
1.  Introduction
Atmospheric aerosols play important roles in the climate systems directly by scattering and absorbing the 
solar and terrestrial radiation, and indirectly by modifying the cloud properties. The direct aerosol radia-
tive effect (DARE) and direct aerosol radiative forcing (DARF) are often used to quantify aerosols' impact 
on climate. DARE is defined as the mean radiative flux perturbation due to the presence of aerosols (both 
natural and anthropogenic), while DARF is the anthropogenic component of DARE. Many studies used 
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to accurately calculate TOA flux. We also compare the AOD trend from three models with the observation-
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Plain Language Summary  Aerosol optical depths (AOD) from satellite retrievals have 
been used to evaluate the AeroCom models. However, these evaluations are often non-conclusive due to 
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atmosphere (TOA) reflected SW fluxes are linked to biases in AOD and surface albedo by using their 
respective radiative kernels. We found that biases in AOD and land surface albedo can explain significant 
amount of the SW flux biases on both global and regional scales. This study highlights the importance of 
evaluating related variables in a synergistic manner to provide an unambiguous assessment of the models, 
as results from single parameter assessments are often confounded by measurement uncertainty. This 
study clearly demonstrates the deficiency of land surface albedo used by the AeroCom models and usage 
of observation-based land surface albedo should be required for all models participating in AeroCom 
experiments.
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satellite measurements to estimate the DARE (e.g., Loeb & Manalo-Smith, 2005; Remer & Kaufman, 2006; 
Su et al., 2013; Yu et al., 2006). However, determining DARF from satellite measurements is more challeng-
ing because current satellite sensors cannot discriminate anthropogenic aerosols from natural aerosols. Our 
current understanding of DARF relies mostly on the AeroCom model simulations (Myhre et al., 2013; Schulz 
et al., 2006), with a few studies estimating observational constrained DARF (Bellouin et al., 2005, 2008; 
Paulot et al., 2018; Su et al., 2013).

As the AeroCom models are vital in advancing our understanding on how aerosols are affecting the climate 
and its future projection, many aspects of the models have been examined under prescribed conditions. 
Stier et al. (2013) assessed the host model uncertainties on DARF by prescribing identical aerosol radiative 
properties in all models and found significant model diversity in simulated clear- and all-sky DARF. One 
of the variables that contributed to this diversity was surface albedo which had a global mean inter-model 
relative standard deviation of 4% and significantly larger variability on regional scale. Randles et al. (2013) 
examined the performance of radiative transfer schemes used in the models and found that diversity among 
models in the top-of-atmosphere (TOA) DARF depended on the solar zenith angle (SZA) and was the larg-
est for purely scattering aerosols at low SZAs (E 20%). They also noted that models overestimated the TOA 
clear-sky flux under aerosol-free conditions by about 1.3%–3.5% depending on the atmospheric profiles and 
SZAs.

Aerosol properties from the AeroCom models have been compared against satellite retrievals and AErosol 
RObotic NETwork (AERONET; Holben et al., 2001) measurements extensively (e.g., Gliß et al., 2021; Kinne 
et al., 2006). However, radiative fluxes and land surface albedo from the AeroCom models have not been 
compared with the satellite observations. In this study, TOA fluxes from AeroCom phase III 2019 control 
experiment are compared with fluxes from the Clouds and the Earth's Radiant Energy System (CERES; 
Loeb et al., 2016; Wielicki et al., 1996). We will focus on clear-sky TOA shortwave (SW) flux comparison, 
because of the large inter-model differences in cloud fraction (Stier et al., 2013). In order to understand 
the global and regional flux differences between CERES and the AeroCom models, differences in aerosol 
optical depth (AOD) and land surface albedo (E ) are also presented, as these two variables contribute the 
most to TOA SW flux under clear-sky conditions. The observational-based SW flux is independently derived 
from AOD and land surface albedo data sets used in this study based on different satellite instruments and 
algorithms. When the AOD and surface albedo differences can explain the SW flux differences, it is more 
likely that these differences are robust. Using different observations to evaluate the models synergistically 
can therefore be beneficial over using a single variable and provide more reliable diagnostics for model eval-
uation. Furthermore, relying on radiative kernels for AOD and surface albedo, one can tie the AOD and land 
surface albedo differences between models and observations to the flux differences. The AeroCom models 
included in this study are briefly described in Section 2. Satellite observations and data sets are in Section 3, 
and the radiative kernels are described in Section 4. Results on global and regional comparisons are pre-
sented in Section 5, and trend comparisons are in Section 6. Discussions and conclusions are in Section 7.

2.  AeroCom Models
This study uses the AeroCom phase III 2019 control experiment (https://wiki.met.no/aerocom/phase3-ex-
periments). For this experiment, models use harmonized anthropogenic and biomass burning emissions 
from the Community Emission Data System (CEDS; Hoesly et al., 2018) for Coupled Model Intercompar-
ison Project Phase 6 (CMIP6). Modeling centers are required to submit simulation results for at least 2010 
and 1850, using 2010 meteorology and prescribed sea surface temperature from input4MIPS (Durack & 
Taylor, 2018). Among the models that participated in this control experiment, nine models provided all 
necessary variables (i.e., AOD, TOA reflected SW flux under clear-sky conditions, surface upwelling and 
downwelling SW flux), and are included in this study. Table 1 lists these models, along with their spatial res-
olution and references describing the details of each model. All model outputs are linearly interpolated to a 
1 1E    latitude-longitude grid to facilitate comparisons with satellite observational data. The global means 
calculated using the interpolated grid differ less than 0.01% from using the original spatial resolutions. A 
brief description of each model is given in Appendix A.

https://wiki.met.no/aerocom/phase3%2Dexperiments
https://wiki.met.no/aerocom/phase3%2Dexperiments
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3.  Satellite Observations
3.1.  TOA Reflected Shortwave Flux

Clear-sky TOA radiative fluxes for 1 1E    latitude-longitude regions are from the CERES Energy Balanced 
and Filled (EBAF) Ed4.1 product (Loeb et al., 2018). EBAF data takes advantage of the many algorithm 
improvements that have been made in the Edition 4 CERES Level 1–3 data products and it is the only 
global data set that can be used to study the variations of Earth radiation budget over a range of temporal 
and spatial scales. The Earth's energy imbalance in the CERES EBAF is constrained to be consistent with 
ocean heat content (Johnson et al., 2016) by using an objective constrainment algorithm to adjust SW and 
longwave (LW) TOA fluxes within their ranges of uncertainty to remove the inconsistency between average 
global net TOA flux and heat storage in the Earth-atmosphere system (Loeb et al., 2009, 2018). Additionally, 
because of the relatively coarse spatial resolution of the CERES instruments (E 20-km at nadir), the stand-
ard CERES Level-3 data products have many spatial gaps in monthly mean clear-sky TOA flux maps due 
to the absence of cloud-free areas occurring at the CERES footprint scale in some 1 1E    regions. In EBAF, 
this problem is mitigated by inferring clear-sky fluxes from both CERES and Moderate Resolution Imag-
ing Spectroradiometer (MODIS) measurements to produce a new clear-sky TOA flux climatology for every 
1 1E    grid box every month. The uncertainty for TOA clear-sky SW flux is estimated as 5  2WmE   on the grid 
box level (Loeb et al., 2018). EBAF data has been widely used to evaluate global general circulation models 
(e.g., Bauer et al., 2020; Loeb et al., 2020; Paulot et al., 2018; Pincus et al., 2008; Su et al., 2010; H. Wang & 
Su, 2013; Wild et al., 2013).

3.2.  Aerosol Optical Depth

AODs retrieved from MODIS and Multi-Angle Imaging Spectroradiometer (MISR) are used in this study 
to compare with the model simulations and to help interpreting the SW flux biases. The Aqua MODIS 
collection 6.1 monthly gridded Dark Target and Deep Blue merged AOD product (Sayer et al., 2014) com-
bines AODs retrieved from Dark Target over water algorithm with Dark Target and Deep Blue over land 
algorithms to provide more complete AOD spatial coverage over snow-ice-free surfaces. Validations against 
AERONET and Maritime Aerosol Network (MAN) data indicate that MODIS dark target retrievals agree 
well with AERONET over land (high correlation and low bias; Levy et al., 2013). Over ocean, Aqua MODIS 
AODs are also highly correlated with those from AERONET, but biased high at low AODs and the scatter 
for high AODs is significantly larger than the expected error (Levy et  al.,  2013; Schutgens et  al.,  2020). 
Validations of the deep blue retrievals over land also indicate very low bias (Sayer et al., 2014; Schutgens 
et al., 2020).

MISR Level-3 gridded AOD product at 0.5 0.5E    spatial resolution is also used in this study. The MISR Lev-
el-3 product is aggregated from higher spatial resolution version 23 (V23) level 2 data (Garay et al., 2020). 
Compared to the V22 AOD retrieval, V23 implemented many changes which resulted in significant re-
duction in AOD over ocean. The 16-year mean AOD is reduced from 0.157 in V22 to 0.114 in V23 over 

Long name Short name Lat E  long Reference

CAM5-ATRAS CAM5 1.9 2.5E    Matsui (2017)

ECHAM6.3-HAM2.3-met2010 ECHAM 1.875 1.875E    Tegen et al. (2019)

GFDL-AM4-met2010 GFDLm 1.00 1.25E    Zhao et al. (2018)

GFDL-AM4-fSST GFDLf 1.00 1.25E    Zhao et al. (2018)

GISS-ModelE2.1.1-OMA GISS OMA 2.0 2.5E    Bauer et al. (2020); Tsigaridis et al. (2013)

GISS-ModelE2.1.1-MATRIX GISS MATRIX 2.0 2.5E    Bauer et al. (2008)

INCA INCA 2.25 2.50E    Balkanski et al. (2004); Schulz et al. (2009)

MIROC-SPRINTARS SPRINTARS 0.55 0.55E    Takemura et al. (2005)

OsloCTM3v1.01-met2010 Oslo 2.25 2.25E    Lund et al. (2018); Søvde et al. (2012)

Table 1 
List of AeroCom Models Used in This Study
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ocean. However, the AODs over land agree well between V22 and V23. Validations against the AERONET 
measurements show modest improvement in V23 retrievals over land in comparison to V22, with the abso-
lute bias decreases from −0.004 to −0.002 and the percent of retrievals that fall within the error envelope, 
defined as E (0.03 + 10%AOD), increases from 59.7% to 66.1%. However, V23 retrievals tend to overestimate 
AOD at low AODs (like MODIS, mentioned above) and underestimate AOD at high AODs. Validations 
against MAN AOD derived from handheld Microtops Sun photometers show significant improvement in 
V23, the absolute bias is reduce from 0.037 to 0.0 and the percent of retrievals that fall within the error en-
velope increases from 61% to 87% in comparison to V22.

3.3.  Surface Albedo

The Terra and Aqua combined MODIS Bidirectional Reflectance Distribution Function (BRDF)/albedo 
product (MCD43C1, Version 6) provides the daily weighting parameters to calculate the directional hem-
ispherical reflectance (black-sky albedo) and bihemispherical reflectance (white-sky albedo) at a spatial 
resolution of 0.05E  over land. These parameters are used in polynomial albedo representations to estimate 
the black-sky albedo at any given SZA and the white-sky albedo (Li & Strahler, 1992; Lucht et al., 2000). The 
MODIS broadband surface albedos agree well with the in situ ground-based and airborne measurements, 
the root mean square errors are less than 0.020 (E 7%) for forest during the dormant periods and 0.025 (E 15%) 
during the snow-covered periods, less than 0.030 (E 9%) for agriculture and grassland during the dormant 
periods and 0.050 (E 4%) during the snow-covered periods, and less than 0.047 (E 0.5%) for the snow-cov-
ered tundra (Cescatti et al., 2012; Roman et al., 2013; Z. Wang et al., 2012, 2014). The MODIS broadband 
surface albedos also agree with other satellite products to within 0.01 or E 5% (Carrer et al., 2010; Taberner 
et al., 2010).

The actual surface albedo is a combination of black-sky albedo and white-sky albedo from the following 
(Schaaf et al., 2002):

0 0 0 0( , , ) ( , , ) ( ) (1 ( , , ))ws bsAOD f AOD f AOD             � (1)

where wsE   is the white-sky albedo and bsE   is the black-sky albedo, E f  is the fraction of diffuse light and de-
pends on the SZA ( 0E  ), AOD, and aerosol types (E ). A look-up table of E f  (available at https://www.umb.edu/
spectralmass/terra_aqua_modis/modis_user_tools) is provided for continental and maritime aerosol types 
with AODs ranging from 0 to 0.98 for SZAs between 0E  and 89E .

For a given month, actual surface albedo is calculated every 10 min to take into account that black-sky albe-
do is a function of SZA and the value of E f  is determined using monthly MODIS Dark Target and Deep Blue 
merged AOD assuming continental aerosol type. At every time step within every 1 1E    grid, surface albedo 
calculated at 0.05E  resolution are converted to surface upwelling SW fluxes by using the clear-sky surface 
downwelling SW fluxes from CERES Edition 4 synoptic daily hourly product (SYN1deg-1Hour; Doelling 
et al., 2013), then average into the 1 1E    grid. These upwelling SW fluxes are averaged over the month, then 
divided by the monthly mean downwelling SW flux to produce the monthly mean surface albedo.

4.  Radiative Kernels
Radiative kernels are partial derivatives of TOA SW flux derived by imposing small systematic perturbations 
to the base-state values. Thorsen et al. (2020) derived aerosol radiative kernels using 1 year (2007) of 3-hour-
ly MERRA-2 data. Radiative kernels of AOD, single-scattering albedo (SSA), aerosol asymmetry factor, and 
surface albedo are derived for each month. These kernels are able to reproduce the aerosol direct radiative 
effect to within 0.3 2WmE   when compared to the true aerosol direct radiative effect calculation in MERRA-2. 
These kernel calculations are very computational costly, thus kernels are only calculated using 2007 data. 
Although it would be most accurate to apply these kernels to the same year of measurements and simula-
tions, the impact of interannual variability on these kernels is expected to be small (Thorsen et al., 2020) 
and they are applied to the AeroCom simulations of 2010 (the output year selected by the AeroCom phase 
III experiment).

Figure 1 shows the AOD and surface albedo kernels for April and October (differ from the annual mean 
results presented in Thorsen et al., 2020). Kernels are expressed in units of watts per meter squared per 

https://www.umb.edu/spectralmass/terra%5Faqua%5Fmodis/modis%5Fuser%5Ftools
https://www.umb.edu/spectralmass/terra%5Faqua%5Fmodis/modis%5Fuser%5Ftools
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unit change in the respective variables. Figures 1a and 1b show that the TOA SW flux would increase by 
more than 30  2WmE   over the oceans off the west coast of Africa if the AOD were increased by 1, whereas 
the increment is less than 10  2WmE   over the Sahara desert because TOA SW flux has smaller sensitivity to 
AOD changes over bright surface than over dark surface. Aerosol composition also affects the AOD kernels. 
For example, the AOD radiative kernel over South America is about 25  2WmE   in April and is reduced to 15 

2WmE   in October (see Figure 1b) during the biomass burning season. Figures 1c and 1d show the regional 
TOA SW flux changes for unit increase in surface albedo, which are mostly sensitive to solar insolation and 
are also sensitive to the initial surface albedo. In this study, we use these kernels to assess the contributions 
of AOD and surface albedo biases to TOA SW flux biases in the AeroCom models.

The clear-sky TOA reflected SW flux bias in the model can be expressed as:
,m o AODF F F F F F         � (2)

where mE F  and oE F  are the TOA reflected SW flux from models and CERES EBAF, AODE F  and E F  are the flux 
biases caused by biases in AOD and surface albedo in models relative to MODIS retrievals calculated using 
their respective radiative kernels, and E F  is the residual in flux bias, which can be attributed to differences 
in aerosol composition and atmospheric state (i.e., water vapor, ozone, etc.), and also to uncertainties in 
radiative transfer calculations, satellite retrievals, and kernel calculations.

5.  Comparisons Between Models and Observations
Figure 2 shows the seasonal cycle of monthly mean clear-sky SW flux calculated over ocean and land be-
tween 60E S and 60E N (60°S–60°N) from CERES EBAF (black line), nine AeroCom models, and the mul-
ti-model mean (MMM, black dashed line) result for 2010. Figure 3 shows the seasonal cycle of monthly 
mean AOD over 60°S–60°N ocean and land from MODIS, MISR, nine AeroCom models, and the MMM. 
Over ocean, the seasonal cycle of SW flux is very similar to that of solar insolation as the AODs remain rela-
tively constant throughout the year (Figure 3a). Clear-sky SW fluxes from INCA and ECHAM-HAM models 
are greater than those from CERES EBAF throughout the year, and AODs from these two models are also 

Figure 1.  The monthly mean top-of-atmosphere (TOA) shortwave (SW) flux radiative kernels (in 2WmE  ) for aerosol optical depth (AOD) (a) April, (b) October, 
and surface albedo (c) April, (d) October.
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on the high end when compared with the satellite retrievals, consistent with the AOD assessment from Gliβ 
et al. (2021). SW flux from Oslo agrees with EBAF almost perfectly, despite its AOD is on the low end when 
compared with satellite retrievals. Monthly mean clear-sky SW fluxes from all other models are smaller 
than EBAF by about 2–3  2WmE  , and their AODs are generally smaller than the MODIS retrievals as well, 
consistent with the findings of Gliβ et al. (2021). It is worth noting that even though AODs from SPRIN-
TARS are much lower than all other models, its SW fluxes are actually greater than a couple of other models 
because its aerosols are almost non-absorbing (see Figure 10). The MMM fluxes are about 1–2  2WmE   smaller 
than CERES EBAF and the MMM AODs lie in between MODIS and MISR AODs. Over land, the GFDL 
models produce greater clear-sky SW fluxes than EBAF, GISS models agree with EBAF fairly well, and all 
other models have low biases. This results in MMM being 1–2  2WmE   smaller than CERES EBAF. AODs 
from all models are outside the boundaries of satellite retrievals. Gliß et al. (2021) also found that almost all 
AeroCom models underestimate AOD when compared with AERONET and other satellite retrievals. Thus 
the MMM AODs are smaller than both MODIS and MISR AODs except during the boreal summer months. 
There are no correspondences between flux biases and AOD biases over land, as land surface albedo biases 
from these models also contribute to the flux biases.

The seasonal cycles of AODs from MODIS and MISR are very similar to each other over both ocean and 
land (Figure  3). However, the AOD seasonal cycles from the AeroCom models differ significantly from 
the observations and from each other, especially over land. The MISR AODs are smaller than the MODIS 
AODs. As mentioned in Section 3.2, the mean AOD over ocean in the recently released MISR V23 is small-
er than V22 by about 0.04, while the mean AOD over land is nearly unchanged. Schutgens et al.  (2020) 

Figure 2.  Top-of-atmosphere (TOA) clear-sky reflected shortwave (SW) flux comparisons between Clouds and the Earth's Radiant Energy System (CERES) 
Energy Balanced and Filled (EBAF), individual AeroCom models, and the multi-model mean (MMM) over ocean (a) and land (b) between 60E S and 60E N.

Figure 3.  Aerosol optical depth (AOD) comparisons between satellite retrievals (Moderate Resolution Imaging Spectroradiometer [MODIS] and Multi-Angle 
Imaging Spectroradiometer [MISR]), individual AeroCom models, and the multi-model mean (MMM) over ocean (a) and land (b)between 60E S and 60E N.
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intercompared AOD retrievals from 14 satellite products (MISR was not included) and evaluated them 
against the AERONET and MAN results. When collocating each individual satellite product with either 
AERONET or MAN, they found that over land Aqua MODIS AODs show good agreement with AERONET 
(high correlation and low bias); Aqua MODIS AODs over ocean are also highly correlated with those from 
AERONET and MAN, but are biased high. They also argued that the satellite retrieval diversity can be used 
as a proxy for retrieval uncertainty. Judging from their analysis, it is reasonable to assume Aqua MODIS re-
trievals represent the high end of AODs whereas MISR retrievals represent the low end over ocean. It is also 
notable that monthly gridded AODs from MISR often suffer spatial gaps and incoherent features because 
of MISR's narrow swath, and the sampling difference also likely contributed to the global mean AOD dif-
ference seen between MODIS and MISR. Hence, in the following discussion, we only present results using 
MODIS AODs, but the regional difference features with respect to models remain the same when MISR 
AODs are used instead (see Appendix B).

To understand the contributions of AOD and land surface albedo biases to TOA SW flux biases, AODE F  is 
calculated over ocean and land and E F  is calculated over land using their respective radiative kernels. Fig-
ure 4a shows the monthly mean E F  for MMM over 60°S–60°N and tropical (30E S–30E N) ocean (solid lines), 
and the flux residuals (E F ) after considering the contribution of AOD biases to E F  (dashed lines). Flux 
biases are reduced by up to 0.6  2WmE   over 60°S–60°N ocean and by up to 1  2WmE   over tropical ocean after 
accounting for AODE F . Figure 4b shows the monthly mean E F  for MMM over 60°S–60°N and tropical land 
(solid line), and after accounting for the contribution of AODE F  (solid lines with circles) and after accounting 
for both AODE F  and E F  (dashed lines). Flux biases are reduced by up to 3  2WmE   after accounting for biases in 

AOD, and are reduced further by accounting for biases in surface albedo. 
Table 2 summarizes the annual mean E F  for MMM, and how much AOD 
and surface albedo (only over land) biases contribute to E F . Over ocean, 
accounting for the AOD bias reduces the MMM flux bias by about 25%. 
Over land, accounting for the AOD and surface albedo biases reduces the 
MMM flux bias by about 70%. The residual in flux bias can be explained 
by differences in aerosol composition, radiative transfer calculation un-
certainties of the models (Randles et al., 2013), and uncertainties in the 
radiative kernels and in satellite retrievals.

The monthly mean E F  for AeroCom models and their respective E F  are 
show in Figure 5 for all models listed in Table 1. Over ocean, account-
ing for the biases in AOD reduces flux biases for almost all models, with 
larger impact over tropical oceans than over global oceans. Over land, 
accounting for the biases in AOD and surface albedo not only reduces 
the flux biases but also minimizes the seasonal dependence for Oslo, 

Figure 4.  Monthly mean multi-model mean (MMM) shortwave (SW) flux biases relative to Clouds and the Earth's Radiant Energy System (CERES) Energy 
Balanced and Filled (EBAF) (solid lines) for 2010 over 60E S–60E N and tropical (30E S–30E N) ocean (a) and land (b). Over ocean, the dashed lines are the flux bias 
residuals (E F ) after accounting for the contributions of aerosol optical depth (AOD) biases to the flux biases. Over land, lines with circles represent (E F F   ) 
and dashed lines are the flux bias residuals after accounting for the contributions of both AOD and surface albedo biases to the flux biases.

Land Ocean

Global Tropical Global Tropical

E F −1.0 −1.7 −1.7 −2.8

AODE F −0.4 −0.4 −0.4 −0.8

E F −0.3 −0.9 — —

E F −0.3 −0.4 −1.3 −2.0

Note. AOD, aerosol optical depth; CERES, Clouds and the Earth's Radiant 
Energy System; EBAF, Energy Balanced and Filled; SW, shortwave.

Table 2 
Annual Mean SW Flux Biases of Multi-Model Mean Relative to CERES 
EBAF (E F ) Over Land and Ocean, Flux Biases Due to AOD Biases AODE F  
and Land Surface Albedo Biases E F , and the Flux Bias Residues E F
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SPRINTARS, INCA and CAM5 models. For the GFDL models, accounting for the biases in AOD and surface 
albedo reverses the models from overestimating to underestimating the flux of about the same magnitude. 
For ECHAM model, E F  is slightly more negative than E F . For the two GISS models, accounting for the 
biases in AOD and surface albedo increases the flux biases by about 5  2WmE  . This is largely due to the flux 
biases having little correspondence with the AOD and albedo biases, particularly over the Amazon, central 
Africa, and the Tibetan Plateau (see Figure 8).

On a 1 1E    latitude-longitude grid box level, the flux biases due to AOD and surface albedo biases derived 
from using the radiative kernels correlate very well with E F  for MMM. Figure 6a shows the relationship 
between E F  and AODE F  over ocean using all gird boxes between 50E S–40E N of the entire year of 2010 (ap-
proximately 255,000 data points used), and the correlation coefficient is 0.6. MODIS retrievals produce some 
spuriously large AODs over high latitude oceans (possibly due to the presence of sea ice) and are therefore 
excluded in the correlation analysis. Figure 6b shows the relationship between E F  and AODE F F    over 
land using all gird boxes between 60E S–60E N for the entire year of 2010 (approximately 142,000 data points 
used), and the correlation coefficient is 0.76. Table 3 lists the correlation coefficients for MMM and nine 
AeroCom models between E F  and AODE F  over ocean and between E F  and AODE F F    over land for four 
seasonal months and the entire year. Over land, MMM has the highest correlation in January and the lowest 
in October; Over ocean, MMM has the highest correlation in April and the lowest correlation in October. 
Correlation coefficients for individual models vary across the seasons, and it is not clear what causes these 
seasonal variations. Over land, the yearly correlation coefficient is the highest for SPRINT model (r = 0.94) 
and lowest for GISS models (r = 0.78). Over ocean, the yearly correlation coefficient is the highest for CAM5 
and ECHAM-HAM models (r = 0.78) and lowest for GISS MATRIX model (r = 0.52).

Figure 7 shows the MMM regional TOA SW flux biases (a), SW flux biases due to biases in AOD and surface 
albedo calculated from their radiative kernels (b), AOD biases (c), and land surface albedo biases(d) for 

Figure 5.  Monthly mean shortwave (SW) flux biases of the AeroCom models for 2010 over 60E S–60E N ocean (solid blue lines) and land (solid orange lines), and 
over tropical (30E S–30E N) ocean (solid cyan lines) and land (solid red lines). The dashed lines are the flux bias residuals (E F ) for the corresponding regions. (a) 
CAM5, (b) ECHAM, (c) GFDLf, (d) GFDLm, (e) GISS OMA, (f) GISS MATRIX, (g) INCA, (h) SPRINTARS, and (i) Oslo.
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April 2010. For this month the 60°S–60°N mean E F  is −1.8  2WmE   and −1.2  2WmE   over ocean and land. The 
spatial patterns of flux bias derived from kernels correspond well with E F . Correlation coefficient is 0.66 
between E F  and AODE F  over ocean, and is 0.75 between E F  and AODE F F    over land. After accounting for 
the contributions of AOD and land surface albedo to E F , the 60°S–60°N mean flux bias (E F ) is reduced to 
−1.3  2WmE   and 0.1  2WmE   over ocean and land.

Good correspondence between E F  and flux biases derived from radiative kernels is also observed for all 
models. Figure 8 shows the regional E F  (left panels), and SW flux biases due to AOD and land surface 
albedo biases calculated from their radiative kernels (right panels) for April 2010. The spatial distributions 
between the two GFDL models are very similar; hence, only the GFDLf (observed SST without wind nudg-
ing) simulation is shown. The GISS MATRIX model performs better than GISS OMA model in terms of 
simulating sulfate aerosols and AOD (Bauer et al., 2020). We also find that GISS MATRIX model agrees 

Figure 6.  Relationship between shortwave (SW) flux biases of multi-model mean (MMM) relative to Clouds and the 
Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) and kernel-based flux biases using all grid 
boxes over ocean between 50E S–40E N using all 12 months of 2010 (a), and using all grid boxes over land between 60E S 
and 60E N using all 12 months of 2010 (b). Over land, kernel SW flux biases are AODE F F   . Over ocean, kernel SW flux 
biases are AODE F . Color bar shows the relative number density.

Model

Land (60E S–60E N) Ocean (50E S–40E N)

Jan Apr July Oct Year Jan Apr July Oct Year

MMM 0.82 0.75 0.73 0.72 0.76 0.65 0.66 0.53 0.48 0.60

CAM5 0.88 0.81 0.73 0.70 0.81 0.78 0.77 0.79 0.70 0.78

ECHAM 0.84 0.86 0.69 0.71 0.81 0.78 0.78 0.72 0.68 0.78

GFDLm 0.83 0.83 0.72 0.71 0.79 0.62 0.71 0.53 0.54 0.61

GFDLf 0.89 0.86 0.73 0.70 0.84 0.58 0.76 0.53 0.69 0.68

GISS OMA 0.81 0.78 0.75 0.75 0.78 0.74 0.69 0.62 0.68 0.68

GISS 
MATRIX

0.80 0.78 0.76 0.75 0.78 0.62 0.52 0.44 0.45 0.52

INCA 0.85 0.87 0.84 0.85 0.85 0.70 0.72 0.65 0.59 0.67

SPRINTARS 0.93 0.94 0.95 0.94 0.94 0.55 0.66 0.56 0.54 0.59

Oslo 0.86 0.88 0.85 0.84 0.85 0.74 0.69 0.54 0.51 0.64

Table 3 
Correlation Coefficients Between E F  and AODE F  + E F  Over Land, and Between E F  and AODE F  Over Ocean for January, April, July, October and the Entire Year of 
2010 for Multi-Model Mean (MMM) Result and the Nine AeroCom Models
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better than GISS OMA when compared to MODIS and MISR AODs, especially over land (Figure 3). Here 
only results from GISS MATRIX model are shown.

Over ocean, the spatial distribution of E F  corresponds well with AODE F  for all models. For April, ECHAM-
HAM model has the highest correlation coefficient of 0.78 and GISS MATRIX model has the lowest cor-
relation coefficient of 0.52 (Table 3). A common feature for all models is that they underestimate the dust 
outflow off the west coast of Africa (Figure 9), thus also underestimate the TOA SW flux. Another common 
feature is the underestimation of aerosols over tropical ocean, which is consistent with the finding of Kinne 
et al. (2006) using early AeroCom experiment outputs. All models except CAM5 and SPRINTARS overes-
timate AOD and SW flux over the Southern Ocean, with INCA model has the largest overestimation. It is 
worth pointing out that several models (i.e., ECHAM-HAM, GISS MATRIX, and SPRINTARS) significantly 
overestimate AOD and flux over New Caledonia and surroundings. Over land, the spatial distribution of 

E F  and AODE F F    are highly correlated, despite that there are large diversities among models in terms of 
AOD and land surface albedo (Figure 9). The highest correlation coefficient is 0.94 for SPRINTARS model 
and the lowest is 0.78 for GISS models for April. The high correlations between E F  and kernel-based flux bi-
ases indicate that AOD and land surface albedo biases can explain most of the SW flux biases. This finding is 
significant as the MODIS AOD and surface albedo, and the CERES clear-sky flux are derived independently 
from each other (i.e., they rely upon different measurements and algorithms). Consistencies in their biases 
indicate that the AOD biases shown in this study are robust and constraining the modeled AODs by satellite 
observations and correcting the land surface albedo used in the models will improve the SW flux agreement 
between models and CERES EBAF.

The consistency in spatial distributions between AOD/surface albedo biases and SW flux biases demon-
strates that independently derived satellite products are valuable in diagnosing model deficiencies when 
used jointly. Consistency in regional features of these variables can be helpful in identifying the particular 
processes and/or parameterizations that are responsible for these biases. For example, when comparing 
AODs off the west coast of Africa from MODIS with AODs from the models, it is unclear if the MODIS 
retrieval overestimates the dust outflow from Africa or if the models underestimate the dust outflow. In-
cluding comparisons of clear-sky TOA SW fluxes between CERES and models confirms that the models 

Figure 7.  Top-of-atmosphere (TOA) clear-sky reflected shortwave (SW) flux biases of multi-model mean (MMM) (a), and TOA clear-sky reflected SW flux 
biases due to aerosol optical depth (AOD) biases (shown in c) and surface albedo biases (shown in d) calculated from radiative kernels (b), aerosol optical depth 
(AOD) biases of MMM relative to Moderate Resolution Imaging Spectroradiometer (MODIS) (c), and land surface albedo biases of MMM relative to MODIS (d) 
for April 2010.
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Figure 8.  Top-of-atmosphere (TOA) clear-sky reflected shortwave (SW) flux biases of AeroCom models relative 
to Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) for April 2010 (left 
panels). Right panels use radiative kernel calculations to determine the flux biases associated with aerosol optical depth 
(AOD) and surface albedo biases.
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Figure 9.  Aerosol optical depth (AOD) biases (left panels) and land surface albedo biases (right panels) of AeroCom 
models relative to Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals for April 2010.
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indeed underestimate the dust outflow there which result in low biases of SW flux. One may argue that 
overestimating dust aerosol absorption can also contribute to the flux biases. However, to explain the mag-
nitude of flux bias shown in Figure 8, biases of dust aerosol SSA need to be on the order of 0.25 based on 
the SSA radiative kernels from Thorsen et al. (2020). We thus conclude that the flux biases over the west 
coast of Africa are mostly due to AOD biases. Additionally, accounting for the impact of AOD and surface 
albedo biases on SW flux using radiative kernels of these variables significantly improves the regional flux 
agreement between models and CERES EBAF. The agreements of monthly global and tropical means over 
ocean and land are also improved for all models except for the GISS models.

As mentioned before, differences in aerosol composition, radiative transfer calculation uncertainties of the 
models (Randles et al., 2013), and uncertainties in the radiative kernels and in satellite retrievals can all 
contribute to E F . The radiative kernels that we use in this study are based on MERRA-2 reanalysis, whose 
base-state aerosols are different from the AeroCom models. Over ocean, aerosols in MERRA-2 are generally 
more absorbing than the AeroCom models (Figure 10). Thus the AOD kernels over ocean are less sensitive 
to changes in AOD than if an AeroCom model (less absorbing) is used as the base state. Over land, sin-
gle-scattering albedo (SSA) from many AeroCom models agree reasonably well with that from MERRA-2 
(global mean SSA difference is about 0.02–0.03), except that GISS MATRIX model has much lower SSA 
than MERRA-2 (global mean SSA difference exceeds 0.06) whereas SPRINTARS model has much higher 
SSA than MERRA-2 (global mean SSA difference is about 0.04). The differences in aerosol composition 
affects the magnitude of kernel derived flux biases from AOD and surface albedo biases and are part of E F .  
Although accounting for the biases in AOD and surface albedo between AeroCom models and satellite re-
trievals does not entirely eliminate the TOA SW flux bias, it certainly reduces the global mean biases (except 
for GISS models over land potentially due to compensating errors) and mitigates large regional biases for 
all models. Currently no aerosol composition observations on the global scales are available for constrain-
ing the model simulations, but correcting the aerosol loading and land surface albedo in the models then 
adjusting the aerosol composition, size distribution, effective refractive indices, and aerosol hygroscopic 

Figure 10.  Single-scattering albedo for (a) MERRA-2, (b) CAM5, (c) ECHAM, (d) GFDLf, (e) GISS MATRIX, (f) INCA, (g) SPRINTARS, (h) Oslo, and (i) multi-
model mean (MMM) for April. MERRA-2 result is for 2007, and all others are for 2010.
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growth to minimize the residual fluxes can further improve the TOA SW flux agreement between models 
and observation. Radiative kernels of each model can be developed to achieve maximum consistency to 
guide the model development.

6.  Regional Trends
Quantifying how aerosols and aerosol radiative effect changed over the past and providing future projec-
tions are also main AeroCom objectives beside simulating the global aerosol distributions. In this section, 
trends derived from the model simulations are compared against those derived from the observations. In 
some regions, land surface albedo has changed significantly in the last decade. To separate the effects of 
land surface albedo change from aerosol change on TOA clear-sky fluxes, we exam the trends of DARE 
rather than SW flux, as changes in land surface albedo has a much larger impact on SW flux than on aerosol 
radiative effect.

Historical simulations from ECHAM-HAM, GFDL (AMIP run), and Oslo models are used to calculate the 
regional trends in aerosol distributions. Here we compare the regional trends in AODs derived from these 
models with those from Aqua MODIS retrievals using the time period (July 2002 to December 2017) com-
mon to both. All three models use emissions from CEDS until 2014. However, each model handles the emis-
sions between 2015 and 2017 differently. ECHAM-HAM used the CMIP6 Shared Socioeconomic Pathways 
(SSP) 3–7.0 emission scenario (Gidden et al., 2019). Oslo used the SSP2-4.5 middle of the road emission 
scenario (Fricko et al., 2017). GFDL used CEDS anthropogenic and biomass burning emissions of 2014 for 
2015–2017, and the dust and sea-salt emissions are calculated using the actual wind speed produced by the 
model. Figure 11 shows the AOD trend per decade calculated from Aqua MODIS and from model simu-
lations, and areas with stipplings indicate the trend is significant at the 95% confidence interval. All three 
models reproduce the decreasing aerosol trends over Europe, eastern United States and the Atlantic Ocean, 
and the increasing trends over India, Indian Ocean, Arabian Peninsula, and Central Africa. The most no-
table difference among the models is over eastern China and the adjacent oceanic regions where MODIS 
indicates a decreasing trend. The vastly different trends among the models are due to different emission 

Figure 11.  Aerosol optical depth (AOD) trends (per decade) calculated using satellite retrievals from Aqua Moderate Resolution Imaging Spectroradiometer 
(MODIS) (a) and using ECHAM-HAM (b), GFDL (c), and Oslo (d) model simulations. Data from July 2002 to December 2017 are used here. All models use 
emissions from Community Emission Data System (CEDS) until 2014, but use different emissions between 2015 and 2017.
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data used between 2015 and 2017 for the three models, and the fact that some pathway scenarios significant-
ly underestimate the recent decline in anthropogenic aerosol emissions over China (Z. Wang et al., 2021).

The DARE is the difference between the TOA SW flux for a pristine atmosphere with no aerosols and the 
actual atmosphere with aerosols (Loeb et al., 2021):

(0, , ) ( , , )DARE F X F AOD X  � (3)
where E  is the surface albedo and E X represents other atmospheric variables that influence TOA SW flux. The 
deseasonalized anomaly in DARE is:

(0, , ) ( , , )DARE F X F AOD X     � (4)

Deseasonalized DARE anomaly and trend can be readily calculated from model outputs. However, it is 
more challenging to derive DARE from observations as pristine conditions cannot be observed directly. 
Assuming the contribution of other atmospheric variables to (0, , )E F X   is negligible, then E DARE  can be 
expressed as follows:

( ) ( , , )DARE F F AOD X     � (5)
here, ( )E F   is the TOA flux anomaly due to surface albedo change, and can be derived from surface albedo 
anomaly and radiative kernel (Paulot et al., 2018). Over land, surface albedo is based on MCD43C1 described 
in Section 3.3. Over ocean, surface albedo is specified from a look-up table based on the Coupled Ocean 
Atmosphere Radiation Transfer model (Jin et al., 2004; Rutan et al., 2009). We can derive ( , , )E F AOD X   
directly from EBAF data.

Figure 12 shows DARE trend ( 2WmE   per decade) calculated from CERES EBAF and the surface albedo data 
sets, and from model simulations. In general, the observation-based DARE trends and AOD trends show 
good agreement over many regions, which adds confidence in both products. Both observation-based and 
model simulations show increasing trends over eastern United States and the Atlantic Ocean (DARE be-
comes less negative), and decreasing trends over central Africa, India, and Indian Ocean (DARE becomes 
more negative). These DARE trends are consistent with the AOD trends over these regions. The increasing 
trend off the coast of eastern China in EBAF data is largely absent in the models, as is in the AOD trend. 

Figure 12.  Top-of-atmosphere (TOA) shortwave (SW) direct aerosol radiative effect (DARE) trends ( 2WmE   per decade) calculated using Clouds and the Earth's 
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) (a) and using ECHAM-HAM (b), GFDL (c), and Oslo (d) model simulations. Data from 
July 2002 to December 2017 are used here.
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ECHAM-HAM model shows a strong increasing trend over eastern China, whereas trends from EBAF, 
GFDL, and Oslo are very muted. The observation-based DARE trends are more pronounced over water 
than land, while the opposite is true for AOD trends. Loeb et al. (2021) concluded that this is due to a strong 
water-land contrast in DARE efficiency over eastern China that is likely enhanced by strong absorption by 
aerosols.

Figure 13 further exams the deseasonalized anomalies of SW DARE over three land regions listed in Ta-
ble 4. Over eastern China, DARE from EBAF shows a small increasing trend (Table 4), whereas model simu-
lations show very different trends. The strong increasing trend from ECHAM-HAM is partly due to the large 
emission reduction introduced by SSP3-7.0 starting in 2015. Over India, both EBAF and model simulations 
show decreasing trends, with EBAF shows the sharpest decline. This could be partly due to the decreasing 
trend in surface albedo over India that results in larger radiative efficiency. Large DARE variabilities from 
ECHAM-HAM over China and India are due to large dust emission variabilities used by the model. Over 
eastern USA, anomalies and trends from EBAF and model simulations show excellent agreement.

Figure 13.  Deseasonalized anomalies ( 2WmE  ) of top-of-atmosphere (TOA) shortwave (SW) direct aerosol radiative effect (DARE) over eastern China (a), India 
(b), and eastern USA (c) calculated using Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) (black lines), ECHAM-
HAM (orange line), GFDL (blue lines), and Oslo (purple) model simulations. Data from July 2002 to December 2017 are used here.
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7.  Conclusions
AeroCom models have played an essential role in advancing our understanding of DARF, though large di-
versity still exists among the models. To improve the model performance and to understand the root causes 
of the large diversity among them, the models have been evaluated against in-site and satellite observations. 
To date, evaluations have been mainly focusing on AOD. In this study, we evaluate TOA clear-sky reflected 
SW fluxes from the AeroCom models against the SW fluxes from CERES EBAF. Additionally, AODs and 
land surface albedo from AeroCom models are also evaluated against satellite retrievals in order to explain 
the SW flux biases.

To quantify how much the SW flux biases can be explained by the biases in AOD and land surface albedo, 
we use the radiative kernels of AOD and land surface albedo developed from MERRA-2 reanalysis to attrib-
ute their contributions to SW flux biases. Over ocean, the 60°S–60°N mean TOA SW flux bias in MMM is 
reduced by 25% after accounting for the contribution from AOD bias. Over land, the 60°S–60°N mean TOA 
SW flux bias in MMM is reduced by 70% after accounting for the contribution from biases in AOD and land 
surface albedo. Furthermore, the spatial patterns of the flux bias derived from the radiative kernels are very 
similar to those between models and CERES EBAF, with the correlation coefficient of 0.6 over ocean and 
0.76 over land for MMM using data of 2010. The correlation coefficients for all models considered in this 
study are also high, ranging from 0.52 to 0.78 over ocean and from 0.78 to 0.95 over land. The high corre-
lation indicates that most of the SW flux biases can be explained by the biases in AOD and surface albedo 
between models and observations. Given that the CERES EBAF TOA SW flux is independently derived 
from MODIS AOD and land surface albedo, consistencies in their bias patterns when compared with model 
simulations suggest that these features are robust. In addition, the regional patterns of flux bias are unique 
to each model, which point to the deficiency in each model in simulating the specific aerosols in different 
source regions.

The AOD and DARE trends from ECHAM-HAM, GFDL, and Oslo model are compared with the observa-
tion-based counterparts. All three models reproduce the decreasing trends in MODIS AOD over Europe, 
eastern United States and the Atlantic Ocean, and central South America, and the increasing trends over 
India, the Indian Ocean, Arabian Peninsula, and Central Africa. The models fail to reproduce the decreas-
ing trend in AOD over eastern China and the adjacent oceanic regions due to limitations in the emission 
data set.

Using independently derived satellite data sets (TOA reflected SW flux, AOD, and surface albedo) to assess 
the AeroCom models provide an opportunity to evaluate related variables in a synergistic manner, thus 
provide an unambiguous assessment of the model performance and point to ways that can improve the 
aerosol simulations. Regional bias patterns in these variables, when they corroborate each other, offer a 
more convincing assessment of the model performance and possibly the cause of the differences. Radiative 
kernels provide a convenient way to link the AOD and surface albedo biases to TOA SW flux biases, which 
can be used as a diagnostic tool for model development. All models should correct their land surface albedo 
by using satellite-derived product as inputs and constrain AODs using satellite retrievals and the AeroCom 
community should make this a requirement for all models participating in the AeroCom experiments. Im-
plementing these changes will improve the global and regional SW flux agreement between models and 
satellite observations, and reduce the diversity among the models.

China India USA

(25°–40E N, 100°–120E ) (7°–22E N, 70°–90E ) (30°–42E N, 265°–283E )

EBAF 0.4 E  0.3 −1.9 E  0.3 1.2 E  0.3

ECHAM 1.8 E  0.8 −0.7 E  0.3 1.6 E  0.3

GFDL 0.0 E  0.3 −0.8 E  0.2 1.3 E  0.2

Oslo 0.2 E  0.2 −1.1 E  0.3 1.0 E  0.2

Note. Only land areas in the indicated latitude and longitude ranges are included in the regional trend calculation.

Table 4 
Aerosol Direct Radiative Effect Trends ( 2WmE   per Decade) Over China, India, and USA
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Appendix A
A brief description of each model used in this study is provided below.

A1.  CAM5-ATRAS

The Community Atmosphere Model version 5 (CAM5) with the Aerosol Two-dimensional bin module for 
foRmation and Aging Simulation (ATRAS) uses a two-dimensional sectional aerosol representation with 
12 particle size bins (from 1 to 10,000 nm in dry diameter) and eight black carbon mixing state bins (Mat-
sui,  2017). The CAM5-ATRAS model considers the following atmospheric aerosol processes: emissions, 
new particle formation, condensation of sulfate, nitrate, and organic aerosols, coagulation, activation, 
aqueous-phase formation, dry and wet deposition, and aerosol-radiation-cloud interactions. Aerosol optical 
properties are calculated based on the Mie theory code (Bohren & Huffman, 1998), and radiative transfer for 
shortwave (SW) and longwave (LW) is calculated by the Rapid Radiative Transfer Method for GCMs (Iacono 
et al., 2008). CAM5-ATRAS aerosol simulations have been evaluated by surface, aircraft, and satellite obser-
vations in our previous studies (e.g., Matsui & Mahowald, 2017; Matsui & Moteki, 2020; Matsui et al., 2018).

A2.  ECHAM6.3

ECHAM6.3-HAM2.3 is the combination of the global climate model ECHAM6.3 (Mauritsen et al., 2019) 
and the Hamburg Aerosol Module (HAM2.3; Tegen et al., 2019). It uses the PSRad (Pincus & Stevens, 2013) 
two-stream radiative transfer scheme with 16 SW and 14 LW bands. The Monte Carlo independent column 
approximation is used for cloud overlap. Aerosol radiative properties are pre-computed using Mie theory 
and read from a look-up table based on Mie size-parameter and volume-weighted real and imaginary refrac-
tive index for seven aerosol modes containing up to five aerosol species (sulfate, black carbon, particulate 
organic matter, sea salt and dust) and aerosol water. Aerosol water uptake is based on kappa-Koehler theory 
(O'Donnell et al., 2011). In subtropical oceans where shallow convective clouds are prevalent, AOD is over-
estimated likely because precipitation from shallow convective clouds is only allowed if the clouds reach a 
certain thickness (Muench & Lohmann, 2020). Furthermore, black carbon and organic carbon concentra-
tions are underestimated to some extent, which may be due to underestimated biomass burning emissions 
and cause to low AOD in biomass burning regions (Tegen et al., 2019).

A3.  GFDL

The Geophysical Fluid Dynamics Laboratory Atmospheric Model version 4 (AM4) has cubed-sphere topol-
ogy with 96 E  96 grid boxes per cube face (C96; approximately 100 km grid size) and 33 levels in the vertical, 
contains an aerosol bulk model that generates mass concentration of aerosol fields (sulfate, carbonaceous 
aerosols, sea salt and dust) from emissions and a “light” chemistry mechanism designed to support the aer-
osol model but with prescribed ozone and radicals (Zhao et al., 2018). Simulations up to the year 2014 are 
driven by time-varying boundary conditions, and natural and anthropogenic forcings developed in support 
of CMIP6 (Eyring et al., 2016), except for ship emission of 2SOE  (black carbon ship emission is included). 
For the following simulated years, the anthropogenic emissions for 2014 are repeated. The dust emission 
is driven by the simulated winds from constant sources with their erodibility expressed as a function of 
surrounding topography (Ginoux et al., 2001). The sea salt emissions are based on Martensson et al. (2003) 
and Monahan et al. (1986) for fine and coarse mode particles, respectively. Aerosols are externally mixed 
except for black carbon, which is internally mixed with sulfate. The optical properties of the mixture are 
calculated by volume weighting of their refractive indices using a Mie code. The GFDL-AM4-met2010 (GF-
DLm) and GFDL-AM4-fSST (GFDLf) models are run with observed sea surface temperature and sea-ice 
distribution. In addition for GFDLm, the wind components are nudged, with a 6-h relaxation time, toward 
the NCEP-NCAR reanalysis (Kalnay et al., 1996). The diagnostics are projected from the C96 cubed-sphere 
to equally spaced 1E  latitude and 1.25E  longitude grid using first order conservative method. In GFDL model, 
the aerosol effect is estimated by calling the radiative transfer scheme twice, with and without aerosols in 
the absence of clouds. The radiative time step is 1 h for SW and 3 h for LW. The SW code is an update of 
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the 18-band formulation of Freidenreich and Ramaswamy (2005). These updates are described in detail by 
Zhao et al. (2018). They are related to 2HE O, 2COE , and 2OE  formulations, and SW absorption by 4CHE  and 2NE
O. In addition, the effects of the SW water self-continuum and the 2OE  and 2NE  continua have been updated.

A4.  GISS

The GISS model hosts two aerosol schemes, the GISS One-Moment Aerosol (OMA) and the Multiconfigura-
tion Aerosol TRacker of mIXing state (MATRIX) models use the same aerosol emissions. Sea salt, dimethyl 
sulfide, isoprene, and dust emission fluxes are calculated interactively. Anthropogenic dust sources are not 
represented in ModelE2.1. Dust emissions vary spatially and temporally only with the evolution of climate 
variables like wind speed and soil moisture (Miller et al., 2006). OMA is a mass-based scheme including sea 
salt, dust, sulfate, nitrate, ammonium, carbonaceous aerosols (BC and OC) aerosols (Tsigaridis et al., 2013). 
Aerosols are externally mixed and assumed to have a prescribed constant size distribution. Aerosol hydra-
tion in OMA is calculated in the radiation code following Tang and Munkelwitz (1994). MATRIX (Bauer 
et al., 2008) is an aerosol microphysics scheme that tracks aerosol mixing state, based on the quadrature 
method of moments, in which the amount of water in aerosol is calculated with the aerosol thermody-
namics module EQSAM (Metzger et al., 2002), using the phase state of an ammonia-sulfate-nitrate-water 
inorganic aerosol (OA) in thermodynamic equilibrium for metastable aerosols, except for sea salt where 
the Lewis parameterization is used (Lewis & Schwartz, 2013). As such, hygroscopic swelling of aerosol is 
already considered and does not need to be recalculated during the radiative calculations.

A5.  INCA

INteraction with Chemistry and Aerosols (INCA) is a chemistry-aerosol model coupled to a land surface 
and a dynamical model. INCA simulates dust, sea salt, black carbon (BC), NO3, SO4, SO2, and organic 
aerosol (OA) with a combination of accumulation, coarse, and super-coarse modes, as well as soluble and 
insoluble components (Schulz et al., 2009). Because of the simplified chemistry scheme, DMS emissions are 
prescribed and not interactively calculated, and the secondary organic aerosols are not simulated therefore 
this specific run is underestimating the OA. In the current version BC soluble mode is internally mixed with 
sulfate (R. Wang et al., 2016), for which the refractive index is estimated using the Maxwell-Garnett method, 
improving the accuracy of the BC optical absorption properties.

The radiative transfer model for the calculations with aerosols relies on the RRTM model as implemented 
by the European Centre for Medium-Range Weather Forecasts, a model that we used for SW and LW cal-
culations. The number of spectral bands used for aerosols is 6 for SW and 16 for LW spectrum. The spectral 
dependence of optical properties of each aerosol species has been estimated with Mie theory of spherical 
particles with log-normal distribution.

A6.  MIROC-SPRINTARS

An aerosol climate model, Spectral Radiation Transport Model for Aerosol Species (SPRINTARS; Takemura 
et al., 2005, 2009), is incorporated into a coupled atmosphere-ocean general circulation model, MIROC6 
(Tatebe et al., 2019). The horizontal and vertical resolutions are T213 (~0.5625E   0.5625E  in longitude and 
latitude) and L56, respectively. SPRINTARS calculates the aerosol-radiation and aerosol-cloud interactions 
by coupling the radiation and cloud-precipitation schemes, respectively as well as aerosol transport process-
es. The radiative transfer scheme, mstrnX, adopt a two-stream discrete-ordinate method with a correlated 
k-distribution method (Sekiguchi & Nakajima, 2008). Scattering and absorption of solar and terrestrial ra-
diation by aerosols are calculated assuming the Mie theory with refractive indices of dry aerosols and water 
from d'Almeida et al. (1991). The volume-weighted refractive indices are assumed for internally mixed par-
ticles between black carbon and organic aerosols as well as aerosols and water.

A7.  Oslo

The OsloCTM3 is a global, offline chemical transport model (CTM) driven by 3-hourly meteorological data 
from the European Centre for Medium-Range Weather Forecast (ECMWF) Integrated Forecast System 
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(IFS) model (Lund et al., 2018; Søvde et al., 2012). The model is run in a 2.25 2.25E    horizontal resolution, 
with 60 vertical levels (the uppermost centered at 0.1 hPa). The treatment of transport and scavenging, as 
well as individual aerosol modules, is described in detail in Lund et al. (2018) and references therein. The 
aerosol optical properties in OsloCTM3 are described in Myhre et  al.  (2007) with some recent updates, 
where the BC mass absorption coefficient (MAC) is following the formula in Zanatta et al. (2016) and a 
weak absorption implemented for OA (Lund et al., 2018).

Appendix B
Figure B1 shows the regional AOD biases of the AeroCom models relative to MISR retrievals (left panels) 
and the regional SW flux biases due to AOD biases (relative to MISR retrievals) and land surface albedo bias-
es (relative to MODIS retrievals) calculated from their radiative kernels (right panels) for April 2010. Many 
of the regional AOD bias patterns shown here are very similar to the AOD biases shown in Figure 9. The SW 
flux biases calculated from the radiative kernels using MISR AODs also resemble those shown in Figure 8. 
However, the biases over the tropical oceans are much muted when MISR AOD is used. The correlation 
coefficients between E F  and AODE F F    range from 0.79 to 0.94 over land, which is very similar to those 
derived when MODIS AOD is used. The correlation coefficients between E F  and AODE F  range from 0.26 to 
0.63 over ocean, not as high as when MODIS AOD is used. The reduced correlation over ocean is partly due 
to retrieval differences between MODIS and MISR, but largely due to MISR sampling issue as evident in the 
stripping features of the AOD bias plots.
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Figure B1.  The monthly mean aerosol optical depth (AOD) biases of AeroCom models relative to Multi-Angle Imaging 
Spectroradiometer (MISR) retrieval (left panels), top-of-atmosphere (TOA) shortwave (SW) flux biases due to AOD 
biases (models—MISR) and land surface albedo biases (models—Moderate Resolution Imaging Spectroradiometer 
[MODIS]) calculated from their respective radiative kernels (right panels) for April 2010.
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Data Availability Statement
All AeroCom simulations are available at the Norwegian Meteorological Institute. The CERES EBAF Ed4.1 
data were obtained from https://ceres.larc.nasa.gov/data/. MODIS 495 MYD08_M3_0_6_1 550 nm AOD 
Dark Target+Deep Blue Combined data were obtained from the Giovanni online data system, developed 
and maintained by the NASA GES DISC. The V6 MODIS Bidirectional Reflectance Distribution Function 
(BRDF)/albedo products (MCD43C1) were obtained from the Land Processes Distributed Active Archive 
Center (LP DACC) through https://lpdaac.usgs.gov/products/mcd43c1v006/.
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