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Abstract 

Recent climatic conditions are affecting biodiversity, particularly those species highly isolated 

and at their distribution limits such as trout (Oncorhynchus sp.) inhabiting the Northern Sierra Madre 

Occidental (NSMO) in Mexico, which is a current conservation concern due to their fragmented 

distribution and anthropogenic threads. Here, we compiled previously published data from 24 

microsatellite loci from multiple localities of trout throughout the NSMO to construct geographic genetic 

structuring hypotheses. Our results confirm two genetically distinct subgroups within the NSMO 

corresponding to the northern populations from Río Yaqui-Río Bavispe and Río Casas Grandes, and the 

southern population from Río Yaqui-Río Sirupa and Río Conchos. In addition, we found a strong genetic 

differentiation between most of the locations sampled. We assembled species distribution models (SDM) 

to estimate the current distribution of trout. The SDM show that suitable environmental conditions may 

exist between northern and southern populations but are highly fragmented. In addition, association 

analyzes between FST and environmental factors show that the minimum temperature of the coldest 

month, the precipitation of wettest month, and the compound topographic index were responsible for the 

genetic structure. These results along with the limited mobility of the species, support limited 

connectivity as a possible explanation for current north and south arrangement of diversity. This study 

provides deep insights into the ecology and divergence processes within Northern Sierra Madre 

Occidental trout, and for the urgent development of effective conservation strategies for each of those 

lineages. 

Key words: Mexican trout, Oncorhynchus sp., NSMO, population genetics, Species Distribution 

Modeling. 
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Introduction 

Recent increases in the frequency and intensity of climatic events are threatening biodiversity 

and, with it, the welfare of humanity (Díaz et al. 2006). There is a great deal of documentation about how 

species change in abundance and distribution in response to climatic oscillations in different ecosystems 

(Hewitt 2001; Penuelas and Filella 2001; Walther et al. 2002) and freshwater ecosystems seem to be the 

most vulnerable (Dudgeon et al. 2006). Predictions indicate that cold-water species will be particularly 

affected by environmental changes (Comte al. 2012). Stream temperature increase are already reducing 

suitable habitat of most cold-water fish species (Eby et al. 2014), resulting in habitat fragmentation and 

population reductions (Isaak et al. 2012). These climatic changes have a negative effect on the genetic 

diversity due to reduced gene flow, genetic drift, and limited further adaptive evolution (Schierenbeck 

2017), increasing populations risk of local extinction (Fagan et al. 2002). In addition, anthropogenic 

activities such as land use change, the introduction of non-natives species and human overpopulation, 

further increase these risks (Baillie et al. 2004). There is a growing interest in understanding how genetic 

diversity have been particularly affected in species distribution limits. Here, we present the case of trout 

(Oncorhynchus sp.) inhabiting the remote Sierra Madre Occidental (SMO here after) in Mexico, the 

southernmost native salmonid populations in the world (Hendrickson et al. 2002). 

The SMO, situated on the eastern side of the Mexican Plateau, has a surface of more than 250,000 

km2 and an elevation ranging from 300 to 3340 m, which makes it the largest mountain range in Mexico 

(González-Elizondo et al. 2013). The topographic complexity of the region created by high mountains, 

deep canyons, and an intricate pluvial system results in a highly diverse ecosystem for land flora and 

fauna (Felger and Wilson 1995), as well as for freshwater communities (Felger and Wilson 1995; Mayden 

et al. 2010). Moreover, the area is characterized by a unique biota and abundance in endemic species, alas 

little is known about them (Mittermeier et al. 2004; Mayden et al. 2010; González-Elizondo et al. 2012). 

The SMO can be subdivided into three regions: northern, central, and southern. The Northern SMO 

(NSMO here after) is characterized by an irregular topography of mountainous terrain with grasslands and 

coniferous forests (Felger et al. 1997; González-Elizondo et al. 2012). Four major rivers run through the 

NSMO: the endorheic Río Casas Grandes (also known as Río Guzmán); the Ríos Yaqui and Mayo that 

drain into the Gulf of California; and the Río Conchos which drains into the Río Grande (also known as 

Río Bravo) (Ruiz-Campos et al. 2003; Hendrickson et al. 2006). 

The taxonomic relationships of SMO trout have been studied using multiple approaches (Nielsen 

et al. 1998; Nielsen & Sage 2001; Ruiz-Campos et al. 2003; Camarena-Rosales et al. 2007). However, no 

formal descriptions have been performed on the NSMO trout despite recent studies finding trout from 

these four basins are separate lineages from the rest of the SMO trout with a subdivision between north 

and south (Abadía-Cardoso et al. 2015), and should be considered as two Evolutionary Significant Units 
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(ESU): one formed by the populations of the Casas Grandes, Mayo, and Yaqui basins, and the second 

formed by trout from the Río Conchos (García-De León et al. 2020). In March 2019, four groups of trout 

from the NSMO were listed in the IUCN Red List of Threatened Species under different status categories 

(IUCN 2020). Trout from the Río Conchos is separated into north and south, and listed as Critically 

Endangered and Endangered respectively. Río Mayo trout is categorized as Endangered. Finally, only 

trout from the northern tributary Río Bavispe of the Río Yaqui (named Bavispe trout) was listed as Near 

Threatened, while trout from the southern region (Río Sirupa) was not included in the listing. Previous 

studies have shown that NSMO trout is considerably distinct from any other species or group of trout both 

morphologically (Ruiz-Campos et al. 2003) and genetically (Nielsen et al. 1998; Camarena-Rosales et al. 

2007; Abadía-Cardoso et al. 2015; García-De León et al. 2020). Unfortunately, the NSMO trout –like the 

rest of the SMO, is facing multiple anthropogenic impacts such as logging, overgrazing by livestock, and 

conversion of land for cultivation directly threatening trout (Hendrickson et al. 2002). NSMO trout are a 

current conservation concern due to their limited and fragmented distribution. Also, for decades, the non-

native, hatchery grown Rainbow trout (Oncorhynchus mykiss) has been introduced in many NSMO 

watersheds for aquaculture, representing another threat –that of genetic introgression– for the native trout 

(Escalante et al. 2014; Abadía-Cardoso et al. 2015). 

Genetic resources should be a priority for management and governance to support continuation of 

populations of NSMO trout. Thus, the focus of this study was to promote innovative tools to efficiently 

understand the changes in genetic diversity related to environmental variables. We built on previous 

genetic studies to better resolve geographic patterns of genetic diversity among NSMO trout. We then use 

species distribution models (SDM) to predict the amount of habitat that is available to trout (Gotelli and 

Stanton-Geddes 2015; Marcer et al. 2016; Carneiro-Muniz et al. 2019). Recognizing how environmental 

factors relate to the distribution of genetic diversity across the species range is fundamental to understand 

species responses to environmental conditions and global change, and potential declines and extinctions 

(Mabel 2019). According to the above, we might expect that the population genetic differences of NSMO 

trout respond to local environmental conditions and the structure of hydrological basins. The results of 

this study will provide further insights into the NSMO trout ecology, and divergence processes within the 

area. 

Methods 

Population genetics analysis 

Rivers of the NSMO in Mexico were surveyed for native trout between 2005 and 2007 (Figure 1; 

Table 1). For details on collection, tissue preservation, and DNA extraction see Escalante et al. (2014), 
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Abadía-Cardoso et al. (2015), and García-De León et al. (2020). We combined genotypes previously 

published in Abadía-Cardoso et al. (2015) and García-De León et al. (2020) consisting of 24 

microsatellite loci (Online Resource 1). These previous studies evaluated the genetic associations of the 

different groups of trout in Mexico in relation to other formally recognized trout species such as Rainbow 

(O. mykiss), Cutthroat (O. clarkii), Apache (O. apache), and Gila (O. gilae) trout (Abadía-Cardoso et al. 

2015), and recognized Evolutionary Significant Units for conservation (García-De León et al. 2020). Both 

studies highlighted the importance and uniqueness of trout from the NSMO and recognized the need for a 

more detailed evaluation of trout inhabiting the area. Here, we expect that, with the increase in the 

number of loci, a better resolution of patterns of genetic diversity would be obtained. Therefore, 

genotypes from a total of 232 individuals from 13 NSMO localities (one from Río Casas Grandes (n = 

27); 10 from Río Yaqui (n = 175); one from Río Mayo (n = 15); and one from Río Conchos (n =15)) were 

analyzed (Table 2). 

Stream sampling may accidently capture family groups, and the inclusion of large numbers of full 

sibling individuals may bias metrics of diversity and negatively impact the ability to infer population 

structure. To avoid this issue, we used the program COLONY v2.0.6.5 (Wang 2004), which implements a 

maximum likelihood method to infer kinship among individuals, using individual codominant multilocus 

genotypes (Jones and Wang 2010). The program was run by locality, assigning males and females as 

polygamous, without the presence of clones in the localities or inbreeding. Five long runs were performed 

for each site with the full likelihood method with high precision and without updating allelic frequencies 

because the sample sizes are less than 30, with 2000 random number of seeds. The analysis was 

performed without defining sibship a priori. A genotyping error rate of 5% was considered and no 

information about allelic frequencies was used. Individuals that presented a probability of sibling ratio 

and half siblings greater than 0.7 were eliminated, taking this reference value as highly related. 

Also, due to confirmed introductions of non-native hatchery Rainbow trout in some NSMO rivers 

and streams, we explored the genetic introgression from Rainbow trout into native NSMO trout using the 

admixture model in the program STRUCTURE 2.2 (Pritchard et al. 2000) with k = 2, and CLUMPP 

(Jakobsson and Rosenberg 2007) and DISTRUCT (Rosenberg 2004) for visualization. We included 

genotypes from four O. mykiss hatchery strains from California and two Rainbow trout hatcheries located 

in Río Bavispe (data from Abadía-Cardoso et al. 2015). Due to data availability, we used a subset of 18 

microsatellite loci from Abadía-Cardoso et al. (2015) to investigate this question. 

We evaluated the genetic diversity within populations using different estimators. We estimated 

expected (HE) and observed (HO) heterozygosities (Nei 1978), and tests on Hardy-Weinberg equilibrium 

(HWE) using GENEPOP (Rousset 2008). Private alleles and allelic richness after rarefaction (El 
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Mousadik and Petit 1996) were calculated using the programming language R-based (4.0.3; R Core Team 

2020) package hierfstat (Goudet 2005). 

We applied complementary analytical methods that carry different assumptions (Bayesian, 

multivariate, and dendrograms) to characterize population relationships and structure in NSMO trout at 

the individual and population levels. The coefficient FST is widely used to assess genetic differences 

between populations, and here we use it for the purpose of comparison. We estimated pairwise FST and 

their significance after Bonferroni correction for multiple tests, evaluated with 10,000 permutations using 

Arlequin 3.5 (Excoffier and Lischer 2010). 

We explored genetic relationships at the individual level using the program STRUCTURE 2.2 

(Pritchard et al. 2000) using all 24 microsatellite loci. This Bayesian admixture model-based clustering 

analysis evaluates individual ancestry based on multilocus genotypes without using geographic 

information –which reduces linkage disequilibrium and the level of Hardy-Weinberg disequilibrium 

across separated loci. We evaluated k values from 2 to 5, with 10 iterations for each value and a burn - in 

period of 50,000 steps and 150,000 Markov Chain Monte Carlo replicates. The software programs 

CLUMPP (Jakobsson and Rosenberg 2007) and DISTRUCT (Rosenberg 2004) were used to visualize the 

population clusters. 

Principal components analysis (PCA) was performed on the genetic data using the R-based 

package adegenet 2.1 (Jombart 2008) to identify differences between individuals. This multivariate 

approach of grouping is based on similarity coefficients or variance – covariance values of the component 

traits of the entries. 

Also, to illustrate the genetic relatedness among trout groups, a Neighbor joining unrooted 

dendrogram of populations was generated using Cavalli-Sforza and Edwards (1967) chord distances in 

the software package PHYLIP (Felsenstein 2005). Node support consistency was assessed using 1,000 

bootstrap replicates and the resulting tree was visualized using Dendroscope 3 (Huson and Scornavacca 

2012). 

Species distribution modeling and validation 

We assembled a georeferenced database of trout (Oncorhynchus sp.) inhabiting the SMO. The 

location data of 13 records were from the rivers surveyed for native trout between 2005 and 2007 while 

the other 86 records were obtained from the Hendrickson Lab Page 

(https://sites.cns.utexas.edu/hendricksonlab/map). Preliminary data curation involved removing all 

duplicate records of location. The remaining records were plotted on a digital map having a pixel of 1 km2 

to detect geographically close records. Where two or more records occurred within a single pixel, only 

one locality was retained in our final data set. 
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In this study, climatic and topographic variables were considered for developing the model. We 

obtained current climatic data from the WorldClim–Global Climate Data v2 (Fick and Hijmans 2017). 

Also, a digital elevation model (DEM) was downloaded from the USGS GTOPO HYDRO 1K project 

(https://earthexplorer.usgs.gov/) and variables such as aspect, flow direction, flow accumulation, slope 

and the compound topographic index (CTI) were derived from this DEM. All variables were fitted to a 1 

km of pixel size and clipped to the study area whose lower boundaries were defined with elevations above 

the 1,500 m.a.s.l. as recommended in Ruiz-Luna et al. (2017). 

We extracted the values for each of the 25 variables (19 climatic + 6 topographic variables) for 

each occurrence record using the package ‘raster’ v3.4-5 (Hijmans et al. 2020) and constructed a 

correlation matrix in the R statistical software v4.0.3 (R Core Team 2020). To avoid collinearity and 

provide non-redundant information, we removed highly correlated bioclimatic variables based on a 

Pearson’s correlation coefficient greater than 0.8. 

Once the variable set was reduced, we predicted the potential trout distribution by using six 

commonly used single-model methods within the BIOMOD2 v3.4.6 package for R (Thuiller et al. 2009; 

2020). These algorithms were generalized linear model (GLM), generalized additive model (GAM), 

generalized boosting model (GBM), surface range envelop (SRE), classification tree analysis (CTA), and 

random forest (RF). Considering that we did not have absence data, we created a 10,000 pseudo-absence 

dataset randomly. Locality records were split into 75% for training and 25% to make model performance 

evaluation. To reduce uncertainty, the procedure was repeated 10 times, which resulted in sixty models 

for an ensemble forecast. We used the true skill statistics (TSS; Allouche et al. 2006) for a pre-evaluation 

of the models. The TSS (sensitivity + specificity − 1) value has been suggested as an alternative to AUC 

(area under the receiver operating curve) and Kappa statistics for measuring the accuracy of the SDM 

projections (Allouche et al. 2006). In this study, we established a priori a TSS value > 0.7 as an 

acceptable performance threshold (Swets 1988; Ribeiro et al. 2021). Thus, only those models with TSS > 

0.7 were combined for the ‘ensemble’ map, that was then converted into binary presence-absence data by 

setting the cut-off threshold determined by the minimum value of the confidence interval around the mean 

probabilities. 

Finally, to associate the genetic diversity of trout (Oncorhynchus sp.) with topographic and 

environmental factors, we implemented a Generalized Dissimilarity Model (GDM; Ferrier et al. 2007) to 

transform our predictors and visualize genetic patterns. We extracted the values of all variables from each 

location and the FST table was used as the site-by-site genetic distance (dissimilarity) matrix within the R 

package GDM v1.4.2 (Fitzpatrick and Keller 2015; Fitzpatrick et al. 2020). To fit the GDM model, the 

standard three I-spline (partial regression fits) basis functions were calculated (Ferrier et al. 2007), while 

the variable importance was quantified as the percent change of deviance explained permutating 50 times 
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the GDMs fitting. After that, we transform the geographic and environmental predictors using the fitted 

functions into a multi-dimensional grid with predicted ecological distances. Finally, to reduce 

redundancy, our results were submitted to a Principal Component Analysis (PCA) and the first three 

principal components were mapped using a scaled (i.e., 0-255) RGB color space. These options 

correspond to default values implemented in the R package GDM (Fitzpatrick et al. 2020). 

Results 

Population genetics analysis 

Previously published genotypes from a total of 24 microsatellite loci from 232 individuals from 

13 NSMO trout populations were examined (Abadía-Cardoso et al. 2015 and García-De León et al. 2020; 

Online Resources 1). These data were first filtered for the presence of family structure. We detected full -

siblings with probabilities > 0.7 in trout from Río Casas Grandes, Río Bavispe (Las Guacamayas, Los 

Cuarteles, and El Salto creeks), Río Sirupa, and Río Mayo (Online Resource 2). A total of 19 individuals 

were removed from the database for a final number of 213 trout (Río Casas Grandes (n = 24), Río Yaqui 

(n = 160), Río Mayo (n = 14), and Río Conchos (n = 15)) that were retained for downstream analyses 

(Table 2). Also, we found minimal evidence of hybridization/genetic introgression from hatchery O. 

mykiss into native NSMO trout as showed in the STRUCTURE analysis (Online Resource 3). 

Estimated expected heterozygosity ranged from 0.05 (Río Conchos) to 0.52 (Río YS -

Banderella), with a mean value of 0.35 over the 13 population samples. Observed heterozygosities did not 

depart from Hardy-Weinberg expectations at most locations except for the three localities with the lowest 

diversity: Río Casas Grandes, Río Mayo and Río Conchos (Table 2). These deviations were driven by a 

few markers in each locality and may be due to small population sizes and inbreeding. Allelic rarefied 

richness ranged between 1.13 - 2.54, with Río Conchos showing the lowest allelic richness and Río YS -

Banderella the highest (Table 2). Private alleles were observed in all localities except for Río YB -

Guacamayas with the greatest number observed in arroyos from Río Yaqui-Sirupa (Table 2). 

Pairwise FST values across all sampling locations were very high and significantly different from 

zero (P < 0.001), except for ríos YB - Pedernal and YB - Largo (Table 3). Also, the STRUCTURE 

analysis shows an overall pattern of population clustering according to geographic location. At k = 2, 

trout from Río Yaqui separates into two clusters that concur with a geographic north (Río Bavispe) to 

south (Río Sirupa) separation. There is an association between trout from Río Casas Grandes with that 

from Río Bavispe, while the same association pattern is observed between Río Sirupa, Río Mayo, and Río 

Conchos trout to the south (Figure 2). At higher k values, watersheds split (i.e., Río Casas Grandes), 
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however, there is not a clear geographic pattern of differentiation in the southern localities, where Río YS 

- Salto separates at k = 4, while there is recent ancestry shared between the other Río Yaqui - Sirupa 

tributaries, Río Mayo and Río Conchos that is not clearly resolved at k = 5. 

The first three principal components (PCs) of the individual - based PCA plotted in Figure 3 

account for 43.5% of the underlying variation. Locations Río Bavispe and Río Casas Grandes cluster 

together in the left area of the plot and the Río Sirupa, Río Mayo and Río Conchos group roughly in the 

right side. This result is consistent with that obtained with the STRUCTURE analysis. 

The genetic dendrogram topography corroborates the patterns obtained with both STRUCTURE 

and PCA. Population samples from both Río Bavispe and Río Sirupa form different clusters on the tree. 

Also, Río Conchos is interspersed with Río Sirupa cluster. However, branch support was not strong for 

most of the groups, and Río YB - Cuarteles and Río Casas Grandes do not seem to be resolved (Figure 4). 

Species distribution model (SDM) 

After data curation, a total of 60 occurrence records are reported, 13 of them corresponding to the 

rivers surveyed for native trout, and the remaining 47 records from the Hendrickson Lab Page. After 

removing variables that were highly correlated, the number of topographic variables was reduced from six 

to three while the bioclimatic variables were reduced from 19 to six. The importance of each layer to the 

formal model varied depending on the algorithm used. Each variable provided non-redundant information 

that contributed to determining the optimal habitat for trout species (see Online Resource 4). Overall, the 

variables with the greatest contribution were Precipitation of Driest Quarter (BIO17) followed by the 

Minimum Temperature of Coldest Month (BIO06). The topographic variables CTI and slope were those 

that contributed least to the models. Trout distribution seems to be favored when the precipitation of the 

driest quarter is greater than 40 mm and the minimum temperature of the coldest month is below -2°C. 

Where positive values in BIO06 are present, the potential distribution is low o null. The predictive 

accuracies of the individual models are summarized in the Online Resource 5. Bold values in the Online 

Resource 5 are those models that were retained and combined for the final ‘ensemble’ model, while the 

shaded was considered the best model. TSS values for retained models (those with TSS > 0.7) ranged 

from 0.705 (GLM and GBM) to 0.815 (GBM), while the mean TSS was 0.7451 (± 0.04). All models of 

the SRE algorithms shows a poor performance with TSS ranged from 0.084 to 0.434 (mean = 0.263). 

After clipping the watershed boundaries with elevations above 1,500 m, the study area was about 

54,590 km2. The predicted distribution area using the new set of variables was about 14,447 km2. A wide 

potential distribution is observed as an almost continuous patch distributed from north to south along the 

headwaters of the basins except in the southeast part where the Río Conchos is located, and the potential 

distribution is practically null. The predicted area is mainly characterized by evergreen forest (12,730 
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km2) followed by agriculture (1,106 km2) and grasslands (460 km2) in elevation ranges from 1,500 to 

3,030 m.a.s.l., terrestrial diurnal temperatures from 9.5 to 16.2°C and annual accumulated precipitation of 

327 – 1,109 mm. It is worth mentioning that, although two patches with the highest potential distribution 

can be seen, one to the central - north part of the study area and the other less evident to the southeast 

part, the locations within these areas of high habitat suitability are not always connected. These two main 

regions with the highest probability of occurrence correspond to a north-south partition described above 

(Figure 5). 

The total deviance explained by the GDM including all the nine environmental and topographic 

attributes plus geographic distances between sites was 85.6%. In terms of variable importance (obtained 

by summing its I-spline coefficients), we found Minimum Temperature of Coldest Month (I-spline value 

= 14.902), Precipitation of Wettest Month (2.423), and the Compound Topographic Index (2.118) that 

represent the 65.7 %, 10.7 %, and 9.3%, respectively. However, two predictors (Slope and Max 

Temperature of Warmest Month) were not important in determining patterns of genetic differentiation in 

Oncorhynchus sp. (Online Resource 6). The results of the association of the genetic structure and 

environmental factors indicate that genetic dissimilarity FST values start to appear significant at a distance 

of around 0.5 degrees (~ 55km), elevations above 1900 m, and when the precipitation of the wettest 

month is above 180 mm. This dissimilarity is greater when the minimum temperature of the coldest 

month is below -4.0°C. The map of expected patterns in genetic turnover spatially projected by the GDM 

is shown in Figure 6. The rapid turnover is predicted to the central and western part of the study area 

(yellow and green colors), and comparative little (pink) elsewhere, consistent with the output produced by 

the SDM. 

Discussion 

Our results confirm the overall low genetic diversity observed in NSMO trout (Table 2). We 

recorded low levels of observed heterozygosity (mean Ho = 0.32) and allelic richness (mean Ar = 1.96) 

compared to other trout species (O. mykiss: Ho = 0.7 and Ar = 6.12; Garza et al. 2014). Within NSMO, 

trout from Río Yaqui showed higher observed heterozygosity (mean Ho = 0.37) and allelic richness 

(mean Ar = 2.9) than other NSMO trout (Río Casas Grandes: Ho = 0.16 and Ar = 1.4; Río Conchos: Ho = 

0.04 and Ar = 1.13). Nevertheless, a high number of private alleles was found across localities (Table 2). 

These results could be the consequence of genetic drift, indication of long isolation periods and related to 

small population sizes. Unfortunately, there are no studies on the abundance and biological data of the 

populations in the NSMO trout, so it is urgent to monitor the species to know the dynamics of natural 

populations. 
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Strong significant genetic differentiation was evident among all NSMO trout populations (mean 

FST = 0.33) but one pair of sampled localities: YB - Arco - Arroyo Pedernal and Arroyo Largo, which are 

the closest localities geographically from the Río Yaqui basin (Table 3). FST values in this study are 

among the highest reported in fish populations and similar to those reported in other isolated and 

threatened trout species (e.g., brown trout, Salmo trutta (Apostolidis et al. 2008); marvel trout, S. 

marmoratus (Fumagalli et al. 2002). This high genetic differentiation suggests interrupted gene flow 

between tributaries as well as a long-term isolation and genetic drift owing to low effective population 

sizes; the low heterozygosity and allelic richness values support this hypothesis. 

Despite the strong genetic differentiation among localities, the data show two main clusters 

consistent to a geographic (north and south of basin) division and it is consistent with previous reports 

(Abadía-Cardoso et al. 2015; García-De León et al. 2020). Yaqui trout from the northern tributary Río 

Bavispe shares ancestry with Río Casas Grandes, while the southern tributary Río Sirupa clusters with 

Mayo and Conchos rivers (Figure 2). This result is invariable throughout the three different approaches 

(STRUCTURE, PCA and Neighbor-joining dendrogram) used here. Particularly, the dendrogram 

topology shows very long branches for the southern cluster localities supporting trout populations 

(evolutionary lineages) that presumably have evolved in geographic isolation. This has been previously 

observed. For example, Oncorhynchus gilae, a species with a presumed similar evolutionary origin than 

the NSMO trout (Behnke 1992), patterns of differentiation and structure are most likely a consequence of 

isolation and unique evolutionary diversity among lineages, possibly correlated to local adaptation 

(Camak et al. 2021). Another example in the same SMO is O. chrysogaster, where river resistance is one 

of the causes of isolation and genetic structure (Escalante et al. 2020). 

One population of trout was particularly distinct relative to all other localities. Trout from Río YS 

- Salto presented the highest FST (0.522 – 0.761) estimates among all Río Yaqui localities (Table 3). Also, 

both the PC and STRUCTURE analyses shows a separate cluster for this locality. Geographically, Arroyo 

El Salto is the most distant from the rest of the Río Sirupa tributaries (Figure 1). The robust differentiation 

of trout of this tributary has not been previously identified and could be the result from an even longer 

period of geographic isolation resulting in a very distinctive trout that could be consider a unique 

Evolutionary Significant Unit or even a subspecies. Morphological and more genetic studies are necessary 

to determine the taxonomic identity of this group of trout. These results and the vast geographic 

complexity of the SMO suggest that undiscovered lineages may still be found. 

Another interesting feature observed in the analyses is the genetic similarity between Río YB -

Cuarteles and Río Casas Grandes despite being geographically distant from one another. One explanation 

for the observed pattern could be the inter - basin translocations by humans, which has been previously 

assumed for Yaqui trout in Arroyos La Presita, Las Nutrias and El Largo (Ballesteros-Córdova et al. 
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2019), and observed in the area for other fish groups (i.e., stonerollers (Campostoma spp.; Schönhuth et 

al. 2011)). 

The strong genetic differentiation between tributaries in the Yaqui basin is concordant with the 

topographic complexity of the study area and with the potential optimal distribution estimated by the 

ensemble model. Bearing in mind that several authors (Allouche et al. 2006; Hodd et al. 2014) provide 

interpretive guidelines for classifying model predictive accuracy (e.g., 0.01–0.20, Fail or null; 0.21–0.40, 

Poor; 0.41–0.60, Fair; 0.61–0.80, Good; and 0.81–1.00, Excellent or high), and Ribeiro et al. (2021) 

suggest that values above 0.5 are acceptable and values above 0.7 are considered good, 19 of our models 

have TSS < 0.5 (32%), and the remaining 41 models (68%) have TSS > 0.5. Therefore, we presume our 

final model is reliable. Excluding the SRE models, our results suggested at least one of the remaining 

algorithms have a good to excellent ability for recognizing areas with elevated potential for the 

occurrence of trout. Even when distribution models for freshwater fish species regularly include variables 

of temperature, precipitation, drainage area, elevation, stream slope, discharge, wetted width, bankfull 

width, depth, land use, and geology (McNyset 2005; Filipe et al. 2013; Mostafavi et al. 2014; Ruiz-Luna 

et al. 2017), most of these variables were not evaluated in this study. The habitat suitability map for 

NSMO trout was primarily affected by variables related to precipitation and temperature. Both variables 

have been previously noted as influencing adaptive genetic variation in other trout species (Hand et al. 

2016; Amish et al. 2019; Escalante et al. 2020) and affecting life history traits (i.e., dispersal, age at 

maturity, fecundity, and survival) in salmonids (Crozier and Hutchings 2014; Hecht et al. 2015; Hand et 

al. 2016). Temperature is particularly important for salmonids because they are ectothermic fish that 

require cold and clear waters (Penaluna et al. 2016). Temperature and precipitation are tightly related 

environmental conditions. Significant changes in precipitation regimes have been observed as 

temperatures increase which, in turn, cause negative effects in salmonid species population growth and 

survival (Haak et al. 2010; Ward et al. 2015). Our results are also concordant with those published for the 

Mexican golden trout (Oncorhynchus chrysogaster), a species inhabit near the study area (Ruiz-Luna et 

al. 2017; Escalante et al. 2018; 2020). 

We did not detect strong signals of hybridization between native NSMO trout and introduced 

Rainbow trout (Online Resource 3). The results of the association of FST and environmental variables 

indicated that significant genetic differences are observed at distances of 55 km, perhaps these distances 

are so small that they could prevent hybridization (Online Resource 6). Furthermore, no trout farms were 

reported in the study area. However, previous studies have shown genetic introgression between other 

native Mexican trout groups and non-native Rainbow trout (Escalante et al. 2014; Abadía-Cardoso et al. 

2015). Isolation between native and non-native trout is strongly related to riverscape characteristics 

(Escalante et al. 2020), nevertheless, the risk of introgression is still high as more aquaculture facilities 
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are established in the area. Moreover, studies in other trout species have predicted an increase in 

hybridization as river temperatures increase because of global warming (Muhlfeld et al. 2014). On the 

other hand, the ability to detect false negatives of introgression could be influenced by several aspects 

such as sample size (too few individuals may fail to capture hybrid individuals), absence of fixed 

differences in genetic markers selected (Allendorf et al. 2001), and stocking history where the 

introgression can be impacted by number of stocking events, number of fish stocked, and distance to 

stocking site (Escalante et al 2020). As mentioned above, the microsatellites used in this study have been 

proven to detect hybridization when it exists (Escalante et al. 2014; Abadía-Cardoso et al. 2015), so it is 

likely that non-detection of hybridization is real phenomenon. 

It has been recognized that freshwater ecosystems are among the most endangered ecosystems in 

the world with habitat fragmentation as one of the central threats to freshwater megafauna (Vörösmarty et 

al. 2010; Reid et al. 2019; Rodríguez-Rey et al. 2019). The SDM indicates two strongly fragmented 

potential suitable areas for NSMO trout, corresponding with the higher elevations near the headwaters of 

the basins of the study area (above 1,500 m.a.s.l). These results are confirmed by the full GDM model. In 

this study, both approaches identified the Minimum Temperature of Coldest Month (BIO06) between the 

most important variables explaining trout distribution patterns. GDM additionally finds the Compound 

Topographic Index (a dimensionless value that models water flow accumulation as a function of upstream 

contributing area and slope) between the variables with the highest percentage of variance explained. The 

CTI curve increases abruptly until a value of 500, suggesting that low values in CTI (usually related to 

small streams and creeks) have effects on the genetic structure of trout. These two variables had already 

been identified for their contribution to explaining the potential distribution of the Mexican golden trout 

(O. chrysogaster; Ruiz-Luna et al. 2017). It is worth highlight that, although 13 records seem too few 

records to examine multiple environmental correlations, the method used in the present study has been 

previously reported for small sample sizes and with good predictions (Xu et al. 2017; Kaliontzopoulou et 

al. 2018; Ingvarsson and Bernhardsson 2019). 

The observed scenario reveals that these unique trout have limited opportunity for expansion, 

therefore they are being put in serious challenge and warming stream temperatures will likely drive 

declines of these cold-water specialists on the southern edge of their distribution (Escalante et al. 2020). 

Particularly, Río Casas Grandes and Río Conchos trout seem to be outside the potentially suitable habitat, 

which could indicate these trout are already experiencing very extreme environmental conditions such as 

heat and drought that could be outside of the trout tolerance limits reducing the population size, as 

evidenced by its lower values of intra-population genetic diversity (Table 2). The binational group 

Truchas Mexicanas has previously recognized evident signs of population reduction of trout from Río 

Conchos and the urgency of establishing recovery measures (Truchas Mexicanas 2006). 
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Our results indicate that it might be necessary to reconsider the categorizations of NSMO trout in 

the IUCN Red List based on all evidence available. We believe that immediate conservation actions are 

needed to reassure a successful conservation strategy for NSMO trout, such as ‘genetic rescue’. However, 

all efforts to conserve this diverse group would be to no purpose if these trout are not formally described, 

given that in Mexico the only taxonomic units under legal conservation status are named species. 

Contrarily, significant evolutionary units and genetic populations are outside this protection. Then, a 

long-term protection project should be undertaken by local communities so that effective conservation 

methods ensure the survival of trout in the NSMO. Freshwater salmonids live in restricted areas at 

considerable altitudes and many of the populations are small and highly sensitive to genetic drift and / or 

local adaptation, due to this they are more exposed to local extinctions because of global warming and 

various anthropogenic activities. The trout of NSMO represent a particular case little known in North 

America. 

In conclusion, delimitation of these groups of trout in the NSMO was supported by both 

molecular population genetics and quantitative ecological space. This study provides deep insights into 

the ecology and divergence processes within trout in the NSMO, and for the urgent development of 

effective conservation strategies. 
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Figure captions 

Fig. 1 Map of the Northern Sierra Madre Occidental, Mexico, including four basins: Río Casas Grandes, 

Río Yaqui, Río Mayo, and Río Conchos. Sampling locations indicated in circles and numbers correspond 

to localities in Table 1 

Fig. 2 STRUCTURE analysis of 213 trout from 13 localities from the Northern Sierra Madre Occidental, 

Mexico (separated by black vertical lines). The analysis was used to group all individuals into different 

numbers of genetic clusters (K), from 2 to 5. Individuals are represented by single vertical lines and the 

colors in each line indicates the estimated fraction of ancestry from the inferred clusters. Individuals that 

consistently share colors across K values are considered genetically similar. A total of 10 runs per K was 

performed and the right column indicates the number of times that pattern was observed for each K value 

Fig. 3 Principal components analysis (PCA) of allele frequencies from 213 trout from 13 localities from 

the Northern Sierra Madre Occidental, Mexico. a) First vs second principal components (PC1 vs PC2). b) 

First vs third principal components (PC1 vs PC3). Coloration pattern indicates divergence between 

individuals using the first three principal components 

Fig. 4 Unrooted neighbor-joining chord distance dendrogram of 13 trout populations from the Northern 

Sierra Madre Occidental, Mexico. Branch labels are percentages from 1,000 bootstrap replicates. Internal 

branches length is in proportion with the number of trees in which the branch was found 

Fig. 5 Ensemble distribution map of the genetic groups showing suitable areas under current climatic 

conditions based on nine noncorrelated variables. Warmer colors show areas with higher probabilities of 

occurrence 

Fig. 6 RGB color composites derived from a Principal Component Analysis of GDM-transformed 

environmental predictors. Similarity of colors represent similarity in group relationships 
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778 Table 1 Sampling location of trout from the Northern Sierra Madre Occidental in México used in this 

779 study organized from north to south. 

Pop 
no. Basin Subsain Tributary Creek Location ID 
1 Río Casas Grandes Río Piedras Verdes Arroyo Escalariado Casas Grandes 

2 Río Yaqui Río Bavispe Arroyo Las 
Guacamayas 

YB - Guacamayas 

3 Arroyo La Nutria YB - La Nutria 

4 Arroyo Los 
Cuarteles1 

YB - Cuarteles 

5 Arroyo La Presita YB - Presita 

6 Arroyo El Arco Arroyo 
Pedernal 

YB - Arco - Pedernal 

7 Arroyo El Arco Arroyo Largo YB - Arco - Largo 

8 Río Negro Arroyo El 
Cocoño 

YB - Negro - Cocoño 

9 Río Sirupa Río Papagochic Arroyo El 
Salto 

YS - Papagochic - Salto 

10 Río Papagochic Río Tutuaca YS - Papagochic - Tutuaca 
11 Arroyo Banderella2 YS - Banderella 

12 Río Mayo Río Candameña Mayo 
13 Río Conchos Arroyo Ureyna Conchos 

1Also known as Arroyo El Cuartel 
2Also known as Arroyo El Tecacote 

780 
781 
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782 Table 2 Sampling location of trout used in this study from north to south and genetic diversity 

783 estimations by population. N: number of samples; no sibs: total number of samples after removing 

784 siblings detected with Colony; Lat: Latitude; Long: Longitude are given in decimal degrees; Ho: 

785 Observed heterozygosity; He: Expected heterozygosity; Hardy-Weinberg probability test (*significant); 

786 No Alleles: mean number of alleles per locus; pA: number of private alleles and Ar: allelic richness was 

787 calculated after rarefaction. 

Pop 
no. Location ID N 

no 
sibs He Ho 

HWE 
p-val 

No 
Alleles pA Ar 

1 Casas Grandes 27 24 0.17 0.16 <0.022* 1.96 6 1.41 
2 YB - Guacamayas 23 20 0.35 0.30 0.33 2.48 0 1.94 
3 YB - La Nutria 23 23 0.42 0.39 0.28 2.92 1 2.12 
4 YB - Cuarteles 26 20 0.22 0.20 0.70 1.79 2 1.49 
5 YB - Presita 12 12 0.46 0.39 0.49 3.16 5 2.30 
6 YB - Arco - Pedernal 10 10 0.48 0.46 0.73 3.00 2 2.36 
7 YB - Arco - Largo 16 16 0.48 0.45 0.20 3.76 15 2.43 
8 YB - Negro - Cocoño 16 16 0.41 0.40 0.23 3.12 2 2.13 
9 YS - Papagochic - Salto 21 20 0.18 0.19 0.80 2.12 18 1.52 
10 YS - Papagochic - Tutuaca 13 11 0.45 0.41 0.49 2.88 18 2.21 
11 YS - Banderella 15 12 0.52 0.52 0.65 3.72 22 2.54 
12 Mayo 15 14 0.32 0.28 0.002* 2.64 17 1.90 
13 Conchos 15 15 0.05 0.04 0.04* 1.24 6 1.13 

Total 232 213 
Mean 0.35 0.32 2.68 1.96 
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0.377 0.113 0.077 0.242 0.056 0.000 

 
 * 

 * 
 * 

 * 
 * 
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Y

B
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ocoño 

 
 

 
 

 
 

 
0.416 0.119 0.041 0.242 0.073 0.021 0.056 

 
 * 

 * 
 * 

 * 
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Y
S -Papagochi -Salto 

 
 

 
 

 
 

 
 

0.761 0.627 0.556 0.716 0.582 0.546 0.523 0.577 
 

 * 
 * 

 * 
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Y

S -Papagochi -Tutuaca 
 

 
 

 
 

 
 

 
 

0.588 0.404 0.323 0.506 0.309 0.258 0.276 0.320 0.530 
 

 * 
 * 

 
11 

 
 

Y
S -B

anderella 
 

 
 

 
 

 
 

 
 

 
0.579 0.424 0.359 0.546 0.316 0.294 0.292 0.368 0.528 0.267 

 
 * 

 
12 

 
M

ayo 
 

 
 

 
 

 
 

 
 

 
 

0.662 0.525 0.455 0.637 0.443 0.405 0.407 0.451 0.589 0.368 0.345 
 

 
13 

 
C

onchos 
 

 
 

 
 

 
 

 
 

 
 

 
0.841 0.718 0.649 0.820 0.684 0.667 0.636 0.671 0.822 0.664 0.610 0.701 
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