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ABSTRACT

A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Mea-

surement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part I of the FEX

algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use

multiple quantities— scattering ratios derived using elastic and nitrogen channel signals from two fields of

view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio—

to identify features using range-dependent detection thresholds. FEX is designed to be context sensitive

with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use

of multiple quantities provides complementary depictions of cloud and aerosol locations and allows for

consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be

particularly effective at detecting optically thin features containing nonspherical particles, such as cirrus

clouds. Improvements over the existing ARM RL cloud mask are shown. The performance of FEX is

validated against a collocated micropulse lidar and observations from the Cloud–Aerosol Lidar and In-

frared Pathfinder Satellite Observations (CALIPSO) satellite over the ARMDarwin, Australia, site. While

the focus is on a specific lidar system, the FEX framework presented here is suitable for other Raman or

high spectral resolution lidars.

1. Introduction

Remotely determining the vertical and temporal

structure of clouds and aerosols is essential for un-

derstanding atmospheric processes and the climate

system. Various remote sensors are used to charac-

terize the atmosphere, but only active instruments,

such as radars and lidars, can produce unambiguous

vertical profiles of cloud and aerosol properties.

While millimeter-wavelength radars (e.g., Clothiaux

et al. 2000; Hogan and Illingworth 2000; Stephens et al.

2002) are quite sensitive to clouds, lidars are needed to

detect the smallest of cloud particles and many optically

thin targets. In tandem with cloud radars, lidars are

needed to fully resolve radiative heating rate profiles

(Feldman et al. 2008; Yang et al. 2010; Thorsen et al.

2013a) and top-of-the-atmosphere fluxes (Haladay and

Stephens 2009; Borg et al. 2011; Sun et al. 2011).

Here we develop an algorithm for a Raman lidar to

objectively determine the vertical extent of clouds and

aerosols (particulates). The algorithm falls into the
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general category of a threshold-based method where an

estimate of a clear-sky signal is made and significant

returns above that are considered particulates. Varia-

tions of threshold methods have been widely used in the

analysis of elastic lidar signals (e.g., Winker and

Vaughan 1994; Clothiaux et al. 1998; Campbell et al.

2008; Vaughan et al. 2009). Raman lidars (RL; e.g.,

Goldsmith et al. 1998; Matthais et al. 2004) and high-

spectral-resolution lidars (HSRL; e.g., Hair et al. 2008;

Grund and Eloranta 1991) are relatively more advanced

lidars that intrinsically separate returns from molecules

and particulates. This work presents an algorithm de-

veloped for the Atmospheric Radiation Measure-

ment Program’s (ARM)Raman lidars that have operated

at the ARM Southern Great Plains (SGP) site near

Lamont, Oklahoma (36.618N, 97.498W); the tropi-

cal western Pacific (TWP) Darwin, Australia, site

(12.438S, 130.898E); and as part of the third ARM Mo-

bile Facility (AMF3) currently stationed in Oliktok

Point (OLI), Alaska (70.508N, 149.898W). The TWP

RL will soon be moved to the eastern North Atlantic

(ENA) site on Graciosa Island in the Azores (39.098N,

28.038W).

The ARM Raman lidar was originally conceived

with the goal of measuring water vapor profiles at a

high temporal and spatial resolution. Since the RL was

designed to be a continuously operated instrument,

automated algorithms were designed to process the

data with a focus on the retrieval of water vapor and

aerosol extinction profiles in the lower atmosphere

(Turner et al. 2002). While cloud observations were

originally considered of secondary importance for this

system, studies have demonstrated that ARM RL is ca-

pable of making high-quality cloud observations (Wang

and Sassen 2002; Dupont et al. 2011; Thorsen et al.

2013b). However, the identification of clouds is treated

in a simple manner in current ARM RL data products,

and many clouds, especially cirrus, are not identified

(Thorsen et al. 2013b).

To fully realize the potential of the ARM RL, we de-

velop an automated algorithm for feature detection and

extinction retrieval (FEX). The FEX algorithm objec-

tively identifies features (i.e., clouds and aerosols) and

retrieves their extinction profiles over the extent of the

troposphere. Complete details of the extinction profile

retrieval are given in Thorsen and Fu (2015, hereafter

Part II), while Part I here focuses on feature identifica-

tion. The intent is to run FEX operationally within the

ARMDataManagement Facility (DMF) with the output

being made available to the general user community via

the ARM website (http://www.arm.gov/).

The specifications of theARMRLare given in section 2.

Section 3a describes initial signal processing, and sections

3b–d detail how scattering and depolarization ratios

are determined as well as the process of calibration and

deriving overlap functions. Section 3e describes the

method used to detect features accompanied by exam-

ples. An assessment of how well FEX discriminates fea-

tures from clear sky is given in section 4. FEX is evaluated

using 4 yr of RL observations at Darwin, Australia, in

section 5 through comparisons to the original algorithm

and that from a collocated ARM micropulse lidar

(MPL; Campbell et al. 2002; Coulter 2012) and obser-

vations from the Cloud–Aerosol Lidar and Infrared

Pathfinder Satellite Observations (CALIPSO; Winker

et al. 2009, 2010). Summary and conclusions are given in

section 6.

2. The ARM Raman lidar

The RL at the SGP site has been in near-continuous

operation since 1998, and its basic design is described

in Goldsmith et al. (1998). This original system has

since evolved through various upgrades and modifi-

cations (Ferrare et al. 2006; Newsom 2009). Addi-

tional ARM RLs were deployed at the Darwin TWP

site in December 2010 and at the AMF3 OLI site in

October 2014, both with nearly the same design as the

SGP RL. Specifications of the ARM RL system and

the detection channels used in this work are given in

Table 1. The system contains channels for detection of

elastic as well as Raman-scattered light from nitrogen,

water vapor, and two temperature channels. Only the

elastic and nitrogen channels are used for this work.

Details concerning retrieval of water vapor are given

in Turner et al. (2002) and temperature in Newsom

et al. (2013). Backscattered returns are collected at a

vertical (temporal) resolution of 7.5m (10 s) in two

fields of view (FOV): a narrow FOV (NFOV; referred

to as the ‘‘high channels’’) and a wide FOV (WFOV;

referred to as the ‘‘low channels’’). The high-elastic-

channel signal is split into copolarized and cross-

polarized signals. For convenience, the prefix ‘‘high’’

is dropped when referring to the high-channel signals,

while the prefix ‘‘low’’ will be included when referring

to low-channel signals.

3. Feature detection algorithm

FEX’s feature detection centers around the applica-

tion of signal detection theory (e.g., Kingston 1978). In

the presence of noise, the problem of determining if a

signal contains a contribution from particulates becomes

that of comparing two probability distributions. This is

shown schematically in Fig. 1, where an expected

1978 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:08 PM UTC

http://www.arm.gov/


molecular signal (m) with noise sm is given in blue and

the measured signal (S) with noise sS is given in red. In

the presence of noise the detection threshold (t) is set

at a value larger than expected from a purely molecular

signal—in this case, one standard deviation away from

the expected molecular signal. In addition to setting a

threshold, an important consideration is the suppression

of false detections. In this work, this is partially accom-

plished by calculating the overlap between the Pm and

PS probability distributions (i.e., the purple region Po in

Fig. 1). The essential components of feature detection

are all given in Fig. 1—given the signal measured by the

lidar, we need to determine 1) the noise in the measured

signal, 2) the expected molecular signal, and 3) the noise

in the expected molecular signal. From this we set a

threshold and assess whether a true feature was

detected.

a. Initial processing

FEX starts by first noting the times when automated

or manual alignment ‘‘tweaks’’ (i.e., adjustments) are

made from the instrument log files [automated align-

ment tweaks (Turner et al. 2002) were performed only

prior to an upgrade in 2007 (Newsom 2009)]. Typically,

manual tweaks are performed about once each day and

automated tweaks occur every few hours.

The main input into our feature detection algorithm

is the MERGE product (Newsom et al. 2009), which is

routinely produced as part of the ARM archive (http://

www.archive.arm.gov). MERGE applies dead-time

corrections and combines raw analog voltages and dead-

time-corrected photon-counting data signals into a single

profile by converting the analog signals to an equivalent

photon count rate. FEX converts the MERGE photon

count rate data into photon counts Ŝi for each channel.

The subscript i throughout this paper is used to denote

the respective channels considered in Table 1. Photon

counts at their native 10-s and 7.5-m resolution are then

accumulated (summed) into their desired time and height

bins—in this study we primarily use 2min and 30m—to

improve the signal-to-noise ratio (SNR).

Random noise in lidar signals is contributed from two

main sources: 1) background noise due to solar radia-

tion, detector dark current, and thermal noise; and

2) shot noise. Background noise is range independent

and measured by the ARM RL system with pretrigger

samples—that is, samples taken for;15ms (;300 height

bins of 7.5-m height) before the laser fires. Shot noise is

the uncertainty associated with the arrival of photons on

the detector due to the discrete nature of the incident

light. The uncertainty due to shot noise is well described

by a Poisson distribution (Oliver 1965), making it

straightforward to calculate since the standard deviation

is equal to the square root of the signal intensity.While it

is possible that excess noise beyond background and

shot noise may be present, no attempt is made to de-

termine its potential impact. Using the RL at SGP,

Wulfmeyer et al. (2010) found this assumption to be a

reasonable one since water vapor mixing ratio noise

profiles from various methods agreed well with those

estimated using Poisson statistics.

The pretrigger samples, at the native 10-s and 7.5-m

resolution, are used to determine the background signal

in the 2-min and 30-m data:

B
i
5

n
h

n
pt

�
nt

k51
�
npt

j51

Ŝ
pt
i ( j,k) , (1)

where Ŝpt are the pretrigger signals, nh is the number of

height bins accumulated (nh 5 4), nt is the number of

FIG. 1. Schematic comparison of the (left) expected molecular

signal to (right) the signal measured by the lidar.

TABLE 1. Specifications of the ARM RL transmitter and receiver

channels used for feature detection in this study.

Transmitter

Laser Frequency-tripled Nd:YAG

Wavelength 355 nm

Pulse energy ;300mJ

Pulse width ;5 ns

Pulse repetition frequency 30Hz

Receiver

Telescope 61 cm

FOV (wide) 2mrad

FOV (narrow) 0.3mrad

Data acquisition Simultaneous analog– photon

counting

Pulse accumulation time 10 s

Range resolution 7.5m

Channels (0.3-nm bandpass filters)

High elastic parallel–Sl0,k 355 nm copolarized, narrow

FOV

High elastic perpendicular–

Sl0,?
355 nm cross-polarized, narrow

FOV

High nitrogen–SlN2
387 nm, narrow FOV

Low elastic–SL
l0

355 nm, wide FOV

Low nitrogen–SL
lN 2

387 nm, wide FOV
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time bins accumulated (nt 5 12), and npt is the number of

pretrigger samples (npt ’ 300). The 2-min and 30-m

background-subtracted photon count profiles are then

obtained from

S
i
(z)5 �

nt

k51
�

‘01nh21

‘5‘0
Ŝ
i
(‘, k)2B

i
, (2)

where z corresponds to the middle height of the bins

being accumulated starting from height ‘0.
The range-independent background noise for each

10-s profile k is computed as the standard deviation of

the pretrigger samples:

u
i
(k)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
pt

�
npt

j51

[Ŝ
pt
i ( j, k)2 Ŝ

pt
i ( j, k)]

2

vuut , (3)

where the overbar denotes the mean over all pretrigger

samples. Equation (3) is then used to calculate the

background noise in data accumulated to 2min and

30m:

s
B,i

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
h �

nt

k51

u2i (k)

s
. (4)

The range-dependent shot noise is then calculated in

each channel:

s
s,i
(z)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
i
(z)1B

i

q
, (5)

whereSi is the background-subtracted photon counts in the

2-min and 30-mdata. The total randomnoise is determined

by adding the shot and background noise in quadrature:

s
i
(z)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
s,i(z)1s2

B,i

q
. (6)

Finally, the signal-to-noise ratio is calculated as

SNR
i
(z)5

S
i
(z)

s
i
(z)

. (7)

b. Scattering and depolarization ratios

Following the development by Measures (1984),

the lidar equation for a background-subtracted signal

due to elastic backscattering can be written as

S
l0
(z)5 n

l0

S
0

z2
O

l0
(z)[b

m,l0
(z)

1b
p,l0

(z)]T2
m,l0

(0, z)T2
p,l0

(0, z) , (8)

where Sl0 (z) is the number of photons received from

height z, nl0 is the system constant incorporating all

the lidar parameters that describe the characteristics

of the optics and detectors, S0 is the number of

transmitted photons, and O(z) is the overlap function

that describes the overlap between the laser beam and

receiver’s FOV. Quantities bm,l0
(z) and bp,l0

(z) are the

molecular and particulate backscatter coefficients,

respectively. Terms Tm,l0 (0, z) and Tp,l0 (0, z) are the

transmission due to molecules and particulates, re-

spectively, which, for a zenith-pointing lidar like the

ARM RL, are

T
m,l0

(0, z)5 exp

�
2

ðz
0

a
m,l0

(z0) dz0
�

(9)

and

T
p,l0

(0, z)5 exp

�
2

ðz
0

a
p,l0

(z0) dz0
�
, (10)

where am,l0 (z) and ap,l0 (z) are the molecular and par-

ticulate extinction coefficients, respectively.

For the signal in the nitrogen Raman channels, which

contains only backscatter due to nitrogen molecules, the

lidar equation can be written as

S
lN2

(z)5 n
lN2

S
0

z2
O

lN2

(z)b
N2,lN2

(z)T
m,l0

(0, z)T
p,l0

(0, z)T
m,lN2

(0, z)T
p,lN2

(0, z) . (11)

Compared with Eq. (8), extra transmission terms are

needed to account for the different wavelength of the

return signal. In Eqs. (8) and (11), the molecular back-

scatter terms, bm,l0
(z) and bN2,lN2

(z), can be expressed in

terms of the molecular number concentration:

b
m,l0

(z)5N(z)
ds

Ra

dV
p

(12)

and

b
N2,lN2

(z)5w
N2
N(z)

ds
Rm

dV
p

, (13)

where N(z) is the molecular number profile; wN2
is the

nitrogen mixing ratio; and dsRa/dVp and dsRm/dVp are

the differential backscatter cross sections for Rayleigh

and nitrogen Raman scattering, respectively. Equations
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(8) and (11) ignore the temperature dependence of the

Rayleigh and nitrogen Raman backscattering, as it is

very small for the narrow filter widths of the RL and a

laser wavelength of 355 nm (Whiteman 2003a). The

influence of multiple scattering is also not accounted

for [i.e., Eqs. (8) and (11) assume that the transmitted

photons and the atmosphere undergo a single inter-

action]. However, FEX does explicitly consider multi-

ple scattering effects in these equation, but the details

of this are discussed in Part II of this work.

To identify signals greater than expected from clear

sky, we use the scattering ratio:

SR(z)5
b
p,l0

(z)1b
m,l0

(z)

b
m,l0

(z)
, (14)

defined as the ratio of the total (molecular and particu-

late) backscatter to the backscatter from just molecules.

Since the elastic channel signal contains contributions

from both molecular and particulate scattering and the

nitrogen channel signal is a function of molecular scat-

tering only, a scattering ratio can be formed by combining

Eqs. (8) and (11) (Cooney et al. 1969; Melfi 1972). The

expression for the scattering ratio defined in Eq. (14)

using the high channels can be written as

SR
E,N2

(z)5C
E,N2

O
lN2

(z)

O
l0
(z)

T
m,lN2

(0, z)

T
m,l0

(0, z)

S
l0,?

(z)1 S
l0,k

(z)

S
lN2

(z)

3 exp

8<
:
ðz
0

a
p,l0

(z0)

2
412

 
l
0

l
N2

!a(z0)
3
5dz0

9=
; ,

(15)

where Sl0,? and Sl0,k are the signals in the high perpen-

dicular and parallel channels, respectively; and a is the

Ångström exponent. The subscripts E, N2 are used to

denote that this scattering ratio is derived by using both

the elastic and nitrogen channel signals, respectively.

The quantity CE,N2
is a calibration constant,

C
E,N2

5

�
w

N2

ds
Rm

dV
p

n
lN2

� �
ds

Ra

dV
p

n
l0

�
.

�
(16)

An example of the scattering ratio derived using the

elastic and nitrogen channels is given in Fig. 2a for the

high-channel signals. Separate system constants are not

FIG. 2. (a) Scattering ratio derived using the elastic and nitrogen channels, (b) scattering ratio derived using the low

elastic and nitrogen channels, (c) scattering ratio derived using only the elastic channel, and (d) the depolarization

ratio after the final iteration of FEX for 24 Dec 2010 at Darwin.
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used for the high parallel and perpendicular channels

because any difference between the two channels has

already been accounted for as shown in the appendix.

Separate overlap functions are not derived for the high

parallel and perpendicular channels either as discussed

in section 3c. The exponential term accounts for the

differential particulate transmission between the elastic

and nitrogen channels. For cloudy bins, this term is ap-

proximately 1 since the Ångström exponent a’ 0. How-

ever, the same cannot be assumed for aerosols. Therefore,

collocated Cimel sun photometer data (Holben et al. 1998)

are used to determine the aerosol Ångström exponent.

Using multiple years of data (1996–2007 at SGP and 2004–

07 at Darwin), the medianÅngström exponent at both the

SGP and Darwin sites is 1.35 between 340 and 380nm

(with a standard deviation of 0.53 and 0.49 at Darwin and

SGP, respectively). FEX’s classification of feature type,

described in Part II, separates clouds and aerosols, allowing

the properÅngström exponent to be assigned in each bin.

The differential transmission due tomoleculesmust also be

taken into account in calculating this scattering ratio. These

molecular transmission terms are calculated following

Bucholtz (1995) using pressure and temperature profiles

from radiosondes, launched at least twice daily at all ARM

facilities, which are linearly interpolated to the heights and

times of the lidar profiles.

Similarly, we construct a scattering ratio using the low

elastic and nitrogen channels as

SRL
E,N2

(z)5CL
E,N2

OL
lN2

(z)

OL
l0
(z)

T
m,lN2

(0, z)

T
m,l0

(0, z)

SL
l0
(z)

SL
lN2

(z)

3 exp

8<
:
ðz
0

a
p,l0

(z0)

2
412

 
l
0

l
N2

!a(z0)
3
5dz0

9=
; ,

(17)

where the superscript L is used to denote the low

channel. Figure 2b gives an example of this scattering

ratio below 9km since the ARM RL does not record

low-channel signals above that height. At the expense of

increased random noise and multiple scattering, using

the low-channel signals has the benefit of achieving

complete overlap sooner (i.e., at a lower height above

the system), allowing for a more accurate scattering ra-

tio in the near field than the high channels. For theARM

RL, the high channels achieve complete overlap by 5 km

and the low channels by 800m (Goldsmith et al. 1998).

After determining the calibration constants and over-

lap functions (sections 3c and 3d), the scattering ratio

using Eqs. (15) and (17) can be calculated. An advantage

of deriving a scattering ratio using both the elastic and

nitrogen channel signals is that, for a perfect optical

system, the ratio of the two overlap functions is unity,

though in practice there is usually some residual amount

of overlap effects (e.g., Whiteman 2003b). Nevertheless,

taking the ratio of the two overlap functions helps re-

duce the impact of incomplete overlap. While the dif-

ferential molecular transmission is straightforward to

account for using radiosonde observations, determining

the differential aerosol transmission term requires an

identification of aerosol, and the retrieval of the aerosol

extinction profile and Ångström exponent. However,

the differential aerosol transmission term is typically

small (Whiteman 2003b). Therefore, even large errors

in this term introduce minimal uncertainty to the

scattering ratio. For the Darwin RL we find mean

corrections for differential aerosol transmission rang-

ing from 0% to 2% from 0 to 18 km. The more accu-

rately constrained correction for differential molecular

transmission ranges from 0% to 18% from 0 to 18 km.

As shown in section 4, using SRE,N2
and SRL

E,N2
for

feature detection is limited by the relatively weak

Raman scattering process.

To produce a quantity with the smallest amount of

random noise possible, the scattering ratio can also be

derived using only the elastic channel signal. This is

commonly done for single-channel elastic backscatter

lidars for the purpose of feature detection (e.g., Winker

and Vaughan 1994; Campbell et al. 2008; Vaughan et al.

2009) since Rayleigh scattering can be accurately mod-

eled (e.g., Bucholtz 1995). The scattering ratio using

only the elastic channel can be written as

SR
E
(z)5C

E

S
l0,?

(z)1 S
l0,k

(z)

S
0

z2
O

l0
(z)N(z)T2

m,l0
(0, z)T2

p,l0
(0, z)

, (18)

where

C
E
5 1

��
ds

Ra

dV
p

n
l0

�
. (19)

Note that we do not derive the scattering ratio using only

the low elastic channel, as doing so identified few addi-

tional cloud or aerosol layers.

An example of the scattering ratio derived using only

the elastic channel is shown in Fig. 2c. An accurate es-

timate of the full profile of cloud and aerosol extinction

coefficients [i.e., the Tp,l0 term in Eq. (18)] is crucial in

determining the scattering ratio in this way. In addition

there is no cancellation of overlap effects, which occurs

if both the elastic and nitrogen channels are used. De-

spite these limitations, deriving the scattering ratio using

only the elastic channel results in a higher SNR. This is

apparent when comparing SRE in Fig. 2c to SRE,N2
in
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Fig. 2a, where the upper portion of the daytime ice cloud

layer after 2100 UTC becomes overwhelmed by noise in

SRE,N2
but is clearly visible in the SRE image.

With the ARM RL it is also possible to identify fea-

tures using the linear volume depolarization ratio:

d(z)5
S
l0,?

(z)

S
l0,k

(z)
. (20)

An example false-color image of depolarization is given

in Fig. 2d. The depolarization ratio has the benefit of not

depending on extinction as well as using only the elastic

channel signals. But it is limited to identifying particulates

that induce a depolarization, that is, nonspherical particles

like ice and some aerosols (Sassen 1991; Gobbi 1998;

Murayama et al. 2001; Sassen 2002) and liquid clouds that

induce a significant amount ofmultiple scattering (Carswell

and Pal 1980; Sassen 1991).

The four ratios given in Eqs. (15), (17), (18), and (20)

(Fig. 2) are used for identifying features from 0 to 20km

and, as discussed above, each quantity has specific ad-

vantages and disadvantages. Therefore, each quantity is

analyzed separately with the expectation that taken as a

whole they will be complementary and provide a more

complete description of the vertical extent of clouds and

aerosols. To calculate these ratios, calibration constants

must be determined using clear-sky regions where the

ratios have known values. One can readily see that the

problem at hand is circular since clear sky must be used

to calibrate these quantities, but clear sky cannot be

identified without the calibrated quantities themselves in

our framework. In addition, we also require the particulate

extinction profile, but we first must identify where the

particulates are. Therefore, FEX is an iterative algorithm

as illustrated in Fig. 3: going through the process of de-

termining overlap functions (section 3c), calibrating (sec-

tion 3d), calculating ratios (this section), calculating the

expected molecular signals and identifying features (sec-

tion 3e), and retrieving extinction (described in Thorsen

and Fu 2015). These steps are then repeated utilizing the

feature mask and extinction profiles from the previous it-

eration. Iterations continue until less than 0.1% of all

pixels in the feature mask change relative to the previous

iteration (typically six to seven iterations).

c. Overlap functions

Following Wandinger and Ansmann (2002), a single

low-channel overlap function is derived by assuming

that the low-elastic and nitrogen-channel overlap func-

tions are equal. Besides this assumption, the accuracy of

this method relies on knowledge of the extinction pro-

file. Therefore, only bins where the particulate trans-

mission is greater than 0.9 are used to ensure the relative

contribution of extinction errors remains small. In ad-

dition, only bins with ‘‘good’’ signal are used, which are

defined as regions where the SNR [Eq. (7)] is greater

than 3.

High-elastic and nitrogen-channel overlap functions

are determined by similar methods to those described in

Turner et al. (2002). The overlap-corrected low-channel

signals are used to derive the high-channel overlap

functions by taking the median value of the ratio be-

tween them in each height bin. The ratio of the signals

above the height of complete overlap is used to calibrate

FIG. 3. Flow diagram for feature detection in the FEX algorithm.
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the overlap function. Only good signals where the scat-

tering ratio is less than 2 are used sincewe expect the signal

in each channel to be proportional only when multiple

scattering is small. Functions are computed at each height

bin where suitable signals exist in at least 10% of the

profiles in the period between tweaks. The standard de-

viation at each height bin is also required to be less than

30% of the median value. Height bins failing these re-

quirements use an overlap function calculated using all

signals for the current day being processed. When per-day

values cannot be used, historical per-day values are used to

determine the mean overlap function from the previous

7 days. Historical functions are also used during the first

iteration, when no estimate of particulate transmission or

scattering ratio exists to select the appropriate bins. Since

separate polarization components are not measured in the

low channels, the same overlap function is used for both

the high parallel and perpendicular channels.

d. Calibration constants

Calibration constants are determined for the scattering

ratios by solving for the respective constants in Eqs. (15),

(17), and (18) using clear-sky bins (where the scattering

ratio is 1) identified in FEX’s feature mask. In addition,

only good signals are used to solve for constants. An

additional calibration constant, CL
l0
, is calculated to

match the low-elastic-channel signal to the high-elastic-

channel signal (needed for the threshold calculation; see

section 3e). For CL
l0
, in addition to clear-sky signals, sig-

nals where the scattering ratio is less than 2 are used.

All constants are determined by taking the median

value over multiple bins at varying resolutions. Starting

with the coarsest level, constants are determined per

day, per-tweak period, and per profile. The per-profile

values are used to obtain other per-profile constants by

interpolating. A summary of the height regions and rules

used to determine when each type of calibration type is

performed is given in Table 2. When no suitable signal

exists to derive any type of calibration constant, a data-

base of historical values are used to determine the mean

constant over the previous 7 days. Historical constants

are always used during the first iteration of FEX since no

feature mask exists yet to determine what signals are

clear sky. As indicated in Table 2, height bins above the

height of complete overlap are typically used to calculate

constants. The lowest height bin used (zmin) also depends

on the current iteration being performed with

zmin 5

8>><
>>:
20 km2 n

I

(20 km2 zmin
0 )

nmin
I

if n
I
# nmin

I

zmin
0 if n

I
. nmin

I

, (21)

where nI is the current iteration, nmin
I is the minimum

number of iterations to be performed (nmin
I 5 4), and zmin

0

is the absolute lowest height bin used for calibration as

given in Table 2. Equation (21) helps minimize cali-

bration bias by initially using the highest heights possi-

ble for calibration. This reduces the possibility that

as-yet-undetected aerosol will bias the constants.

Table 3 gives the percentage of profiles for the ARM

Darwin RL from December 2010 through December

2014 by calibration type: historical, per day, per tweak,

interpolated, and per profile. For both high-channel

scattering ratios, the majority of profiles, about 77%,

are able to use a per-profile calibration constant. For

CE,N2
, the uncertainties in the per-tweak- and per-

profile-derived values are about 6%. A similar un-

certainty exists in the per-profile calculation of CE.

However, when CE is determined per tweak the un-

certainty is larger (;16%). This larger per-tweak un-

certainty is due to the additional uncertainty from the

particulate transmission in each profile below the

heights used for calibration. When a per-profile cali-

bration is made, any bias in the transmission below the

TABLE 2. Hierarchy of calibration types and height regions used by FEX. Calibrations constants are taken as the median over all

samples and interpolated constants are obtained using a smoothing spline interpolant. The.2-km and.5-km height regions are not used

for deriving CL
l0

and CL
E,N2

, respectively. Before the minimum number of iterations (i.e., nmin
I 5 4) is reached, the height regions are

increased as described in the section 3d. Also given is the multiplicative factor used to modify the probability P threshold used by the

spatial filter to reduce false detections.

Preference

ranking

Height region

(zmin
0 ; km) Resolution Requirements

Spatial filter

factor

1 .5 Per profile 1 km of bins in profile 1

2 — Interpolated Gap smaller than 3 h in .5-km per-profile constants 1

3 .2 Per profile 1 km of bins in profile 1

4 .5 Per tweak Number of bins . 1 km 3 25% of profiles in tweak period 1

5 .2

6 .5 Per day Number of bins . 1 km 3 25% of profiles in day 1025

7 .2

8 — Historical — 1025
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calibration height is absorbed by the calibration con-

stant. For calibration constants that use low channels, a

per-profile constant is used for about 60% of the time.

The larger amount of random error in the low-channel

signals results in larger uncertainties (;13%). Both the

per-day and historical constants exhibit similar un-

certainties to the per-tweak value, indicating that the

calibration of the TWP system is quite stable even when

alignment tweaks are performed.

e. Feature identification

As illustrated in Fig. 1, to determine if a feature is

present in any of the four ratios introduced in the

previous section, the expected clear-sky ratio and its

noise must be calculated. The expected clear-sky ratio

is straightforward since, after calibration, we expect a

scattering ratio of 1 and a depolarization of 0.4% (see

the appendix). The expected clear-sky noise in each of

the ratios is calculated as follows. First, Sm
i (z) is calcu-

lated, that is, the signal expected in each channel just

due to molecular backscatter. This quantity is de-

termined using the appropriate lidar equation for each

channel [Eqs. (8) and (11)] by setting bp,l0
5 0 and

evaluating all other terms. The product of all constants

needed (i.e., n, wN2
, ds/dVp) can be determined from

the previously determined calibration constants (CE,N2
,

CL
E,N2

, CE, CL,l0 ). Molecular scattering terms (bm, Tm)

are calculated following Bucholtz (1995) using pressure

and temperature profiles from interpolated radio-

sondes profiles. FEX’s retrieval of particulate extinc-

tion (described in Part II) is used to evaluate the

particulate transmission terms (Tp) in each channel’s

lidar equation. The wavelength dependence of the

particulate transmission between the elastic and ni-

trogen channels is accounted for using a climatological

value of the aerosol Ångström exponent as described

section 3b.

The random noise of each channel’s expected mo-

lecular signal is calculated by combining Eqs. (5) and (6)

but with themeasured signal in those equations replaced

by the expected molecular signal:

s
Sm
i

(z)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sm
i (z)1B

i
1s2

B,i

q
. (22)

The expected molecular signal (Sm
i ) and random noise

(sSm
i
) in each channel are then used to determine the

expected clear-sky noise in each of the ratios by prop-

agation of uncertainty (e.g., Bevington and Robinson

2002). The ratios in Eqs. (15), (17), (18), and (20) for

molecular signals follow the general form

rm(z)5A(z)
Sm
1 (z)1 Sm

2 (z)

Sm
3 (z)

, (23)

where Sm
1 , S

m
2 , and Sm

3 represent the expected molecular

signal in the channels needed to form the various ratios.

The quantity A(z) contains all other terms in the ratio

that have negligible random noise in comparison to the

signal noise. For purely molecular signals rm(z)5 1 and

rm(z)5 0:004 for the scattering and depolarization ratio,

respectively. By propagation of uncertainty, the noise in

Eq. (23) is

s
rm
(z)5 rm(z)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Sm
1
(z)1s2

Sm
2
(z)

[Sm
1 (z)1 Sm

2 (z)]
2
1

s2
Sm
3
(z)

[Sm
3 (z)]

2

vuut . (24)

A threshold profile is then defined for each ratio as

t(z)5 rm(z)1s
rm
(z) . (25)

Portions of the measured ratio profiles that exceed the

threshold profile t(z) are identified as potential features—

that is, values greater than one standard deviation from the

expected clear-sky ratio are considered to potentially

contain a feature.

An example application of these threshold profiles is

given in Fig. 4 for the profile at 1958:00 UTC in Fig. 2.

For SRE (Fig. 4c), the need for an accurate estimate of

particulate extinction can be seen by comparing the

initial profile of SRE (gray line) with the final profile of

SRE (black line). In the initial profile, where no extinc-

tion estimate is available, the value of SRE falls well

below the expected clear-sky value of 1 once the cloud

TABLE 3. The percentage of profiles by the calibration type used from December 2010 through December 2014 at Darwin. The mean

relative uncertainties (%) in the calibration constants are given in parentheses. Uncertainties are computed by taking the standard

deviation in each per-day, per-tweak, or per-profile region. The uncertainty in the historical calibration constants are determined by

repeatedly (10 000 times) randomly sampling 7 days of per-profile constants, and in each random sample calculating the sum (in quad-

rature) of the standard deviation of the per-profile values and the mean standard deviation in the per-profile values themselves.

Historical Per day Per tweak Interpolated Per profile

CE 0.4 (23.8) 0.3 (10.1) 10.2 (16.4) 13.5 75.6 (5.9)

CE,N2
0.4 (7.2) 0.4 (5.5) 9.8 (6.1) 12.8 76.6 (6.3)

CL
l0

3.9 (16.3) 0.8 (15.0) 12.2 (14.3) 20.9 62.3 (12.7)

CL
E,N2

1.7 (11.5) 1.1 (11.9) 24.8 (11.4) 14.5 57.9 (10.2)
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layer above 10km is encountered. As indicated by the

color bar in Fig. 4c, this causes portions of the cloud

layers to go undetected since SRE falls below the

threshold profile (dashed blue). By the final iteration,

when an extinction estimate exists, SRE does not rapidly

decrease above 10km and the full extent of the cloud

layer is detected. Particulate extinction also impacts the

threshold itself, which is particularly apparent in Figs. 4a

and 4d. The values of SRE,N2
and d remain largely un-

changed from the initial to the final iterations since both

iterations are mostly independent of extinction, and an

accurate historical calibration was available on the first

iteration. Above ;16km, SRE,N2
and d exceed their ini-

tial thresholds (dashed blue) at many heights although it

is apparent that this is just noise. The thresholds on the

final iteration (solid blue) increase relative to the initial

threshold above the cloud layer base at 10 km due to the

influence of extinction. It is apparent that more accurate

thresholds are obtained on the final iteration since above

;16km the thresholds follows the envelope of the

noise well.

The need for an iterative process is illustrated by

forcing an initial calibration bias of 10% in SRE in

Fig. 4c. This high bias causes a large portion of the

profile in the region to be identified as containing a

potential feature since the threshold profile only ac-

counts for random uncertainty. By the final iteration, the

calibration of SRE is improved and many of the falsely

FIG. 4. The initial threshold (dashed blue) and final threshold (solid blue) for the profile at 1958:00UTC in Fig. 2 for

the (a) scattering ratio derived using both the elastic and nitrogen channel signals, (b) scattering ratio derived using

both the low-elastic-and-nitrogen-channel signals, (c) scattering ratio derived using only the elastic channel, and

(d) the depolarization ratio. Both the initial profiles (i.e., the first iteration, gray line) and final profiles (i.e., the final

iteration, black line) are given. Potential features identified in these ratios on the initial and final iterations are noted

by the color in the bars on the right-hand side of each panel; features that have been determined to be false detections

are denoted by yellow and true features denoted by blue. For reference, the expected clear-sky ratio is given as

a dashed red line. Note that the scale of the x axis in each panel is nonlinear.
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detected features are gone. However, on the final itera-

tion, portions of the SRE profile exceeding the threshold

still exist, which are obviously just excursions above the

threshold due to random noise. This is expected since, if

the noise is assumed to beGaussian distributed, there is a

;16% probability that a measured ratio will be above a

one standard deviation threshold solely due to random

noise and is therefore a false detection.

To reduce the rate of false detections due to random

noise, the overlap between the expected molecular

signal and measured signal—that is, the purple regions

in Fig. 1—is used. In establishing the threshold profile,

the expected ratio and noise in a clear-sky signal has

already been determined [Eq. (23) and (24)]. The noise

in the measured ratio is calculated by propagation of

uncertainty similar to that given in Eq. (24) except that

the measured signal and related noise are used in place

of the expected molecular signal. Assuming the noise is

Gaussian distributed, the overlap probability can then

be determined as

P
o
(z)5

1ffiffiffiffiffiffi
2p

p
ð1‘

2‘

min

*
exp

(
2
[x2 rm(z)]2

2s2
rm(z)

)

s
rm
(z)

;

exp

(
2
[x2 rS(z)]2

2s2
rS
(z)

)

s
rS
(z)

+
dx , (26)

where rS is the measured ratio, srS is the noise in the

measured ratio, and min indicates using the minimum

value of the two probability density functions. Unlike

the threshold profile [Eq. (25)], the quantity in Eq. (26)

accounts for the uncertainty of measured signal relative

to the expected clear-sky signal. The amount of false

detections that results from applying the threshold

profile is reduced by constructing a spatial filter using

Eq. (26). We expect the feature occurrence to be highly

spatially correlated over a 90-m by 6-min window (three

range bins by three time bins) centered on a bin

containing a potential feature. Assuming the noise is

independent in each range and time bin, the overlap

probability in this window is

P5P
9

j51

P
o
( j) . (27)

If a true feature is present, then we also expect the

surrounding bins in this box to contain a feature;

therefore, the probability P in this 90-m by 6-min box

should be low. For pixels identified as a potential fea-

ture, if P is greater than the empirically determined

value of 1024, then the pixel is changed to clear sky.

The threshold profiles and spatial filter consider only

sources of random noise, namely, the signal noise in

each channel. Compared to the signal noise, random

noise in all other components [theA(z) term in Eq. (23)]

is considered negligible. We expect the molecular scat-

tering terms calculated from radiosonde profiles to

contribute a relatively small amount of random noise.

The calibration constants and overlap functions are

determined by averaging relatively large amounts of

data, making their random noise small. The contribution

of random noise by the extinction profiles is also rela-

tively small since extinction appears inside an integral in

the transmission terms.

Despite a small random noise component, calibration

constants, overlap functions, and extinction may contain

potential systematic noise large enough to cause false

detections. Therefore, when applying the spatial filter,

more restrictive thresholds are used to compensate for

potential biases. The threshold for changing a potential

feature to clear sky is lowered to P. 1028 for bins below

the height of complete overlap. Depending of the type of

calibration performed, the initial value of the P thresh-

olds is modified by the multiplicative factors given in

Table 2. The P threshold is decreased by an addition

factor of 105 for bins that use a historical overlap function.

After applying the spatial filter to each of the four

masks separately, ‘‘consistency checks’’ are made

among the four masks to further identify and suppress

false detections due to systematic noise. The SRE mask

is most likely to be troublesome since its accuracy de-

pends strongly on the ability to accurately determine the

overlap function and particulate extinction. In addition,

biases may exist in the depolarization ratio at lower

heights since separate overlap functions are not de-

termined for the high parallel and perpendicular elastic

channels. To catch any potential false detections in the

SRE and d masks, regions of high confidence clear sky

(HCCS) are identified using the SRE,N2
and SRL

E,N2

masks. Pixels where the low-nitrogen-channel SNR is

greater than 10 and the SRL
E,N2

mask is clear are con-

sidered to be HCCS. Where the low-nitrogen-channel

SNR is less than 10, the SRE,N2
mask is used with HCCS

defined as pixels where the SRE,N2
mask is clear and the

high-nitrogen-channel SNR is greater than 3. Any
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features that occur in the d mask below 1km, or at any

height in the SRE mask in these regions of HCCS are

considered false detections and are removed.

An additional check for false detections ismadewhen a

per-day or historical calibration constant is used for a

profile. In these cases, it is possible for the calibration

constant to contain a significant bias. Therefore, when a

per-day or historical calibration constant is used for a

ratio, at least one other ratio must also detect the feature.

Otherwise, the feature is removed from the mask. After

removing false detections, the four individual feature

masks are combined to create a single mask.

The identification of false detections is illustrated in

the example profiles in Fig. 4, where the color bar in-

dicates when the ratio is above the threshold value (blue

or yellow) and when the algorithm has identified a false

detection (yellow). Small excursions above the thresh-

old due to random noise, like those seen in the de-

polarization profile (Fig. 4d), are typically identified by

the spatial filter. More egregious systematic errors can

be caused by a poor calibration as seen in the initial

profile of SRE in Fig. 4c below 10km. Since the random

noise is expected to be relatively small at these heights,

as indicated by how close the threshold is to one, this

calibration bias causes SRE to exceed the threshold by a

large enough amount that the spatial filter cannot

identify these as false detections. This demonstrates the

importance of the additional consistency checksmade to

the feature mask, which serves both to improve the ac-

curacy of FEX and to reduce the number of iterations

needed to converge to a final feature mask. In this case,

this region from 2 to 10km is determined to be HCCS

using the SRE,N2
and SRL

E,N2
masks (Figs. 4a and 4b);

therefore, the SRE features there are considered false

detections. On the next iteration, this clear-sky region is

then used to derive an SRE calibration constant and to

correct the initial bias.

Figure 5 shows the feature mask after the final itera-

tion with Fig. 5a showing the potential features—that is,

those that exceed the threshold—and Fig. 5b showing

the true features—that is, those potential features that

remain after removing false detections using the logic

outlined in this section. Even after achieving the best

possible calibration constants, overlap functions, and

extinction profiles, numerous false detections exist in

Fig. 5a that are effectively identified and removed in

Fig. 5b. Comparing Fig. 5b to Fig. 2 demonstrates the

typically good performance of the algorithm. All major

features are detected, including many small isolated

cumuli throughout the day below 6km; the thick and at

times multilayered ice cloud from 10 to 17km; the very

thin cirrus layer at 17 km that exists after 2100 UTC;

and a layer of aerosols in the boundary layer. From

about 0600 to 1500UTC, numerous optically thick water

clouds exist that completely attenuated the RL’s signal,

although small glimpses of the upper-level cloud deck

are still possible during this period.

A second example of FEX’s feature detection is given

in Fig. 6 for 10 May 2013 over Darwin. During this day

some scattered low clouds and two distinct layers of ice

clouds exist: an optically thicker layer from about 11 to

14km and a very thin tropical tropopause layer (TTL)

cirrus from about 15 to 17km. The TTL cirrus layer is

more clearly discerned using the depolarization ratio

(Fig. 6d); that is, the contrast between the clear-sky and

in-cloud values is larger than for the scattering ratios.

This is reflected in the feature mask (Fig. 6e), where the

FIG. 5. Feature mask with height vs hour on the final iteration of

FEX for the ratios given in Fig. 2. Each color represents a different

combination of the four ratios—scattering ratio derived using: the

elastic and nitrogen channels (EN), the low elastic and nitrogen

channels (ENL), and only the elastic channel (E), and the de-

polarization ratio (D)—that detected the feature. (a) Potential

features, i.e., bins where the ratio exceeded the threshold. (b) True

features, i.e., those potential features that remain after removing

false detections due to random noise and applying consistency

checks as discussed in section 3e.
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TTL cirrus is captured best in the depolarization mask.

The frequency with which the depolarization ratio can

more easily detect thin cirrus is explored further in

section 4. Despite the TTL cirrus being captured best in

the depolarization ratio mask, portions of it still go un-

detected. In this example, more signal accumulation (or

averaging) is required to confidently distinguish these

portions of the cloud from clear sky. The effects of av-

eraging are further discussed in section 5b.

A separate color in Figs. 5b and 6e is used to represent

the different combination of the four ratios that identi-

fied the feature. This example highlights the strength of

using multiple quantities since all four masks taken to-

gether produce a more accurate feature mask than any

single quantity. Care was taken designing the algorithm

tominimize false detections, which comes at the expense

of not reducing the rate of missed detections. Instead we

rely on the random and systematic noise in each ratio to

FIG. 6. (a) Scattering ratio derived using the elastic and nitrogen channels, (b) scattering ratio derived using the low

elastic and nitrogen channels, (c) scattering ratio derived using only the elastic channel, and (d) the depolarization

ratio after the final iteration of FEX for 10 May 2013 at Darwin. (e) Feature mask where each color represents

a different combination of the four ratios that detected the feature—scattering ratio derived using: the elastic and

nitrogen channels (EN), the low elastic and nitrogen channels (ENL), and only the elastic channel (E), and the

depolarization ratio (D).
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be different enough not to causemissed detections in the

same pixels. In both Figs. 5b and 6e, and in general, we

find this to be the case as small gaps in the feature mask

for any one ratio are typically filled by other ratio’s

masks. For example, this gap filling can be seen in Fig. 5b

in the thick cloud layer from 1500 to 2400UTC as well in

the cirrus present in Fig. 6e.

FEX also computes two versions of a detection con-

fidence score (DCS), at each pixel using Eq. (26). The

first version gives the effect of random uncertainty by

averaging the Po values over all four ratios. The DCS is

reported as 1 minus this mean value. Therefore, a DCS

of 0 indicates complete confidence that the bin is clear

sky, while a DCS of 1 indicates complete confidence that

the bin contains a feature. Values between 0 and 1

quantify the amount of ambiguity between classifying

the bin as clear sky or a feature. In a similar manner, the

second DCS gives an estimate of the effect of the total

uncertainty by again evaluating Eq. (26) but with the

noise terms (srm and srs) replaced by those including

contributions from both random and systematic noise.

The systematic noise from the calibration constants and

overlap functions are estimated by taking the standard

deviation over all bins used to calculate each quantity.

Propagation of uncertainty is used to obtain the result-

ing systematic noise in each ratio. This is then added in

quadrature to both the random signal noise in the ex-

pected clear-sky ratio and the measured ratio.

4. Feature discrimination

Figure 7 shows the cloud occurrence profiles obtained

from FEX for December 2010 through December 2014

at Darwin for daytime (Fig. 7a) and nighttime (Fig. 7b)

profiles. The overall cloud occurrence profile (gray line)

is separated into the occurrence of clouds in each ratio:

the scattering ratios from the low elastic and nitrogen

channels (red line), from the elastic and nitrogen chan-

nels (green line), and from only the elastic channel (blue

line); and from the depolarization ratio (brown line).

Distinct diurnal differences can be seen in the scat-

tering ratios derived using both the elastic and nitrogen

channels, which detect significantly less clouds during

the daytime.Most heights also have less cloud during the

daytime in the SRE and d masks, although the diurnal

difference is much smaller. Below about 8 km, no single

ratio’s mask quite matches the total cloud occurrence,

an indication that a better estimate of the mean cloud

occurrence is obtained by the use of all four ratios.

Above about 8 km, any cloud present is almost always

detected using the depolarization ratio. The SRE mask

is the second-most-sensitive method at these higher

heights, but it consistently detects fewer clouds than the

depolarization. For better insight into this difference,

and the diurnal variation in Fig. 7, the ability of FEX to

discriminate a feature froma clear-sky signal is examined in

more detail. For this purpose, we quantify how the distri-

bution thresholds at each height differ from the distribution

of the in-feature values of the ratios themselves.

Figure 8 shows the median thresholds (red) and me-

dian in-feature (blue) ratios at Darwin from December

2010 through December 2014. The shaded region en-

compasses the 5th–95th percentiles of the distribution of

thresholds and in-feature ratios at each height. The top-

most and bottom-most bin of feature layers are not in-

cluded in calculating these distributions since we assume

these bins are some mixture of feature and clear sky.

Each distribution of feature ratios is determined using

only points where the respective ratio detected a fea-

ture. The calculation of threshold distributions includes

all points where the laser beam has not been completely

attenuated—defined as a high-parallel-elastic-channel

SNR . 1.

The influence of the solar background can be de-

termined from the lower bound (i.e., the 5th percentile)

on the threshold profiles in Fig. 8. The lower bound

represents points where the particulate extinction at

lower heights is small to nonexistent. In addition, we

expect the shot noise to be similar between day and

night at a fixed height. Therefore, diurnal differences in

the lower bound of this threshold can be attributed to

differences in the background noise, which we expect to

be dominated by the solar background. Making this

comparison of the lower bound on the threshold distri-

bution in Fig. 8, the impact of the solar background is

clearly discernible for both SRE,N2
and SRL

E,N2
, which

FIG. 7. The (a) daytime and (b) nighttime cloud occurrence

profiles for cloud detected by any ratio (gray), the scattering ratio

derived using: the low elastic and nitrogen channels (red), the

elastic and nitrogen channels (green), and only the elastic channel

(blue), and the depolarization ratio (brown) at Darwin from De-

cember 2010 through December 2014.

1990 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:08 PM UTC



have higher thresholds during the daytime. Therefore,

the diurnal difference in Fig. 7, where fewer clouds are

detected during the day atmost heights, is due to the solar

background for SRE,N2
and SRL

E,N2
. For the d threshold,

the daytime threshold lower bound shows a small relative

increase above about 16km. Almost no difference exists

between day and night in the lower bound of the SRE

threshold. Therefore, we do not expect the overall cloud

occurrence to be biased by solar background noise, and

the larger occurrence of nighttime cloud seen in Fig. 7 can

be taken as a true physical phenomena.

The higher amount of cloud occurrence in the dmask

compared with SRE can be explained by comparing

their respective threshold distributions to their feature

distributions. During both day and night, the feature

distribution of d has less overlap with its threshold

distribution compared to SRE at higher heights. In

other words, the contrast between typical in-cloud

depolarization values and the clear-sky value of 0.004

is greater than typical in-cloud scattering ratios and the

clear-sky value of 1. This higher contrast can be seen in

the example ratios and feature masks given in Fig. 6,

particularly for the TTL cirrus layer. In terms of me-

dian values in Fig. 8, the ratio of feature-to-threshold is

typically 3–6 times larger above 8 km for d than SRE

(not shown). This allows for an easier detection using

the depolarization ratio. However, this does not imply

that a feature mask constructed using only a scattering

ratio cannot detect tenuous features, just that it would

require more signal accumulation (or averaging) to do

so than is needed for the depolarization ratio.

The large amount of optically thin cirrus clouds that

occurs at the TWP site (e.g., Thorsen et al. 2011) leads to

the up to a factor of 2 difference between the cloud

occurrence in the dmask compared to SRE. At the SGP

site, where there exists a smaller amount of thin cirrus,

the dmask also detects more high cloud but only up to a

maximum of 30%more than the SRE mask (not shown).

FIG. 8. The median threshold profiles (red) for points where the laser beam has not been completely attenuated and the median ratio

value (blue) for points where that ratio detected a feature. Separate panels are shown for each ratio—the scattering ratio derived using:

(a),(b) the low elastic and nitrogen channels, (c),(d) the elastic and nitrogen channels, and (e),(f) only the elastic channel, and (g),(h) the

depolarization ratio—and for (a),(c),(e),(g) daytime and (b),(d),(f),(h) nighttime profiles. The shaded region on both the threshold and

ratio profiles encompasses the 5th–95th percentiles from their respective distributions.
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While Fig. 8 quantifies sensitivity in terms of

scattering and depolarization ratios, extinction and

backscatter coefficients are potentially a more com-

prehensible estimate of FEX’s sensitivity. The mini-

mum, defined as the 5th percentile, in-feature

particulate extinction and backscatter coefficient de-

tected by FEX is 7.03 10–3km–1 and 2.73 10–4km–1 sr–1,

respectively, for 2-min time bins and 30-m height bins.

Determining the particulate extinction and backscat-

tering depends on FEX’s extinction retrieval (Thorsen

and Fu 2015). In addition, values can only be determined

in-feature and therefore cannot always represent the

true detection thresholds.

5. Performance assessments

Assessing FEX’s performance is inherently difficult

since we have no underlying truth for the physical world.

Therefore, much of the testing during the development

of this algorithmwas qualitative: comparing the algorithm’s

mask to the features identified by an expert observer

looking at an image of the data. By this measure, the

algorithm performance is satisfactory with acceptably

low rates of false and missed detections. In this section,

more quantitative assessments of performance are made

mainly for cloud detection at the ARM Darwin site.

Cloud detection at a tropical site like Darwin presents a

challenge for a lidar due to the high levels of solar

background noise and the high altitude of the tropo-

pause, near which very optically thin cirrus frequently

occur (e.g., Winker and Trepte 1998; Wang et al. 1998;

Fu et al. 2007; Dessler andYang 2003; Massie et al. 2010;

Davis et al. 2010). The comparisons made in this section

also rely on classifying features into cloud and aerosol,

which is described in Part II.

One of the motivations for this work was to improve

the cloud mask in the current generation of ARM RL

products. Figure 9 shows the profile of cloud occurrence

from the ARM depolarization (DEP) product. The

DEP product applies static thresholds to the de-

polarization and scattering ratio (calculated using the

nitrogen and elastic channels) to identify cloud layers:

defined as where depolarization is greater than 0.05 or

the scattering ratio is greater than 1.5. The comparison

of the cloud occurrence profile from the DEP product to

FEX is given in Fig. 9. While reasonable agreement

exists below 5km, FEX detects more clouds at high

heights. The increased detection is most striking for

heights above 12km, where up to twice as many clouds

are detected. A visual comparison of the two cloudmasks

revealed that the DEP product has not only missed de-

tections but also has numerous false detections. This is

reflected in the amount of cloud that exists in the DEP

product from 18 to 20km, a region where we expect al-

most no clouds to occur at this location. It is of no surprise

that the simple static thresholds used in the originalARM

RL cloud mask are outperformed by our more rigorous

threshold algorithm. Since there is such a stark difference

in complexity between these two approaches, we provide

better assessments of our algorithm’s performance by

comparing to other lidar observations.

a. ARM MPL comparison

The ARM Darwin site is also equipped with an MPL

(Campbell et al. 2002; Coulter 2012) that transmits 6–

8mJ of 532-nm light with a PRF of 2500Hz. Data are

averaged to 2min and 30m, the same bin size used for

the RL. The cloud mask of Wang and Sassen (2001) is

applied to the backscattered signal. The Wang and Sassen

(2001) algorithm is a slope method that examines the rel-

ative change in the returned signal power for strong neg-

ative and positive slopes that occur in the presence of

clouds. The Wang and Sassen (2001) algorithm has been

widely used in the analysis of ARM MPL signals (e.g.,

Comstock et al. 2002; Luo et al. 2008; Thorsen et al. 2011;

Comstock et al. 2013; Riihimaki et al. 2012). Note that no

aerosol products are produced using the ARM MPL;

therefore, in this section, only cloud detection is compared.

The ARM MPL cloud mask (Wang and Sassen 2001)

is compared to that of FEX at Darwin using over 80 000

coincident profiles from December 2010 through Au-

gust 2011, a period when both instruments were

FIG. 9. The cloud occurrence profile from the ARM DEP

product (red) and from the new FEX algorithm (blue) described in

this work at Darwin fromDecember 2010 throughDecember 2014.

1992 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:08 PM UTC



operating. Figure 10a compares the cloud occurrence

profiles during this period. Good agreement exists from

about 5 to 9 km. Below 5km, the ARM MPL detects

more clouds at some heights and less at others than the

RL. Differences can be due to several things beyond

the methods used for cloud detection below 5km. Like

the RL high channels, the ARM MPL does not achieve

complete overlap until 5 km, so uncertainties in overlap

functions may contribute to differences in Fig. 10a. The

ARM MPL data have a single generic overlap correc-

tion applied to all the data and, because of increased

uncertainty in this generic correction at lower heights,

no cloud mask is determined below 1km. In addition,

the different methods used to identify rain/virga may

contribute to discrepancies at lower heights. The cloud

mask of Wang and Sassen (2001) separates the base of

rain–virga from the cloud base by comparing the increase

in slope between the two. In FEX, the identification of

rain is based on the retrieved lidar ratio (Thorsen and Fu

2015). Above 9km, the ARM MPL Wang and Sassen

(2001) retrieval detects significantly less clouds pre-

sumably due to the larger amount of noise in the ARM

MPL measurements (Thorsen et al. 2013b).

To provide a more direct comparison of the detection

algorithms themselves, only profiles without rain (as

determined by FEX; see Thorsen and Fu 2015) and only

pixels where both the ARM MPL and RL SNR is

greater than 3 are used to calculate the cloud occurrence

profile in Fig. 10b. The MPL SNR is calculated in the

same way as is done for the RL [Eq. (7) and section 3a]

except that background noise is inferred from high al-

titude (45–55 km) signals, where the contribution from

molecular scattering is negligible (Welton and Campbell

2002). About 60% of RL pixels where the SNR is

greater than 3 also have theMPL SNR greater than 3. In

this more limited comparison (Fig. 10b), the ARMMPL

and RL agree very well above 2 km. However, the ARM

MPL still lacks clouds below 2km, likely an indication

that its cloud mask is adversely affected by the un-

certainty in its overlap function.

To ensure that this agreement is not due to some

fortuitous cancellation of errors, the error matrix for this

comparison is shown in Table 4 for pixels above 2 km.

When the SNR for both instruments is greater than 3,

the two algorithms show good agreement with theARM

MPL detecting cloud for only;2%of the pixels label by

the RL as clear. The opposite error, when RL pixels

determined to be cloudy are marked as clear by the

ARMMPL, has a larger error rate of;9%. This is likely

an indication of the higher SNR required for a slope

method versus a thresholdmethod since taking the slope

increases the relative amount of signal noise. If we make

the same comparison for a higher MPL SNR—that is,

compare the subset of pixels where the MPL SNR is

greater than 6 and the RL SNR is greater than 3—then

this error is reduced to 7%. Overall, we find reasonable

agreement between the RL-FEX and Wang and

Sassen’s (2001) ARM MPL cloud mask when both in-

struments have sufficient SNR.

b. CALIPSO comparison

TheCALIPSO satellite (Winker et al. 2009, 2010) was

launched in April 2006 into a sun-synchronous orbit

providing near-global observations at approximately

0130 and 1330 (local time) for a fixed point. We use the

5-km vertical feature mask (VFM) product (Vaughan

et al. 2009) fromCALIPSO level 2, version 3, which, like

FEX, is based on a threshold method. Since CALIPSO

and the ARM RL do not make coincident measure-

ments, only a statistical comparison can be made.

CALIPSO VFM profiles that fall within 200 km of the

Darwin site are compared to RL profiles from Decem-

ber 2010 through December 2014. The RL data are

limited to times within 62 h of CALIPSO overpasses.

To fairly compare a spaceborne platform with a ground-

based one, the profiles are further limited to those where

FIG. 10. The cloud occurrence profile from the ARMMPL cloud

mask (green) (Wang and Sassen 2001) and RL-FEX cloud mask

(blue) from December 2010 through August 2011 for (a) all pixels

and (b) only pixels where both the ARMMPL and RL SNR is .3

in profiles where rain was not detected.

TABLE 4. Comparison between RL-FEX and ARM MPL cloud

detection [which uses the algorithm of Wang and Sassen (2001)] at

Darwin from December 2010 through August 2011. Only the

subset of pixels above 2 km and where both the RL and MPL

SNRs . 3 are compared. Percentages are given relative to the

detection of RL-FEX.

MPL clear MPL cloud

RL clear 98.0 2.0

RL cloud 9.1 90.9
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the lidar beam passes through all layers unattenuated,

that is, transparent profiles. For CALIPSO, transparent

profiles are approximated as those with the presence of a

signal return from the surface. For the RL, transparent

profiles are defined as those where the high-elastic-

channel SNR is greater than 1 at 18.5 km.

Figure 11 shows the cloud occurrence in transparent

profiles from the RL (blue line) and CALIPSO (red

line). Large differences exist with CALIPSO detecting

more high clouds. As a whole, CALIPSOmust perform

significantly more averaging than a ground-based lidar

to obtain a similar SNR due to its larger distance from

the target. The occurrence of clouds is dependent on

averaging since more averaging allows for relatively

smaller cloud optical thicknesses to be detected. For

example, given in Fig. 12 is the FEX cloud mask for the

ratios in Fig. 6 but for data accumulated into 9-min bins

instead of 2min. With 9-min bins, more of the thin TTL

cirrus from 16 to 18km can be detected. However, larger

amounts of averaging can smear clouds, artificially in-

creasing the reported cloud occurrence. This can be seen

in the lower layer of ice cloud (11–14 km) in Fig. 12.

Small gaps that appear in this layer in 2-min bins

(Fig. 6e) are smeared out in 9-min bins (Fig. 12). The

opposite effect, a decrease in the reported cloud occur-

rence, can occur for clouds with small spatial scales as

larger amounts of averaging can mix in clear-sky signals,

causing the cloud to go undetected. Furthermore, our

comparison is composed of transparent profiles, which

also depend on averaging. Larger amounts of averaging

(or signal accumulation) increases the likelihood that

enough laser shots penetrate through the feature, thereby

reducing the occurrence of complete attenuation. To

avoid all these complications, we create a RL-FEX

dataset with temporal and height bins approximately

equal to CALIPSO’s spatial average.

The mean amount of horizontal averaging used by

CALIPSO is determined from the reported amounts for

each cloudy pixel in the VFM product. Since advection

determines the amount of cloud passing through the RL

FOV, the mean wind speed is obtained from the collo-

cated radiosonde profiles at Darwin. Dividing the profile

of mean horizontal averaging by the profile of mean wind

speed gives the equivalent temporal bin size for the RL:

amean of 9min for heights less than 8.2kmand 15min for

those above. Since above 8.2km CALIPSO’s vertical

averaging increases from 30 to 60m, the same 60-m ver-

tical bin size is used for the RL in the 15-min data.

Figure 11 shows the RL cloud occurrence profile for

9-min and 30-m bins (brown line) and 15-min and 60-m

bins (gray line). For nighttime profiles in Fig. 11b, nearly

all the difference between the 2–30-minRLandCALIPSO

profiles can be attributed to averaging since the 15-min–

60-m RL profile agrees well with CALIPSO above 8.2km

and the 9–30-min RL profile agrees well below. Making

the same comparison for daytime profiles (Fig. 11a), the

15-min/60-m RL data show more cloud from about 11 to

16km. This suggests the increased solar background may

cause some optically thin clouds to go undetected by

CALIPSO, although this difference is not statistically

significant. Overall, when approximately the same amount

FIG. 11. The cloud occurrence in transparent profiles from the

RL accumulated to 2-min and 30-m bins (blue) and from the

CALIPSO VFM product (red). The profile from the RL data ac-

cumulated to 9min and 30m, which is approximately equivalent to

CALIPSO’s averaging below 8.2 km, is given in brown. The profile

from the RL data accumulated to 15min and 60m, which is ap-

proximately equivalent to CALIPSO’s averaging above 8.2 km, is

given in gray. Profiles are shown separately for the (a) daytime and

(b) nighttime observations. This comparison includes CALIPSO

profiles that fall within 200 km of the Darwin site from December

2010 through December 2014. The RL data are limited to times

within 62 h of CALIPSO overpasses.

FIG. 12. FEX feature mask for 10 May 2013 at Darwin when the

signal was accumulated into 9-min and 30-m bins. Each color

represents a different combination of the four ratios that detected

the feature: scattering ratio derived using the elastic and nitrogen

channels (EN), the low elastic and nitrogen channels (ENL), and

only the elastic channel (E), and the depolarization ratio (D).
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of averaging is used, we find good agreement between

RL-FEX and the CALIPSO VFM product.

The agreement between theRLandCALIPSO in Fig. 11

is similar to that found by Thorsen et al. (2013b). However,

unlike the current study, agreement between CALIPSO

and the RL was found by Thorsen et al. (2013b) when the

RL data were averaged to 2min and 30m. The reason for

this discrepancy is that the Thorsen et al. (2013b) study

applied a median filter to the depolarization ratio, which

was used to identify cirrus, with a moving window of 150m

by 10min. This filter created a dataset with an effective

resolution of 10min, which we show here to be approxi-

mately equivalent to CALIPSO’s horizontal averaging.

Comparisons of aerosol vertical occurrence profile to

CALIPSO were also performed in a similar manner and

are given in Fig. 13. At lower heights FEX detects aerosol

nearly 100% of the time as one would expect in the

boundary layer. However, CALIPSO detects significantly

less aerosol than FEX even for the subset of nighttime

profiles with no clouds present. This limits our ability to

straightforwardly assess FEX’s aerosol detection using

CALIPSO, although resolving the differences in Fig. 13

will be the subject of future work. Credibility in FEX’s

vertical extent of aerosol is partially demonstrated by

good agreement in aerosol optical depth measured by

the Aerosol Robotic Network (AERONET; Holben et al.

1998) as shown in Part II since FEX extinction retrievals

are only performed in bins where aerosol is detected. Fur-

thermore, detection of aerosol is performed in the same

consistent framework as cloud detection and therefore we

do not expect large inconsistencies between the two.

6. Summary and conclusions

We have presented an automated method for the

detection of features in the Atmospheric Radiation

Measurement Program’s (ARM) Raman lidar (RL)

measurements, which is Part I of the feature detection

and extinction retrieval (FEX) algorithm. While the

detection of features in FEX requires an estimate of

particulate extinction, this work focused on the aspects

most pertinent to feature detection. The retrieval of

particulate extinction in FEX is given in Part II. The

intent is to run FEX operationally within theARMData

Management Facility (DMF) with the output being

made available to the general user community via the

ARM website (http://www.arm.gov/).

The feature detection approach used in FEX is to

analyze multiple quantities—scattering ratios derived

using elastic and nitrogen channel signals from two

FOVs, the scattering ratio derived using only the elastic

channel, and the total volume depolarization ratio—for

the presence of features. Range-dependent detection

thresholds are determined for each profile separately by

calculating the expected noise in a clear-sky signal. We

show that the approach of using multiple quantities

provides a complementary description of the vertical and

temporal extent of clouds and aerosols. Using multiple

quantities also allows for additional consistency checks

on the feature mask, which reduces the rate of false de-

tections and improves the efficiency of the algorithm.

The performance of FEX’s feature detection is illus-

trated by the application of the algorithm to 4 years of

ARM RL data over Darwin, Australia. The feature

detection in FEX is found to be robust across the di-

urnal cycle, as no bias exists in the elastic channel de-

tection thresholds. Sufficiently small noise in the

depolarization ratio and the strong contrast between

molecular and typical in-cloud values allows for the

depolarization ratio to be the most effective for the

detection of thin cirrus for the ARM RL system. We

also presented the improvement of FEX’s cloud mask

relative to the cloud mask used in the current opera-

tional ARM products. Evaluations of FEX’s cloud

detection were made by comparing to the collocated

ARM micropulse lidar (MPL) and to observations from

the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) satellite, which uses indepen-

dent methods for identifying clouds. RL-FEX detects

more clouds than the ARM MPL due to the RL’s larger

SNR. However, when the comparison is limited to when

both instruments’ SNR was above 3 good agreement was

FIG. 13. The aerosol occurrence in transparent profiles from the

RL at 2min and 30m of averaging (blue) and from the CALIPSO

VFMproduct (red).Also given is the vertical occurrence in the subset

of transparent profiles where no clouds are detected (no cloud).

Profiles are shown separately for the (a) daytime and (b) nighttime

observations. The shading encompasses the uncertainty due to sam-

pling (95% confidence) determined by bootstrapping. This compar-

ison includes CALIPSOprofiles that fall within 200 kmof theDarwin

site from December 2010 through December 2014. The RL data are

limited to times within 62 h of CALIPSO overpasses.
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found. Comparisons withCALIPSO also agreed well for

transparent profiles when similar amounts of signal

averaging are used, particularly for nighttime profiles.

While we have focused on one particular lidar system,

the FEX framework is flexible enough to be extended to

other Raman or HSRL systems that can intrinsically

separate signal returns from molecules and particulates.
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APPENDIX

Depolarization Calibration

The ARM RL separates the high elastic signal into

parallel and perpendicular components. To prevent sat-

uration of the detector, an extra neutral density filter

exists in the parallel channel. Therefore, to determine the

total elastic signal and the depolarization, the difference

in gain between the parallel and perpendicular channels

must be taken into account. In addition, the accuracy of

the depolarization measurements is affected by possible

misalignment of the polarizing beamsplitter to that of the

transmitted beam. This misalignment induces cross talk

into the signal—some portion of the perpendicular signal

ends up in the parallel channel and vice versa. The re-

lationship between the observed or apparent signals and

the true signals is given by (Alvarez et al. 2006)

S0
k 5

1

G
(Sk cos

2f1 S? sin2f) (A1)

and

S0
? 5 (Sk sin

2f1 S? cos2f) , (A2)

where S0
k and S0

? are the observed signals in the parallel

and perpendicular channels, respectively. Terms Sk and

S? are the true parallel and perpendicular signals, re-

spectively. The factorG represents the relative gain, that

is, the reduction in signal by the extra neutral density filter

in the parallel channel relative to the perpendicular

channel. The angle f is the misalignment angle between

the transmitter and receiver polarization planes.

The relative gain G is taken as the ratio of daytime

perpendicular to parallel channel background signal

during the presence of optically thick liquid water

clouds. In these situations the true depolarization is 1

since multiply-scattered sunlight through the clouds will

be randomly polarized, and by using the background

signals any misalignment between the transmitter and

receiver polarization planes is irrelevant. Times of op-

tically thick liquid water clouds are identified using

collocated microwave radiometer (MWR) observations

(Liljegren and Lesht 1996)—defined as times when the

liquid water path exceeded 75 gm–2. Multiple years of

collocated RL and MWR data are used to calculate a

meanG offline.We findG values of 21.26 and 6.40 at the

TWP and SGP site, respectively, with standard de-

viations of about 10% of these mean values.

Given the offline estimate of G, the misalignment

angle f is then determined from backscattered signals in

clear sky. Forming a ratio of Eqs. (A2) to (A1) and

solving for f gives

f5 arctan

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
m
G2 d0

d
m
d0 2G

s !
, (A3)

where d0 is the observed depolarization, that is, d0 5 S0
?/S

0
k;

and dm is the true depolarization due to molecular scat-

tering, that is, dm 5 S?/Sk. The true molecular depolar-

ization is calculated using the model of Behrendt and

Nakamura (2002), and for the RL’s interference filter’s

bandpass we find a value dm 5 0:004. Since we need to

identify clear-sky signals, the calculation of f using Eq.

(A3) is performed as an addition step in the iterative por-

tion of FEX using the same tactics as is done for the other

calibration constants (section 3d). The breakdown of what

resolution f is determined at is given in Table A1 along

with the associated uncertainties, which are about 5%.

TABLE A1. The percentage of profiles by the calibration type used

from December 2010 through December 2014 at Darwin for the

depolarization misalignment angle. The mean relative uncertainties

(%) are given in parentheses. Uncertainties are computed by taking

the standard deviation in each per-day, per-tweak, or per-profile re-

gion. The uncertainty in the historical calibration constants are de-

termined by repeatedly (10 000 times) randomly sampling 7 days of

per-profile constants, and in each random sample calculating the sum

(in quadrature) of the standard deviation of the per-profile values and

the mean standard deviation in the per-profile values themselves.

Historical Per day Per tweak Interpolated Per profile

f 0.2 (6.1) 0.4 (4.2) 9.2 (5.0) 11.5 78.7 (5.3)
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Note that in this paper the calculation of signal noise

detailed in section 3a is performed using the observed

signals (i.e., S0
k and S0

?). However, for the purpose of

feature detection, the true signals are used (i.e., Sk and
S?). Therefore, in practice, propagation of uncertainty is
applied to Eqs. (A1) and (A2) to determine the noise in

these true signals.
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