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Abstract

Radar reflectivity contains information about hydrometeors and plays an important
role in the initialization of convective-scale numerical weather prediction (NWP). In
this study, a new background-dependent hydrometeor retrieval method is proposed and
retrieved hydrometeors are assimilated into the Weather Research and Forecasting
model (WRF), with the aim of improving short-term severe weather forecasts.
Compared to traditional approaches that are mostly empirical and static, the retrieval
parameters for hydrometeor identification and reflectivity partitioning in the new
scheme are extracted in real-time based on the background hydrometeor fields and
observed radar reflectivity. It was found that the contributions of hydrometeors to
reflectivity change a lot in different reflectivity ranges and heights, indicating that
adaptive parameters are necessary for reflectivity partitioning and hydrometeor
retrieval. The accuracy of the background-dependent hydrometeor retrieval method and
its impact on the subsequent assimilation and forecast was examined through observing
system simulation experiments (OSSEs). Results show that by incorporating the
background information, the retrieval accuracy was greatly improved, especially in
mixed-hydrometeor regions. The assimilation of retrieved hydrometeors helped
improve both the hydrometeor analyses and forecasts. With an hourly update cycling
configuration, more accurate hydrometeor information was properly transferred to
other model variables, such as temperature and humidity fields through the model

integration, leading to an improvement of the short-term (0-3 h) precipitation forecasts.
Keywords:

Data assimilation, Radar reflectivity, Hydrometeor retrieval, Convective-scale

numerical weather prediction
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1. Introduction

Convective-scale data assimilation (DA) and forecasts are a primary focus and
challenge of research and operations due to the important role of severe weather
analyses and forecasts for saving life and property. Compared to conventional
observations, which are insufficient for resolving convective-scale weather, radar data
are particularly well-suited as they can capture the occurrence, development and
dissipation of convection structures with abundant three-dimensional information at a
high temporal and spatial resolution. It has thus been recognized that the optimal use of
radar observations critically determines the quality of short-term convective weather

prediction (Lilly et al., 1990; Sun et al., 2014).

Radar radial velocity seems to be natural fit for variational (Sun and Crook, 1997;
Gao et al., 2004) or Ensemble Kalman Filter (EnKF, Tong and Xue, 2005) assimilation
systems as it is relatively easily transformed into model state variables, while
reflectivity (Z) assimilation at the convective scale remains a challenge. To assimilate
radar reflectivity, the model state variables should be transformed to the observed
reflectivity properly so that a direct comparison between observations and background
fields can be drawn. One paradigm is using observation operators which convert the
model variables to the observed ones. Many efforts have been devoted to the
construction of observational operators for reflectivity (Xiao et al., 2007; Jung et al.,
2008; Gao and Stensrud, 2012; Wang et al., 2019) and their application in both EnKF
and variational methods has shown promising results. In EnKF methods, highly
nonlinear operators can be implemented (Putnam et al., 2019). However, in variational
assimilation systems, the incremental approach is usually adopted, which requires
linearized observation forward operators. Sometimes the linearization of nonlinear
observational operators under the variational DA framework will result in significant
errors (Wang et al., 2013). The other paradigm is to retrieve the model variables directly
from the radar reflectivity and then assimilate these variables. A variety of studies
focusing on the assimilation of retrieved humidity found improved analyses and

forecasts in convective regions (Lopez and Bauer, 2007; Caumont et al., 2010; Wang
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et al., 2013, Lai et al., 2019). Radar reflectivity also contains information about
hydrometeors, such as rainwater, snow and graupel, which play a vital role in the
microphysical processes for NWP (Bauer et al., 2011; Kerr et al., 2015). In order to
make better use of the hydrometeor information contained in the radar reflectivity,
many studies have utilized the hydrometeors retrieved from reflectivity for analysis or
providing initial conditions for convective-scale NWP models (Sun and Crook, 1998;
Wu et al., 2000; Hu et al., 2006; Yokota et al., 2016; Carlin et al., 2016; Wang et al.,
2018).

Some earlier studies only considered warm rain processes and retrieved the
rainwater mixing ratio from reflectivity observations (Sun and Crook, 1998; Wang et
al., 2013). However, the inclusion of both liquid and ice-phased particles in the analysis
is important for convective systems, especially deep moist convective storms (Gao and
Stensrud, 2012). Generally, the dominant hydrometeor type can be determined based
on the reflectivity and the background temperature thresholds. For example, an
empirical reflectivity threshold of 32 dBZ is usually used to classify the graupel-
dominant (>=32 dBZ) or snow-dominant (<32 dBZ) regions above the freezing level
(Lerach et al., 2010; Pan et al., 2016). Besides reflectivity and temperature thresholds,
additional observations have been used to improve the identification of hydrometeors
types. Wang et al. (2018) discerned the graupel-dominant regions by incorporating
simulated flash extent densities (FED) data from the Feng-Yun-4 geostationary satellite.
Dual-polarization radar observations have also been used to improve the accuracy of
hydrometeor classification (Zhang et al., 2019; Matsui et al., 2019). Once the dominant
species has been defined, the total reflectivity can then be partitioned proportionally for
multiple hydrometeor variables. The mixing ratio (¢) of each hydrometeor is then
obtained according to a Z-g formula (Carlin et al., 2016). For example, in the
hydrometeor retrieval method adopted in the indirect assimilation of reflectivity in the
current WRFDA, the proportion of snow and graupel is a fixed value and the
contribution of rainwater increases linearly from 0 to 1 between -5 °C to 5 °C;

trapezoidal weighting functions corresponding to the ambient temperature profile were

4
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also utilized for graupel and snow aggregates in some studies (Zrni¢ et al., 2001; Wang

etal., 2018).

The parameter settings of Z and T thresholds to classify hydrometer species in the
above hydrometeor retrieval method are empirical, and when multiple species coexist,
the partitioning process is also based on empirical rules. In actuality, the distribution
characteristics of hydrometers varies in different regions and weather situations, so the
fixed thresholds and proportion are likely not applicable to all cases. These empirical
rules result in great uncertainty of the retrieved hydrometeors, which may limit their
value for storm-scale NWP (Gao et al., 2009). Therefore, how to determine the
hydrometeor types and the proportion of each species during the reflectivity retrieval

under different weather conditions remains a problem worth exploring.

To overcome these problems, we propose a new method that aims to improve the
hydrometeor retrieval from radar reflectivity by making the process adaptive. In the
new scheme, the hydrometeors are retrieved according to their real-time contributions
to reflectivity at different reflectivity intervals and heights from the model background
fields so that the retrieval parameters (i.e., composition and proportions of the
hydrometers) are adaptively adjusted with the evolution of weather conditions. Then,
the retrieved hydrometeors are assimilated into the WRF model with the goal of
improving the convective-scale analyses and forecasts. For the data assimilation
method, the 3DVar method developed for the WRF model is chosen instead of more
advanced methods like 4DVar, EnKF, or hybrid methods because fast and efficient
analysis is essential for convective-scale weather where analyses and forecasts need to
be delivered quickly to the public. Finally, the accuracy of the hydrometeor retrieval
method and its impact on the subsequent assimilation and forecast is examined through

observing system simulation experiments (OSSEs).

This paper is organized as follows. First, the 3DVar method, reflectivity formula,
and the newly proposed “background-dependent” hydrometeor retrieval method are
presented in section 2. Then, model configurations and experimental design are given

in section 3. The accuracy of the background-dependent hydrometeor retrieval method
5
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and its performance on analysis and subsequent short-term forecasting are discussed in

section 4 and 5. Finally, conclusions and discussions are given in section 6.
2. Methods
2.1 3DVar assimilation of radar observations

In this study, the three-dimensional variational (3DVar, Barker et al., 2012) method
is employed to assimilate radial velocities and hydrometeors retrieved from radar
reflectivity. The optimal analysis of 3DVar is obtained by iteratively minimizing the

following cost function:
J(X)=J, +J, = %(x—xb)T B (x—xb)+%(H(x)—y”)T R (H®-y’), (1)

where [, and ], arethe background and observational terms, respectively. The vector
x is the analysis model state variables, x° is the background state, y° is the observation
field, H is the observation operator, and B and R are the background error covariance

and the observation error covariance matrices, respectively.

Observation y° includes the radial velocity and retrieved hydrometeors. For the
indirect assimilation, reflectivity is converted to hydrometeor mixing ratios of rain,
snow and graupel. These hydrometeors are then assimilated through the 3DVar system,
and the analysis field is obtained through the minimization of the cost function, with
the accuracy of the data assimilation dependent on the joint action of the background

and observation error covariances.
2.2 Hydrometeor retrieval method for radar reflectivity

The equivalent reflectivity factor (Z.) is obtained by summing the backscattering

from particles in the atmosphere (Tong and Xue, 2005):
2,=2(q,)+Z(q,) +Z(q,), )

where Z(g,), Z(qs) and Z(gy) are the reflectivity factors (here in linear units of mm® m-

3) of rain, snow and graupel, respectively. Calculation of the equivalent reflectivity
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factors contributed by each species can be simplified to a Z-g relation, which is

expressed most generally as

1.75

Z(q,)=a.(pq,) ", 3)

where P is the air density, 9x is the mixing ratio of hydrometeor species * (e.g.,

[IP=l]

for snow or “g” for graupel), @, is the coefficient determined by the

€69
S

“r” for rain,

dielectric factor, density and intercept parameter of hydrometeor ¥, and Rayleigh

scattering is assumed to occur. As in previous studies, q is frequently treated as a

constant, where a, (for rain) is 3.63x10° (Smith et al., 1975), a, (for graupel) is

4.33x10' (Gilmore et al., 2004). However, the coefficient is considered to be

temperature dependent for snow: when the temperature is greater than 0°C, the

coefficient for wet snow a, is 4.26x10'!, while for dry snow, which occurs at

temperature less than 0°C, a_ is 9.80x10® (Gunn and Marshall, 1958).

In the hydrometeor retrieval algorithm, 9x need to be calculated from a single
measurement of Z.. One of the important issues is to determine Cy, which is the ratio of
each species’ contribution to the total reflectivity. The component of reflectivity for

each hydrometeor can then be partitioned by the following formula:
Z(g)=2,-C.. 4)

Finally, substituting Eq. (4) into Eq. (3), the mixing ratio of each species can be

obtained with

q. =exp(ln(ze'cx]/l.75}p. (5)
a

X

As mentioned in the introduction, C, in previous studies is generally based on the
reflectivity (Z) and temperature (T); for convenience, this empirical Z and T based

method is called HyRt-ZT. The HyRt-ZT method in the current WRFDA is employed
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in this study as a reference. In this scheme, the proportion of the snow and graupel is a
fixed value that measured by the ratio of coefficients for snow and graupel, and the
contribution of rainwater increases linearly from 0 to 1 between -5 °C to 5 °C (Gao and

Stensrud, 2012).
2.3 Background dependent retrieval method

In fact, a fixed C, is not appropriate for all areas and weather conditions. The
composition of the hydrometeor field varies at different heights with different
reflectivity values under different weather conditions. Therefore, we sought to build a
hydrometeor retrieval method whose parameters update adaptively with the region and
weather conditions in proportion to the contribution of each species from the

background field.

First, for each hydrometeor type, we calculate the average reflectivity in the

background field at different altitudes (z;) and reflectivity intervals (ref;) through

_ - - 1.75
Zx Zi=refj - ax X (pz[.,ref/ ' qx Zia"efj) ) (6)

where =79 and 1'% are the average air density and hydrometeor mixing ratios

at grid points within the reflectivity interval (ref;) at height z;. In addition, the reflectivity
intervals in this study areset as follows: ref;: <

15dBZ;ref,:15~25dBZ; ref3: 25~35dBZ; ref,: 35~45dBZ; refs: > 45dBZ.

Then, Eq. (6) can be substituted into the following Eq. (7) to calculate the C; in the
background field:

C\'(zi,ref/») :ZXZl-,refj / Z"Z[,Vefj +ZSzi,ref/- +ZgZi,refj . (7)

where Z,, Z; and Z; are the contributions to equivalent reflectivity Z. by rainwater, snow,
and graupel, respectively. After obtaining C from Eq. (7), the hydrometeor mixing
ratios can be retrieved according to Eq. (5). Considering the possibility that the
background may completely miss theconvection, a minimum number of grid points at

which the reflectivity values are great than a threshold ref; at height z; is set to calculate

8
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C.. In this study, when the number is above 10, Cy is calculated using Eq. (7), otherwise

a default value calculated from a one-month forecast climatology is used.

In addition, this study imposes a limitation on the retrieval process: only when there
is strong convection at upper levels (i.e., reflectivity > 45dBZ, T<-5 °C) can graupel

appear below the melting layer. This method is called the “HyRt-BG” method hereafter.
3. Experimental design
3.1 Model configuration

The Advanced Research Weather Research and Forecasting model (ARW-WREF;
Skamarock et al., 2008) V3.9.1 and its assimilation system WRFDA V3.9.1 are adopted
in this study. The model is configured with two nested-grid domains at 9-km (D01) and
3-km horizontal grid spacings (D02) with 361x301 and 421x321 grid points,
respectively (Fig. 1). Each domain features 41 vertical eta levels with a model top set
at 50 hPa. The selected physical parameterization schemes mimic the operational
settings used at the Meteorological Bureau of Shenzhen Municipality, China (Huang et
al., 2018): the Thompson microphysical parameterization scheme (Thompson et al.,
2008), Grell-Freitas cumulus parameterization scheme (Grell and Freitas, 2014), the
Yonsei University PBL physics scheme (Hong et al., 2004), RRTMG longwave and
shortwave radiation schemes (Iacono et al., 2008), and the Unified Noah land surface

scheme (Tewari et al., 2004). The cumulus scheme is only activated on the coarser grid.

The National Meteorological Center (NMC) method (Parrish and Derber, 1992) is
adopted to estimate the background error covariance. The statistical samples are the
differences between 24 h and 12 h forecasts valid at the same time during a 1-month
period from 15 April to 15 May, 2016. The selected control variables in this study are
eastward and northward velocity components (U, V), surface pressure (Ps), temperature
(T) and pseudo relative humidity (RHs, water vapor mixing ratio divided by its saturated
counterpart in the background field). U and V are selected as the momentum control
variables to better assimilate radar radial velocity observations at convective scale (Sun

et al., 2016; Shen et al., 2019). The hydrometeor control variables used in this study for

9



240
241

242

243

244
245
246
247
248
249
250
251
252
253
254

255
256
257
258
259
260
261
262
263
264
265

266

reflectivity assimilation are rainwater, snow and graupel mixing ratios (Wang et al.,

2013).
3.2 Setup of OSSEs
3.2.1 Truth Run and simulated observations

The truth simulation (referred to as the Truth Run hereafter) is used for generating
simulated observations. In this study, a multi-cell storm in south China from 1200 UTC
to 2000 UTC on 7 May 2017 was selected as the case of interest. Fig. 2 illustrates the
schematic diagram of the OSSEs. First, the Truth Run is defined. The Truth Run is
initialized at 0600 UTC, and the initial and lateral boundary conditions are provided by
the 1°x1° NCEP final analysis (FNL) data. After a 6-hour spin-up process, conventional
observations from the Global Telecommunication System (GTS) are assimilated in DO1
and conventional data as well as radial velocity and reflectivity are assimilated in D02
beginning at 1200 UTC.An 8-hour forecast is then launched. The first hour forecast
(at 1300 UTC) was discarded because the model variables were spinning up during this

time period.

The forward operator for simulated radial velocity follows Xiao et al. (2005) and
the forward operator for simulated reflectivity is given by Egs. (2)-(3). The 3D wind
field from the Truth Run is sampled by 7 pseudo-radars at 9 elevation angles (0.5°, 1.5°,
2.4°,3.4°,4.3°,6.0°,9.9°, 14.6° and 19.5°) corresponding to the operational WSR-88D
scanning strategy VCP21 to obtain synthetic radial velocity data every hour from 1300
UTC to 2000 UTC. In contrast, the calculation of radar reflectivity is done on each
model grid; no geometric transformation between radar observation space and model
space is considered. This choice results in simulated observations that are as accurate
as possible for evaluating of the retrieval method, and avoids interpolation errors of
reflectivity introduced while converting between the model grid and the radar

observation points.

3.2.2 Experiment design

10
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First, the CTRL experiment was generated to provide the benchmark for the data
assimilation experiments. In CTRL, the initial fields of D02 at 0600 UTC were
interpolated from D01, and no radar data was assimilated. Then, three DA experiments,
Exp-ZT, Exp-BG, and Exp-BG-Err, were performed to demonstrate the effectiveness
of the background hydrometeor retrieval on short-term convective-scale weather
forecasts (Fig. 2). In each DA experiment, the simulated radial velocity and reflectivity
observations were assimilated hourly and a 3-hour forecast was then conducted in each
cycle. The background fields at 1300 UTC were same as that of CTRL, while later they
were provided by the 1-hour forecast from the previous cycle. In Exp-ZT, the
WRFDA'’s default hydrometeor retrieval scheme (Wang et al., 2013) was employed,
while the new proposed background-dependent hydrometeor retrieval scheme was
adopted in Exp-BG. The third DA experiment, Exp-BG-Err, was carried out with a
different microphysics scheme — the NSSL two-moment microphysics scheme
(Mansell, 2010) — used in the WRF model forecast. The purpose of this experiment was
to test the sensitivity of the background-dependent retrieval method to model errors.
The retrievals, analyses and forecasts are then verified against the Truth Run to assess
the accuracy of the retrieval and examine the impact of the retrieved hydrometeors on

the analyses and forecasts.

4. Hydrometeor Retrievals
4.1 Hydrometeor distribution in background field

In this section, the retrieved hydrometeor mixing ratios (i.e., qr, qg, qs) from the two

different retrieval methods were compared to those from the Truth Run.

First, the evolution of the convection in the Truth Run is briefly described (Fig. 3).
At 1300 UTC, a series of convective cells formed in the middle of the domain and two
organized convective systems were present in the northeast part of the domain. By 1500
UTC, the cells in the middle of the domain intensified and became well organized, and

the convection in the north weakened and moved out of the domain. By 1700 UTC, the
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systems had moved eastward and took on a linear structure. Finally, the systems
gradually moved out of the Guangdong (GD) province and began to weaken and
dissipate at 2000 UTC, while a strong convective system in the west was moving

eastward.

In Exp-BG, the distributions of hydrometeors were first calculated from the
background field. They were separated by model level and reflectivity interval in each
analysis time, with the result at 1500 UTC shown in Fig. 4. The overall characteristics
below 35 dBZ (Fig. 4a-c) are similar: the reflectivity below the 12th model level is
mainly contributed from rainwater and above the 15th level is from dry snow; the
contribution of wet snow near the melting layer increases gradually with increasing
reflectivity threshold. For reflectivity larger than 45 dBZ (Fig. 4e), graupel accounts for
a very large proportion, while dry snow accounts for less than 10% of the reflectivity.
In the melting layer, the proportion of wet snow is the largest when the reflectivity is
above 15 dBZ (Fig. 4b-e). Since it is from the same convective system, the distribution
of C, at other times is only slightly different (not shown). These results show that the
contribution of each species varies appreciably in different reflectivity ranges and levels,
indicating that a fixed threshold shouldn’t be used for partitioning different reflectivity

observations across hydrometeors even in the same weather regime.
4.2 Comparison of the retrieval results

The hydrometeor retrievals in the Exp-ZT, Exp-BG, and Exp-BG-Err at 1500 UTC
and 1700 UTC were compared (Fig. 5). In Exp-ZT (Fig. 5b, 1), the distributions of the
retrieved snow and graupel are not reasonable because of the fixed proportions of snow
and graupel adopted in HyRt-ZT scheme. In the area where a large quantity of snow
should exist, the contribution to reflectivity was overly allocated to graupel, resulting
in a great underestimation of snow in areas with high reflectivity values and an
overestimation of graupel in areas with low reflectivity values. Great deviations of
hydrometeors from Truth Run near the melting layer can also be seen in Exp-ZT,
indicating that the fixed empirical rules cannot correctly partition the snow and graupel

contributions in simulated reflectivity observations. This can induce large errors in the
12
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hydrometeor retrievals and their subsequent assimilation. In Exp-BG (Fig. 5c, g),
however, even though some deviations can be seen in  mixed-hydrometeor regions, the
overall estimation of the three species is much closer to the Truth Run (Fig.5a, e). The
improvement to the retrieval accuracy for the new scheme over the old one illustrates
the importance of correctly partitioning the reflectivity for hydrometeor
retrievals. However, the benefits of the new scheme may be overestimated in this
experiment since model errors are not considered. Results from Exp-BG-Err show that
the retrieval errors in are increased when adding model error, especially for graupel in
upper levels (Fig.5d) and beneath the melting layer (Fig.5h), but the retrievals are still
much closer to the Truth Run than that Exp-ZT. This demonstrates that the method can

tolerate model errors to some degree.

To quantitatively evaluate the performance of the two methods, the bias and root
mean square error (RMSE) were computed for the retrieved g, qs and qg from the HyRt-
ZT, HyRt-BG, and HyRt-BG-Err respectively. Here the bias simply refers to the
difference between the retrievals and the Truth. The bias and RMSE were computed at
different mass mixing ratio thresholds (0.1, 0.3, 0.6, 1.0, 2.0, 5.0 g kg™!) for the entire
domain (D02) averaged over the whole duration of the simulation. For rainwater (Fig.
6a, d), the three experiments perform similarly, although HyRt-BG and HyRt-BG-Err
slightly underestimated the rainwater when larger than 2 g kg™! (about 10%). Snow is
seriously underestimated in Exp-ZT (Fig. 6b, e), and the negative bias increases with
the thresholds. The underestimation in Exp-ZT is more than 40% for greater than 2 g
kg ! and its RMSE is relatively high. This can be explained by the fixed proportion of
reflectivity attributed to graupel in areas with high reflectivity values, which also leads
to an overestimation of graupel in areas with the low reflectivity values. For graupel
(Fig. 6c, ), besides the overestimation in areas with low reflectivity values, there is a
similar underestimation in areas with large reflectivity values for HyRt-ZT (> 16%).
The HyRt-BG has much smaller errors for both snow and graupel, which benefits from
the successfully hydrometeor identification and reflectivity allocation. Considering

model errors in Exp-BG-Err, the results of BIAS and RMSE for rain and snow become
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slightly worse than in Exp-BG (Fig. 6a, b, d, e), and for graupel, the retrieval errors
increase a lot (Fig. 6c, f). So although the background hydrometeor retrieval method is

slightly sensitive to model errors, the results still show some advantages over HyRt-ZT.

5. Short-term forecasts with the data assimilation of hydrometeor retrievals
5.1 Analysis and forecast of hydrometeors

To test the effects of the different hydrometeor retrieval methods on the short-term
forecast of the MCS, the hydrometeor retrievals related to CTRL and three DA
experiments HyRt-ZT, HyRt-BG and HyRt-BG-Err were assimilated into the model in

one hour DA cycles, respectively, and three hour forecasts were launched every hour.
(1) Hydrometeor diagnostics

Fig. 7 shows the analysis fields of rain mixing ratio at about 2 km AGL and snow
and graupel mixing ratios at about 6 km AGL at the time of the last analysis (1700 UTC)
for the Truth Run and the three DA experiments. The differences for rain look very
small because the retrieval processes are almost same in the three DA experiments (Fig.
7a-d). For Exp-ZT (Fig. 7j), the proportion of graupel is overestimated when the
reflectivity values are; consequently, the snow is greatly underestimated (Fig. 7f). In
comparison, snow is only slightly underestimated (Fig. 7g) while graupel looks
reasonable (Fig. 7k) for Exp-BG. So benefit of proper partitioning of reflectivity
information among different hydrometeors is clearly demonstrated in Exp-BG. Only
small differences in the hydrometeor fields between Exp-BG (Fig. 7c, g, k) and Exp-
BG-Err (Fig d, h, 1) can be distinguished, indicating that the added model errors don’t
appreciably impact the hydrometeors analysis at these levels. The vertical profiles of
the analysis fields were also evaluated, with the conclusion quite similar to that of the

horizontal analysis (not shown).

(2) 0-1h hydrometeor forecast
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The hydrometeor fields in convection systems evolve rapidly and have low
predictability (Fabry and Sun, 2010), so we first examine the impact of hydrometeor

assimilation on the short-term forecast initiated at 1500 UTC.

At 15 min into the forecast, the ranges of rainwater, snow and graupel in both Exp-
ZT and Exp-BG are closer to the Truth compared to the CTRL, which means that the
data assimilation plays a positive role in the initial forecast (Fig. 8). But even if the
vertical composite reflectivity for Exp-ZT and Exp-BG look similar (not shown), the
internal structure of the hydrometeors are very different (Fig 8g, h, i, vs j, k, 1). The
simulation of rainwater, snow and graupel in the Exp-BG is much closer to the Truth
Run. After 30 min into the forecast, the regions of nonzero hydrometeor fields in Exp-
ZT become smaller than at 15 min. For the Exp-BG forecast, even though there is a
slight deviation in position, the prediction of the convective cells overall is much better.
At 60 min (Fig 8f, 1, 1), all three types of hydrometeors in Exp-ZT have dissipated more
compared to the Truth Run, while Exp-BG performs the best. Comparing Exp-BG-Err
with Exp-BG, snow above the melting level and rain below remain in good agreement,
while less graupel and much more supercooled water exist due to the model integration

using the NSSL two moment microphysics scheme.

Vertical cross sections of the temporal evolution of hydrometeors during the first 60
min are presented in Fig. 9. In the Truth Run, the content of all three types of
hydrometeors gradually decreases with forecast time (Fig. 9a-c) because the convective
system slowly moves out of the D02 domain. In general, the hydrometeor prediction in
Exp-BG is the closest to the Truth Run. For rainwater, the difference between Exp-ZT
and Exp-BG is not significant at the analysis time. However, a sharp increase in
rainwater appears in Exp-ZT as soon as the model integration starts (Fig. 9g), which
may be caused by the rapid melting and falling of graupel from upper levels (Fig. 91).
Snow is largely underestimated in Exp-ZT, and it is not until 30 min that the model
produces relatively weaker snow prediction. In Exp-BG, in contrast, the benefit of the
assimilation of retrieved snow is obvious in the first 30 min of the forecast (Fig. 9k).

For graupel, Exp-BG has a more reasonable estimation at the initial time and the
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forecast (Fig. 91), but Exp-ZT has an overestimation at the initial time and also
overforecasts for the first 30 min. By adding model errors in Exp-BG-Err, rainwater
and graupel weaken more quickly, while the evolution of snow is still very reasonable.
Even though the advantages of HyRt-BG are diminished, the evolution of each

hydrometeor in Exp-BG-Err is still closer to the truth run than that in Exp-ZT.

Despite the improvements in Exp-BG, the hydrometeors still dissipate rapidly and
decrease by nearly half at 60 min, indicating that hydrometeors have a short duration
without the updating or support of the related thermal and dynamic fields. The rate of
dissipation of the hydrometeors is relatively slower in Exp-BG (see slope in Fig 9j-1),
which may be due to the hydrometeor fields in Exp-BG being relatively more balanced

with other model variables because they are derived from the background field.
5.2 Accumulated field and quantitative evaluation in the cycle
(1) 0-3h reflectivity forecast

Fig. 10 shows the simulated composite reflectivity fields from Truth Run, CTRL,
Exp-ZT, Exp-BG, and Exp-BG-Err. These forecasts start at 1500 UTC in the middle of
the cycle. In the simulated truth composite reflectivity fields (Fig. 10a, b, ¢), the MCSs
are propagating southeastward slowly. Two major convective systems can be seen in
Fig. 5a: one is in the center of the domain (labeled system A) and the other is in the
northeast (labeled system B). In the CTRL, the prediction for system A is too weak,
and system B is totally missed. In the two DA experiments, the region and intensity of
both systems are substantially improved compared to the Exp-CTRL. One hour into the
forecast (1600 UTC), the reflectivity core (system A) in Exp-ZT is weaker and narrower
than Exp-BG, which may be caused by faster dissipation of the hydrometeors
mentioned in section 4.2.2. By the second hour of the forecast (1700 UTC), the
difference between Exp-ZT and Exp-BG is reduced, but Exp-BG still has broader and
greater nonzero reflectivity coverage in system A, indicating that the convective
systems in Exp-BG are more organized. After 3 hours, though better than CTRL, both

Exp-ZT and Exp-BG lose the strength of the convection due to the hydrometeor
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dissipation. As we can see from Fig. 10m-o, adding model errors in Exp-BG-Err, the
improvements brought by the background dependent retrieval method are still clear in
1h forecast, but not obvious after that. This may be because the differing microphysics

scheme plays a significant role in the forecast over time.
(2) 0-3 h precipitation forecast

The quantitative precipitation forecast is an important indicator for evaluating the
benefit brought by assimilation, so the hourly precipitation for each experiment is
further evaluated. Fig. 11 shows the hourly accumulated precipitation of the last cycle
for the Truth Run, CTRL, Exp-ZT, Exp-BG, and Exp-BG-Err. The precipitation is not
well simulated by the CTRL (Fig. 11d-f), and the precipitation forecast is greatly
improved after the retrieved hydrometeors are assimilated in Exp-ZT and Exp-BG
experiments. During the first hour, both perform similarly (Fig. 11g, j). During the
second hour, the regions of heavy rainfall (>15mm/h) in both Exp-ZT and Exp-BG (Fig.
11h, k) agree well with those in the Truth Run (Fig. 11b), and the Exp-BG performs
much better. In the last hour, although the rainfall in Exp-ZT is much stronger than that
of CTRL (Fig. 11f vs 1), its intensity is still far less than the Truth Run. The Exp-BG
performs the best among all experiments. For Exp-BG-Err, the rainfall is reasonable in
the first hour forecast, but is weaker at later time compared with both Exp-ZT and Exp-

BG due to mode errors.

To quantitatively evaluate the precipitation forecast of different experiments, the
Fractions Skill Score (FSS, Roberts and Lean, 2008) at different thresholds are
calculated against the Truth Run for each experiment. The FSS is more tolerant of small
displacement errors and more suitable for precipitation evaluation with fine resolution
grids (e.g., Fierro et al., 2015). In this study, the radius for FSS is about 15 km (5
neighborhood grid cells), and the evaluating area covers where the simulated
reflectivity observations are greater than zero. The FSS of hourly accumulated
precipitation with different thresholds (2.5, 5, and 15 mm) for CTRL, Exp-ZT, Exp-
BG, and Exp-BG-Err are presented in Fig. 12. In general, the three DA experiments

achieved higher FSS compared to CTRL at all thresholds in each forecast period. The
17
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more accurate analysis of the hydrometeor fields in Exp-BG resulted in the highest FSS

at almost all thresholds compared with Exp-ZT except in the first hour and at lowest

threshold (2.5 mm). During the first hour, the overall FSS in Exp-BG-Err at 2.5 and 5

mm is marginally the highest among all of the experiments, so the negative impact of
model errors remains small for the first hour precipitation forecast. However, the model
errors caused by a different microphysics scheme does reduce the forecast scores for 1-
2 and 2-3 h forecasts. In general, Exp-BG performs better than Exp-ZT in most

instances, even when including model error.

(3) RMSE:s in the cycle

The average root-mean-square errors (RMSEs) of the CTRL, Exp-ZT, Exp-BG and
Exp-BG-Err against the Truth Run over the 5 cycles are calculated for all three
hydrometeor variables and water vapor (Fig. 13). At the analysis time (t=0), all three
DA experiments have smaller errors of rain and snow than CTRL (Fig. 13a, b), while
Exp-ZT has the largest errors for graupel because the reflectivity is wrongly attributed
to graupel (Fig, 13c). The benefits of assimilating reflectivity decay rapidly in the first
hour, and the differences in the hydrometeors between the DA experiments and CTRL
narrow over time. The errors for snow in both Exp-BG and Exp-BG-Err (Fig. 13b) are
the smallest over almost the entire 3-h time. This indicates that the well retrieved snow
may last longer with the model integration. The assimilation of retrieved hydrometeors
also helps improve the forecast of water vapor in Exp-BG, but with model errors
included, it has a negative impact on the forecast of water vapor (Fig. 13d). Out of all
three experiments, Exp-BG has the smallest forecast errors for water vapor, which may
be a result of a more accurate analysis of hydrometeors in Exp-BG. The assimilation of
retrieved hydrometeors may contribute to the gradual adjustment of other model fields

like temperature, which leads to an improvement of the short-term precipitation forecast.

5.3 Diagnosis of temperature and moisture fields
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In order to further identify the reason why the hydrometeor assimilation can improve
the prediction beyond one hour, the temperature and moisture fields from the model
and their response to the hydrometeors field are discussed below. To simplify the

following discussion, Exp-BG-Err is not discussed.

Fig. 14 presents the vertical cross sections of temperature difference between each
DA experiment and the Truth Run over the rainfall center from 24.2°N to 24.8°N in the
last cycle. For the analysis, the differences in Exp-BG (Fig. 14d) are much smaller than
those in Exp-ZT (Fig. 14a). In the 10-min forecast, the temperature in the middle levels
in Exp-ZT becomes much colder than in Exp-BG because of the rapid melting of the
ice particles, especially graupel. In the 3h forecast, the temperature differences of the
two DA experiments narrows. But the Exp-BG still outperforms Exp-ZT in term of
prediction of the MCS (between 114°E and 116°E). This leads to a better accumulated

precipitation forecast in Exp-BG.

The relative humidity for the Truth Run, and the difference between the two DA
experiments and the Truth Run over the rainfall center from 24.2°N to 24.8°N in the
last cycle are shown in Fig. 15. At the analysis time, it is obvious that relative humidity
in Exp-BG is closer to the truth than that in Exp-ZT. After 10 min of model integration,
the melting and falling of graupel makes the upper-level air drier and the rapid increase
of rain makes the lower-level air moister in the precipitation area (about 112°E~114°E)
in Exp-ZT, while smaller differences can be seen in Exp-BG. After the 3-hour
integration, the Exp-ZT and Exp-BG perform similarly, but an important improvement
is that the moisture field between 850 hPa and 700 hPa ahead of the MCS (about 114°E
~116°E) has been enhanced in Exp-BG. Better humidity conditions in Exp-BG had a

pronounced effect on the rainfall process.

This section shows that the impact of a better hydrometeor analysis on model forecast
is primarily limited to the first hour. However, by cycling the analyses, the temperature
and humidity fields are gradually influenced and the subsequent precipitation prediction

is ultimately improved.
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6. Conclusions

In this study, a background-dependent hydrometeor retrieval scheme was proposed
to improve the accuracy of the hydrometer classification, analysis, and forecast. The
main idea is to adaptively determine the contributions of the hydrometeors to the
reflectivity according to the background field. The hydrometeor retrieval method was

compared to the existing retrieval scheme in WRFDA through OSSEs.

The proportions of each hydrometeor species were calculated from the background
fields and the accuracy of the retrieved hydrometeors from both schemes were first
evaluated. It was found that the contribution of each hydrometeor species to the
reflectivity varies widely in different reflectivity ranges and different vertical levels.
This indicates that fixed parameters should not be used for calculating the contributions
of each hydrometeor species to reflectivity even in the same background weather
regime. By incorporating the background information, the retrieval reflectivity
partitioning parameters became adaptive and the hydrometeor retrieval accuracy was
greatly improved even when considering model error, especially in regions of mixed

species.

The retrieved hydrometeors from both retrieval methods were then assimilated
utilizing 3DVar with an hourly update cycling configuration. A better analysis of snow
and graupel were obtained when the new retrieval method was used. Results show that
both of the DA experiments improved the forecast of hydrometeors in the first hour,
but the hydrometeors declined rapidly with the model integration. However, the
additional data assimilation cycles helped the hydrometeors persist in Exp-BG. The
reason for these improvements may be that Exp-BG implicitly included the model
constraints, and thus the retrieved hydrometeor fields are relatively more balanced with

other model variables.

The improvement of the hydrometeors’ forecast in this study was mainly

concentrated within the first hour, but with the hourly update cycling configuration, it
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further affected other variables like temperature and humidity through thermodynamic
and microphysical processes. The improvement of the temperature and humidity fields
was achieved and had a pronounced effect on the rainfall processes, so that the
assimilation of retrieved hydrometeors ultimately improved the short-term forecast of

reflectivity and precipitation.

Though our proposed scheme shows promising results, problems still exist. First, the
improvement of hydrometeor fields has a relatively short duration, which can be
improved by considering multivariate correlation among hydrometeors and other
analysis variables in the static background error or introducing a flow-dependent
background error through a variational-ensemble hybrid method (Pan et al., 2018;
Meng et al. 2019). Second, due to the lack of real observations of sufficiently high
spatial and temporal resolution, the new scheme was only evaluated through OSSEs.
Although its value has been proved, further testing is also needed using real data cases.
Finally, dual-polarization radar data are an important additional source of information
for classification of hydrometeors beyond Z, so it is likely that better retrievals and

forecasts can be achieved with the assistance of polarimetric information.
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Figure captions

Fig. 1. Domain size and radars used in the study. The range for each radar is shown roughly

by the blue circle.
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Fig. 2. Schematic diagram showing the assimilation and forecast cycles in the OSSEs.

Fig. 3. Composite radar reflectivity fields of the Truth Run in domain D02. The valid forecast
time is shown above each panel. The black lines in (b) and (d) indicate the locations of the
vertical cross sections shown in Fig. 5 and 6. The small blue box in (b) indicates the
hydrometeor calculation region in Fig. 9.

Fig. 4. The vertical profiles of each hydrometeor’s contribution to the total reflectivity in
different reflectivity ranges at 1500 UTC. (A)- (¢) shows the distribution of Cy with height in

different reflectivity intervals, where ref;: <

15dBZ;ref,:15~25dBZ;ref3: 25~35dBZ; ref,: 35~45dBZ; refs: = 45dBZ.

Fig. 5. Vertical cross-sections of the hydrometeor mixing ratio fields: g (color shading), gs
(blue contours), g (green contours) from (a), (e) Truth Run; (b), (f) Exp-ZT; (¢), (g) Exp-BG;
(d), (h) Exp-BG-Err. Legend for the color shadings for g, (g kg ') is shown on the bottom. The
contour intervals of gs (g kg ') are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of g, (g kg ") are
0.01, 0.1, 0.2, 0.5, 1.0. The locations of the vertical cross sections are denoted by the black lines
in Fig. 3. (A)-(d) is valid at 1500 UTC and (e)-(h) is valid at 1700 UTC. The dashed black line
indicates where the temperature is 0°C.

Fig. 6. The average bias (top) and root mean square error (RMSE; bottom) at different
thresholds for the retrievals of (a, d) qs; (b, €) gs; (¢, f) q, for Exp-ZT (blue solid line), Exp-BG
(red solid line) and Exp-BG-Eir (red dashed line) relative to the Truth Run over the whole cycle.

Fig. 7. Analysis of (a-d) rain at about 2km AGL, (e-h) snow and (i-1) graupel mixing ratio at
about 6km AGL. (a), (e), (i) is the analysis for Truth Run, (b), (f), (j) is for Exp-ZT, (¢), (g), (k)
is for Exp-BG and (d), (h), (1) is for Exp-BG-Err. The analysis time is 1700 UTC.

Fig. 8. Vertical cross-sections of the hydrometeor mixing ratio fields: g (color shading), gs
(blue contours), q; (green contours) from (a-c) Truth; (d-f) CTRL; (g-1) Exp-ZT; (j-1) Exp-BG
and (m-o) Exp-BG-Err. Legend for the color shadings for g, (g kg ') is shown on the bottom.
The contour intervals of qs (g kg ") are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of g (g kg )
are 0.01, 0.1, 0.2, 0.5, 1.0. The three columns represent the 15, 30 and 60 min forecasts
initialized at 1500 UTC, respectively. The locations of the vertical cross sections are shown in
line AB in Fig. 3.
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Fig. 9. Vertical cross sections of the temporal evolution of horizontally-averaged hydrometeor
mixing ratios in the first 60 minutes over the convective center (units: g kg™) of (a-c) Truth
Run; (d-f) CTRL; (g-i) Exp-ZT; (j-1) Exp-BG; and (m-0) Exp-BG-Err. The forecasts are
initiated at 1500 UTC. The calculation region is denoted by the blue box in Fig. 3.

Fig. 10. Composite reflectivity forecasts initialized at 1500 UTC from (a-c) Truth; (d-f)
CTRL; (g-1) Exp-ZT, (j-1) Exp-BG and (m-0) Exp-BG-Err. The three columns represent the 1-
hour forecast, 2-hour forecast and 3-hour forecasts, respectively.

Fig. 11. Hourly accumulated precipitation rates (mm) of the last cycle for (a-c) Truth, (d-f)
CTRL, (g-1) Exp-ZT, and (j-1) Exp-BG, and (m-0) Exp-BG-Err. The three columns represent
the accumulated precipitation during the first hour, second hour and third hour’s forecast,
respectively. The red frame indicates the diagnosed region in Fig. 14 and 15.

Fig. 12. Averaged Fractions Skill Scores of the hourly-accumulated precipitation forecasts for
thresholds of 2.5 mm, 5 mm and 15 mm for CTRL, Exp-ZT, Exp-BG and Exp-BG-Err over
the whole cycle. The radius of influence of the neighborhood method used in this study is
about 15 km and the scoring area covers the entire precipitation area in Fig. 11.

Fig. 13. Time series of the analysis and forecast RMSEs of (a) g: at 850hPa, (b) qs at 400hPa,
(c) g at 300hPa and (d) qv at 700hPa for the whole cycle.

Fig. 14. Cross sections of temperature fields (shaded; K) for (a-c) the difference between Exp-
ZT and the Truth Run and (d-f) the difference between Exp-ZT and the Truth Run over the
rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red frame in Fig.
11(f). (a, d) are the analyses valid at 1700 UTC. (b, e) are the 10-min forecasts initiated at
1700UTC. (c, f) are the 3-hour forecasts initiated at 1700 UTC.

Fig 15. Cross sections of relative humidity fields (shaded; %) for (a-c) Truth, (d-f) the difference
between Exp-ZT and the Truth Run, and (g-i) the difference between Exp-BG and the Truth
Run over the rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red
frame in Fig. 11(f). (a, d, g) are the analyses valid at 1700 UTC. (b, e, h) are the 10-min
forecasts initiated at 1700 UTC. (c, f, i) are the 3-hour forecasts initiated at 1700 UTC.
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Fig. 5. Vertical cross-sections of the hydrometeor mixing ratio fields: g (color shading), gs
(blue contours), g: (green contours) from (a), (e) Truth Run; (b), (f) Exp-ZT; (c), (g) Exp-BG;
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contour intervals of s (g kg ') are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of g, (g kg ") are
0.01, 0.1, 0.2, 0.5, 1.0. The locations of the vertical cross sections are denoted by the black lines
in Fig. 3. (A)-(d) is valid at 1500 UTC and (e)-(h) is valid at 1700 UTC. The dashed black line
indicates where the temperature is 0°C.
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thresholds for the retrievals of (a, d) qs; (b, €) gs; (¢, f) q, for Exp-ZT (blue solid line), Exp-BG
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cycle.
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initialized at 1500 UTC, respectively. The locations of the vertical cross sections are shown in
line AB in Fig. 3.
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Fig. 9. Vertical cross sections of the temporal evolution of horizontally-averaged hydrometeor
mixing ratios in the first 60 minutes over the convective center (units: g kg™) of (a-c) Truth
Run; (d-f) CTRL; (g-i) Exp-ZT; (j-1) Exp-BG; and (m-0) Exp-BG-Err. The forecasts are
initiated at 1500 UTC. The calculation region is denoted by the blue box in Fig. 3.
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Fig. 10. Composite reflectivity forecasts initialized at 1500 UTC from (a-c) Truth; (d-f)

CTRL; (g-1) Exp-ZT, (j-1) Exp-BG and (m-0) Exp-BG-Err. The three columns represent the 1-

hour forecast, 2-hour forecast and 3-hour forecasts, respectively.
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Fig. 11. Hourly accumulated precipitation rates (mm) of the last cycle for (a-c) Truth, (d-f)
CTRL, (g-i) Exp-ZT, and (j-1) Exp-BG, and (m-0) Exp-BG-Err. The three columns represent
the accumulated precipitation during the first hour, second hour and third hour’s forecast,

respectively. The red frame indicates the diagnosed region in Fig. 15 and 16.
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Fig. 12. Averaged Fractions Skill Scores of the hourly-accumulated precipitation forecasts for
thresholds of 2.5 mm, 5 mm and 10 mm for CTRL, Exp-ZT, Exp-BG and Exp-BG-Err over
the whole cycle. The radius of influence of the neighborhood method used in this study is
about 15 km and the scoring area covers the entire precipitation area in Fig. 11.
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Fig. 14. Cross sections of temperature fields (shaded; K) for (a-c) the difference between Exp-
ZT and the Truth Run and (d-f) the difference between Exp-ZT and the Truth Run over the
rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red frame in Fig.
11(f). (a, d) are the analyses valid at 1700 UTC. (b, e) are the 10-min forecasts initiated at
1700UTC. (c, f, 1) are the 3-hour forecasts initiated at 1700 UTC.
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Fig 15. Cross sections of relative humidity fields (shaded; %) for (a-c) Truth, (d-f) the difference
between Exp-ZT and the Truth Run, and (g-i) the difference between Exp-BG and the Truth
Run over the rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red
frame in Fig. 11(f). (a, d, g) are the analyses valid at 1700 UTC. (b, e, h) are the 10-min
forecasts initiated at 1700 UTC. (c, f, i) are the 3-hour forecasts initiated at 1700 UTC.
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