

1 Ratios of greenhouse gas emissions observed over
2 the Yellow Sea and the East China Sea

3 Yunsong Liu^a, Lingxi Zhou^{a,*}, Pieter P. Tans^b, Kunpeng Zang^{a,c},
4 Siyang Cheng^{a,*}

5 ^a*State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences
(CAMS), Beijing 100081, China*

7 ^b*Earth System Research Laboratory, National Oceanic and Atmospheric Administration,
Boulder, Colorado 80305, USA*

9 ^c*National Marine Environmental Monitoring Center, Dalian, China*

10

11 **Abstract**

12 During a cruise of the survey vessel Dongfanghong II on the Yellow Sea and the East China Sea
13 in the spring of 2017 we performed accurate measurements of the mole fractions of carbon dioxide
14 (CO_2), methane (CH_4), carbon monoxide (CO) and nitrous oxide (N_2O) using two types of Cavity
15 Ring-Down Spectrometers (CRDS). The spatial variations of the mole fraction of the four trace
16 gases were very similar. The emission sources of these gases were divided into several regions by
17 using the NOAA HYSPLIT model. Then we analyzed the variations of the ratios of the mole
18 fraction enhancements between every pair of trace gases downwind of these source areas. The
19 ratios showed that the distributions of these trace gases over the Yellow Sea and the East
20 China Sea in the spring were mainly caused by the emissions from Eastern China. The much

* Corresponding authors.

Email addresses: chinalingxi_zhou@163.com (L. Zhou), chinachengsiyang@163.com (S. Cheng).

21 higher enhancement ratio of $\Delta\text{CO}/\Delta\text{CO}_2$ and the lower ratio of $\Delta\text{CH}_4/\Delta\text{CO}$ observed in the air
22 parcels from big cities like Beijing and Shanghai indicated high CO emission from the cities
23 during our time of observation. Compared with the values of NOAA's Marine Boundary Layer
24 (MBL), the ratios of the averages in the air coming from the Northern sector (Russia) were on
25 average closer to the MBL, and the air that stayed over the Yellow Sea and the East China Sea was
26 a mixture of emissions from wide regional areas. The highly variable N_2O data of the air from
27 Qingdao and Shanghai showed much more fluctuation.

28 *Keywords:* mole fraction, calibration, source regions, enhancement ratios, shipboard air
29 measurements, major greenhouse gases

30

31 **1. Introduction**

32

33 The problems of global warming and climate change are mainly caused by the greenhouse
34 gas increases, and have become one of the most important challenges of the 21st century (Liu
35 et al., 2009). Greenhouse gases are pervasively produced by human activities, such as coal
36 combustion, vehicle traffic, heating/cooling and industrial processes. The Asian continent has
37 become the largest source of anthropogenic pollutants. Emissions to the atmosphere have
38 rapidly increased recently as a result of the economic growth in Asian countries, especially
39 China (Sakata et al., 2013; Zhang et al., 2017). The industrialization and energy consumption
40 in China are increasing rapidly, and the total CO_2 emissions from fossil-fuels and cement
41 production increased from 1.4 billion (10^9) metric ton carbon (GtC) in 2004 to 2.8 GtC in
42 2014 according to the data of Carbon Dioxide Information Analysis Center (Boden and

43 Andres, 2017). This is regarded as the main reason for a sharp increase in continental Asian
44 air pollution (Junker et al., 2009).

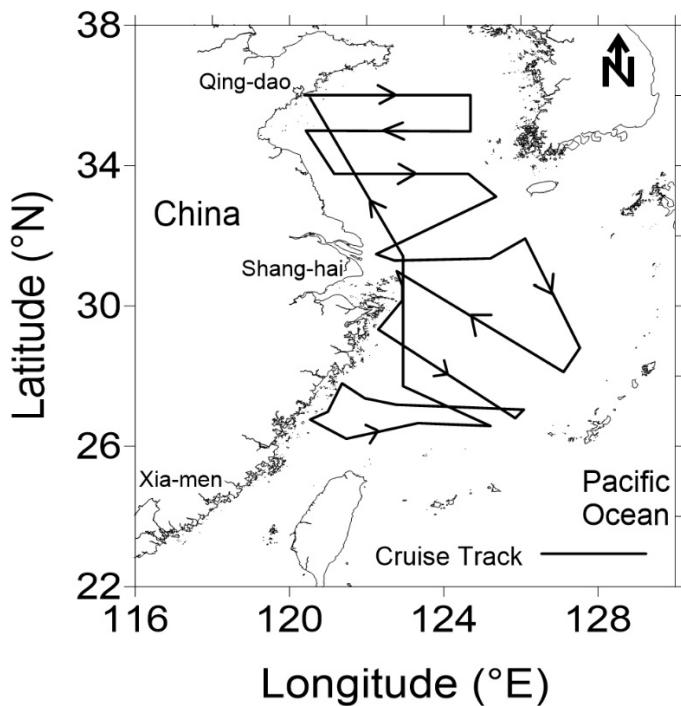
45 The platforms for observations of the greenhouse gases and their temporal and spatial
46 variations around the world are ground-based stations (Cheng et al., 2017; Gomez-Pelaez et
47 al., 2013; Zellweger et al., 2016), aircraft (Chen et al., 2010; Daube et al., 2002; Machida et
48 al., 2008), satellites (Butz et al., 2011; Guo et al., 2017; Wunch et al., 2017), and ships (Feely
49 et al., 2006; Schuster et al., 2009). Observation data are essential for atmospheric inversion
50 methods to estimate regional sources and sinks, regional fluxes and the transport of the
51 greenhouse gases (Deng et al., 2014; Peylin et al., 2013; Sawa et al., 2012).

52 Akira Wada et al. (2007; 2011) analyzed seasonal and geographical variations of the
53 enhancement ratios of trace gases and found that the Asian continental pollution was
54 influenced by the seasonal variations of the emission ratios in the source regions, with
55 increased fluxes of methane (CH_4) in summer and carbon monoxide (CO) in winter. The
56 Asian influence on CO in the North Pacific troposphere is at a maximum during spring and at
57 a minimum during summer (Liang et al., 2004), and observed and simulated concentrations of
58 CO₂ in the Asian outflow would imply increases in Chinese anthropogenic CO₂ emissions
59 (Suntharalingam et al., 2004).

60 In this paper, we study the data of carbon dioxide (CO₂), methane (CH₄), carbon monoxide
61 (CO), and nitrous oxide (N₂O) obtained on the ship over the Yellow Sea lying between
62 northeastern China and the Korean Peninsula (Li et al., 2016) and the East China Sea (32.07°
63 N, 125.10° E) in the spring (Han et al., 2015). We designed and built a ship-based continuous
64 observation system for the main atmospheric greenhouse gases and CO in order to explore the

65 factors that affected the distribution of the gases. Firstly we defined the stability of the two
66 analyzers during the cruise and then we analyzed the mole fraction distribution of the four gas
67 species over the Yellow Sea and the East China Sea during the cruise. We used two methods
68 to calculate the enhancement ratios for every pair of gases, and analyzed the results for
69 understanding emission characteristics of the source regions.

70


71 **2. Observation**

72

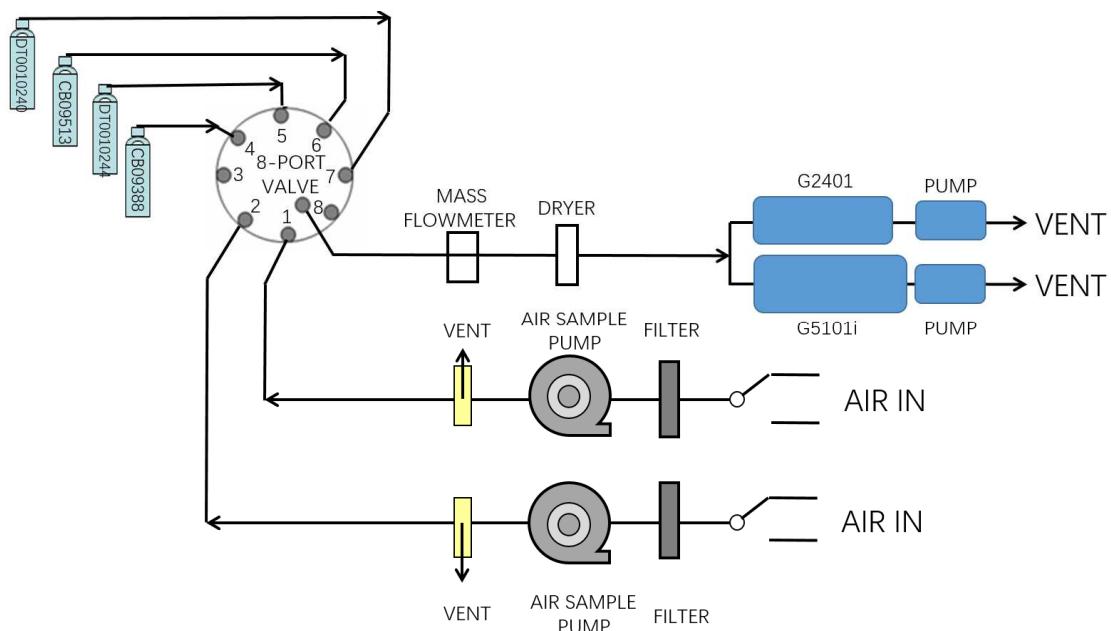
73 *2.1. Observation area*

74

75 We performed accurate measurements of CO₂, CH₄, CO, and N₂O in air during an
76 oceanographic cruise on board the survey vessel Dongfanghong II, organized by the Ocean
77 University of China from 27 March 2017 to 15 April 2017. The ship track is shown in Figure
78 1.

79

80 **Fig. 1.** Cruise track between the Pacific Ocean and the Asian continent. The survey vessel
 81 sailed from Qingdao and finally returned to Qingdao.


82

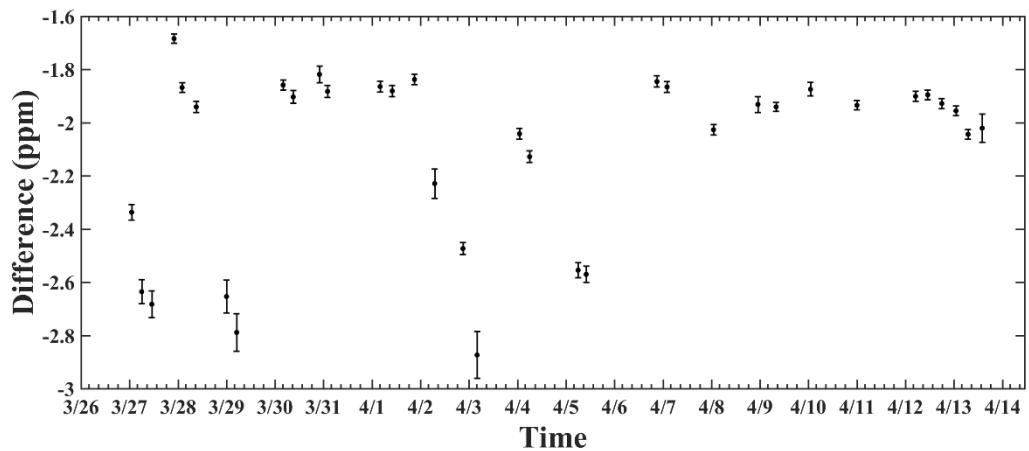
83 *2.2. Observation methods*

84

85 We took a Picarro G5101i analyzer for N_2O , and a Picarro G2401 analyzer for CO_2 , CH_4 ,
 86 and CO , as well as four high pressure calibration standard gas cylinders, each containing very
 87 accurately known amounts of the four gases in air, from 394.24 to 434.12 micromol/mol (ppm)
 88 for CO_2 , from 1935.00 to 2288.89 nanomol/mol (ppb) for CH_4 , from 317.20 to 878.51 ppb for
 89 CO , and from 309.75 to 609.24 ppb for N_2O . The calibration of these standard gases was
 90 propagated by the Chinese Academy of Meteorological Sciences, China Meteorological
 91 Administration (CAMS-CMA). The CAMS standard gases were in turn calibrated using the
 92 primary standards of the World Meteorological Organization Global Atmospheric Watch
 93 (WMO-GAW), maintained by NOAA/ESRL (www.esrl.noaa.gov/gmd/ccl/; Fang et al., 2014;

94 Tans and Zellweger, 2014). Sample air was provided by using a sample inlet installed above
 95 the top deck, about 10 m in front of the ship's engine exhaust stack. The schematic diagram of
 96 the measurement set up was as follows. The 1.0 μm membrane filter between the air inlet and
 97 the pump was used to remove particles. One of the air inlets was used as a backup to avoid
 98 special situations during the voyage. The sample or standard gas flowed through the eight port
 99 multi-position valves into a mass flowmeter which controlled the flow rate at 350 $\text{mL}\cdot\text{min}^{-1}$,
 100 then flowed into a dryer to remove water vapor, a tube filled with magnesium perchlorate
 101 ($\text{Mg}(\text{ClO}_4)_2$). Glass cotton on both sides of the dryer was used to avoid pumping the
 102 magnesium perchlorate particles into the analyzers. The cavity pressure of G2401 was
 103 maintained at a stable value of 140 torr by the vacuum pump, while the cavity operating
 104 pressure of G5101i was at 100 torr (Crosson, 2008; Erler et al., 2015)

105
 106 **Fig. 2.** Schematic diagram (not to scale) of the ship-based atmospheric CO_2 , CO , CH_4 , and
 107 N_2O observation system. The flow rate was controlled at 350 $\text{mL}\cdot\text{min}^{-1}$ by the mass
 108 flowmeter.

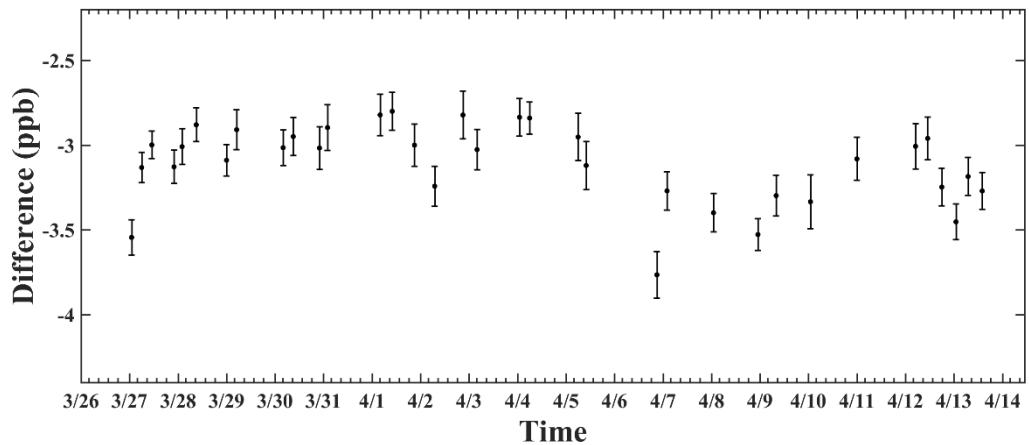

110 2.3. *Calibrations*

111

112 Using the calibration gases, the response functions of the analyzers were calculated 35
113 times during the whole voyage. The Picarros recorded measurement values approximately
114 every 5 seconds. Every standard gas ran for ten minutes each time, and to ensure complete
115 flushing of the measurement cell only the last 5 minutes of data were used. Then the averages
116 of the stable five minutes of calibration data was calculated for each standard gas. All four
117 standards were used during each calibration to generate a response curve for each instrument
118 over the ranges mentioned above. During sample air measurements, in between the
119 calibrations, the averages of the bracketing calibrated response curves were used to correct the
120 observation data.

121 Figures 3-6 showed the average difference and standard deviation during the 5 min.
122 averaging periods between the value indicated by the instrument and the known value of the
123 standard gas for all 35 calibrations, for example cylinder number CB09388. The other three
124 standard gases behaved similarly to CB09388, with dips in a few cases at the same times. The
125 uncertainty of the air measurements was larger between times in which successive calibration
126 curves showed a larger change. Compared to the other three gases, CO₂ showed relatively
127 larger changes.

128

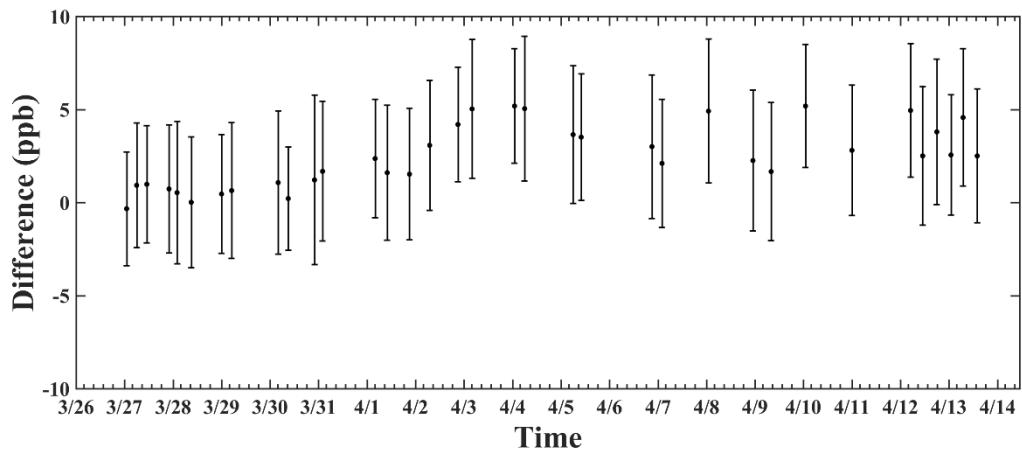


129

130 **Fig. 3.** Stability of successive CO₂ calibrations, the error bars represent the standard deviation

131 of 5-second averages, 35 in total.

132

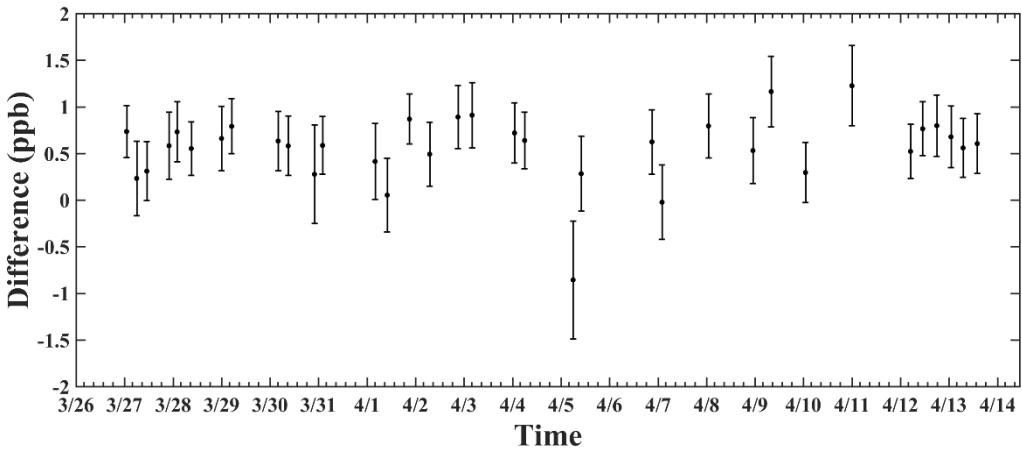


133

134 **Fig. 4.** Stability of successive CH₄ calibrations, the error bars represent the standard deviation

135 of 5-second averages, 35 in total.

136



137

138 **Fig. 5.** Stability of successive CO calibrations, the error bars represent the standard deviation

139 of 5-second averages, 35 in total.

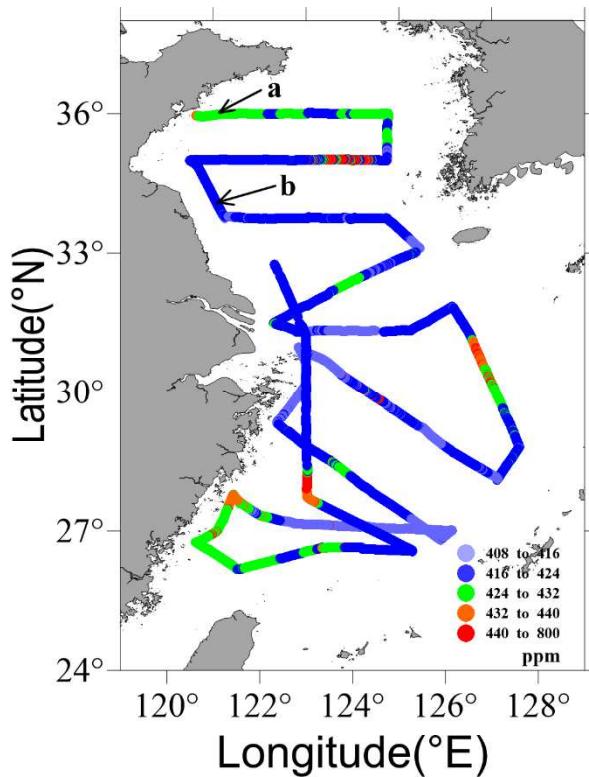
140

141

142 **Fig. 6.** Stability of successive N₂O calibrations, the error bars represent the standard deviation

143 of 5-second averages, 35 in total.

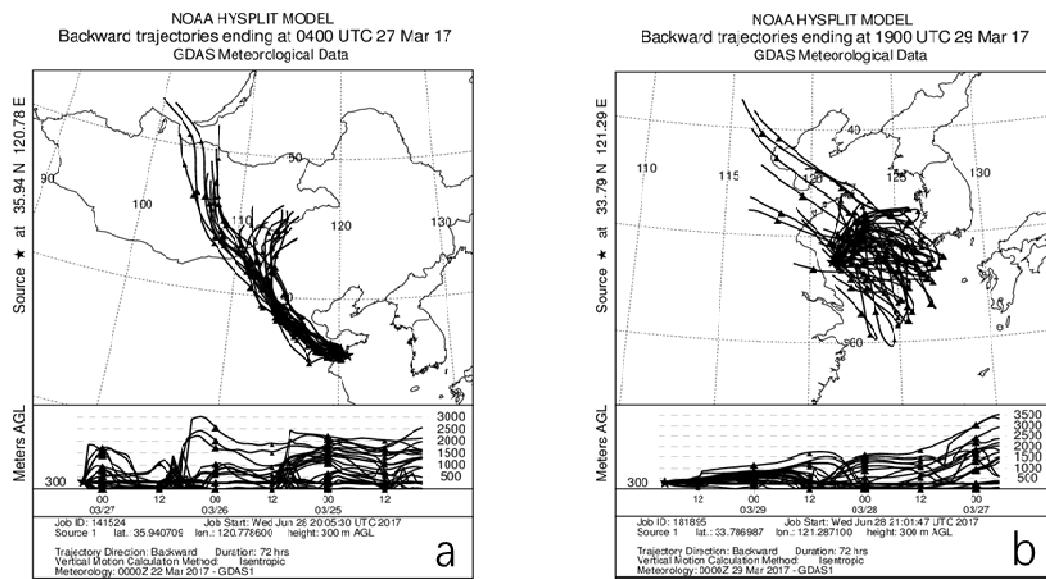
144


145 3. Results

146

147 3.1. Observed mole fraction distribution

148


149 To avoid interference from the ship's engine exhaust, the data when the ship's speed was
150 less than 3 knots was not used. Occasional contamination from the stack was characterized by
151 very high frequency variability, and we did not use that data either. Fig.7 shows the mole
152 fraction distribution of CO₂ during the voyage. The distributions of the other three gases had
153 similar trends. The data were averaged over each minute and linked to the latitude and
154 longitude. In order to smooth the mole fraction distributions, we calculated hourly average
155 data. Then we used the NOAA HYSPLIT model to generate 72-hour backward air trajectories
156 for each hour with its average longitude and latitude, with the starting point at 300 m altitude.
157 Also, the CO₂, CO, CH₄, and N₂O data were divided into two parts according to the hourly
158 standard deviation, with the dividing lines respectively at 0.88 ppm, 6.35 ppb, 1.15 ppb and
159 1.48 ppb. Above these values, the data were not very stable so we called them higher variability
160 data while below those values we called them lower variability data. According to the calculated
161 air trajectories, all the data was divided into ten distinct source regions that influenced the
162 data at different times during the cruise. The locations of source regions and regional stations
163 are showed in the Fig. 9. Fig. 8a is an example showing Beijing/Jinan and 8b showing Yellow
164 Sea. The data of the Philippine Sea, at the eastern end of the cruise, were used as the base line
165 for comparing all other data.

166

167 **Fig. 7.** CO₂ mole fraction distribution as a function of degrees north latitude and east
 168 longitude. The point labeled “a” refers to Fig. 8a, and “b” to Fig. 8b, below.

169

170

171 **Fig. 8.** Three-day air back-trajectories of two locations, a (35.94° N, 120.78° E) and b
 172 (33.77° N, 121.29° E).

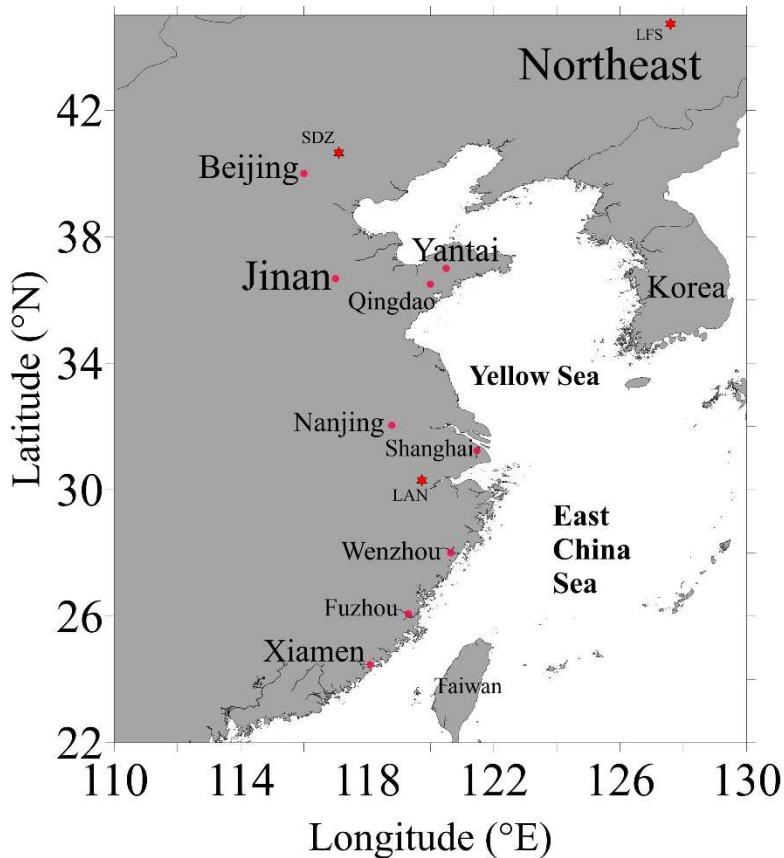


Fig. 9. The locations of the source reigns and regional stations.

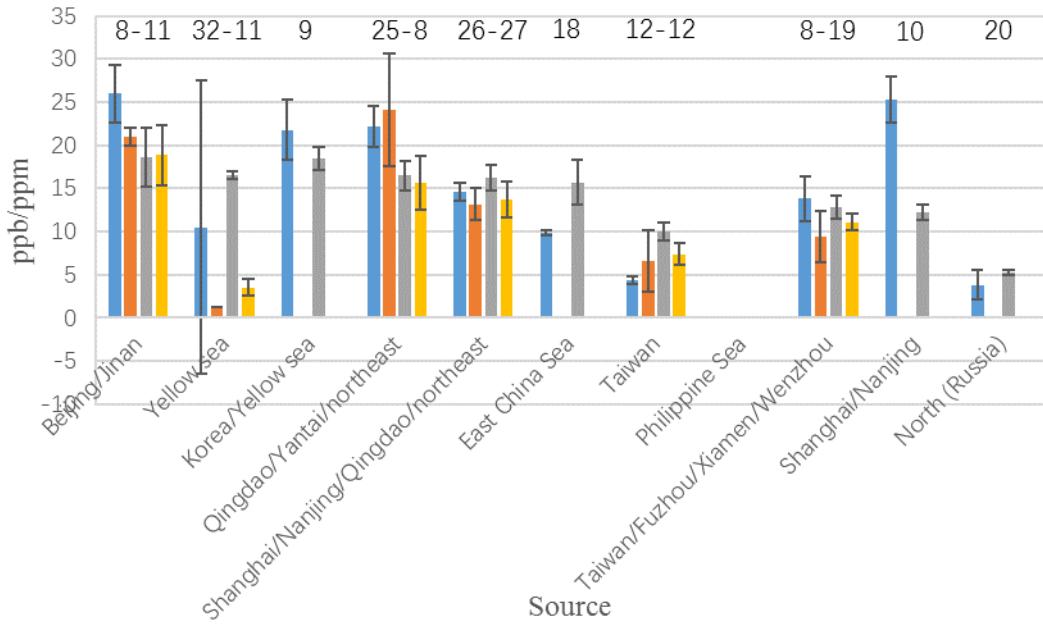
176 *3.2. Ratios of mole fraction enhancements*

178 Figures 10 to 15 show the ratios of the observed mole fraction enhancements relative to the
 179 Philippine Sea, pairwise for ΔCO_2 , ΔCO , ΔCH_4 , and $\Delta\text{N}_2\text{O}$. The average values for the
 180 Philippine Sea observed during the cruise are 410.7 ppm, 113 ppb, 1896 ppb, and 332.5 ppb,
 181 respectively. NOAA's Marine Boundary Layer (MBL) values (Masarie, 1995), representative
 182 of large ocean areas, at the same latitude zone and during the cruise, were 410.7 ppm, 128 ppb,
 183 1911 ppb, and 330.2 ppb respectively. This indicates that our Philippine Sea data is a good
 184 reference for this study. We used two different methods. In the first we plotted enhancements
 185 for individual hourly averages of a pair of species directly against each other for each source

186 region, and we determined the slope, without paying attention to the average offsets (blue
 187 bars), with the aim to emphasize more recent emissions that had undergone less mixing and
 188 may have had larger hour-to-hour variations. For the purpose of calculating uncertainties from
 189 the statistics, the hourly averages have the advantage that successive hours are independent of
 190 each other whereas successive one minute averages are often very close together, and can not
 191 be considered to be independent measurements. The blue and orange columns show lower
 192 variability data and higher variability data respectively, again to try to separate emissions that
 193 were perhaps closer to the measurement point from those further away. The heights of the
 194 bars are the slopes of the relations between every two gas species. The slope is obtained by
 195 first fitting $\Delta Y = a \Delta X + b$ assuming errors only on the y-axis, and by then fitting $\Delta X =$
 196 $\frac{\Delta Y}{a'} - \frac{b'}{a'}$ assuming errors only on the x-axis. This gives different values for the slopes a and
 197 a' . We take the geometric mean of a and a' , keeping track of whether the slope is positive or
 198 negative, as below.

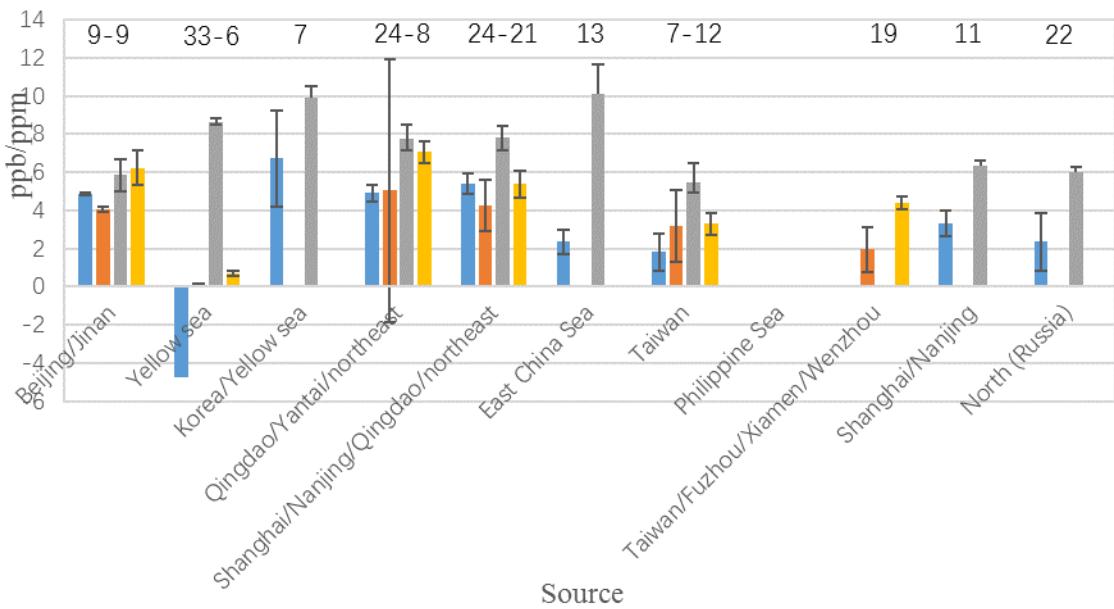
$$199 \quad c = \text{sign}(a) * \sqrt{aa'} \quad (1)$$

200 The difference between the two slopes a and a' provides a measure of the uncertainty of c
 201 (denoted as “ $u(c)$ ”), namely $\pm (a-a')/2$, which is plotted on each bar in Figs 10-15.

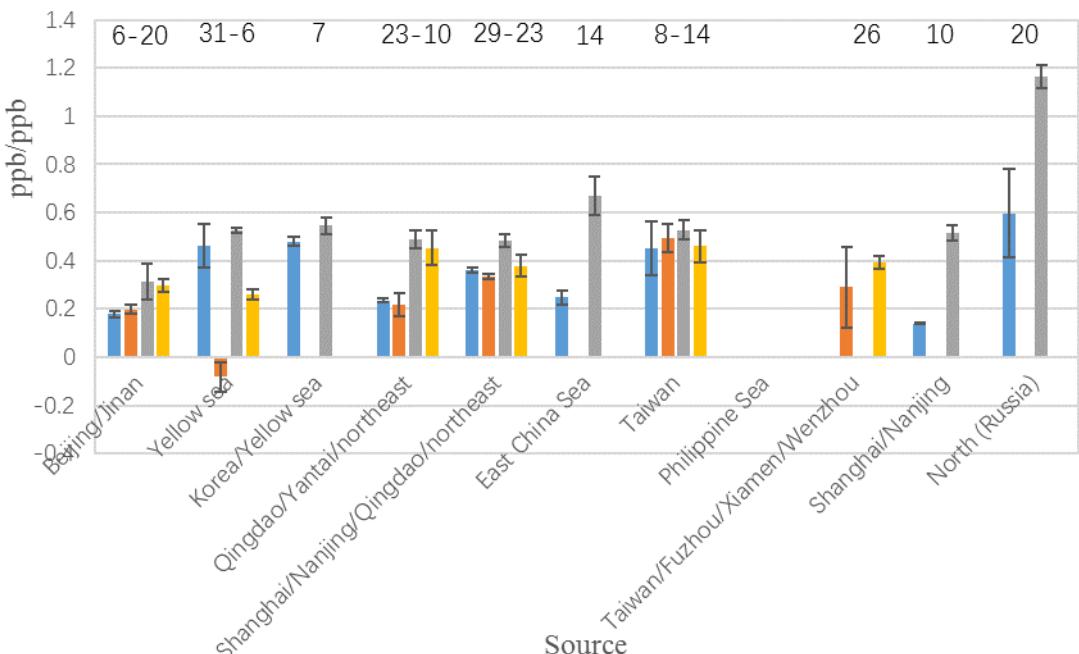

202 The gray and yellow column values show the ratios (Y) of the averages (denoted by the
 203 overbar \bar{Y}) of the separate enhancements of two species X_1 and X_2 , namely $\bar{Y} = \frac{\bar{X}_1}{\bar{X}_2}$, for the
 204 lower variability data (gray) and the higher variability data (yellow), respectively. The
 205 uncertainty is estimated as the relative uncertainty of a product or quotient, as in the GUM
 206 1995, as follows:

$$207 \quad \frac{u(Y)}{Y} = \sqrt{\left[\frac{u(\bar{X}_1)}{\bar{X}_1} \right]^2 + \left[\frac{u(\bar{X}_2)}{\bar{X}_2} \right]^2} \quad (2)$$

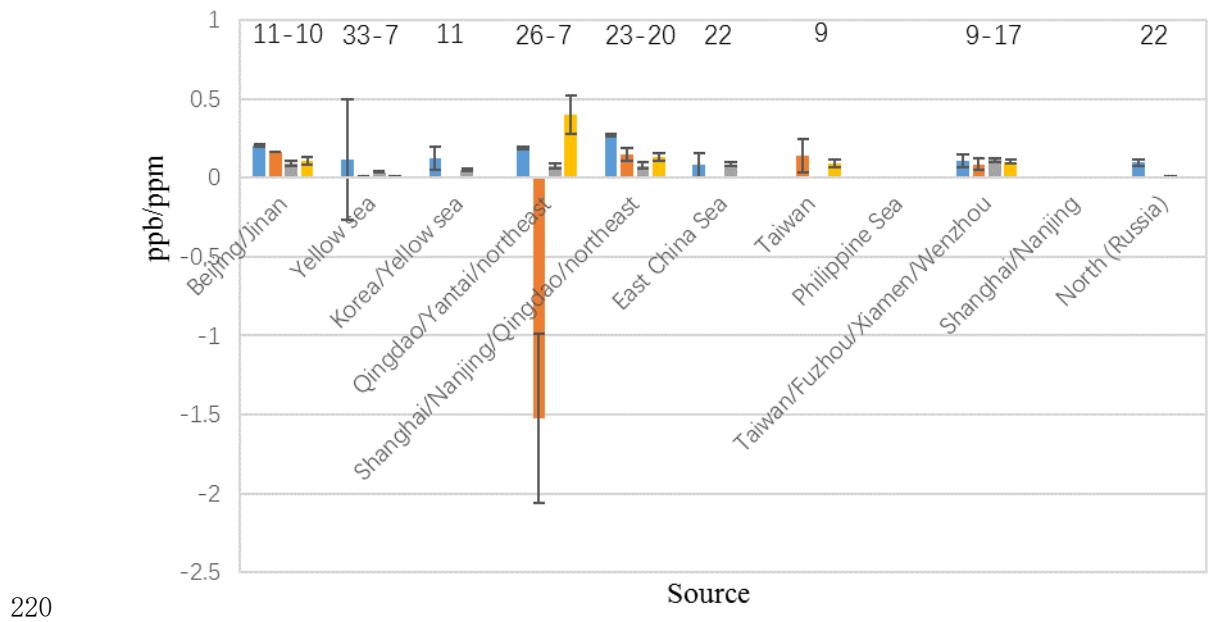
208 in which the standard error of the mean for both species is


209
$$[u(\Delta X_1)]^2 = \frac{\sum_{i=1}^n (\Delta x_{1i} - \bar{\Delta x}_1)^2}{n(n-1)} \text{ and } [u(\Delta X_2)]^2 = \frac{\sum_{i=1}^n (\Delta x_{2i} - \bar{\Delta x}_2)^2}{n(n-1)} \quad (3)$$

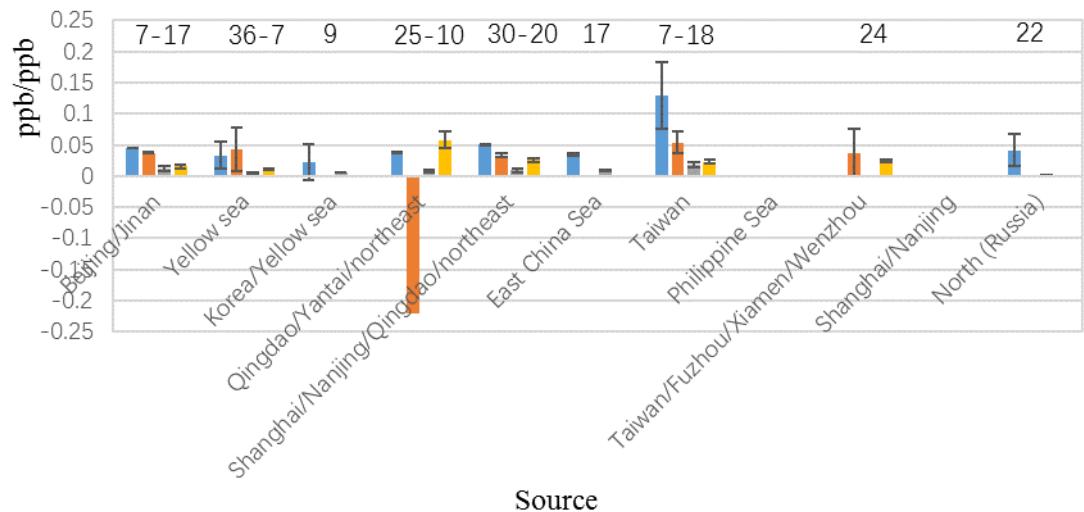
210 and where $\Delta X_1, \Delta X_2$ can be one of $\Delta \text{CO}_2, \Delta \text{CO}, \Delta \text{CH}_4, \Delta \text{N}_2\text{O}$.


211

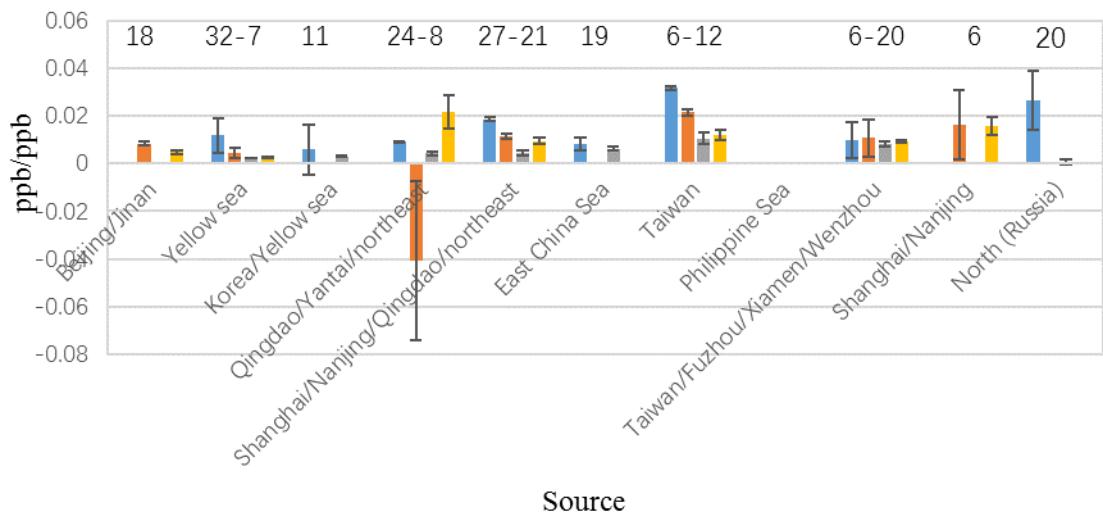
212 **Fig. 10.** The enhancement ratios of $\Delta \text{CO}/\Delta \text{CO}_2$. For all plots 10-15, the numbers n1-n2 above
213 the bars give the number of hourly averages used for each region, n1 for lower variability data
214 (blue and gray bars), n2 for higher variability data (orange and yellow bars). We do not plot
215 bars when they are based on 5 or fewer hourly averages.


216

217 **Fig. 11.** The enhancement ratios of $\Delta\text{CH}_4/\Delta\text{CO}_2$.



218


219 **Fig. 12.** The enhancement ratios of $\Delta\text{CH}_4/\Delta\text{CO}$.

221 **Fig. 13.** The enhancement ratios of $\Delta\text{N}_2\text{O}/\Delta\text{CO}_2$.

223 **Fig. 14.** The enhancement ratios of $\Delta\text{N}_2\text{O}/\Delta\text{CH}_4$.

224

225 **Fig. 15.** The enhancement ratios of $\Delta N_2O/\Delta CO$.

226

227 *3.3. Discussions*

228

229 We will briefly discuss some characteristics of the ratios of mole fraction enhancements as
 230 shown in Figs. 10-15 for individual source regions because they are a measure of their relative
 231 emissions during the time period of the cruise.

232

233 *3.3.1. Beijing Jinan*

234 In both lower and higher variability data the correlation between every pair of gases is
 235 strong. The average mole fraction enhancements of the four gases CO₂, CO, CH₄, N₂O in the
 236 low-noise case were respectively 13.6 ppm, 244.7 ppb, 81.9 ppb, 1.1 ppb higher than the base
 237 values and higher than for other source regions except for N₂O and CH₄. CO emissions are
 238 very high, and likely caused by traffic. They were 3-4 times higher than CH₄ emissions. The

239 bars show ratios of emissions, so that if we have a trustworthy estimate for one of them, for
240 example CO₂, then we have estimates for the other gases. The higher variability data was
241 similar to the lower variability data. CO₂ emissions from burning fossil fuels and factories, as
242 well as CH₄ emissions from landfills, made up 97% GHGs of Beijing in 2014 (Li et al., 2017).
243 Li et al. gathered and calculated the results of the inventory of Beijing GHG emissions
244 including CO₂, CH₄ and N₂O for 2014. We use the Li et al.'s estimate of CO₂ emission from
245 fossil fuels and the ratios to give us an estimate for CH₄ and N₂O, about 355 kt/yr
246 (1kt/yr=1000 ton/year) and 13 kt/year, which are lower than the values 789 kt/yr and 635 kt/yr
247 respectively in Li et al.'s paper. The emissions of CO₂, CH₄ and N₂O increased significantly
248 from 2000 to 2014 in Jinan, mainly because of vehicle emissions (Sun et al., 2016). We use
249 the Sun et al.'s estimate of CO₂ and the ratio to estimate CO, about 1585 Gg/yr which is
250 similar with the value 1723 Gg/yr in 2014. Anthropogenic emissions dominate during winter
251 and spring. The temperature is very low in the winter and early spring, and the population
252 density is high, so the total energy consumption, especially coal, is very large during winter
253 and early spring (Zhao and Cui, 2014).

254

255 3.3.2. *Yellow Sea*

256 For the lower variability data the correlations are weak between every two gases. The
257 highest R² is 0.68 between ΔCO and ΔCH₄ but compared to other source regions it is still
258 weak. The average mole fractions enhancements of the four gases CO₂, CO, CH₄, N₂O in the
259 low-variability case were respectively 6.7 ppm, 110.4 ppb, 58.4 ppb, 0.28 ppb higher than the
260 base values. The number of data points in this case is high. The air masses tended to stay over

261 the Yellow Sea, so that there were much fewer high variability cases. Mixing of air masses
262 from different source regions, before our 72-hour back trajectories, may have weakened the
263 correlations. As expected, the relationships between the average enhancements for CO₂, CO,
264 and CH₄ corresponded to the values above, 6.7 ppm, 110.4 ppb, 58.4 ppb respectively, but not
265 for N₂O. Were the ratios of the average enhancements caused by regional emissions in China,
266 Korea, or do they came from larger areas as represented in MBL values? $\overline{\Delta CO}/\overline{\Delta CO_2}=16.5$
267 ppb/ppm, $\overline{\Delta CH_4}/\overline{\Delta CO_2}= 8.7$ ppb/ppm, and $\overline{\Delta CH_4}/\overline{\Delta CO}= 0.5$ ppb/ppb, whereas the MBL
268 latitudinal gradients between ~54 N and 30 N in 2017 during the same time were 3.7 ppb/ppm,
269 11.8 ppb/ppm, and 3.2 ppb/ppb respectively. Therefore the average enhancements are of
270 regional origin.

271

272 3.3.3. *Korea/Yellow*

273 In the lower variability case we have significant correlations between the hourly data for
274 ΔCO_2 , ΔCO , and ΔCH_4 , but not for ΔN_2O . The average mole fraction enhancements of the
275 four gases CO₂, CO, CH₄, N₂O are respectively 5.7 ppm, 105.4 ppb, 53.7 ppb, 0.28 ppb
276 higher than the base values, similar to the Yellow Sea case. There was relatively less CO than
277 in the Beijing case. Any influence from Korea appeared to be minor.

278

279 3.3.4. *Qingdao/Yantai/northeast*

280 The pair-wise correlations for the lower variability data look very similar to Beijing except
281 for ΔN_2O . All the R² values were above 0.8. The average mole fractions of the four gases CO₂,
282 CO, CH₄, N₂O are respectively 7.8 ppm, 127.5 ppb, 57.9 ppb, 0.61 ppb higher than the base

283 values. The air mass was mainly from northeast of China and then through Qingdao and
284 Yantai. The back-trajectories fall in two groups. One group, the majority, stays mostly above 2
285 km and a small group stays below 500 m. In this case we may have had fairly clean air that
286 picked up pollution at the end. The atmospheric CO₂ and CH₄ content observed at
287 Longfengshan regional station (Fig.9) located in the northeast of China is influenced all year
288 by anthropogenic emissions, and the mole fractions of CO₂ and CH₄ are higher in winter and
289 spring. (Fang et al., 2017). The higher variability data show the same pair-wise correlations as
290 the lower variability data for Δ CO₂, Δ CO, and Δ CH₄. The average enhancement of N₂O
291 appears to be the highest, 4.4 ppb. The emissions of anthropogenic sources, including
292 municipal solid waste, increased much in the northern provinces. Moreover, the landfill sites
293 have contributed more significantly to the N₂O emissions in recent years in China (Du et al.,
294 2017; Wang et al., 2017; Long et al., 2018).

295

296 3.3.5. *Shanghai/Nanjing/Qingdao/northeast*

297 The correlation relationships were relatively strong, all of them have R² above 0.8. Again
298 back-trajectories stay mostly above 2 km, but near the end they went through several big
299 cities of China. The air mass mainly went through the Yangtze River Delta (YRD) economic
300 development zone where the economy is developed and the population is dense. Moreover,
301 industrial emissions are mainly in Jilin and Liaoning provinces located in the northeast of
302 China. Therefore the anthropogenic source contributed most in this case.(Pu et al., 2012; Cai
303 et al., 2018). Moreover, Lixin Liu et al. found that the CO value at Shangdianzi (SDZ) station
304 which is located near Beijing was considerably higher than CO at Linan (LAN) station which

305 is located in the center of the YRD region in spring (Liu et al., 2018), which is consistent with
306 the observation in this study. The average mole fraction enhancements of the four gases CO₂,
307 CO, CH₄, N₂O in the lower variability case are respectively 8.6 ppm, 113.6 ppb, 51.2 ppb,
308 0.77 ppb higher than the base values. For the higher variability data CH₄ is especially higher
309 than the base value in this case, about 111.3 ppb. N₂O is also high, about 2.5 ppb higher than
310 the base line. The correlation relationships are also relatively significant in the high variability
311 case.

312

313 *3.3.6. East China Sea*

314 There are only lower variability data in this case. The R² values of the correlations between
315 the hourly data of ΔCO₂, ΔCH₄ and ΔCO were not as high, like in the Yellow Sea case. The
316 average mole fraction enhancements of the four gases CO₂, CO, CH₄, N₂O are respectively
317 4.9 ppm, 63.7 ppb, 42.8 ppb, 0.41 ppb higher than their corresponding base values. The ratios
318 between these average enhancements are similar to the Yellow Sea case, and are thus a
319 regional signature, not strongly polluted by any single source region.

320

321 *3.3.7. Taiwan*

322 For the lower variability data some of the correlation relationships are good, the R² are
323 above 0.8, but not for ΔCH₄/ΔCO₂, ΔCH₄/ΔCO and ΔN₂O/ΔCH₄, with R² values of about 0.36,
324 0.62 and 0.44 respectively. The average mole fraction enhancements of the four gases CO₂,
325 CO, CH₄, N₂O are respectively 8.6 ppm, 85.5 ppb, 44.6 ppb, 0.95 ppb higher than the base
326 values. The air came from Taiwan. The emissions of N₂O and CO₂ appear to be relatively

327 higher than the other two gas species. For the higher variability data the relationships of
328 $\Delta N_2O/\Delta CO$ and $\Delta CO/\Delta CH_4$ are well-defined. Compared to other source regions, the pollution
329 in Taiwan appears to be less than in several big cities in China, such as Beijing, Shanghai. The
330 research of Chang and Lee (Chang and Lee, 2007) has shown that the air quality in Taipei
331 City improved since 1994 according to the observation data from the monitoring stations
332 established by the Taiwan Environmental Protection Administration.

333

334 *3.3.8. Taiwan/Fuzhou/Wenzhou*

335 There are much fewer lower variability data than higher variability data. The correlations of
336 the data in this case are weak whether they are low or high variability data. The pollution
337 came from several big cities along the coast. The contaminated air mass was not mixed evenly
338 when it reached the measured point. The enhancement of CO_2 in this case is just below that
339 from the source region of Beijing/Jinan.

340

341 *3.3.9. Shanghai/Nanjing*

342 There are only lower variability data in pair-wise comparisons of ΔCO_2 , ΔCH_4 , ΔCO and
343 there are not enough data for ΔN_2O . The average mole fraction enhancements of the gases
344 CO_2 , CO , CH_4 are respectively 10.2 ppm, 105.4 ppb, 55.0 ppb higher than the base values.
345 The correlations of $\Delta CO_2/\Delta CO$, $\Delta CO/\Delta CH_4$ are much better. The higher variability data only
346 appear in the $\Delta N_2O/\Delta CO$ case, but there are only 6 data points. The correlation of $\Delta N_2O/\Delta CO$
347 is weak. There are high spikes of CO without high N_2O . In this case, the pollution was more
348 concentrated.

349

350 *3.3.10. North (Russia)*

351 The correlations are not strong for the lower variability case. The air mass came from the
352 North (Russia) and it also came from altitudes about 2 km. Near the end situation the altitude
353 became low, and the air mass may have been influenced by some cities in China. The average
354 mole fraction enhancements of the four gases CO₂, CO, CH₄, N₂O were respectively 8.6 ppm,
355 45.0 ppb, 52.0 ppb, 0.035 ppb higher than the base values. The ratios of the averages are on
356 average closer to north-south gradients observed in the MBL, compared to the Yellow Sea and
357 East China Sea. Compared with other source regions, the mole fractions of CO and N₂O in
358 this case were the lowest.

359

360 **4. Conclusions**

361

362 Using the NOAA HYSPLIT model, the data were assigned to ten different source regions,
363 which were mainly in North China and coastal cities of East China. We used two different
364 methods to calculate the enhancement ratios of every pair of the gases and found that the
365 enhancement ratio of $\Delta\text{CH}_4/\Delta\text{CO}$ is lower, and the enhancement ratio of $\Delta\text{CO}/\Delta\text{CO}_2$ is much
366 higher in big cities like Beijing and Shanghai mainly because of the high CO emissions in
367 these source regions in winter and early spring.

368 Compared with the MBL values of CO₂, CO, CH₄ and N₂O during the same time, the ratios
369 of the average enhancements when the air had stayed over the Yellow Sea and the East China
370 Sea for several days were caused by the emissions from the general region of Eastern China in

371 the spring. In this case the correlations of pairs of gases in every individual sample are weaker
372 than for the urban source regions. For the source region called North (Russia) the
373 enhancements ratios of the averages were on average closer to the MBL.

374 The methods used to calculate the enhancement ratios and the uncertainties of the ratios of
375 the enhancements of every pair of gases in this study can be used to compare with emissions
376 inventories as a completely independent check. Moreover, the observation data and the results
377 can be used for multi-species inverse estimates of the sources and sinks of greenhouse gases
378 (Pison et al., 2009; Wada et al., 2011). However, we want to emphasize that our observations
379 of enhancement ratios do not depend on inverse modeling. Carefully calibrated data stand on
380 their own, and will be “forever” if data management (archival) is handled correctly. We
381 recommend that our approach be carried out in other seasons, to provide more comprehensive
382 comparisons with emissions inventories.

383

384 **Acknowledgments**

385

386 This work was financially supported by the National Key Research and Development
387 Program of China (Grant No.2016YFA0601304), the International S&T Cooperation Program
388 of China (ISTCP: 2015DFG21960), the National Nature Science Foundation of China (Grant
389 No. 41505123), and the CAMS Fundamental Research Funds (2015Y002).

390 We wish to thank the crew of the Dongfanghong II for their support. We feel grateful to the
391 staffs at Beijing Huixin Space&Sky Technology Co., Ltd. (SST) for their technical support
392 about the Picarro analyzers on the ship. We are thankful to the Carbon Cycle Greenhouse

393 Gases Group at Earth System Research Laboratory, National Oceanic and Atmospheric
394 Administration (NOAA/ESRL) for guidance.

395

396

397 **References**

398

399 Boden, T., Andres, B., 2017. National CO₂ emissions from fossil-fuel burning, cement manufacture, and gas
400 flaring:1751-2014. http://cdiac.ess-dive.lbl.gov/ftp/ndp030/nation.1751_2014.ems.

401 Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I., Frankenberg, C., Hartmann, J.M., Tran, H.,
402 Kuze, A., Keppel-Aleks, G., Toon, G., Wunch, D., Wennberg, P., Deutscher, N., Griffith, D., Macatangay, R.,

403 Messerschmidt, J., Notholt, J., Warneke, T., 2011. Toward accurate CO₂ and CH₄ observations from GOSAT.
404 Geophys. Res. Lett. 38 (14), L14812.

405 Cai, B.F., Liang, S., Zhou, J., Wang, J.N., Cao, L.B., Qu, S., Xu, M., Y., Z.F., 2018. China high resolution emission
406 database (CHRED) with point emission sources, gridded emission data, and supplementary socioeconomic
407 data. Resour. Conserv. Recycl. 129, 232-239.

408 Chang, S.-C., Lee, C.-T., 2007. Evaluation of the trend of air quality in Taipei, Taiwan from 1994 to 2003. Environ.
409 Monit. Assess. 127 (1-3), 87-96.

410 Chen, H., Winderlich, J., Gerbig, C., Hoefer, A., Rella, C.W., Crosson, E.R., Van Pelt, A.D., Steinbach, J., Kolle,
411 O., Beck, V., Daube, B.C., Gottlieb, E.W., Chow, V.Y., Santoni, G.W., Wofsy, S.C., 2010. High-accuracy
412 continuous airborne measurements of greenhouse gases (CO₂ and CH₄) using the cavity ring-down
413 spectroscopy (CRDS) technique. Atmos. Meas. Tech. 3 (2), 375-386.

414 Cheng, S., An, X., Zhou, L., Tans, P.P., Jacobson, A., 2017. Atmospheric CO₂ at Waliguan station in China:

415 Transport climatology, temporal patterns and source-sink region representativeness. *Atmos. Environ.* 159,
416 107-116.

417 Crosson, E.R., 2008. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide,
418 and water vapor. *Appl. Phys. B* 93 (3), 403-408.

419 Daube, B.C., Boering, K.A., Andrews, A.E., Wofsy, S.C., 2002. A high-precision fast-response airborne CO₂
420 analyzer for in situ sampling from the surface to the middle stratosphere. *J. Atmos. Oceanic Technol.* 19 (10), 1532-1543.

421 Daube, B.C., Boering, K.A., Andrews, A.E., Wofsy, S.C., 2002. A high-precision fast-response airborne CO₂
422 analyzer for in situ sampling from the surface to the middle stratosphere. *J. Atmos. and Oceanic Technol.* 19
423 (10), 1532-1543.

424 Deng, F., Jones, D.B.A., Henze, D.K., Bousserez, N., Bowman, K.W., Fisher, J.B., Nassar, R., O'Dell, C., Wunch,
425 D., Wennberg, P.O., Kort, E.A., Wofsy, S.C., Blumenstock, T., Deutscher, N.M., Griffith, D.W.T., Hase, F.,
426 Heikkinen, P., Sherlock, V., Strong, K., Sussmann, R., Warneke, T., 2014. Inferring regional sources and sinks
427 of atmospheric CO₂ from GOSAT XCO₂ data. *Atmos. Chem. and Phys.* 14 (7), 3703-3727.

428 Ding, L.Y., Lu, Q.K., Xie, L.N., Liu, J., Cao, W., Shi, Z.X., Li, B.M., Wang, C.Y., Zhang, G.Q., Ren, S.X., 2016.
429 Greenhouse gas emissions from dairy open lot and manure stockpile in northern China: A case study. *J. Air
430 Waste Manage. Assoc.* 66 (3), 267-279.

431 Du, M.X., Peng, C.H., Wang, X.G., Chen, H., Wang, M., Zhu, Q., 2017. Quantification of methane emissions from
432 municipal solid waste landfills in China during the past decade. *Renew. Sustain. Energy Rev.* 78, 272-279.

433 Erler, D.V., Duncan, T.M., Murray, R., Maher, D.T., Santos, I.R., Gatland, J.R., Mangion, P., Eyre, B.D., 2015.
434 Applying cavity ring-down spectroscopy for the measurement of dissolved nitrous oxide concentrations and
435 bulk nitrogen isotopic composition in aquatic systems: Correcting for interferences and field application.
436 *Limnol. Oceanogr.: Methods* 13 (8), 391-401.

437 Fang, S.X., Zhou, L.X., Tans, P.P., Ciais, P., Steinbacher, M., Xu, L., Luan, T., 2014. In situ measurement of
438 atmospheric CO₂ at the four WMO/GAW stations in China. *Atmos. Chem. Phys.* 14 (5), 2541-2554.

439 Fang, S.X., Tans, P.P., Yao, B., Luan, T., Wu, Y.L., Yu, D.J., 2017. Study of atmospheric CO₂ and CH₄ at
440 Longfengshan WMO/GAW regional station: The variations, trends, influence of local sources/sinks, and
441 transport. *Sci. China Earth Sci.* 60 (10), 1886-1895.

442 Feely, R.A., Takahashi, T., Wanninkhof, R., McPhaden, M.J., Cosca, C.E., Sutherland, S.C., Carr, M.-E., 2006.
443 Decadal variability of the air-sea CO₂ fluxes in the equatorial Pacific Ocean. *J. Geophys. Res.* 111, C08S90.

444 Gomez-Pelaez, A.J., Ramos, R., Gomez-Trueba, V., Novelli, P.C., Campo-Hernandez, R., 2013. A statistical
445 approach to quantify uncertainty in carbon monoxide measurements at the Izana global GAW station:
446 2008-2011. *Atmos. Meas. Tech.* 6 (3), 787-799.

447 GUM 1995, Guide to the expression of uncertainty in measurement, BIPM JCGM 100:2008

448 Guo, M., Li, J., Xu, J., Wang, X., He, H., Wu, L., 2017. CO₂ emissions from the 2010 Russian wildfires using
449 GOSAT data. *Environ. Pollut.* 226, 60-68.

450 Han, J., Shin, B., Lee, M., Hwang, G., Kim, J., Shim, J., Lee, G., Shim, C., 2015. Variations of surface ozone at
451 Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows. *Atmos. Chem. Phys.*
452 15 (21), 12611-12621.

453 Junker, C., Wang, J.-L., Lee, C.-T., 2009. Evaluation of the effect of long-range transport of air pollutants on
454 coastal atmospheric monitoring sites in and around Taiwan. *Atmos. Environ.* 43 (21), 3374-3384.

455 Li, C.-X., Yang, G.-P., Wang, B.-D., Xu, Z.-J., 2016. Vernal distribution and turnover of dimethylsulfide (DMS) in
456 the surface water of the Yellow Sea. *J. of Geophys. Res. Oceans.* 121 (10), 7495-7516.

457 Li, Y., Du, W., Huisingsh, D., 2017. Challenges in developing an inventory of greenhouse gas emissions of Chinese
458 cities: A case study of Beijing. *J. Clean. Prod.* 161, 1051-1063.

459 Liang, Q., Jaegle, L., Jaffe, D.A., Weiss-Penzias, P., Heckman, A., Snow, J.A., 2004. Long-range transport of Asian
460 pollution to the northeast Pacific: Seasonal variations and transport pathways of carbon monoxide. *J. Geophys.*
461 *Res.* 109, D23S07.

462 Liu, L., Zhou, L., Zhang, X., Wen, M., Zhang, F., Yao, B., Fang, S., 2009. The characteristics of atmospheric CO₂
463 concentration variation of four national background stations in China. *Sci. China Ser. D-Earth Sci.* 52 (11),
464 1857-1863.

465 Liu, L., Tans, P.P., Xia, L., Zhou, L., Zhang, F., 2018. Analysis of patterns in the concentrations of atmospheric
466 greenhouse gases measured in two typical urban clusters in China. *Atmos. Environ.* 173, 343-354.

467 Long, X.E., Huang, Y., Chi, H.F., Li, Y.Y., Ahmad, N., Yao, H.Y., 2018. Nitrous oxide flux, ammonia oxidizer and
468 denitrifier abundance and activity across three different landfill cover soils in Ningbo, China. *J. Clean. Prod.*
469 170, 288-297.

470 Machida, T., Matsueda, H., Sawa, Y., Nakagawa, Y., Hirotani, K., Kondo, N., Goto, K., Nakazawa, T., Ishikawa, K.,
471 Ogawa, T., 2008. Worldwide Measurements of Atmospheric CO₂ and Other Trace Gas Species Using
472 Commercial Airlines. *J. Atmos. and Oceanic Technol.* 25 (10), 1744-1754.

473 Masarie, K.A. and P.P. Tans, Extension and integration of atmospheric carbon dioxide data into a globally
474 consistent measurement record, *J. Geophys. Res.* 100, 11593-11610, 1995. Updated at
475 www.esrl.noaa.gov/gmd/ccgg/mbl/

476 Moustafa, K., 2017. A clean environmental week: Let the nature breathe. *Sci. Total Environ.* 598, 639-646.

477 Peylin, P., Law, R.M., Gurney, K.R., Chevallier, F., Jacobson, A.R., Maki, T., Niwa, Y., Patra, P.K., Peters, W.,
478 Rayner, P.J., Roedenbeck, C., van der Laan-Luijkx, I.T., Zhang, X., 2013. Global atmospheric carbon budget:
479 results from an ensemble of atmospheric CO₂ inversions. *Biogeosciences.* 10 (10), 6699-6720.

480 Pison, I., Bousquet, P., Chevallier, F., Szopa, S., Hauglustaine, D., 2009. Multi-species inversion of CH₄, CO and

481 H₂ emissions from surface measurements. *Atmos. Chem. Phys.* 9 (14), 5281-5297.

482 Pu, J., Xu, H., Gu, J., Zhou, L., Fang, S., 2012. Study on the concentration variation of CO₂ in the background area
483 of Yangtze River Delta. *China Environ. Sci.* 32(6), 973-979. (in Chinese with English abstract).

484 Sakata, M., Ishikawa, T., Mitsunobu, S., 2013. Effectiveness of sulfur and boron isotopes in aerosols as tracers of
485 emissions from coal burning in Asian continent. *Atmos. Environ.* 67, 296-303.

486 Sawa, Y., Machida, T., Matsueda, H., 2012. Aircraft observation of the seasonal variation in the transport of CO₂ in
487 the upper atmosphere. *J. Geophys. Res.* 117, D05305.

488 Schuster, U., Watson, A.J., Bates, N.R., Corbiere, A., Gonzalez-Davila, M., Metzl, N., Pierrot, D., Santana-Casiano,
489 M., 2009. Trends in North Atlantic sea-surface fCO₂ from 1990 to 2006. *Deep-Sea Research II*. 56 (8-10),
490 620-629.

491 Sun, S.D., Jiang, W., Gao, W.D., 2016. Vehicle emission trends and spatial distribution in Shandong province,
492 China, from 2000 to 2014. *Atmos. Environ.* 147, 190-199.

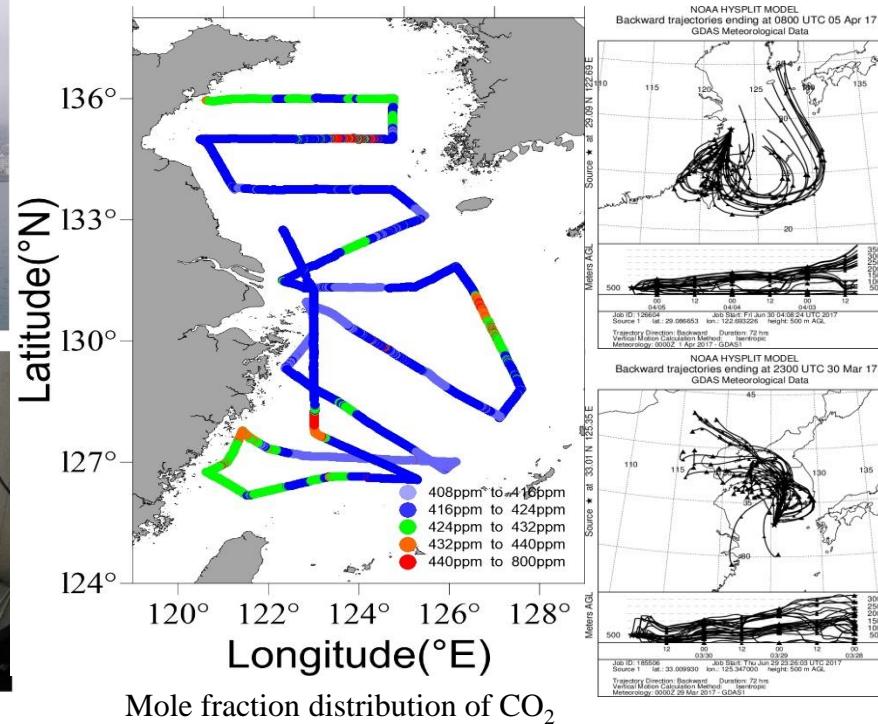
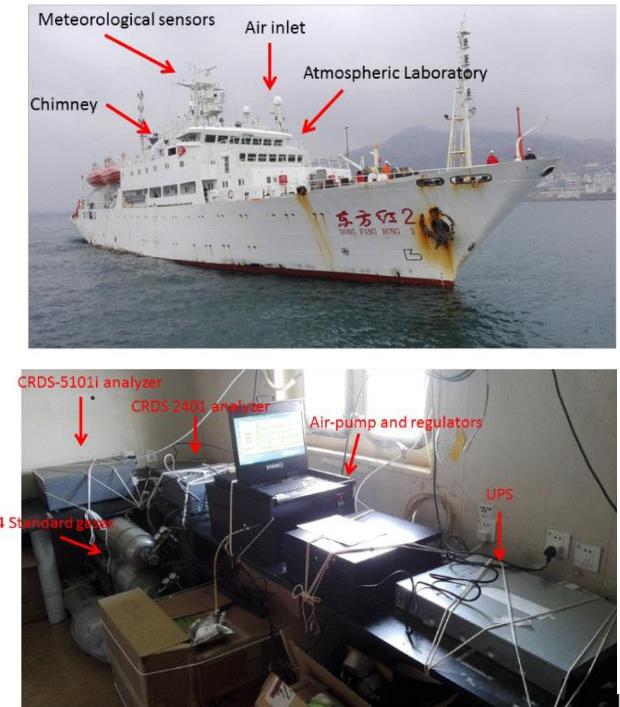
493 Suntharalingam, P., Jacob, D.J., Palmer, P.I., Logan, J.A., Yantosca, R.M., Xiao, Y.P., Evans, M.J., Streets, D.G.,
494 Vay, S.L., Sachse, G.W., 2004. Improved quantification of Chinese carbon fluxes using CO₂/CO correlations
495 in Asian outflow. *J. Geophys. Res.* 109, D18S18.

496 Tans, P., and C. Zellweger., 2014. Editors, 17th WMO/GAW Meeting on Carbon Dioxide, Other Greenhouse Gases
497 and Related Tracers Measurement Techniques. WMO/GAW Report, No. 213: 1-43.

498 Wada, A., Matsueda, H., Sawa, Y., Tsuboi, K., Okubo, S., 2011. Seasonal variation of enhancement ratios of trace
499 gases observed over 10 years in the western North Pacific. *Atmos. Environ.* 45 (12), 2129-2137.

500 Wada, A., Sawa, Y., Matsueda, H., Taguchi, S., Murayama, S., Okubo, S., Tsutsumi, Y., 2007. Influence of
501 continental air mass transport on atmospheric CO₂ in the western North Pacific. *J. Geophys. Res.* 112,
502 D07311.

503 Wang, X.J., Jia, M.S., Zhang, C.L., Chen, S.H., Cai, Z.C., 2017. Leachate treatment in landfills is a significant N₂O
504 source. *Sci. Total Environ.* 596-597, 18-25.



505 Wunch, D., Wennberg, P.O., Osterman, G., Fisher, B., Naylor, B., Roehl, C.M., O'Dell, C., Mandrake, L., Viatte, C.,
506 Kiel, M., Griffith, D.W.T., Deutscher, N.M., Velasco, V.A., Notholt, J., Warneke, T., Petri, C., De Maziere, M.,
507 Sha, M.K., Sussmann, R., Rettinger, M., Pollard, D., Robinson, J., Morino, I., Uchino, O., Hase, F.,
508 Blumenstock, T., Feist, D.G., Arnold, S.G., Strong, K., Mendonca, J., Kivi, R., Heikkinen, P., Iraci, L.,
509 Podolske, J., Hillyard, P., Kawakami, S., Dubey, M.K., Parker, H.A., Sepulveda, E., Garcia, O.E., Te, Y.,
510 Jeseck, P., Gunson, M.R., Crisp, D., Eldering, A., 2017. Comparisons of the Orbiting Carbon Observatory-2
511 (OCO-2) XCO₂ measurements with TCCON. *Atmos. Meas. Tech.* 10 (6), 2209-2238.

512 Zellweger, C., Emmenegger, L., Firdaus, M., Hatakka, J., Heimann, M., Kozlova, E., Spain, T.G., Steinbacher, M.,
513 van der Schoot, M.V., Buchmann, B., 2016. Assessment of recent advances in measurement techniques for
514 atmospheric carbon dioxide and methane observations. *Atmos. Meas. Tech.* 9 (9), 4737-4757.

515 Zhang, N., Bai, Z., Luo, J., Ledgard, S., Wu, Z., Ma, L., 2017. Nutrient losses and greenhouse gas emissions from
516 dairy production in China: Lessons learned from historical changes and regional differences. *Sci. Total
517 Environ.* 598, 1095-1105.

518 Zhao, J., Cui, W.H., 2014. Spatial and Temporal Distribution Characteristics of CO₂ Column Concentration in
519 China from 2009 to 2010. *J. Geo-information Sci.* 16(2), 207-213. (in Chinese with English abstract).

520

A ship-board continuously observation system was applied to observe the atmospheric distributions of CO₂, CO, CH₄ and N₂O over the Yellow Sea and the East China Sea and we obtained the high-precision data to analyze the source regions through the NOAA HYSPLIT Model and study the emission characteristics of these areas.