
Supplementary Material and Figures: 
 
JAMP pipeline rationale 
 
Using a preliminary data set, we compared JAMP (Elbrecht 2020), Leray's CROP pipeline 
(Leray and Knowlton 2017), OBITools using Swarm clustering (Mahe et al. 2015; Boyer et al. 
2016; Wangensteen and Turon 2017), and an in-house custom pipeline integrating various 
programs but using Vsearch (Rognes et al. 2016) for clustering followed by a LULU post-cluster 
step (Froslev et al. 2017). Overall output and general trends were similar enough among 
pipelines that it did not seem to matter which was used.  Only the rare things differed among 
pipelines, which is known to occur even when using the same pipeline on replicated data (Leray 
and Knowlton 2017).  Thus, we chose JAMP for the following reasons: 1) It's an R modular 
package making it pretty user-friendly; 2) The package creator, Vasco Elbrecht, has thoroughly 
tested the pipeline for a variety of metabarcoding applications; and 3) we really like the metadata 
integration at each step to support the examination of your fasta files enabling you to better 
understand what is happening, how much you are losing (in terms of sequences), and the 
resulting output. Ultimately, the choice of pipeline is up to the user and in some cases can alter 
results (e.g., Shafer et al. 2017; Pauvert et al. 2019) but a formal comparison of pipelines is 
beyond the scope of this work. In our case, we selected JAMP as the easiest and fastest pipeline 
to use based on our initial comparison, and it performed well in this comparison.   
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Figure S1: Tank set-up at the Hawaiʻi Institute of Marine Biology in Kāneʻohe Bay on the island 
of Oʻahu and an image of the 2-tiered modified ARMS units that were placed within the tanks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S2 – cutadapt length filtration rationale: The frequency and length distribution of 
sequences within the primer binding site using in silico PCR on the Midori unique database. 
Nearly 400K sequences were obtained and scored against a profile HMM to remove any spurious 
virtual amplicons (Wilkinson 2018). While most sequences were around 313 bp, there were a 
number of sequences at 337 bp assigned to the phylum Platyhelminthes and at 295 bp assigned to 
bivalves and trematodes. As a result, we used a min/max 295/340 bp cutoff represented by the 
gray bars within the dashed lines. Sequences outside of the dashes were removed as 78% were 
classified as Insecta, Arachnida, or NA - non-marine eukaryotes. 
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Figure S3: Comparison of COI and 28S rRNA neighbor-joining phylogenetic trees. The 28S 
rRNA tree is missing Ancorinidae sp. 2, Hymeniacidon sp. 5, Poecilosclerida sp. 4, Oscarella sp. 
6, Leucosolenida sp. 18, and Heteroscleromorpha sp. 1 due to short sequence length. Coloration 
represents the three sponge classes: yellow = Homoscleromorpha, light blue = Demospongiae, 
and light purple = Calcarea. Dashed lines separate the taxa within the orders from each tree. 
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Figure S4: (a) All suberitids found in this study express the color yellow naturally or under 
stress making it challenging to identify. (b) Additional sponges that express yellow within 
Poecilosclerida and the sponge Biemna fistulosa found in the metabarcoding data but not from 
the barcoded morphologies which could have been overlooked by the taxonomist.  
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Figure S5: Images represent the top and bottom sides of the three plates from ARMS Unit 13.  
The sponge Plakortis sp. 1, outlined in green, dominated Unit 13 both in terms of plate coverage 
and metabarcoding reads (65735 reads – Table S3). 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S6: Plate imagery of ARMS Unit 5 with all sponges found on the bottom of Plate 2 
outlined in respective colors to represent the abundance and variety of sponges on one plate 
surface. The Veronigimorpha sp. 1, BM_89, was only found in this ARMS unit in small 
quantities on three of the plate surfaces (colored in red) and has an extremely low biomass, as 
demonstrated in the below right image showing its sheer layer over vermutid mollusks and 
serpulid worms. Regardless, this sponge was also detected by metabarcoding to be present only 
in this ARMS unit. 
 
 

 
 

 

 

 

 


