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ABSTRACT

A feature detection and extinction retrieval (FEX) algorithm for the Atmospheric Radiation Mea-
surement Program’s (ARM) Raman lidar (RL) has been developed. Presented here is Part I of the FEX
algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use
multiple quantities— scattering ratios derived using elastic and nitrogen channel signals from two fields of
view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio—
to identify features using range-dependent detection thresholds. FEX is designed to be context sensitive
with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use
of multiple quantities provides complementary depictions of cloud and aerosol locations and allows for
consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be
particularly effective at detecting optically thin features containing nonspherical particles, such as cirrus
clouds. Improvements over the existing ARM RL cloud mask are shown. The performance of FEX is
validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia, site. While
the focus is on a specific lidar system, the FEX framework presented here is suitable for other Raman or
high spectral resolution lidars.

1. Introduction vertical profiles of cloud and aerosol properties.
While millimeter-wavelength radars (e.g., Clothiaux
et al. 2000; Hogan and Illingworth 2000; Stephens et al.
2002) are quite sensitive to clouds, lidars are needed to
detect the smallest of cloud particles and many optically
thin targets. In tandem with cloud radars, lidars are
needed to fully resolve radiative heating rate profiles
(Feldman et al. 2008; Yang et al. 2010; Thorsen et al.
2013a) and top-of-the-atmosphere fluxes (Haladay and
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Remotely determining the vertical and temporal
structure of clouds and aerosols is essential for un-
derstanding atmospheric processes and the climate
system. Various remote sensors are used to charac-
terize the atmosphere, but only active instruments,
such as radars and lidars, can produce unambiguous
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general category of a threshold-based method where an
estimate of a clear-sky signal is made and significant
returns above that are considered particulates. Varia-
tions of threshold methods have been widely used in the
analysis of elastic lidar signals (e.g., Winker and
Vaughan 1994; Clothiaux et al. 1998; Campbell et al.
2008; Vaughan et al. 2009). Raman lidars (RL; e.g.,
Goldsmith et al. 1998; Matthais et al. 2004) and high-
spectral-resolution lidars (HSRL; e.g., Hair et al. 2008;
Grund and Eloranta 1991) are relatively more advanced
lidars that intrinsically separate returns from molecules
and particulates. This work presents an algorithm de-
veloped for the Atmospheric Radiation Measure-
ment Program’s (ARM) Raman lidars that have operated
at the ARM Southern Great Plains (SGP) site near
Lamont, Oklahoma (36.61°N, 97.49°W); the tropi-
cal western Pacific (TWP) Darwin, Australia, site
(12.43°S, 130.89°E); and as part of the third ARM Mo-
bile Facility (AMF3) currently stationed in Oliktok
Point (OLI), Alaska (70.50°N, 149.89°W). The TWP
RL will soon be moved to the eastern North Atlantic
(ENA) site on Graciosa Island in the Azores (39.09°N,
28.03°W).

The ARM Raman lidar was originally conceived
with the goal of measuring water vapor profiles at a
high temporal and spatial resolution. Since the RL was
designed to be a continuously operated instrument,
automated algorithms were designed to process the
data with a focus on the retrieval of water vapor and
aerosol extinction profiles in the lower atmosphere
(Turner et al. 2002). While cloud observations were
originally considered of secondary importance for this
system, studies have demonstrated that ARM RL is ca-
pable of making high-quality cloud observations (Wang
and Sassen 2002; Dupont et al. 2011; Thorsen et al.
2013b). However, the identification of clouds is treated
in a simple manner in current ARM RL data products,
and many clouds, especially cirrus, are not identified
(Thorsen et al. 2013b).

To fully realize the potential of the ARM RL, we de-
velop an automated algorithm for feature detection and
extinction retrieval (FEX). The FEX algorithm objec-
tively identifies features (i.e., clouds and aerosols) and
retrieves their extinction profiles over the extent of the
troposphere. Complete details of the extinction profile
retrieval are given in Thorsen and Fu (2015, hereafter
Part II), while Part I here focuses on feature identifica-
tion. The intent is to run FEX operationally within the
ARM Data Management Facility (DMF) with the output
being made available to the general user community via
the ARM website (http://www.arm.gov/).

The specifications of the ARM RL are given in section 2.
Section 3a describes initial signal processing, and sections
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3b-d detail how scattering and depolarization ratios
are determined as well as the process of calibration and
deriving overlap functions. Section 3e describes the
method used to detect features accompanied by exam-
ples. An assessment of how well FEX discriminates fea-
tures from clear sky is given in section 4. FEX is evaluated
using 4yr of RL observations at Darwin, Australia, in
section 5 through comparisons to the original algorithm
and that from a collocated ARM micropulse lidar
(MPL; Campbell et al. 2002; Coulter 2012) and obser-
vations from the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO; Winker
et al. 2009, 2010). Summary and conclusions are given in
section 6.

2. The ARM Raman lidar

The RL at the SGP site has been in near-continuous
operation since 1998, and its basic design is described
in Goldsmith et al. (1998). This original system has
since evolved through various upgrades and modifi-
cations (Ferrare et al. 2006; Newsom 2009). Addi-
tional ARM RLs were deployed at the Darwin TWP
site in December 2010 and at the AMF3 OLI site in
October 2014, both with nearly the same design as the
SGP RL. Specifications of the ARM RL system and
the detection channels used in this work are given in
Table 1. The system contains channels for detection of
elastic as well as Raman-scattered light from nitrogen,
water vapor, and two temperature channels. Only the
elastic and nitrogen channels are used for this work.
Details concerning retrieval of water vapor are given
in Turner et al. (2002) and temperature in Newsom
et al. (2013). Backscattered returns are collected at a
vertical (temporal) resolution of 7.5m (10s) in two
fields of view (FOV): a narrow FOV (NFOV; referred
to as the ‘‘high channels’’) and a wide FOV (WFOV;
referred to as the ““low channels”’). The high-elastic-
channel signal is split into copolarized and cross-
polarized signals. For convenience, the prefix “high”
is dropped when referring to the high-channel signals,
while the prefix “low’” will be included when referring
to low-channel signals.

3. Feature detection algorithm

FEX’s feature detection centers around the applica-
tion of signal detection theory (e.g., Kingston 1978). In
the presence of noise, the problem of determining if a
signal contains a contribution from particulates becomes
that of comparing two probability distributions. This is
shown schematically in Fig. 1, where an expected
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TABLE 1. Specifications of the ARM RL transmitter and receiver
channels used for feature detection in this study.

Transmitter
Laser Frequency-tripled Nd:YAG
Wavelength 355nm
Pulse energy ~300mJ
Pulse width ~5ns
Pulse repetition frequency 30Hz

Receiver
Telescope 61 cm
FOV (wide) 2 mrad
FOV (narrow) 0.3 mrad
Data acquisition Simultaneous analog— photon
counting

Pulse accumulation time 10s
Range resolution 7.5m

Channels (0.3-nm bandpass filters)
High elastic parallel-S, 355nm copolarized, narrow

FOV
High elastic perpendicular— 355 nm cross-polarized, narrow
Sho, L FOV

387 nm, narrow FOV
355 nm, wide FOV
387 nm, wide FOV

High nitrogen-S$,,,
Low elastic-S%.
Low nitrogen-Sy

molecular signal () with noise o, is given in blue and
the measured signal (S) with noise oy is given in red. In
the presence of noise the detection threshold (7) is set
at a value larger than expected from a purely molecular
signal—in this case, one standard deviation away from
the expected molecular signal. In addition to setting a
threshold, an important consideration is the suppression
of false detections. In this work, this is partially accom-
plished by calculating the overlap between the P,, and
P probability distributions (i.e., the purple region P, in
Fig. 1). The essential components of feature detection
are all given in Fig. 1—given the signal measured by the
lidar, we need to determine 1) the noise in the measured
signal, 2) the expected molecular signal, and 3) the noise
in the expected molecular signal. From this we set a
threshold and assess whether a true feature was
detected.

a. Initial processing

FEX starts by first noting the times when automated
or manual alignment ‘“‘tweaks” (i.e., adjustments) are
made from the instrument log files [automated align-
ment tweaks (Turner et al. 2002) were performed only
prior to an upgrade in 2007 (Newsom 2009)]. Typically,
manual tweaks are performed about once each day and
automated tweaks occur every few hours.

The main input into our feature detection algorithm
is the MERGE product (Newsom et al. 2009), which is
routinely produced as part of the ARM archive (http://
www.archive.arm.gov). MERGE applies dead-time
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FIG. 1. Schematic comparison of the (left) expected molecular
signal to (right) the signal measured by the lidar.

corrections and combines raw analog voltages and dead-
time-corrected photon-counting data signals into a single
profile by converting the analog signals to an equivalent
photon count rate. FEX converts the MERGE photon
count rate data into photon counts S; for each channel.
The subscript i throughout this paper is used to denote
the respective channels considered in Table 1. Photon
counts at their native 10-s and 7.5-m resolution are then
accumulated (summed) into their desired time and height
bins—in this study we primarily use 2 min and 30 m—to
improve the signal-to-noise ratio (SNR).

Random noise in lidar signals is contributed from two
main sources: 1) background noise due to solar radia-
tion, detector dark current, and thermal noise; and
2) shot noise. Background noise is range independent
and measured by the ARM RL system with pretrigger
samples—that is, samples taken for ~15 us (~300 height
bins of 7.5-m height) before the laser fires. Shot noise is
the uncertainty associated with the arrival of photons on
the detector due to the discrete nature of the incident
light. The uncertainty due to shot noise is well described
by a Poisson distribution (Oliver 1965), making it
straightforward to calculate since the standard deviation
is equal to the square root of the signal intensity. While it
is possible that excess noise beyond background and
shot noise may be present, no attempt is made to de-
termine its potential impact. Using the RL at SGP,
Wulfmeyer et al. (2010) found this assumption to be a
reasonable one since water vapor mixing ratio noise
profiles from various methods agreed well with those
estimated using Poisson statistics.

The pretrigger samples, at the native 10-s and 7.5-m
resolution, are used to determine the background signal
in the 2-min and 30-m data:

Bi:”—hnz

1
Ao k=1

2@um, (1)

where SP' are the pretrigger signals, n, is the number of
height bins accumulated (n; = 4), n, is the number of


http://www.archive.arm.gov
http://www.archive.arm.gov

1980

time bins accumulated (n, = 12), and ny, is the number of
pretrigger samples (n, ~300). The 2-min and 30-m
background-subtracted photon count profiles are then
obtained from

n, 0'+n,—1 .
S/(2) = k; E S,(t.k) =B, )

where z corresponds to the middle height of the bins
being accumulated starting from height ¢'.

The range-independent background noise for each
10-s profile k is computed as the standard deviation of
the pretrigger samples:

6,(k) = J LG -SGRE ®)

pt /=1

where the overbar denotes the mean over all pretrigger
samples. Equation (3) is then used to calculate the
background noise in data accumulated to 2min and

30m:
Op; = \[ M gef(k). 4

The range-dependent shot noise is then calculated in

each channel:
o,(z)=4/S(z) + B;, (5)

where S; is the background-subtracted photon counts in the
2-min and 30-m data. The total random noise is determined
by adding the shot and background noise in quadrature:

o(z) = \/ 0'3,;‘(1) + 0'%3,1'- (6)

Finally, the signal-to-noise ratio is calculated as

S,
-, 20
S)‘Nz (Z) - V)\Nz ZZ OANZ (Z)'BNZ’)‘NZ (Z) Tm’)‘o (O, Z) pr,\o (07 Z)Tm*ANZ (07 Z)TP’ANZ (O, Z) .

Compared with Eq. (8), extra transmission terms are
needed to account for the different wavelength of the
return signal. In Egs. (8) and (11), the molecular back-
scatter terms, 8, ,,(z) and 8 Nadw, (z), can be expressed in
terms of the molecular number concentration:

do
B, () =N e (12)

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/22/21 06:08 PM UTC

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY

VOLUME 32

S,(z)
o(z)

SNR (z) = -2 )

b. Scattering and depolarization ratios

Following the development by Measures (1984),
the lidar equation for a background-subtracted signal
due to elastic backscattering can be written as

S
S)‘O(Z) = VAU?;)OAU(Z)[Bnl,AO(Z)

+ BP}‘O (Z)] Trzn,)\o (0’ Z)T;i)\o (07 Z) ’ (8)

where S),(z) is the number of photons received from
height z, v, is the system constant incorporating all
the lidar parameters that describe the characteristics
of the optics and detectors, Sy is the number of
transmitted photons, and O(z) is the overlap function
that describes the overlap between the laser beam and
receiver’s FOV. Quantities B, ,,(z) and B, (z) are the
molecular and particulate backscatter coefficients,
respectively. Terms 7,,,,(0, z) and T,),,(0, z) are the
transmission due to molecules and particulates, re-
spectively, which, for a zenith-pointing lidar like the
ARM RL, are

Z
T, (0,2)=exp [— J o, () dz/} (9)
0 0
and

Tp,AO(O’Z) = exp {— J: amo(z') dz’} , (10)

where a,,),(z) and «,,,(z) are the molecular and par-
ticulate extinction coefficients, respectively.

For the signal in the nitrogen Raman channels, which
contains only backscatter due to nitrogen molecules, the
lidar equation can be written as

(11)

and

dog,,

By, () =Wy, N(z) .

(13)

where N(z) is the molecular number profile; wy, is the
nitrogen mixing ratio; and dor,/d(), and dogr,/d(), are
the differential backscatter cross sections for Rayleigh
and nitrogen Raman scattering, respectively. Equations
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FIG.2. (a) Scattering ratio derived using the elastic and nitrogen channels, (b) scattering ratio derived using the low
elastic and nitrogen channels, (c) scattering ratio derived using only the elastic channel, and (d) the depolarization
ratio after the final iteration of FEX for 24 Dec 2010 at Darwin.

(8) and (11) ignore the temperature dependence of the
Rayleigh and nitrogen Raman backscattering, as it is
very small for the narrow filter widths of the RL and a
laser wavelength of 355nm (Whiteman 2003a). The
influence of multiple scattering is also not accounted
for [i.e., Egs. (8) and (11) assume that the transmitted
photons and the atmosphere undergo a single inter-
action]. However, FEX does explicitly consider multi-
ple scattering effects in these equation, but the details
of this are discussed in Part II of this work.

To identify signals greater than expected from clear
sky, we use the scattering ratio:

Bpa, (D) B,y (2)
Boua, (@)

SR(z) = , (14)

defined as the ratio of the total (molecular and particu-
late) backscatter to the backscatter from just molecules.
Since the elastic channel signal contains contributions
from both molecular and particulate scattering and the
nitrogen channel signal is a function of molecular scat-
tering only, a scattering ratio can be formed by combining
Egs. (8) and (11) (Cooney et al. 1969; Melfi 1972). The
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expression for the scattering ratio defined in Eq. (14)
using the high channels can be written as

O/\N2 (Z) Tm’/\Nz (O, Z) Sonl(Z) + S/\O,H(Z)
»0, (2) T, 0,2) 5, (@

. A a(z")
X exp Law\o(z’) 1- )\—0 dz' 3,

N,

SRp v, (2)=Cp

(15)

where ), , and S, are the signals in the high perpen-
dicular and parallel channels, respectively; and a is the
Angstrom exponent. The subscripts £, N, are used to
denote that this scattering ratio is derived by using both
the elastic and nitrogen channel signals, respectively.
The quantity Cg, is a calibration constant,

dog,,

c _ d(rRa
EN, ~ \"n, Q. V).N2 Q. by )

An example of the scattering ratio derived using the
elastic and nitrogen channels is given in Fig. 2a for the
high-channel signals. Separate system constants are not

(16)



1982

used for the high parallel and perpendicular channels
because any difference between the two channels has
already been accounted for as shown in the appendix.
Separate overlap functions are not derived for the high
parallel and perpendicular channels either as discussed
in section 3c. The exponential term accounts for the
differential particulate transmission between the elastic
and nitrogen channels. For cloudy bins, this term is ap-
proximately 1 since the Angstrém exponent a ~ 0. How-
ever, the same cannot be assumed for aerosols. Therefore,
collocated Cimel sun photometer data (Holben et al. 1998)
are used to determine the aerosol Angstrom exponent.
Using multiple years of data (1996-2007 at SGP and 2004—
07 at Darwin), the median Angstrém exponent at both the
SGP and Darwin sites is 1.35 between 340 and 380nm
(with a standard deviation of 0.53 and 0.49 at Darwin and
SGP, respectively). FEX’s classification of feature type,
described in Part I, separates clouds and aerosols, allowing
the proper Angstrém exponent to be assigned in each bin.
The differential transmission due to molecules must also be
taken into account in calculating this scattering ratio. These
molecular transmission terms are calculated following
Bucholtz (1995) using pressure and temperature profiles
from radiosondes, launched at least twice daily at all ARM
facilities, which are linearly interpolated to the heights and
times of the lidar profiles.

Similarly, we construct a scattering ratio using the low
elastic and nitrogen channels as

SR}y, (2) = Cf 05,,@ Tna, (©:2) 5{(2)
En,(2) = Cip, 0k () T, 0.2) SALNz(z)

z , A, a(2) ,
X exp Joamo(z) 1- o dz' 5,

N,

(17)

where the superscript L is used to denote the low
channel. Figure 2b gives an example of this scattering
ratio below 9km since the ARM RL does not record
low-channel signals above that height. At the expense of
increased random noise and multiple scattering, using
the low-channel signals has the benefit of achieving
complete overlap sooner (i.e., at a lower height above
the system), allowing for a more accurate scattering ra-
tio in the near field than the high channels. For the ARM
RL, the high channels achieve complete overlap by 5 km
and the low channels by 800 m (Goldsmith et al. 1998).

After determining the calibration constants and over-
lap functions (sections 3¢ and 3d), the scattering ratio
using Egs. (15) and (17) can be calculated. An advantage
of deriving a scattering ratio using both the elastic and
nitrogen channel signals is that, for a perfect optical
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system, the ratio of the two overlap functions is unity,
though in practice there is usually some residual amount
of overlap effects (e.g., Whiteman 2003b). Nevertheless,
taking the ratio of the two overlap functions helps re-
duce the impact of incomplete overlap. While the dif-
ferential molecular transmission is straightforward to
account for using radiosonde observations, determining
the differential aerosol transmission term requires an
identification of aerosol, and the retrieval of the aerosol
extinction profile and Angstrém exponent. However,
the differential aerosol transmission term is typically
small (Whiteman 2003b). Therefore, even large errors
in this term introduce minimal uncertainty to the
scattering ratio. For the Darwin RL we find mean
corrections for differential aerosol transmission rang-
ing from 0% to 2% from 0 to 18 km. The more accu-
rately constrained correction for differential molecular
transmission ranges from 0% to 18% from 0 to 18 km.
As shown in section 4, using SRgy, and SREN2 for
feature detection is limited by the relatively weak
Raman scattering process.

To produce a quantity with the smallest amount of
random noise possible, the scattering ratio can also be
derived using only the elastic channel signal. This is
commonly done for single-channel elastic backscatter
lidars for the purpose of feature detection (e.g., Winker
and Vaughan 1994; Campbell et al. 2008; Vaughan et al.
2009) since Rayleigh scattering can be accurately mod-
eled (e.g., Bucholtz 1995). The scattering ratio using
only the elastic channel can be written as

Sy, D +S, (@)
SR,(2) = C; S :

Z—g 0, @N@)T,, (0.2)T;, (0.2)

(18)

where

— do-Ra
CE_l/(d—Qﬂv)\o) 19)
Note that we do not derive the scattering ratio using only
the low elastic channel, as doing so identified few addi-
tional cloud or aerosol layers.

An example of the scattering ratio derived using only
the elastic channel is shown in Fig. 2c. An accurate es-
timate of the full profile of cloud and aerosol extinction
coefficients [i.e., the T, ,, term in Eq. (18)] is crucial in
determining the scattering ratio in this way. In addition
there is no cancellation of overlap effects, which occurs
if both the elastic and nitrogen channels are used. De-
spite these limitations, deriving the scattering ratio using
only the elastic channel results in a higher SNR. This is
apparent when comparing SRg in Fig. 2c to SRgy, in
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FIG. 3. Flow diagram for feature detection in the FEX algorithm.

Fig. 2a, where the upper portion of the daytime ice cloud
layer after 2100 UTC becomes overwhelmed by noise in
SRg n, but is clearly visible in the SR image.

With the ARM RL it is also possible to identify fea-
tures using the linear volume depolarization ratio:

Sroot(2)

6(2)::3§;jf25'

(20)

An example false-color image of depolarization is given
in Fig. 2d. The depolarization ratio has the benefit of not
depending on extinction as well as using only the elastic
channel signals. But it is limited to identifying particulates
that induce a depolarization, that is, nonspherical particles
like ice and some aerosols (Sassen 1991; Gobbi 1998;
Murayama et al. 2001; Sassen 2002) and liquid clouds that
induce a significant amount of multiple scattering (Carswell
and Pal 1980; Sassen 1991).

The four ratios given in Egs. (15), (17), (18), and (20)
(Fig. 2) are used for identifying features from 0 to 20 km
and, as discussed above, each quantity has specific ad-
vantages and disadvantages. Therefore, each quantity is
analyzed separately with the expectation that taken as a
whole they will be complementary and provide a more
complete description of the vertical extent of clouds and
aerosols. To calculate these ratios, calibration constants
must be determined using clear-sky regions where the
ratios have known values. One can readily see that the
problem at hand is circular since clear sky must be used
to calibrate these quantities, but clear sky cannot be
identified without the calibrated quantities themselves in
our framework. In addition, we also require the particulate
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extinction profile, but we first must identify where the
particulates are. Therefore, FEX is an iterative algorithm
as illustrated in Fig. 3: going through the process of de-
termining overlap functions (section 3c), calibrating (sec-
tion 3d), calculating ratios (this section), calculating the
expected molecular signals and identifying features (sec-
tion 3e), and retrieving extinction (described in Thorsen
and Fu 2015). These steps are then repeated utilizing the
feature mask and extinction profiles from the previous it-
eration. Iterations continue until less than 0.1% of all
pixels in the feature mask change relative to the previous
iteration (typically six to seven iterations).

c¢. Overlap functions

Following Wandinger and Ansmann (2002), a single
low-channel overlap function is derived by assuming
that the low-elastic and nitrogen-channel overlap func-
tions are equal. Besides this assumption, the accuracy of
this method relies on knowledge of the extinction pro-
file. Therefore, only bins where the particulate trans-
mission is greater than 0.9 are used to ensure the relative
contribution of extinction errors remains small. In ad-
dition, only bins with ““good” signal are used, which are
defined as regions where the SNR [Eq. (7)] is greater
than 3.

High-elastic and nitrogen-channel overlap functions
are determined by similar methods to those described in
Turner et al. (2002). The overlap-corrected low-channel
signals are used to derive the high-channel overlap
functions by taking the median value of the ratio be-
tween them in each height bin. The ratio of the signals
above the height of complete overlap is used to calibrate
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TABLE 2. Hierarchy of calibration types and height regions used by FEX. Calibrations constants are taken as the median over all
samples and interpolated constants are obtained using a smoothing spline interpolant. The >2-km and >5-km height regions are not used
for deriving Cy; and Cf y,, respectively. Before the minimum number of iterations (i.e., n"" = 4) is reached, the height regions are

increased as described in the section 3d. Also given is the multiplicative factor used to modify the probability P threshold used by the

spatial filter to reduce false detections.

Preference Height region Spatial filter
ranking (zMin; km) Resolution Requirements factor
1 >5 Per profile 1 km of bins in profile 1
2 — Interpolated Gap smaller than 3 h in >5-km per-profile constants 1
3 >2 Per profile 1 km of bins in profile 1
4 >5 Per tweak Number of bins > 1 km X 25% of profiles in tweak period 1
5 >2
6 >5 Per day Number of bins > 1 km X 25% of profiles in day 1073
7 >2
8 — Historical — 1073

the overlap function. Only good signals where the scat-
tering ratio is less than 2 are used since we expect the signal
in each channel to be proportional only when multiple
scattering is small. Functions are computed at each height
bin where suitable signals exist in at least 10% of the
profiles in the period between tweaks. The standard de-
viation at each height bin is also required to be less than
30% of the median value. Height bins failing these re-
quirements use an overlap function calculated using all
signals for the current day being processed. When per-day
values cannot be used, historical per-day values are used to
determine the mean overlap function from the previous
7 days. Historical functions are also used during the first
iteration, when no estimate of particulate transmission or
scattering ratio exists to select the appropriate bins. Since
separate polarization components are not measured in the
low channels, the same overlap function is used for both
the high parallel and perpendicular channels.

d. Calibration constants

Calibration constants are determined for the scattering
ratios by solving for the respective constants in Egs. (15),
(17), and (18) using clear-sky bins (where the scattering
ratio is 1) identified in FEX’s feature mask. In addition,
only good signals are used to solve for constants. An
additional calibration constant, CAL“, is calculated to
match the low-elastic-channel signal to the high-elastic-
channel signal (needed for the threshold calculation; see
section 3e). For C)’;O , in addition to clear-sky signals, sig-
nals where the scattering ratio is less than 2 are used.

All constants are determined by taking the median
value over multiple bins at varying resolutions. Starting
with the coarsest level, constants are determined per
day, per-tweak period, and per profile. The per-profile
values are used to obtain other per-profile constants by
interpolating. A summary of the height regions and rules
used to determine when each type of calibration type is
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performed is given in Table 2. When no suitable signal
exists to derive any type of calibration constant, a data-
base of historical values are used to determine the mean
constant over the previous 7 days. Historical constants
are always used during the first iteration of FEX since no
feature mask exists yet to determine what signals are
clear sky. As indicated in Table 2, height bins above the
height of complete overlap are typically used to calculate
constants. The lowest height bin used (z™") also depends
on the current iteration being performed with

20km — ”1(201(1117'_20)

if n,=pr"
min pmin 1 1

7™ = 1 , (21)

Zmin it n,>np"

where n; is the current iteration, n}“i“ is the minimum
number of iterations to be performed (n"" = 4), and zJi"
is the absolute lowest height bin used for calibration as
given in Table 2. Equation (21) helps minimize cali-
bration bias by initially using the highest heights possi-
ble for calibration. This reduces the possibility that
as-yet-undetected aerosol will bias the constants.

Table 3 gives the percentage of profiles for the ARM
Darwin RL from December 2010 through December
2014 by calibration type: historical, per day, per tweak,
interpolated, and per profile. For both high-channel
scattering ratios, the majority of profiles, about 77%,
are able to use a per-profile calibration constant. For
Cgn,, the uncertainties in the per-tweak- and per-
profile-derived values are about 6%. A similar un-
certainty exists in the per-profile calculation of Cg.
However, when Cg is determined per tweak the un-
certainty is larger (~16%). This larger per-tweak un-
certainty is due to the additional uncertainty from the
particulate transmission in each profile below the
heights used for calibration. When a per-profile cali-
bration is made, any bias in the transmission below the
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TABLE 3. The percentage of profiles by the calibration type used from December 2010 through December 2014 at Darwin. The mean
relative uncertainties (%) in the calibration constants are given in parentheses. Uncertainties are computed by taking the standard
deviation in each per-day, per-tweak, or per-profile region. The uncertainty in the historical calibration constants are determined by
repeatedly (10000 times) randomly sampling 7 days of per-profile constants, and in each random sample calculating the sum (in quad-
rature) of the standard deviation of the per-profile values and the mean standard deviation in the per-profile values themselves.

Historical Per day Per tweak Interpolated Per profile
Ck 0.4 (23.8) 0.3 (10.1) 102 (16.4) 135 75.6 (5.9)
Cen, 0.4 (7.2) 0.4 (5.5) 9.8 (6.1) 12.8 76.6 (6.3)
ck 3.9 (16.3) 0.8 (15.0) 122 (14.3) 20.9 62.3 (12.7)
Chy, 1.7 (11.5) 1.1 (11.9) 24.8 (11.4) 145 57.9 (10.2)
calibration h?lght. is absorbed by the calibration con- T (2) = /S,m(z) + B+ 0%, 22)
stant. For calibration constants that use low channels, a i ’

per-profile constant is used for about 60% of the time.
The larger amount of random error in the low-channel
signals results in larger uncertainties (~13%). Both the
per-day and historical constants exhibit similar un-
certainties to the per-tweak value, indicating that the
calibration of the TWP system is quite stable even when
alignment tweaks are performed.

e. Feature identification

As illustrated in Fig. 1, to determine if a feature is
present in any of the four ratios introduced in the
previous section, the expected clear-sky ratio and its
noise must be calculated. The expected clear-sky ratio
is straightforward since, after calibration, we expect a
scattering ratio of 1 and a depolarization of 0.4% (see
the appendix). The expected clear-sky noise in each of
the ratios is calculated as follows. First, S"(z) is calcu-
lated, that is, the signal expected in each channel just
due to molecular backscatter. This quantity is de-
termined using the appropriate lidar equation for each
channel [Egs. (8) and (11)] by setting B,,, =0 and
evaluating all other terms. The product of all constants
needed (i.e., v, wy,, do/dQ),) can be determined from
the previously determined calibration constants (Cg y,,
Cg,Nz, Cg, Cp,,)- Molecular scattering terms (8,,, T'»)
are calculated following Bucholtz (1995) using pressure
and temperature profiles from interpolated radio-
sondes profiles. FEX’s retrieval of particulate extinc-
tion (described in Part II) is used to evaluate the
particulate transmission terms (7)) in each channel’s
lidar equation. The wavelength dependence of the
particulate transmission between the elastic and ni-
trogen channels is accounted for using a climatological
value of the aerosol Angstrém exponent as described
section 3b.

The random noise of each channel’s expected mo-
lecular signal is calculated by combining Egs. (5) and (6)
but with the measured signal in those equations replaced
by the expected molecular signal:
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The expected molecular signal (S!") and random noise
(ogr) in each channel are then used to determine the
expected clear-sky noise in each of the ratios by prop-
agation of uncertainty (e.g., Bevington and Robinson
2002). The ratios in Egs. (15), (17), (18), and (20) for
molecular signals follow the general form

ST(z) + 85(2)

r"(z) = A(z) )

(23)

where S7", 87, and S}’ represent the expected molecular
signal in the channels needed to form the various ratios.
The quantity A(z) contains all other terms in the ratio
that have negligible random noise in comparison to the
signal noise. For purely molecular signals r(z) = 1 and
r"(z) = 0.004 for the scattering and depolarization ratio,
respectively. By propagation of uncertainty, the noise in
Eq. (23) is

qu" (2) + Uégt(z)

[S7'(2) + S5(2)T*

0%5" (2)
(S22

0. (2) =1r"(z)

(24)

A threshold profile is then defined for each ratio as

7(2) =r"(2) + 0,.(2).- (25)
Portions of the measured ratio profiles that exceed the
threshold profile 7(z) are identified as potential features—
that is, values greater than one standard deviation from the
expected clear-sky ratio are considered to potentially
contain a feature.

An example application of these threshold profiles is
given in Fig. 4 for the profile at 1958:00 UTC in Fig. 2.
For SRg (Fig. 4c), the need for an accurate estimate of
particulate extinction can be seen by comparing the
initial profile of SRg (gray line) with the final profile of
SR (black line). In the initial profile, where no extinc-
tion estimate is available, the value of SR falls well
below the expected clear-sky value of 1 once the cloud
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FIG. 4. The initial threshold (dashed blue) and final threshold (solid blue) for the profile at 1958:00 UTC in Fig. 2 for
the (a) scattering ratio derived using both the elastic and nitrogen channel signals, (b) scattering ratio derived using
both the low-elastic-and-nitrogen-channel signals, (c) scattering ratio derived using only the elastic channel, and
(d) the depolarization ratio. Both the initial profiles (i.e., the first iteration, gray line) and final profiles (i.e., the final
iteration, black line) are given. Potential features identified in these ratios on the initial and final iterations are noted
by the color in the bars on the right-hand side of each panel; features that have been determined to be false detections
are denoted by yellow and true features denoted by blue. For reference, the expected clear-sky ratio is given as
a dashed red line. Note that the scale of the x axis in each panel is nonlinear.

layer above 10km is encountered. As indicated by the
color bar in Fig. 4c, this causes portions of the cloud
layers to go undetected since SR falls below the
threshold profile (dashed blue). By the final iteration,
when an extinction estimate exists, SRz does not rapidly
decrease above 10km and the full extent of the cloud
layer is detected. Particulate extinction also impacts the
threshold itself, which is particularly apparent in Figs. 4a
and 4d. The values of SRgy, and 6 remain largely un-
changed from the initial to the final iterations since both
iterations are mostly independent of extinction, and an
accurate historical calibration was available on the first
iteration. Above ~16km, SRy, and 6 exceed their ini-
tial thresholds (dashed blue) at many heights although it
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is apparent that this is just noise. The thresholds on the
final iteration (solid blue) increase relative to the initial
threshold above the cloud layer base at 10km due to the
influence of extinction. It is apparent that more accurate
thresholds are obtained on the final iteration since above
~16km the thresholds follows the envelope of the
noise well.

The need for an iterative process is illustrated by
forcing an initial calibration bias of 10% in SRy in
Fig. 4c. This high bias causes a large portion of the
profile in the region to be identified as containing a
potential feature since the threshold profile only ac-
counts for random uncertainty. By the final iteration, the
calibration of SR is improved and many of the falsely
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detected features are gone. However, on the final itera-
tion, portions of the SR profile exceeding the threshold
still exist, which are obviously just excursions above the
threshold due to random noise. This is expected since, if
the noise is assumed to be Gaussian distributed, there is a
~16% probability that a measured ratio will be above a
one standard deviation threshold solely due to random
noise and is therefore a false detection.

To reduce the rate of false detections due to random
noise, the overlap between the expected molecular
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signal and measured signal—that is, the purple regions
in Fig. 1—is used. In establishing the threshold profile,
the expected ratio and noise in a clear-sky signal has
already been determined [Eq. (23) and (24)]. The noise
in the measured ratio is calculated by propagation of
uncertainty similar to that given in Eq. (24) except that
the measured signal and related noise are used in place
of the expected molecular signal. Assuming the noise is
Gaussian distributed, the overlap probability can then
be determined as

[x - @) [x—r@)
P (z)= Nor J,m min @) ; @) X, (26)

where ¥ is the measured ratio, o,s is the noise in the
measured ratio, and min indicates using the minimum
value of the two probability density functions. Unlike
the threshold profile [Eq. (25)], the quantity in Eq. (26)
accounts for the uncertainty of measured signal relative
to the expected clear-sky signal. The amount of false
detections that results from applying the threshold
profile is reduced by constructing a spatial filter using
Eq. (26). We expect the feature occurrence to be highly
spatially correlated over a 90-m by 6-min window (three
range bins by three time bins) centered on a bin
containing a potential feature. Assuming the noise is
independent in each range and time bin, the overlap
probability in this window is

9
P= HPO(]'). (27)

If a true feature is present, then we also expect the
surrounding bins in this box to contain a feature;
therefore, the probability P in this 90-m by 6-min box
should be low. For pixels identified as a potential fea-
ture, if P is greater than the empirically determined
value of 1074, then the pixel is changed to clear sky.
The threshold profiles and spatial filter consider only
sources of random noise, namely, the signal noise in
each channel. Compared to the signal noise, random
noise in all other components [the A(z) term in Eq. (23)]
is considered negligible. We expect the molecular scat-
tering terms calculated from radiosonde profiles to
contribute a relatively small amount of random noise.
The calibration constants and overlap functions are
determined by averaging relatively large amounts of
data, making their random noise small. The contribution
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of random noise by the extinction profiles is also rela-
tively small since extinction appears inside an integral in
the transmission terms.

Despite a small random noise component, calibration
constants, overlap functions, and extinction may contain
potential systematic noise large enough to cause false
detections. Therefore, when applying the spatial filter,
more restrictive thresholds are used to compensate for
potential biases. The threshold for changing a potential
feature to clear sky is lowered to P> 1078 for bins below
the height of complete overlap. Depending of the type of
calibration performed, the initial value of the P thresh-
olds is modified by the multiplicative factors given in
Table 2. The P threshold is decreased by an addition
factor of 10° for bins that use a historical overlap function.

After applying the spatial filter to each of the four
masks separately, ‘“‘consistency checks” are made
among the four masks to further identify and suppress
false detections due to systematic noise. The SRz mask
is most likely to be troublesome since its accuracy de-
pends strongly on the ability to accurately determine the
overlap function and particulate extinction. In addition,
biases may exist in the depolarization ratio at lower
heights since separate overlap functions are not de-
termined for the high parallel and perpendicular elastic
channels. To catch any potential false detections in the
SRf and 6 masks, regions of high confidence clear sky
(HCCS) are identified using the SRgy, and SR},
masks. Pixels where the low-nitrogen-channel SNR is
greater than 10 and the SRE n, mask is clear are con-
sidered to be HCCS. Where the low-nitrogen-channel
SNR is less than 10, the SRy, mask is used with HCCS
defined as pixels where the SRy, mask is clear and the
high-nitrogen-channel SNR is greater than 3. Any
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features that occur in the 6 mask below 1km, or at any
height in the SRg mask in these regions of HCCS are
considered false detections and are removed.

An additional check for false detections is made when a
per-day or historical calibration constant is used for a
profile. In these cases, it is possible for the calibration
constant to contain a significant bias. Therefore, when a
per-day or historical calibration constant is used for a
ratio, at least one other ratio must also detect the feature.
Otherwise, the feature is removed from the mask. After
removing false detections, the four individual feature
masks are combined to create a single mask.

The identification of false detections is illustrated in
the example profiles in Fig. 4, where the color bar in-
dicates when the ratio is above the threshold value (blue
or yellow) and when the algorithm has identified a false
detection (yellow). Small excursions above the thresh-
old due to random noise, like those seen in the de-
polarization profile (Fig. 4d), are typically identified by
the spatial filter. More egregious systematic errors can
be caused by a poor calibration as seen in the initial
profile of SR in Fig. 4c below 10 km. Since the random
noise is expected to be relatively small at these heights,
as indicated by how close the threshold is to one, this
calibration bias causes SRy to exceed the threshold by a
large enough amount that the spatial filter cannot
identify these as false detections. This demonstrates the
importance of the additional consistency checks made to
the feature mask, which serves both to improve the ac-
curacy of FEX and to reduce the number of iterations
needed to converge to a final feature mask. In this case,
this region from 2 to 10km is determined to be HCCS
using the SRgy, and SR}, masks (Figs. 4a and 4b);
therefore, the SRy features there are considered false
detections. On the next iteration, this clear-sky region is
then used to derive an SRy calibration constant and to
correct the initial bias.

Figure 5 shows the feature mask after the final itera-
tion with Fig. 5a showing the potential features—that is,
those that exceed the threshold—and Fig. 5b showing
the true features—that is, those potential features that
remain after removing false detections using the logic
outlined in this section. Even after achieving the best
possible calibration constants, overlap functions, and
extinction profiles, numerous false detections exist in
Fig. 5a that are effectively identified and removed in
Fig. 5b. Comparing Fig. 5b to Fig. 2 demonstrates the
typically good performance of the algorithm. All major
features are detected, including many small isolated
cumuli throughout the day below 6 km; the thick and at
times multilayered ice cloud from 10 to 17 km; the very
thin cirrus layer at 17km that exists after 2100 UTC;
and a layer of aerosols in the boundary layer. From
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FIG. 5. Feature mask with height vs hour on the final iteration of
FEX for the ratios given in Fig. 2. Each color represents a different
combination of the four ratios—scattering ratio derived using: the
elastic and nitrogen channels (EN), the low elastic and nitrogen
channels (ENL), and only the elastic channel (E), and the de-
polarization ratio (D)—that detected the feature. (a) Potential
features, i.e., bins where the ratio exceeded the threshold. (b) True
features, i.e., those potential features that remain after removing
false detections due to random noise and applying consistency
checks as discussed in section 3e.

about 0600 to 1500 UTC, numerous optically thick water
clouds exist that completely attenuated the RL’s signal,
although small glimpses of the upper-level cloud deck
are still possible during this period.

A second example of FEX’s feature detection is given
in Fig. 6 for 10 May 2013 over Darwin. During this day
some scattered low clouds and two distinct layers of ice
clouds exist: an optically thicker layer from about 11 to
14km and a very thin tropical tropopause layer (TTL)
cirrus from about 15 to 17km. The TTL cirrus layer is
more clearly discerned using the depolarization ratio
(Fig. 6d); that is, the contrast between the clear-sky and
in-cloud values is larger than for the scattering ratios.
This is reflected in the feature mask (Fig. 6e), where the
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FIG. 6. (a) Scattering ratio derived using the elastic and nitrogen channels, (b) scattering ratio derived using the low
elastic and nitrogen channels, (c) scattering ratio derived using only the elastic channel, and (d) the depolarization
ratio after the final iteration of FEX for 10 May 2013 at Darwin. (e) Feature mask where each color represents
a different combination of the four ratios that detected the feature—scattering ratio derived using: the elastic and
nitrogen channels (EN), the low elastic and nitrogen channels (ENL), and only the elastic channel (E), and the

depolarization ratio (D).

TTL cirrus is captured best in the depolarization mask.
The frequency with which the depolarization ratio can
more easily detect thin cirrus is explored further in
section 4. Despite the TTL cirrus being captured best in
the depolarization ratio mask, portions of it still go un-
detected. In this example, more signal accumulation (or
averaging) is required to confidently distinguish these
portions of the cloud from clear sky. The effects of av-
eraging are further discussed in section 5b.
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A separate color in Figs. 5b and 6e¢ is used to represent
the different combination of the four ratios that identi-
fied the feature. This example highlights the strength of
using multiple quantities since all four masks taken to-
gether produce a more accurate feature mask than any
single quantity. Care was taken designing the algorithm
to minimize false detections, which comes at the expense
of not reducing the rate of missed detections. Instead we
rely on the random and systematic noise in each ratio to
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FI1G. 7. The (a) daytime and (b) nighttime cloud occurrence
profiles for cloud detected by any ratio (gray), the scattering ratio
derived using: the low elastic and nitrogen channels (red), the
elastic and nitrogen channels (green), and only the elastic channel
(blue), and the depolarization ratio (brown) at Darwin from De-
cember 2010 through December 2014.

be different enough not to cause missed detections in the
same pixels. In both Figs. 5b and 6e, and in general, we
find this to be the case as small gaps in the feature mask
for any one ratio are typically filled by other ratio’s
masks. For example, this gap filling can be seen in Fig. 5b
in the thick cloud layer from 1500 to 2400 UTC as well in
the cirrus present in Fig. 6e.

FEX also computes two versions of a detection con-
fidence score (DCS), at each pixel using Eq. (26). The
first version gives the effect of random uncertainty by
averaging the P, values over all four ratios. The DCS is
reported as 1 minus this mean value. Therefore, a DCS
of 0 indicates complete confidence that the bin is clear
sky, while a DCS of 1 indicates complete confidence that
the bin contains a feature. Values between 0 and 1
quantify the amount of ambiguity between classifying
the bin as clear sky or a feature. In a similar manner, the
second DCS gives an estimate of the effect of the total
uncertainty by again evaluating Eq. (26) but with the
noise terms (o,» and o) replaced by those including
contributions from both random and systematic noise.
The systematic noise from the calibration constants and
overlap functions are estimated by taking the standard
deviation over all bins used to calculate each quantity.
Propagation of uncertainty is used to obtain the result-
ing systematic noise in each ratio. This is then added in
quadrature to both the random signal noise in the ex-
pected clear-sky ratio and the measured ratio.

4. Feature discrimination

Figure 7 shows the cloud occurrence profiles obtained
from FEX for December 2010 through December 2014
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at Darwin for daytime (Fig. 7a) and nighttime (Fig. 7b)
profiles. The overall cloud occurrence profile (gray line)
is separated into the occurrence of clouds in each ratio:
the scattering ratios from the low elastic and nitrogen
channels (red line), from the elastic and nitrogen chan-
nels (green line), and from only the elastic channel (blue
line); and from the depolarization ratio (brown line).

Distinct diurnal differences can be seen in the scat-
tering ratios derived using both the elastic and nitrogen
channels, which detect significantly less clouds during
the daytime. Most heights also have less cloud during the
daytime in the SRg and & masks, although the diurnal
difference is much smaller. Below about 8 km, no single
ratio’s mask quite matches the total cloud occurrence,
an indication that a better estimate of the mean cloud
occurrence is obtained by the use of all four ratios.
Above about 8km, any cloud present is almost always
detected using the depolarization ratio. The SRg mask
is the second-most-sensitive method at these higher
heights, but it consistently detects fewer clouds than the
depolarization. For better insight into this difference,
and the diurnal variation in Fig. 7, the ability of FEX to
discriminate a feature from a clear-sky signal is examined in
more detail. For this purpose, we quantify how the distri-
bution thresholds at each height differ from the distribution
of the in-feature values of the ratios themselves.

Figure 8 shows the median thresholds (red) and me-
dian in-feature (blue) ratios at Darwin from December
2010 through December 2014. The shaded region en-
compasses the 5th-95th percentiles of the distribution of
thresholds and in-feature ratios at each height. The top-
most and bottom-most bin of feature layers are not in-
cluded in calculating these distributions since we assume
these bins are some mixture of feature and clear sky.
Each distribution of feature ratios is determined using
only points where the respective ratio detected a fea-
ture. The calculation of threshold distributions includes
all points where the laser beam has not been completely
attenuated—defined as a high-parallel-elastic-channel
SNR > 1.

The influence of the solar background can be de-
termined from the lower bound (i.e., the 5th percentile)
on the threshold profiles in Fig. 8. The lower bound
represents points where the particulate extinction at
lower heights is small to nonexistent. In addition, we
expect the shot noise to be similar between day and
night at a fixed height. Therefore, diurnal differences in
the lower bound of this threshold can be attributed to
differences in the background noise, which we expect to
be dominated by the solar background. Making this
comparison of the lower bound on the threshold distri-
bution in Fig. 8, the impact of the solar background is
clearly discernible for both SRgy, and SRé’NZ, which
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FIG. 8. The median threshold profiles (red) for points where the laser beam has not been completely attenuated and the median ratio

value (blue) for points where that ratio detected a feature. Separate panels are shown for each ratio—the scattering ratio derived using:
(a),(b) the low elastic and nitrogen channels, (c),(d) the elastic and nitrogen channels, and (e),(f) only the elastic channel, and (g),(h) the
depolarization ratio—and for (a),(c),(e),(g) daytime and (b),(d),(f),(h) nighttime profiles. The shaded region on both the threshold and

ratio profiles encompasses the 5th-95th percentiles from their respective distributions.

have higher thresholds during the daytime. Therefore,
the diurnal difference in Fig. 7, where fewer clouds are
detected during the day at most heights, is due to the solar
background for SRy, and SR%,Nz' For the 6 threshold,
the daytime threshold lower bound shows a small relative
increase above about 16 km. Almost no difference exists
between day and night in the lower bound of the SRg
threshold. Therefore, we do not expect the overall cloud
occurrence to be biased by solar background noise, and
the larger occurrence of nighttime cloud seen in Fig. 7 can
be taken as a true physical phenomena.

The higher amount of cloud occurrence in the  mask
compared with SRy can be explained by comparing
their respective threshold distributions to their feature
distributions. During both day and night, the feature
distribution of 6 has less overlap with its threshold
distribution compared to SRy at higher heights. In
other words, the contrast between typical in-cloud
depolarization values and the clear-sky value of 0.004
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is greater than typical in-cloud scattering ratios and the
clear-sky value of 1. This higher contrast can be seen in
the example ratios and feature masks given in Fig. 6,
particularly for the TTL cirrus layer. In terms of me-
dian values in Fig. 8, the ratio of feature-to-threshold is
typically 3-6 times larger above 8 km for 6 than SRg
(not shown). This allows for an easier detection using
the depolarization ratio. However, this does not imply
that a feature mask constructed using only a scattering
ratio cannot detect tenuous features, just that it would
require more signal accumulation (or averaging) to do
so than is needed for the depolarization ratio.

The large amount of optically thin cirrus clouds that
occurs at the TWP site (e.g., Thorsen et al. 2011) leads to
the up to a factor of 2 difference between the cloud
occurrence in the § mask compared to SRg. At the SGP
site, where there exists a smaller amount of thin cirrus,
the 6 mask also detects more high cloud but only up to a
maximum of 30% more than the SRg mask (not shown).



1992

While Fig. 8 quantifies sensitivity in terms of
scattering and depolarization ratios, extinction and
backscatter coefficients are potentially a more com-
prehensible estimate of FEX’s sensitivity. The mini-
mum, defined as the 5th percentile, in-feature
particulate extinction and backscatter coefficient de-
tected by FEXis 7.0 X 10°km™" and 2.7 X 10 *km ' sr™",
respectively, for 2-min time bins and 30-m height bins.
Determining the particulate extinction and backscat-
tering depends on FEX’s extinction retrieval (Thorsen
and Fu 2015). In addition, values can only be determined
in-feature and therefore cannot always represent the
true detection thresholds.

5. Performance assessments

Assessing FEX’s performance is inherently difficult
since we have no underlying truth for the physical world.
Therefore, much of the testing during the development
of this algorithm was qualitative: comparing the algorithm’s
mask to the features identified by an expert observer
looking at an image of the data. By this measure, the
algorithm performance is satisfactory with acceptably
low rates of false and missed detections. In this section,
more quantitative assessments of performance are made
mainly for cloud detection at the ARM Darwin site.
Cloud detection at a tropical site like Darwin presents a
challenge for a lidar due to the high levels of solar
background noise and the high altitude of the tropo-
pause, near which very optically thin cirrus frequently
occur (e.g., Winker and Trepte 1998; Wang et al. 1998;
Fu et al. 2007; Dessler and Yang 2003; Massie et al. 2010;
Davis et al. 2010). The comparisons made in this section
also rely on classifying features into cloud and aerosol,
which is described in Part II.

One of the motivations for this work was to improve
the cloud mask in the current generation of ARM RL
products. Figure 9 shows the profile of cloud occurrence
from the ARM depolarization (DEP) product. The
DEP product applies static thresholds to the de-
polarization and scattering ratio (calculated using the
nitrogen and elastic channels) to identify cloud layers:
defined as where depolarization is greater than 0.05 or
the scattering ratio is greater than 1.5. The comparison
of the cloud occurrence profile from the DEP product to
FEX is given in Fig. 9. While reasonable agreement
exists below S5km, FEX detects more clouds at high
heights. The increased detection is most striking for
heights above 12 km, where up to twice as many clouds
are detected. A visual comparison of the two cloud masks
revealed that the DEP product has not only missed de-
tections but also has numerous false detections. This is
reflected in the amount of cloud that exists in the DEP
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FI1G. 9. The cloud occurrence profile from the ARM DEP
product (red) and from the new FEX algorithm (blue) described in
this work at Darwin from December 2010 through December 2014.

product from 18 to 20km, a region where we expect al-
most no clouds to occur at this location. It is of no surprise
that the simple static thresholds used in the original ARM
RL cloud mask are outperformed by our more rigorous
threshold algorithm. Since there is such a stark difference
in complexity between these two approaches, we provide
better assessments of our algorithm’s performance by
comparing to other lidar observations.

a. ARM MPL comparison

The ARM Darwin site is also equipped with an MPL
(Campbell et al. 2002; Coulter 2012) that transmits 6—
8 uJ of 532-nm light with a PRF of 2500 Hz. Data are
averaged to 2min and 30 m, the same bin size used for
the RL. The cloud mask of Wang and Sassen (2001) is
applied to the backscattered signal. The Wang and Sassen
(2001) algorithm is a slope method that examines the rel-
ative change in the returned signal power for strong neg-
ative and positive slopes that occur in the presence of
clouds. The Wang and Sassen (2001) algorithm has been
widely used in the analysis of ARM MPL signals (e.g.,
Comstock et al. 2002; Luo et al. 2008; Thorsen et al. 2011;
Comstock et al. 2013; Riihimaki et al. 2012). Note that no
aerosol products are produced using the ARM MPL;
therefore, in this section, only cloud detection is compared.

The ARM MPL cloud mask (Wang and Sassen 2001)
is compared to that of FEX at Darwin using over 80000
coincident profiles from December 2010 through Au-
gust 2011, a period when both instruments were
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FIG. 10. The cloud occurrence profile from the ARM MPL cloud
mask (green) (Wang and Sassen 2001) and RL-FEX cloud mask
(blue) from December 2010 through August 2011 for (a) all pixels
and (b) only pixels where both the ARM MPL and RL SNR is >3
in profiles where rain was not detected.

operating. Figure 10a compares the cloud occurrence
profiles during this period. Good agreement exists from
about 5 to 9km. Below 5km, the ARM MPL detects
more clouds at some heights and less at others than the
RL. Differences can be due to several things beyond
the methods used for cloud detection below 5km. Like
the RL high channels, the ARM MPL does not achieve
complete overlap until 5 km, so uncertainties in overlap
functions may contribute to differences in Fig. 10a. The
ARM MPL data have a single generic overlap correc-
tion applied to all the data and, because of increased
uncertainty in this generic correction at lower heights,
no cloud mask is determined below 1km. In addition,
the different methods used to identify rain/virga may
contribute to discrepancies at lower heights. The cloud
mask of Wang and Sassen (2001) separates the base of
rain—virga from the cloud base by comparing the increase
in slope between the two. In FEX, the identification of
rain is based on the retrieved lidar ratio (Thorsen and Fu
2015). Above 9km, the ARM MPL Wang and Sassen
(2001) retrieval detects significantly less clouds pre-
sumably due to the larger amount of noise in the ARM
MPL measurements (Thorsen et al. 2013b).

To provide a more direct comparison of the detection
algorithms themselves, only profiles without rain (as
determined by FEX; see Thorsen and Fu 2015) and only
pixels where both the ARM MPL and RL SNR is
greater than 3 are used to calculate the cloud occurrence
profile in Fig. 10b. The MPL SNR is calculated in the
same way as is done for the RL [Eq. (7) and section 3a]
except that background noise is inferred from high al-
titude (45-55km) signals, where the contribution from
molecular scattering is negligible (Welton and Campbell
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TABLE 4. Comparison between RL-FEX and ARM MPL cloud
detection [which uses the algorithm of Wang and Sassen (2001)] at
Darwin from December 2010 through August 2011. Only the
subset of pixels above 2km and where both the RL and MPL
SNRs > 3 are compared. Percentages are given relative to the
detection of RL-FEX.

MPL clear MPL cloud
RL clear 98.0 2.0
RL cloud 9.1 90.9

2002). About 60% of RL pixels where the SNR is
greater than 3 also have the MPL SNR greater than 3. In
this more limited comparison (Fig. 10b), the ARM MPL
and RL agree very well above 2 km. However, the ARM
MPL still lacks clouds below 2 km, likely an indication
that its cloud mask is adversely affected by the un-
certainty in its overlap function.

To ensure that this agreement is not due to some
fortuitous cancellation of errors, the error matrix for this
comparison is shown in Table 4 for pixels above 2 km.
When the SNR for both instruments is greater than 3,
the two algorithms show good agreement with the ARM
MPL detecting cloud for only ~2% of the pixels label by
the RL as clear. The opposite error, when RL pixels
determined to be cloudy are marked as clear by the
ARM MPL, has a larger error rate of ~9%. This is likely
an indication of the higher SNR required for a slope
method versus a threshold method since taking the slope
increases the relative amount of signal noise. If we make
the same comparison for a higher MPL SNR—that is,
compare the subset of pixels where the MPL SNR is
greater than 6 and the RL SNR is greater than 3—then
this error is reduced to 7%. Overall, we find reasonable
agreement between the RL-FEX and Wang and
Sassen’s (2001) ARM MPL cloud mask when both in-
struments have sufficient SNR.

b. CALIPSO comparison

The CALIPSO satellite (Winker et al. 2009, 2010) was
launched in April 2006 into a sun-synchronous orbit
providing near-global observations at approximately
0130 and 1330 (local time) for a fixed point. We use the
5-km vertical feature mask (VFM) product (Vaughan
et al. 2009) from CA LIPSO level 2, version 3, which, like
FEX, is based on a threshold method. Since CALIPSO
and the ARM RL do not make coincident measure-
ments, only a statistical comparison can be made.
CALIPSO VFM profiles that fall within 200km of the
Darwin site are compared to RL profiles from Decem-
ber 2010 through December 2014. The RL data are
limited to times within *2h of CALIPSO overpasses.
To fairly compare a spaceborne platform with a ground-
based one, the profiles are further limited to those where



1994

Day Night
20 T T T T T r
(a) (b)
18 1 1
16
14
12
=10
=y
£ 8
6 <4
RL: 2min/30m
4 RL: 9min/30m ]
2 <4
CALIPSO
0 .
0

0 0.1 02 03 04 00 0.1 02 03 04
Cloud occurrence (transparent profiles)

FIG. 11. The cloud occurrence in transparent profiles from the
RL accumulated to 2-min and 30-m bins (blue) and from the
CALIPSO VFM product (red). The profile from the RL data ac-
cumulated to 9 min and 30 m, which is approximately equivalent to
CALIPSO’s averaging below 8.2 km, is given in brown. The profile
from the RL data accumulated to 15 min and 60 m, which is ap-
proximately equivalent to CALIPSO’s averaging above 8.2 km, is
given in gray. Profiles are shown separately for the (a) daytime and
(b) nighttime observations. This comparison includes CALIPSO
profiles that fall within 200 km of the Darwin site from December
2010 through December 2014. The RL data are limited to times
within =2 h of CALIPSO overpasses.

the lidar beam passes through all layers unattenuated,
that is, transparent profiles. For CALIPSO, transparent
profiles are approximated as those with the presence of a
signal return from the surface. For the RL, transparent
profiles are defined as those where the high-elastic-
channel SNR is greater than 1 at 18.5km.

Figure 11 shows the cloud occurrence in transparent
profiles from the RL (blue line) and CALIPSO (red
line). Large differences exist with CALIPSO detecting
more high clouds. As a whole, CALIPSO must perform
significantly more averaging than a ground-based lidar
to obtain a similar SNR due to its larger distance from
the target. The occurrence of clouds is dependent on
averaging since more averaging allows for relatively
smaller cloud optical thicknesses to be detected. For
example, given in Fig. 12 is the FEX cloud mask for the
ratios in Fig. 6 but for data accumulated into 9-min bins
instead of 2 min. With 9-min bins, more of the thin TTL
cirrus from 16 to 18 km can be detected. However, larger
amounts of averaging can smear clouds, artificially in-
creasing the reported cloud occurrence. This can be seen
in the lower layer of ice cloud (11-14km) in Fig. 12.
Small gaps that appear in this layer in 2-min bins
(Fig. 6e) are smeared out in 9-min bins (Fig. 12). The
opposite effect, a decrease in the reported cloud occur-
rence, can occur for clouds with small spatial scales as
larger amounts of averaging can mix in clear-sky signals,
causing the cloud to go undetected. Furthermore, our
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FIG. 12. FEX feature mask for 10 May 2013 at Darwin when the
signal was accumulated into 9-min and 30-m bins. Each color
represents a different combination of the four ratios that detected
the feature: scattering ratio derived using the elastic and nitrogen
channels (EN), the low elastic and nitrogen channels (ENL), and
only the elastic channel (E), and the depolarization ratio (D).

comparison is composed of transparent profiles, which
also depend on averaging. Larger amounts of averaging
(or signal accumulation) increases the likelihood that
enough laser shots penetrate through the feature, thereby
reducing the occurrence of complete attenuation. To
avoid all these complications, we create a RL-FEX
dataset with temporal and height bins approximately
equal to CALIPSO’s spatial average.

The mean amount of horizontal averaging used by
CALIPSO is determined from the reported amounts for
each cloudy pixel in the VFM product. Since advection
determines the amount of cloud passing through the RL
FOV, the mean wind speed is obtained from the collo-
cated radiosonde profiles at Darwin. Dividing the profile
of mean horizontal averaging by the profile of mean wind
speed gives the equivalent temporal bin size for the RL:
amean of 9 min for heights less than 8.2 km and 15 min for
those above. Since above 8.2km CALIPSO’s vertical
averaging increases from 30 to 60 m, the same 60-m ver-
tical bin size is used for the RL in the 15-min data.

Figure 11 shows the RL cloud occurrence profile for
9-min and 30-m bins (brown line) and 15-min and 60-m
bins (gray line). For nighttime profiles in Fig. 11b, nearly
all the difference between the 2-30-min RL and CA LIPSO
profiles can be attributed to averaging since the 15-min—
60-m RL profile agrees well with CALIPSO above 8.2km
and the 9-30-min RL profile agrees well below. Making
the same comparison for daytime profiles (Fig. 11a), the
15-min/60-m RL data show more cloud from about 11 to
16 km. This suggests the increased solar background may
cause some optically thin clouds to go undetected by
CALIPSO, although this difference is not statistically
significant. Overall, when approximately the same amount
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of averaging is used, we find good agreement between
RL-FEX and the CALIPSO VFM product.

The agreement between the RL and CALIPSO in Fig. 11
is similar to that found by Thorsen et al. (2013b). However,
unlike the current study, agreement between CALIPSO
and the RL was found by Thorsen et al. (2013b) when the
RL data were averaged to 2 min and 30 m. The reason for
this discrepancy is that the Thorsen et al. (2013b) study
applied a median filter to the depolarization ratio, which
was used to identify cirrus, with a moving window of 150 m
by 10min. This filter created a dataset with an effective
resolution of 10min, which we show here to be approxi-
mately equivalent to CALIPSO’s horizontal averaging.

Comparisons of aerosol vertical occurrence profile to
CALIPSO were also performed in a similar manner and
are given in Fig. 13. At lower heights FEX detects aerosol
nearly 100% of the time as one would expect in the
boundary layer. However, CALIPSO detects significantly
less aerosol than FEX even for the subset of nighttime
profiles with no clouds present. This limits our ability to
straightforwardly assess FEX’s aerosol detection using
CALIPSO, although resolving the differences in Fig. 13
will be the subject of future work. Credibility in FEX’s
vertical extent of aerosol is partially demonstrated by
good agreement in aerosol optical depth measured by
the Aerosol Robotic Network (AERONET; Holben et al.
1998) as shown in Part II since FEX extinction retrievals
are only performed in bins where aerosol is detected. Fur-
thermore, detection of aerosol is performed in the same
consistent framework as cloud detection and therefore we
do not expect large inconsistencies between the two.

6. Summary and conclusions

We have presented an automated method for the
detection of features in the Atmospheric Radiation
Measurement Program’s (ARM) Raman lidar (RL)
measurements, which is Part I of the feature detection
and extinction retrieval (FEX) algorithm. While the
detection of features in FEX requires an estimate of
particulate extinction, this work focused on the aspects
most pertinent to feature detection. The retrieval of
particulate extinction in FEX is given in Part II. The
intent is to run FEX operationally within the ARM Data
Management Facility (DMF) with the output being
made available to the general user community via the
ARM website (http://www.arm.gov/).

The feature detection approach used in FEX is to
analyze multiple quantities—scattering ratios derived
using elastic and nitrogen channel signals from two
FOVs, the scattering ratio derived using only the elastic
channel, and the total volume depolarization ratio—for
the presence of features. Range-dependent detection
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F1G. 13. The aerosol occurrence in transparent profiles from the
RL at 2min and 30m of averaging (blue) and from the CALIPSO
VFM product (red). Also given is the vertical occurrence in the subset
of transparent profiles where no clouds are detected (no cloud).
Profiles are shown separately for the (a) daytime and (b) nighttime
observations. The shading encompasses the uncertainty due to sam-
pling (95% confidence) determined by bootstrapping. This compar-
ison includes CALIPSO profiles that fall within 200 km of the Darwin
site from December 2010 through December 2014. The RL data are
limited to times within +2h of CALIPSO overpasses.

thresholds are determined for each profile separately by
calculating the expected noise in a clear-sky signal. We
show that the approach of using multiple quantities
provides a complementary description of the vertical and
temporal extent of clouds and aerosols. Using multiple
quantities also allows for additional consistency checks
on the feature mask, which reduces the rate of false de-
tections and improves the efficiency of the algorithm.
The performance of FEX’s feature detection is illus-
trated by the application of the algorithm to 4 years of
ARM RL data over Darwin, Australia. The feature
detection in FEX is found to be robust across the di-
urnal cycle, as no bias exists in the elastic channel de-
tection thresholds. Sufficiently small noise in the
depolarization ratio and the strong contrast between
molecular and typical in-cloud values allows for the
depolarization ratio to be the most effective for the
detection of thin cirrus for the ARM RL system. We
also presented the improvement of FEX’s cloud mask
relative to the cloud mask used in the current opera-
tional ARM products. Evaluations of FEX’s cloud
detection were made by comparing to the collocated
ARM micropulse lidar (MPL) and to observations from
the Cloud—Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) satellite, which uses indepen-
dent methods for identifying clouds. RL-FEX detects
more clouds than the ARM MPL due to the RL’s larger
SNR. However, when the comparison is limited to when
both instruments’ SNR was above 3 good agreement was


http://www.arm.gov/

1996

found. Comparisons with CALIPSO also agreed well for
transparent profiles when similar amounts of signal
averaging are used, particularly for nighttime profiles.

While we have focused on one particular lidar system,
the FEX framework is flexible enough to be extended to
other Raman or HSRL systems that can intrinsically
separate signal returns from molecules and particulates.
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APPENDIX

Depolarization Calibration

The ARM RL separates the high elastic signal into
parallel and perpendicular components. To prevent sat-
uration of the detector, an extra neutral density filter
exists in the parallel channel. Therefore, to determine the
total elastic signal and the depolarization, the difference
in gain between the parallel and perpendicular channels
must be taken into account. In addition, the accuracy of
the depolarization measurements is affected by possible
misalignment of the polarizing beamsplitter to that of the
transmitted beam. This misalignment induces cross talk
into the signal—some portion of the perpendicular signal
ends up in the parallel channel and vice versa. The re-
lationship between the observed or apparent signals and
the true signals is given by (Alvarez et al. 2006)

1= é(s | cos’p + 8, sin’¢) (AD)

and

S =(S;sin’p + S, cos’e), (A2)
where S| and §', are the observed signals in the parallel
and perpendicular channels, respectively. Terms S} and
S, are the true parallel and perpendicular signals, re-
spectively. The factor G represents the relative gain, that
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TABLE Al. The percentage of profiles by the calibration type used
from December 2010 through December 2014 at Darwin for the
depolarization misalignment angle. The mean relative uncertainties
(%) are given in parentheses. Uncertainties are computed by taking
the standard deviation in each per-day, per-tweak, or per-profile re-
gion. The uncertainty in the historical calibration constants are de-
termined by repeatedly (10 000 times) randomly sampling 7 days of
per-profile constants, and in each random sample calculating the sum
(in quadrature) of the standard deviation of the per-profile values and
the mean standard deviation in the per-profile values themselves.

Historical

¢ 02(6.1)

Per day Per tweak Interpolated Per profile
04(42) 9.2(5.0) 11.5 78.7 (5.3)

is, the reduction in signal by the extra neutral density filter
in the parallel channel relative to the perpendicular
channel. The angle ¢ is the misalignment angle between
the transmitter and receiver polarization planes.

The relative gain G is taken as the ratio of daytime
perpendicular to parallel channel background signal
during the presence of optically thick liquid water
clouds. In these situations the true depolarization is 1
since multiply-scattered sunlight through the clouds will
be randomly polarized, and by using the background
signals any misalignment between the transmitter and
receiver polarization planes is irrelevant. Times of op-
tically thick liquid water clouds are identified using
collocated microwave radiometer (MWR) observations
(Liljegren and Lesht 1996)—defined as times when the
liquid water path exceeded 75 gm™. Multiple years of
collocated RL and MWR data are used to calculate a
mean G offline. We find G values of 21.26 and 6.40 at the
TWP and SGP site, respectively, with standard de-
viations of about 10% of these mean values.

Given the offline estimate of G, the misalignment
angle ¢ is then determined from backscattered signals in
clear sky. Forming a ratio of Egs. (A2) to (Al) and

solving for ¢ gives
6 G—¢
8,80—-G)’

where &' is the observed depolarization, that is, §' = NIATE
and §,, is the true depolarization due to molecular scat-
tering, that is, 8,, = S./S). The true molecular depolar-
ization is calculated using the model of Behrendt and
Nakamura (2002), and for the RL’s interference filter’s
bandpass we find a value §,, = 0.004. Since we need to
identify clear-sky signals, the calculation of ¢ using Eq.
(A3) is performed as an addition step in the iterative por-
tion of FEX using the same tactics as is done for the other
calibration constants (section 3d). The breakdown of what
resolution ¢ is determined at is given in Table Al along
with the associated uncertainties, which are about 5%.

¢ = arctan ( (A3)
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Note that in this paper the calculation of signal noise
detailed in section 3a is performed using the observed
signals (i.e., S| and S ). However, for the purpose of
feature detection, the true signals are used (i.e., S and
S, ). Therefore, in practice, propagation of uncertainty is
applied to Egs. (A1) and (A2) to determine the noise in
these true signals.
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