded by positive T300WA and La

Niña events to be preceded by negative T300WA (e.g., Meinen

and McPhaden 2000; Planton et al. 2018; Izumo et al. 2019) 10

to 16 months before the ENSO peak (correlations around 0.5;

Fig. 3a; note that while T300WA is the best long-term precursor

of ENSO, it only explains 15%–35%of its variance at such long

lead times). As shown by the transition asymmetry metric,

CNRM-CM5 is, however, too biennial, resulting in an over-

estimation of the correlation between SSTA and ENSO am-

plitude 1 year later (20.4 in CNRM-CM5 and 20.1 in the

observations, outside observational uncertainties). Figure 3b

reproduces the observed diagnostic of the relationship be-

tween boreal autumn T300WA and ENSO event one year later

discussed in Planton et al. (2018). This suggests an asymmet-

rical relationship, with an almost linear relation between dis-

charged T300WA and La Niña amplitude one year later, but a

wide range of outcomes (ranging from moderate La Niña to

extreme El Niño) after recharged T300WA.

The CNRM-CM5 model reproduces essential ENSO prop-

erties (amplitude and seasonality), asymmetries, and feed-

backs reasonably well. In this regard, it ranks among the best of

FIG. 1. Scalar measures of key ENSO properties: ENSO ampli-

tude and seasonality; El Niño–La Niña asymmetries in amplitude,

duration, and transition; and heat flux, wind stress, and thermocline

feedbacks (see the appendix for the definition of these metrics) in

the observations (black triangles), the CNRM-CM5 (red triangles),

and 80 CMIP models (44 CMIP5 and 36 CMIP6 datasets) (green

box-and-whiskers plots; the list of models is in Table 1). Whiskers

delineate the 5th and 95th percentiles, boxes delineate the 25th and

75th percentiles, lines within the boxes mark the median, and dots

indicate models that fall outside the whiskers.
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CMIP models (Fig. 1; see also Bellenger et al. 2014; Planton

et al. 2020). Of particular importance for this study, it repro-

duces the asymmetrical boreal autumn T300WA lead relation

with ENSO 1 year later, and the ENSO state dependence of

WWE. This indicates that this model is well suited to investi-

gate the asymmetry in ENSO predictability. It is, however,

important to keep in mind that this model underestimates

observed ENSO asymmetries and the wind stress feedback and

overestimates the frequency of the transition from La Niña
events to El Niño events. The potential impacts of these defi-

ciencies on our results are discussed in section 6.

4. Results

The goals of this study are 1) to confirm using a dynamical

framework the statistical results of Planton et al. (2018) indi-

cating that a discharged western Pacific is more likely to lead

to a La Niña one year after than a recharged western Pacific to

an El Niño and 2) to propose a mechanism explaining this

asymmetry. To that end, we designed ENSO ensemble forecast

experiments in a perfect model setting where the predictability

is only limited by the chaotic growth of infinitesimal initial

errors. Below, we first describe how we selected the set of

initial states for the ensemble experiments and then show that

experiments starting from discharged states have a more pre-

dictable ENSO evolution. We then propose a mechanism that

explains this asymmetry in predictability.

a. Ensemble experiments design and results

The correlation between T300WA and ENSO amplitude at

its peak (NDJ N3 SSTA) is maximum when T300WA leads by

about 1 year in the CNRM-CM5 model (Fig. 3a), in broad

agreement with observations (e.g., Planton et al. 2018; Izumo

et al. 2019). We hence decided to start our set of ensemble

experiments on 1 November, from either recharged or dis-

charged T300WA. In observations, there is a tendency for re-

charged T300WA to occur during La Niña, and discharged

during El Niño, but this is not a one-to-one relation (e.g.,

Meinen and McPhaden 2000). Figure 3c provides a scatterplot

of October (monthly average) N3 SSTA (i.e., ENSO state)

versus October T300WA (i.e., ENSO preconditioning). As

expected, the preconditioning is anticorrelated (r 5 20.76)

with the ENSO state, with a tendency for western Pacific dis-

charge at the peak of El Niño and recharge for La Niña. A
recharged T300WA (normalized T300WA. 0.5) can, however,

be associated with different ENSO conditions: extreme La

Niña, moderate La Niña, neutral state, and a few rare instances

of weakElNiño (Fig. 3c). For a discharged T300WA(normalized

T300WA , 20.5), the Pacific can be in a neutral ENSO, mod-

erate El Niño, and an extreme El Niño state, which is associated

with an extreme discharge (that we define as normalized

T300WA,21.5). The observations display very similar features

to those in the model (not shown). Our goal is to define two sets

of contrasting initial states that are characteristic of recharged

and discharged T300WA. Figure 3c indicates that this broadly

corresponds to six situations in total: three recharged (extreme

La Niña, LaNiña, and neutral) and three discharged (neutral, El

Niño, and extreme El Niño, also corresponding to an extreme

discharge) states. There aremany possible initial conditions from

our 1007-yr-long control simulation for each of those six cases

(delineated by dashed lines on Fig. 3c that are based on the 0.53
STD and 1.5 3 STD thresholds for T300WA and N3 SSTA,

where STD is the standard deviation). In each case, we picked

the initial condition that was closest to the centroid of the dis-

tribution within the box.We then pair the chosen recharged and

discharged restarts as follows:

d neutral ENSO states, hereinafter NEUR (R for recharged;

dark-red cross) and NEUD (D for discharged; dark-turquoise

cross),
d moderate El Niño/La Niña states, hereinafter MODR (dark-

red left-pointing triangle) and MODD (dark-turquoise right-

pointing triangle), and
d extreme El Niño/La Niña states, hereinafter EXTR (dark-

red upward-pointing triangle) and EXTD (dark-turquoise

downward-pointing triangle).

FIG. 2. Scatterplots of ENSO peak amplitude (NDJ1N3 SSTA) vs March1–December1 total WEI index for (a) observations and

(b) CNRM-CM5. Solid lines represent the linear regression slopes. The corresponding correlation r and regression slope s are indicated at

the bottom of each panel, with the 95% confidence interval in parentheses. (c) WEI as a function of the WPEE position for observations

(black) and CNRM-CM5 (red), indicative of the state-dependent component of WWE. The WEI is summed across longitudes for each

month and averaged for a given position of the WPEE (208 bins). Red error bars indicate the 95% confidence interval computed with

CNRM-CM5 (the confidence interval is larger for the observations and for readability is not plotted).
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In the ‘‘extreme’’ experiments (EXTRandEXTD), the recharged/

discharged states are not symmetrical because extreme El

Niño events generally correspond to extreme discharges in the

model, whereas extreme La Niña events generally correspond

tomoremoderate recharges, as in observations andmostCMIP5

models (Planton et al. 2018).

Figure 4 illustrates the evolution of N3 SSTA in these six

ensemble experiments (Figs. 4a,b,f,g,k,l), including the statis-

tics of NDJ N3 SSTA after one year (Figs. 4c,h,m) and the

associated predictability metrics (Figs. 4d,e,i,j,n,o). In all

experiments, the ensemble spread initially increases slowly and

generally picks up during or after boreal summer. The maxi-

mum spread is reached during boreal winter (NDJ1; gray

shading in Figs. 4a,b,f,g,k,l). Experiments starting from a re-

charged state in November often evolve into a neutral or El

Niño state after one year (.77% of the cases, whatever the

initial ENSO phase), whereas the experiments starting from a

discharge preferentially mostly yield a neutral or La Niña state
(.84% of the cases; Figs. 4c,h,m). The experiments starting

from extreme ENSO phases do not mirror each other in terms

FIG. 3. (a) Lead correlations between T300WA (red), anomalies of T300 averaged over the entire equatorial

Pacific (EP T300A; black), N3 SSTA (green), and NDJ1 (gray shading) N3 SSTA. Error bars indicate the 95%

confidence interval. (b) Scatterplot of normalized NDJ1 [gray shading in (a)] N3 SSTA vs normalized OND0

[purple shading in (a)] T300WA. (c) Scatterplot of normalizedOctober0 T300WAvs normalizedOctober0 N3 SSTA.

This figure is used is to select initial states for our ensemble predictability experiments. In (b) and (c), the dashed

lines indicate the21.53 STD (deep blue; limit between extreme and moderate La Niña/discharges),20.53 STD

(light blue; limit betweenmoderate and neutral La Niña/discharges), 0.53 STD (orange; limit between neutral and

moderate El Niño/recharge), and 1.5 3 STD (red; limit between moderate and extreme El Niño/recharge)
thresholds. In (b) and (c), the black solid line represents the linear regression slope, and the corresponding r and s

are indicated at the top of each panel, with the 95% confidence interval within brackets. In (b), the blue and red

solid lines represent the linear regression slopes computed for discharged and recharged states, and the corre-

sponding r and s are indicated under the panel, with the 95% confidence interval within parentheses. The CNRM-

CM5 1007-yr-long control experiment is used for this figure.
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of mean SSTA evolution: the one starting from a recharge

(extreme La Niña) is most likely to evolve into a neutral state

(53%), while the experiment starting from a discharge (ex-

treme El Niño) is most likely to evolve into a moderate or

extreme La Niña (97%). For each pair of experiments, the N3

SSTA distribution at the ENSO peak one year later is sys-

tematically wider in the recharged experiments than in the dis-

charged experiments (see box-and-whisker plots in Figs. 4c,h,m).

This translates into differences in the predictability metrics be-

tween recharged and discharged experiments. For each pair of

experiments, the potential predictability (PP; Figs. 4d,i,n) is sig-

nificantly smaller in the recharged than in the discharged ex-

periments, at the 95% significance level. This indicates that

recharged states lead to a broaderENSOdistribution 1 year later

than discharged states. This measure of predictability, however,

does not take the amplitude of the ENSO signal into account.

In section 4b, we first compare the evolution of experiments

starting from ENSO-neutral initial states (NEUR and NEUD).

On this basis, we propose a physical interpretation of why

experiments starting from a discharged state are more pre-

dictable. In section 4c, we show that the same mechanism

applies for ENSO transitions (i.e., MOD and EXT experi-

ments) and generalize these results to experiments initialized

with a broader set of initial conditions.

b. Neutral initial ENSO conditions

Figures 5a and 5b illustrate the evolution of the equatorial

SSTA (shading), T300A (black contours), WPEE (gray lines),

and WWE activity (red dots) ensemble mean, and Figs. 5c and

5d show the spread in the NEUR (Figs. 5a,c) and NEUD

(Figs. 5b,d) experiments. Figure 6 further compares the evo-

lution of essential variables and feedbacks for this pair of ex-

periments. NEUR and NEUD (Figs. 5a,b and 6a) both start

from near-neutral SSTA in the N3 region (;0.28C in NDJ0).

The eastern equatorial Pacific ensemble mean SSTA remain

stable and similar in the two experiments until boreal spring

(MAM1). In late boreal spring and early summer, the N3 re-

gion anomalously warms in NEUR and anomalously cools in

NEUD. The classical explanation of the emergence of these

SSTA in the recharge oscillator framework is that anomalous

western Pacific recharge favors the development of positive

SSTA, and anomalous discharge favors the development of

FIG. 4. Evolution of ensemble experiments starting on 1 November0 from recharged (R; dark red) and discharged (D; dark turquoise)

T300WA and (top) neutral, (middle) moderate, and (bottom) extreme ENSO initial states. (a),(b),(f),(g),(k),(l) Evolution of N3 SSTA.

Dashed lines indicate the 25th and 75th percentiles, and the solid line indicates the mean. Gray shading indicates NDJ1, the season of the

ENSO peak. (c),(h),(m)Distribution of ENSO peak amplitudes (NDJ1N3 SSTA).Whiskers extend to the 5th and 95th percentiles, boxes

encompass the 25th and 75th percentiles [the difference between these two is the interquartile range (IQR)], diamonds mark the mean,

and dots indicatemembers that fall outside thewhiskers. From bottom to top, the numbers respectively indicate the percentage of extreme

La Niña, moderate La Niña, neutral, moderate El Niño, and extreme El Niño events. Also shown are predictability metrics for ENSO

values: (d),(i),(n) potential predictability (PP) and (e),(j),(o) signal-to-noise ratio (SNR), computed with NDJ1N3 SSTA (see the

appendix for the definition of these metrics). Error bars indicate the 95% confidence interval. Filled symbols indicate significantly dif-

ferent values at the 95% confidence level between the recharged and discharged experiments.
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negative SSTA, through the thermocline and zonal advective

feedbacks (e.g., Jin and An 1999). The thermocline feedback

indeed strongly intensifies after boreal spring in both experi-

ments (Fig. 6e), allowing subsurface thermal anomalies to

connect with the surface, and explaining the progressive

warming of NEUR and cooling of NEUD. We did not diagnose

the zonal advective feedback, but it probably also contributes

to the differential heating in the central Pacific between the

two experiments, as underlined by the much stronger eastward

displacement of the WPEE in NEUR during boreal spring

(Fig. 6b). These contrasting ensemble mean SSTA after early

summer in the two experiments are associated with marked

differences in the ENSO spread. The SSTA ensemble spread is

similar in NEUR and in NEUD up to mid boreal summer but

then it increases muchmore in NEUR than in NEUD (Figs. 5c,d

and 6a). At the end of the year, the SSTA ensemble spread of

NEUR is almost twice as large as that of NEUD (1.78 and 0.98C
respectively). At the time of the ENSOpeak, NEUR hasmostly

evolved into neutral (37%) or El Niño (49%, including mod-

erate and extreme events) states (Fig. 4c), while NEUD mostly

yields neutral (32%) or La Niña (52%, including moderate and

extreme events) states (Fig. 4c). Below, we first comment on

the differences in ENSO feedbacks and WWE ENSO state

dependence between NEUR and NEUD, and then propose a

mechanism for the enhanced spread in NEUR.

ENSO feedbacks play an essential role in ENSO growth.We

thus start by discussing differences in essential ENSO feed-

backs between NEUR and NEUD. Figure 6d indicates that the

wind stress feedback is larger in NEUR than in NEUD during

boreal spring to autumn, this difference being significant at the

95% confidence level only at the end of the calendar year. This

larger wind stress feedback is likely due to the warmer en-

semblemean SSTA inNEUR after boreal spring (Figs. 5c,d and

6a,b). Previous studies have indeed underlined that the exis-

tence of a threshold for deep atmospheric convection in the

tropics (e.g., Gadgil et al. 1984; Graham and Barnett 1987)

induces a larger convective and wind stress response for posi-

tive than for negative SSTA (e.g., Lloyd et al. 2009; Frauen and

Dommenget 2010; Choi et al. 2013; Dommenget et al. 2013; Im

et al. 2015; Takahashi and Dewitte 2016). The negative heat

flux feedback is also stronger (i.e., more negative) in NEUR

from the end of the summer season (Fig. 6), this difference

being significant at the 95% confidence level at the end of the

calendar year as for the wind stress feedback. This larger heat

flux feedback in NEUR can also be related to the nonlinearity

of the convective response to surface temperature. The ther-

mocline feedback is very similar between the two experiments

until late boreal autumn, when it briefly becomes slightly

weaker in NEUR (Fig. 6e). We did not attempt to estimate the

overall Bjerknes feedback, which is a complex balance be-

tween many terms (e.g., Jin et al. 2006). The effect of the

stronger wind stress feedback in NEUR is, however, probably

partially offset by the stronger stabilizing heat flux feedback. In

addition, these differences in ENSO feedback only become

statistically significant near the end of the calendar year

(Figs. 6d–f), once the spread of the NEUR experiment has al-

ready become larger (Fig. 6a). While the difference in those

low-frequency feedbacks may contribute to the reduced pre-

dictability in the NEUR experiment, especially toward the end

of the year, it is thus most likely not the primary cause.

WWEs also play a key role in the growth of ENSO and Jin

et al. (2007) demonstrated that their state dependence could

FIG. 5. Time section of the 70-member ensemble experiments starting on 1 November0 from neutral ENSO states, with either a

recharged (NEUR) or discharged (NEUD) T300WA. (a),(b) 58N–58S meridional averaged ensemble mean SSTA (shading; 8C) and T300A

(black contours; 8C), WPEE (gray line), and WWE from all 70 members with a WEI index above 1 (red dots). (c),(d) The 58N–58S
meridional averaged ensemble IQR of SSTA (shading; 8C) and ensemble mean SSTA (black contours; 8C). The NEUR and NEUD

experiments correspond to initial states respectivelymarked by the dark red and dark turquoise crosses on Fig. 3c. Data are smoothedwith

an 118 and 3-months triangular-weighted running average prior to plotting.
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lead to a more predictable cold ENSO phase in the recharge

oscillator conceptual model. To assess their impact, we use the

WEI or ‘‘wind event intensity’’ index, which is a proxy of the

oceanic impact of WWEs (see methods section). The WEI is

significantly higher in NEUR very early in the calendar year,

namely from boreal spring onward (Fig. 6c). This increase of

the WWE activity can be related to a more eastward WPEE in

NEUR (Figs. 5a,b and 6b). TheWEI is not only larger in NEUR

ensemble mean, but also more variable between members,

especially during the event onset in late boreal spring and early

summer [see IQR in Fig. 6c (dashed line)]. Figure 2c indeed

shows that the WEI not only becomes larger when the WPEE

moves eastward, but also more variable (see the red error bars,

whichmeasure theWEI stochasticity), leading tomore spread in

the N3 SSTA (Fig. 6a). WWE ENSO state dependence is thus a

likely explanation of the reduced predictability in NEUR.

To summarize, the thermocline and zonal advective feed-

backs yield an anomalously warm N3 SSTA (0.58C) and east-

ward WPEE in the NEUR experiment from boreal spring

onward while the feedbacks produce anomalously cold SST

(20.58C) and westward WPEE in the NEUD experiment. The

ENSO state dependence of WWE in our model (Fig. 2c) then

leads to more active WWE in the ensemble mean and more

WWE stochasticity across the members in NEUR, in agree-

ment with results found in the recharge oscillator model (Jin

et al. 2007). Warmer surface temperatures also induce a larger

wind stress feedback in the recharged experiment relative to

the discharged experiment. However, the wind stress feedback

only becomes significantly larger in NEUR during boreal au-

tumn and early winter, after the increase in spread. In addition,

at the same time the heat flux feedback is more negative in

NEUR (implying greater damping), offsetting the wind stress

feedback change. For those two reasons, the most likely

mechanism that accounts for the less-predictable evolution in

the NEUR relative to the NEUD experiment is thus associated

with the ENSO state dependence ofWWE.We cannot exclude

the possibility, however, that the stronger wind stress feedback

induced by warmer surface temperatures in the recharged ex-

periment also contributes. We will come back to this point in

section 6.

c. El Niño/La Niña initial conditions and generalization

In section 4b, we investigated the mechanisms that could

explain the weaker ENSO predictability after recharged states

than discharged states, in the case of ENSO-neutral initial

conditions. Here, we show that the same mechanisms explain

FIG. 6. Evolution of the key ENSO variables and feedbacks in the 70-member ensemble experiments starting on 1 November0 from a

neutral ENSO state, with either a recharged (NEUR; dark red) or discharged (NEUD; dark turquoise) T300WA. Ensemble mean (solid

line) of (a) N3 SSTA (8C), (b) position of the WPEE, (c) WEI index (seasonally integrated across longitudes), (d) wind stress feedback

(1023 Nm22 8C21), (e) thermocline feedback (8C 8C21), and (f) heat flux feedback (W m22 8C21). The IQR of N3 SSTA and WEI are

respectively also plotted as dotted lines in (a) and (c) The NEUR and NEUD experiments respectively correspond to initial states marked

by the dark red and dark turquoise crosses in Fig. 3c. Crosses indicate significantly different values between NEUR and NEUD experi-

ments, at the 95% confidence level.
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the weaker predictability associated with recharged initial

states, in the case of ENSO phase transitions—that is, after

moderate (MODR vs MODD; Fig. 7) and extreme (EXTR vs

EXTD; Fig. 8) ENSO. In both cases, warmer ensemble mean

N3 SSTA appears from boreal summer onward in the re-

charged experiments (Figs. 7a and 8a), probably due to the

thermocline and zonal advective feedbacks (see WPEE dis-

placement in Figs. 7b and 8b) (MODR and EXTR). As a result,

similar to the NEU experiments, the ensemble mean WEI and

its spread are significantly larger from early boreal summer to

winter in the recharged than in the discharged experiments

(Figs. 7c and 8c). Consistent with Jin et al.’s (2007) results, this

is probably the main factor that contributes to lower predict-

ability in recharged experiments. The wind stress feedback in

the recharged relative to the discharged experiments is signif-

icantly larger during boreal autumn in the MOD experiments

(Fig. 7d), and almost never significantly larger in the EXT

experiments (Fig. 8d; difference significant during NDJ1). Its

effect on the Bjerknes feedback is also partially offset by a

significantly stronger negative heat flux feedback in the re-

charged experiments after boreal summer (Figs. 7f and 8f), as

was the case in the NEU experiments. One notable difference

with the NEU experiments is that there is a statistically sig-

nificant difference in the thermocline feedback in the MOD

and EXT experiments from boreal summer onward (Figs. 7e

and 8e). However, as for the heat flux feedback change, it goes

in the ‘‘wrong direction’’ as the stronger thermocline feedback

in the discharged experiments would tend to enhance the

Bjerknes feedback (Jin et al. 2006), making the coupled system

more unstable, and enhancing the spread (which could ex-

plain why the spread is larger in the discharged experiments

until late summer, before the situation reverses). Overall, the

clearest factor to explain the weaker predictability of recharged

states during ENSO phase transitions is thus the ENSO state

dependence of WWE, but the wind stress feedback may also

play a role inMODexperiments. The processes highlighted here

are in general agreement with Dommenget el al. (2013), who

showed that El Niño events are mostly wind driven while La

Niña events are thermocline driven.

The analysis of this set of six ensemble experiments has thus

highlighted 1) that western Pacific recharged states lead to less

ENSO predictability than discharged states, irrespective of the

previous ENSO state, and 2) that this weaker predictability is

most likely caused by the ENSO state dependence of WWEs

(i.e., the tendency of WWEs to become more numerous and

more stochastic as the Pacific warms) and may be enhanced by

the wind stress feedback. Now we show that our physical inter-

pretation is not limited to the six specific initial states we con-

sidered for our ensemble experiments but can apply to a more

general context. To this end, we introduce eight additional

FIG. 7. As in Fig. 6, but for 70-member ensemble experiments starting on 1 November0 from either a moderate La Niña recharged

T300WA (MODR; dark red) or a moderate El Niño discharged T300WA (MODD; dark turquoise). The MODR and MODD experiments

respectively correspond to initial states marked by the dark-red left-pointing triangles and dark-turquoise right-pointing triangles

in Fig. 3c.
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ensemble experiments, with initial states designed to cover a

broader spectrum of initial conditions (Fig. 9a). This extra set of

experiments includes three experiments starting from a neutral

T300WA (during either a moderate La Niña, neutral state, or
moderate El Niño), two experiments with an intermediate

T300WA between neutral and recharged (during either a mod-

erate La Niña or neutral state), two experiments similar to

MODR (i.e., moderate La Niña and recharge), and one experi-

ment similar to MODD (i.e., moderate discharge and El Niño).
Figures 9b and 9c respectively relate the increase in N3

SSTA spread between boreal spring and winter to the wind

stress feedback and to the WEI spread across the ensemble.

Figure 9b first confirms that recharged experiments tend to be

less predictable than discharged experiments (i.e., the red sym-

bols tend to have higher IQR than the turquoise ones). The

spread is low in all discharged experiments, but it covers a wider

range of values in recharged experiments (e.g., extreme La Niña
recharged T300WA states are almost as predictable as discharged

states, evolving quite predictably into neutral event in ourmodel;

Figs. 4k,m). Across the experiments, there is a highly statistically

significant link (r ;0.9) between the spread increase during

summer/autumn and both the wind stress feedback and WWE

stochasticity.While this statistical link does not imply causality, it

is consistent with the role of the multiplicative noise forcing and

possible role of the wind stress feedback that we highlighted in

the NEU, MOD, and EXT case studies.

5. Summary

The recharge oscillator theory (Jin 1997) indicates that a re-

charged equatorial western Pacific heat content (here defined by

the depth averaged temperature in the upper 300m; T300W)

promotes the occurrence of an El Niño a few seasons later,

whereas a discharged heat content favors the occurrence of a La

Niña. Recent studies (Planton et al. 2018; Larson and Kirtman

2019; Larson and Pegion 2020) debated whether the next ENSO

phase is more predictable after a discharge than after a recharge,

reaching no consensus. Further, these studies did not analyze the

physical mechanisms that could lead to such a predictability

asymmetry. The goal of the present study was to revisit this

possible predictability asymmetry, and to propose an underlying

mechanism. To do so, we designed a set of perfect model en-

semble experiments with the CNRM-CM5 climate model, start-

ing from either recharged or discharged western Pacific during

boreal autumn and sampling the full range of corresponding

ENSO phases. Our ensemble experiments demonstrate that, in

the CNRM-CM5 model, discharged western Pacific initial con-

ditions evolve more predictably into a neutral or La Niña state

than recharged conditions into a neutral or El Niño state, re-

gardless of the initial ENSO phase. This result is robust irre-

spective of whether we use a predictability metric that only

accounts for the spread of the ensemble (PP) or also accounts for

the SNR (although statistical significance is lower in that case).

FIG. 8. As in Fig. 6, but for 70-member ensemble experiments starting on 1November0 from either an extreme LaNiña recharged T300WA
(EXTR; dark red) or an extreme El Niño discharged T300WA (EXTD; dark turquoise). The EXTR and EXTD experiments respectively

correspond to initial states marked by the dark-red upward-pointing and dark-turquoise downward-pointing triangles in Fig. 3c.
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The mechanisms that can explain the less predictable ENSO

evolution in the recharged than in the discharged ensemble

experiments can be summarized as follows (Fig. 10):

d Irrespective of the initial ENSO phase, the anomalously high

western Pacific oceanic heat content in the recharged (dis-

charged) experiments leads to warm (cold) central Pacific

SSTA in boreal spring (preconditioning phase in Fig. 10),

due to the thermocline and zonal advective feedbacks (Jin

andAn 1999; Jin et al. 2006). During this phase the ensemble

spread of SSTA is similar in both types of experiments.
d During boreal spring, summer, and autumn (onset/growth

phase in Fig. 10), the anomalously eastward WPEE in the

recharged ensemble experiments leads to more active and

more stochastic WWE (state-dependent forcing; e.g., Levine

et al. 2016), promoting a larger growth of the ensemble

spread (Fig. 4; see also Jin et al. 2007; Puy et al. 2019).

d During boreal autumn (growth phase in Fig. 10), the warmer

surface temperature background also favors a stronger

wind stress feedback in the recharged experiment dur-

ing boreal autumn (e.g., Frauen and Dommenget 2010;

Choi et al. 2013; Dommenget et al. 2013; Im et al. 2015;

Takahashi and Dewitte 2016), but its effect is offset by a

larger negative heat flux feedback (also related to the

warmer background; e.g., Lloyd et al. 2012; Im et al. 2015)

and weaker positive thermocline feedback (due to the deeper

thermocline).

By the end of the year (peak in Fig. 10), this results in a

larger spread and a less predictable ENSO state in the re-

charged than in the discharged ensemble experiments. In

other words, a recharged state evolves less predictably

toward a neutral or El Niño state than does a discharged state

(toward a La Niña).

FIG. 9. (a) As in Fig. 3c but including the initial states of the additional ensemble experiments used in (b) and (c).

Also shown are scatterplots between the ensemble spread evolution during boreal summer/autumn (NDJ1N3

SSTA IQR minus MAM1N3 SSTA IQR) and (b) April1–December1 wind stress feedback and (c) April1–

December1 integratedWEI index IQR. Black solid lines indicate the linear regression slopes. The corresponding r

and s are indicated at the top of each panel, with the 95% confidence interval within parentheses.
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6. Discussion and perspectives

The influence of oceanic preconditioning on asymmetries in

long-term ENSO predictability has recently been debated,

reaching no clear consensus. The potential asymmetry in ENSO

predictability can be studied either based on predictability di-

agnostics in a perfect model setting (e.g., DiNezio et al. 2017a,b;

Larson and Kirtman 2019; Yu and Fedorov 2020), like in the

current study, or based on actual ENSO forecasts (e.g., Larson

and Pegion 2020; Tippett et al. 2020). Let us discuss these ap-

proaches separately.

Our results with the CNRM-CM5model confirm the statistical

analyses of the CMIP database by Planton et al. (2018) and

indicate a higher ;1-yr-lead predictability when starting from

discharged rather than from recharged initial states. Jin et al.

(2007) obtained similar results when they added a multiplicative

noise forcing in the highly idealized recharge oscillator model. Yu

and Fedorov (2020) found that the ENSO evolution in the

CESM1.2 climatemodelwas less predictablewhen starting froma

recharged rather than from a neutral or discharged initial oceanic

heat content. Our results also agree with those of DiNezio et al.

(2017a,b), pointing to the high likelihood of a LaNiña 1 year after
an extreme discharge. Our ensemble experiment initialized from

such conditions (EXTD; Fig. 4m) indeed evolves into a moderate

or extreme LaNiña one year later in 97%of the cases. Lopez and

Kirtman (2014) performed predictability experiments with the

CCSM3 coupled models, in which a state-dependent WWE pa-

rameterization was added to compensate for the model’s poor

ability to reproduce observedWWE.When this parameterization

is active, they find a more predictable cold phase, in agreement

with our results, both in terms of the asymmetry predictability and

of the role of WWE in this asymmetry. Larson and Kirtman

(2019) also find a smaller spread in ensemble experiments with

the CCSM4 model initialized from a discharge than in those ini-

tialized from a recharge (but defined using EP T300A). In con-

trast to our study, however, they find that the larger amplitude

warm events result in a more favorable signal-to-noise ratio, and

hence enhanced predictability when starting from a recharged

state. The only study that partially differs with ours, by attributing

a more predictable ENSO evolution after a recharged state, is

thus that of Larson andKirtman (2019). Their experimental setup

is very similar to ours, so the difference must be attributable to

model dependence of the results, arguing for more ENSO pre-

dictability studies using other models.

All of the studies above, however, focus on ENSO predict-

ability, not actual predictions, and do not consider the effects of

FIG. 10. Idealized schematic of the mechanisms influencing the predictability of ENSO depending on oceanic preconditioning.

Preconditioning: recharged (at top)/discharged (at bottom) oceanic preconditioning associate with different ENSO states during boreal

autumn. Onset/growth: influence of WWE on the development of SSTA spread during boreal spring, summer, and autumn. Growth:

influence of the Bjerknes feedback on increasing SSTA spread during boreal autumn. Peak: ENSO plumes showing the larger spread and

lower predictability of recharged states relative to discharged states.
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model errors, or those of initial oceanic condition uncer-

tainties, which can also significantly contribute to ENSO

forecast skill. Larson and Pegion (2020) used initialized pre-

dictions reproducing the setup of real-time seasonal ENSO

forecasts. Using this more realistic setup, they pointed to

equivalent ENSO predictability for recharged and discharged

initial states. It is more difficult to know if this different result

arises from the model they use or from the effect of oceanic

initial condition uncertainties. Tippett et al. (2020) note that

‘‘false alarms’’ (when a forecast simulates a tendency that does

not materialize) occur mostly in association with warming

tendencies, which points toward a more predictable evolution

toward negative SST anomalies, in agreement with our results.

Despite the relatively good performance of the CNRM-

CM5 model in comparison with other CMIP5 and CMIP6

models, it does underestimate several aspects of the observed

ENSO asymmetry and the wind stress feedback. The strongly

underestimated wind stress feedback in our model may for

instance result in an underestimation of the role of the seasonal

Bjerknes feedback relative to the ENSO state dependence of

WWE in the mechanisms responsible for the asymmetry in

predictability. Our model also overestimates the ENSO bien-

nial tendency, largely due to too frequent La Niña to El Niño
transitions (43%of the LaNiña events in themodel, 21% in the

observations), while the El Niño to LaNiña transitions are well
represented (around 60% in the model and observations;

Fig. 1). The too-frequent LaNiña to ElNiño transitions imply a

more predictable evolution from initial western Pacific re-

charged states in CNRM-CM5 than in nature and thus do not

challenge our result on the predictability asymmetry.

Our results highlight two processes able to enhance the

spread of SSTA in recharged experiments: the seasonal wind

stress feedback and the WWE. We emphasize more strongly

the effect of WWE because 1) the differences in wind stress

feedback between the recharged and discharged experiments

tend to become significant after those in WEI and its spread

and 2) the stronger (destabilizing) wind stress feedback occurs

in conjunction with a stronger (stabilizing) heat flux feedback

in all experiments, although we did not quantify the overall

effect on predictability. In addition, WWE are associated with

seasonalmeanwesterly winds, and hence contribute to the low-

frequency wind stress feedbacks during El Niño events. The

wind stress feedback changes between discharged and re-

charged experiments become even less significant if we remove

WWE before computing the wind stress feedback (not shown).

While this strengthens our hypothesis about the dominant ef-

fect of the multiplicative noise, we admit there is some ambi-

guity and recognize that more research will be needed to

further quantify the relative contributions of the seasonal

Bjerknes feedback and the ENSO state dependence of WWE.

Our analysis indicates that asymmetrical WWE forcing, and

possibly wind stress feedback, is likely to play a central role in

the asymmetry of ENSOpredictability. Such asymmetries arise

from nonlinearities in ocean–atmosphere coupled dynamics.

We did not, however, consider the full range of nonlinear

coupled feedbacks that may contribute to asymmetries in

ENSO predictability. The nonlinear dynamical heating (e.g.,

An and Jin 2004; Su et al. 2010) contribution to the advective

feedback is indeed a warming process during both El Niño and

La Niña; that is, it enhances the instability (and error growth)

during warm events development and reduces it during cold

events. It could thus also contribute to the less predictable

recharged states evolution in the CNRM-CM5model. Tropical

instability waves (TIWs) also induce an asymmetrical heating

in the cold tongue region between El Niño and La Niña (Wang

and McPhaden 2000, 2001; Vialard et al. 2001). While TIWs

provide a negative feedback to ENSO during both its warm

and cold phases, this negative feedback is weaker during El

Niño, favoring larger El Niño than La Niña events (e.g., An

2008). This enhanced warm event instability could therefore

also contribute to the reduced predictability we see in the

CNRM-CM5 model. But, on the other hand, the recent study

by Holmes et al. (2019) also points out oceanic internal vari-

ability associated with TIWs in the eastern Pacific as a non-

negligible contributor to the ensemble spread in idealized

experiments with a hybrid coupled model. This effect would

work in the opposite direction, as TIWs are enhanced during

La Niña. Clearly, more studies on the flow-dependent pre-

dictability of ENSO with various models and predictions sys-

tems are needed to fully understand the sign of the asymmetry

in ENSO predictability and the underlying mechanisms.

Acknowledgments.We thank three anonymous reviewers of

an earlier version of this paper for their insightful and con-

structive comments. We acknowledge the World Climate

Research Programme’s Working Group on Coupled Modelling,

which is responsible for CMIP, and we thank the climate mod-

eling groups (listed in Table 1) for producing and making

available their model output. For CMIP the U.S. Department

of Energy’s Program for Climate Model Diagnosis and

Intercomparison provides coordinating support and led de-

velopment of software infrastructure in partnership with the

Global Organization for Earth System Science Portals. The

TropFlux data are produced under a collaboration between

Laboratoire d’Océanographie: Expérimentation et Approches

Numériques (LOCEAN) from Institut Pierre Simon Laplace

(IPSL; Paris, France) and National Institute of Oceanography/

CSIR (NIO; Goa, India), and supported by Institut de

Recherche pour le Développement (IRD; France). TropFlux

relies on data provided by the ECMWF interim reanalysis

(ERA-I) and ISCCP projects. GODAS data are provided by the

NOAA/OAR/ESRL PSD. Author Planton holds a National

Research Council Research Associateship Award at NOAA/

PMEL. We acknowledge the support from the Agence

Nationale de la Recherche ARISE project, under Grant

ANR-18-CE01-0012; the Belmont project GOTHAM, un-

der Grant ANR-15-JCLI-0004-01; the ‘‘Make Our Planet

Great Again’’ project ARCHANGE (Agence Nationale

pour la Recherche project ANR-18-MPGA-0001); the Centre

National de la Recherche Scientifique (CNRS); and the Institut

de Recherche pour le Développement (IRD). The ESGF and

IPSL/ESPRI-MOD data distribution systems are gratefully ac-

knowledged. This is PMEL Contribution Number 5088.

Data availability statement. CMIP5 and CMIP6 data can be

accessed at https://esgf-node.llnl.gov/projects/esgf-llnl/. TropFlux

15 JULY 2021 P LANTON ET AL . 5789

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/27/21 08:31 PM UTC

https://esgf-node.llnl.gov/projects/esgf-llnl/


data can be downloaded from https://incois.gov.in/tropflux/.

GODAS data can be downloaded from https://www.esrl.noaa.gov/

psd/. Data from our simulations with the CNRM-CM5 global

climate model, relevant to this paper, are published in Planton

(2020), available at https://doi.org/10.17632/bsnd8md962.1.

APPENDIX

Additional Details

a. CNRM-CM5 climate model

The numerical simulations performed in this study use the

CNRM-CM5 global climate model (Voldoire et al. 2013), one

of the models that took part in the CMIP5 exercise (Taylor

et al. 2012). Its oceanic component is the NEMO v3.2

(‘‘Nucleus for European Modelling of the Ocean’’; Madec

et al. 2017) ocean general circulation model in its ORCA1

configuration (Hewitt et al. 2011). This configuration has a 18
horizontal resolution, with a 1/38 meridional refinement near

the equator and 42 vertical levels, with a resolution ranging

from 10m near the surface to 300m at 5000-m depth. The

vertical mixing parameterization uses a turbulent kinetic en-

ergy closure scheme (Blanke andDelecluse 1993). It is coupled

to the atmospheric spectral general circulationmodel ARPEGE-

Climat v5.2 (‘‘Action de Recherche Petite Echelle Grande

Echelle’’; Déqué et al. 1994) through the OASIS v3 coupler

(Valcke 2013). The global spectral ARPEGE-Climat configura-

tion has a 1.48 horizontal resolution and 31 vertical levels, with

resolution ranging from 10m at the surface to 70km at height.

Deep atmospheric convection is parameterized following a mass

convergence scheme (Bougeault 1985) with a humidity conver-

gence closure. Large-scale precipitations are computed with a

statistical precipitation scheme described by Smith (1990). A

more detailed description of CNRM-CM5 can be found in

Voldoire et al. (2013).

b. Upper-ocean heat content

The warm water volume of the entire equatorial Pacific region

(WWV; volume of water warmer than 208C within 1208E–808W,

58S–58N) has been widely used as an index of the long-term re-

charge conceptualized in the recharge oscillator (Meinen and

McPhaden 2000).Recent studies have, however, demonstrated that

subsurface thermal anomalies in the western Pacific better en-

compass the lower-frequency ENSO dynamics (Ramesh and

Murtugudde 2013; Lai et al. 2015; Ballester et al. 2016; Petrova et al.

2017; Planton et al. 2018; Izumo et al. 2019), as initially underlined

by the seminal studies of Wyrtki (1985) and Jin (1997). Following

these studies, the western equatorial Pacific index is used in this

paper as a measure of the long-term oceanic preconditioning. We

chose to measure subsurface thermal anomalies using the depth

averaged temperature in the upper 300m (T300) as it is easier to

compute than WWV, and both quantities are highly correlated

(above 0.9; e.g., Izumo et al. 2019; Larson and Pegion 2020; see also

https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-

enso). Throughout this paper, ‘‘T300A’’ describes the spatio-

temporal variability of T300 anomalies (used in Figs. 5a,b), ‘‘EP

T300A’’ refers to the anomalies of T300 averaged over the

entire equatorial Pacific region (index equivalent to WWV;

used only in Fig. 3a or to compare our results with other stud-

ies), ‘‘T300WA’’ refers to the anomalies of T300 averaged over

the western equatorial Pacific region (used to define the

recharge/discharge level of the initial conditions of the en-

semble experiments), and ‘‘N3 T300A’’ refers to the anomalies

of T300 averaged over the Niño-3 region (used as a measure of

thermocline depth anomalies to diagnose the thermocline

feedback). Like many other models, CNRM-CM5 suffers

from a ‘‘cold tongue bias’’ (e.g., Bellenger et al. 2014; Planton

et al. 2020) that results in a westward shift of statistical link

between T300A and ENSO 1 year later (Fig. A1). To account

for this bias, the region over which T300WA is averaged was

defined differently for CNRM-CM5 model (1208E–1808, 58S–
58N) and observations [1208E–1558W, 58S–58N, as in Meinen

and McPhaden (2000)].

c. Metrics for ENSO predictability

To estimate the predictability of ENSO events at the end of

the ensemble experiments (predictability of NDJ N3 SSTA),

we used two metrics:

d Potential predictability, defined as PP 5 1 2 (IQRexpe/

IQRctrl), where IQRexpe and IQRctrl are, respectively, the

IQR of the given ensemble experiment (NDJ N3 SSTA at

the end of the experiment) and that of the control simulation

(every NDJ N3 SSTA of the control simulation). PP is thus

similar to Kleeman (2002) but is based on IQR instead of

FIG. A1. Spatial structure of the correlation between OND0 T300A and NDJ1N3 SSTA computed with

(a) observations and (b) CNRM-CM5. Limits of the western equatorial Pacific region used for the observations and

CNRM-CM5 are outlined in green. The correlation between OND0 T300WA and NDJ1N3 SSTA is indicated in

the box.

5790 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/27/21 08:31 PM UTC

https://incois.gov.in/tropflux/
https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://doi.org/10.17632/bsnd8md962.1
https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-enso
https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-enso


variance. The idea is that when the ensemble has a spread

(IQRexpe) as large as that of the control simulation (IQRctrl),

predictability is lost and PP 5 0. The higher the PP value is,

the more predictable is the experiment.
d Signal-to-noise ratio (SNR), defined as SNR 5 jmeanexpe/

IQRexpej, where meanexpe and IQRexpe are, respectively, the

ensemble mean value and the IQR of the given ensemble

experiment and vertical bars indicate that the absolute value is

taken. The idea is that if the ensemblemean is large, theENSO

signal is easily detectable even if the spread is large. The higher

the SNR value is, the more predictable is the experiment.

Note that similar results are obtained if we use the standard

deviation or the variance instead of the IQR to compute the

predictability metrics, but we chose to show the computations

with the IQR because several distributions are skewed.

d. Statistical significance

A nonparametric Monte Carlo method is used to estimate

the statistical significance: 100 000 random selections (with

replacement) of any given sample are generated, providing the

2.5th and 97.5th percentiles of the distribution to obtain the

95% confidence level. The same approach is used for esti-

mating the statistical significance of the difference of the mean

of the two distributions (e.g., the wind stress feedback in each

experiment in Figs. 6, 7, and 8): the two samples are both

randomly sampled 100 000 times, the mean of their difference

is computed, and the resulting distribution is used to compute

the statistical significance.
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