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Abstract: Precipitation estimates from numerical weather prediction (NWP) models are uncertain.
The uncertainties can be reduced by integrating precipitation observations into NWP models.
This study assimilates Version 04 Integrated Multi-satellite Retrievals for the Global Precipitation
Measurement (GPM) (IMERG) Final Run into the Weather Research and Forecasting (WRF) model
data assimilation (WRFDA) system using a four-dimensional variational (4D-Var) method. Three
synoptic-scale convective precipitation events over the central United States during 2015–2017 are
used as case studies. To investigate the effect of logarithmically transformed IMERG precipitation in
the WRFDA system, this study reports on several experiments with six-hour and hourly assimilation
windows, regular (nontransformed) and logarithmically transformed observations, and a constant
observation error in regular and logarithmic spaces. Results show that hourly assimilation windows
improve precipitation simulations significantly compared to six-hour windows. Logarithmically
transformed precipitation does not improve precipitation estimations relative to nontransformed
precipitation. However, better predictions of heavy precipitation can be achieved with a constant
error in the logarithmic space (corresponding to a linearly increasing error in the regular space), which
modifies the threshold of rejecting observations, and thus utilizes more observations. This study
provides a cost function with logarithmically transformed observations for the 4D-Var method in the
WRFDA system for future investigations.
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1. Introduction

Precipitation is an important component of the water cycle. It influences hydrologic variables,
such as groundwater flow and runoff, which are vital to our daily life. Accurate estimates of
precipitation are of great value for society. However, model simulations of precipitation usually have
uncertainties [1,2]. One reason is the uncertainty of the initial condition of the model [3]. Very small
differences in the initial condition can cause diverging simulations of the climate system. One possible
solution to the uncertainty of the initial condition is to integrate precipitation observations into the
model [4,5].

The assimilation of precipitation has been widely studied in recent decades. Among the various
approaches for assimilating precipitation, the four-dimensional variational (4D-Var) method is one of the
most commonly used [6–13]. In the cost function of the 4D-Var method (see Section 2.1.1), observation
errors are assumed to be Gaussian distributed. However, the errors in short-interval precipitation
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observations do not have Gaussian properties [8,14]. To solve this problem, Koizumi et al. [8] assumed
an exponential distribution for precipitation and derived a new cost function for the 4D-Var method.
Lopez [9] used the original cost function but applied a logarithmic transformation on precipitation
intensity before assimilation at the European Centre for Medium-Range Weather Forecasts (ECMWF)
Global Integrated Forecasting System. Lien et al. [15] further proposed logarithmic and Gaussian
transformations on precipitation intensity in the National Center for Environmental Prediction (NCEP)
Global Forecast System (GFS); the same authors [16] suggested that either a logarithmic or a Gaussian
transformation would be necessary to improve precipitation analyses and forecasts. In the Weather
Research and Forecasting (WRF) model data assimilation (WRFDA) system, however, assimilation of
transformed precipitation has not been tested.

There are two types of precipitation observations: ground- and satellite-based products.
Ground-based products, such as gauges and ground-radar estimates, have high accuracy, but they are
limited in space. Although satellite-based products are less accurate due to retrieval algorithms [17,18],
they have great value in global applications because of their global coverage [19,20]. Moreover,
with the development and improvement of techniques for satellite retrievals, the quality of satellite
precipitation products is improving [19,21–24]. To understand the benefit of assimilating satellite
precipitation products into model systems, this study will assimilate precipitation data from the
Integrated Multisatellite Retrievals for the Global Precipitation Measurement (GPM) (IMERG) into
the WRFDA system using the 4D-Var method. The objective of this study is to test the impact of
logarithmically transformed IMERG precipitation in the WRF 4D-Var system.

2. Materials and Methods

2.1. The 4D-Var Method

2.1.1. Cost Function with Nontransformed Observations

The 4D-Var data assimilation method is embedded in the WRFDA system. The aim of 4D-Var
assimilation is to find the optimal initial state x, which is also called the analysis xa, by iteratively
minimizing the following cost function [25]:

J(x) =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

N∑
i=1

(HiMix− yi)
TR−1

i (HiMix− yi), (1)

where the state x consists of temperature, pressure, zonal and meridional winds, and humidity; xb is
the background state at initial time, and B is its error covariance matrix; Mi is the model operator that
predicts state variables at time i, and Hi is the observation operator that transforms the state variables
into the form of observations; yi is the observation at time i, and R is its error covariance. In this
study, because we assimilate precipitation only at the end of assimilation windows, there is only one
time-interval for observations (i.e., N = 1).

In the WRFDA system, the cost function is reformulated using an incremental approach [26]:

J(δx) =
1
2
(δx− δxg)TB−1(δx− δxg) +

1
2

N∑
i=1

(HiMiδx− di)
TR−1

i (HiMiδx− di), (2)

where δx = x − xg is the increment relative to the first guess xg, and δxg = xb
− xg is the difference

between the background and the first guess. The background is the initial condition of model
simulations, and the first guess varies with outer iterative loops of minimization. For the first outer
loop, the first guess is equal to the background. From the second outer loop on, the first guess is
equal to the analysis of the previous outer loop. Following Ban et al. [12], we apply two outer loops in
this study. In Equation (2), di = yi −HiMixg is the innovation vector, and Hi and Mi are the tangent
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linear versions of Hi and Mi, respectively. Observations are rejected if they depart too much from
model predictions: ∣∣∣yi −HiMix

∣∣∣ > c×σi, (3)

where σi is the standard deviation of observation error, σT
i σi = Ri, and we follow previous studies

and set c = 5 [10].

2.1.2. Cost Function with Logarithmically Transformed Observations

Because a transformation of precipitation intensity is necessary to avoid suboptimal 4D-Var
analyses [16,27], this study will test the WRF 4D-Var system with a logarithmic transformation on
precipitation as Lopez [9] did in the ECMWF Global Integrated Forecasting system. The incremental
form of the cost function after transformation changes to

J(δx) =
1
2
(δx− δxg)TB−1(δx− δxg) +

1
2

N∑
i=1

(LHiMiδx− d′i)
T(R′i)

−1(LHiMiδx− d′i), (4)

where L is the tangent linear version of the logarithmic transformation operator L, which transforms
both the intensity and the error structure of observations:

d′i = Lyi − LHiMixg = ln(yi + 1) − ln(HiMixg + 1), (5)

R′i = (yi + 1)−TRi(yi + 1)−1, (6)

LHiMiδx =
HiMiδx

HiMixg + 1
. (7)

The transformation also changes the constraint for observations being rejected:∣∣∣Lyi − LHiMix
∣∣∣ > c×σ′i, (8)

where σ′i is the standard deviation of the transformed observations Lyi: σ
′
i
Tσ′i = R′i. The derivations

of the transformed incremental cost function and error structure are provided in Equations (A1)–(A6)
in Appendix A.

2.2. Precipitation Observations

The precipitation observations (yi) used in this study are hourly and six-hour accumulations
from Version 04 IMERG Final Run. The IMERG product combines precipitation estimates from all
passive microwave sensors from the GPM constellation, infrared observations from geosynchronous
satellites, and is adjusted to monthly gauge measurements [28]. The IMERG product covers the globe
from 60◦ S to 60◦ N with a spatial resolution of 0.1◦ and a temporal resolution of 30 min. The datasets
are available on the Precipitation Measurement Missions (PMM) website (https://pmm.nasa.gov/data-
access/downloads/gpm), and detailed information is given in Huffman et al. [28,29]. To assimilate the
IMERG precipitation observations into the 4D-Var WRFDA system, the observation error covariance R
is assumed to be block diagonal, which means that there is no spatial correlation among observations [9].
We assign a constant error σ (0.3 mm/h for hourly precipitation and 2 mm/6h for six-hour accumulated
precipitation) in the regular space and in the logarithmic space. The error 0.3 mm/h in the logarithmic
space corresponds to 0.3(yi + 1) mm/h in the regular space according to Equation 6.

This study examines three synoptic-scale convective events over the central United States. The
first event lasted 18 h and occurred on August 9, 2015; the second event lasted 24 h from 1800 UTC
August 4 to 1800 UTC August 5, 2016; and the third event lasted 36 h from 0600 UTC August 5 to 0000
UTC August 7, 2017. Figure 1 shows the spatial distribution of total precipitation and the time series of
domain-mean hourly precipitation for each event. The first event was a diurnal precipitation event,
the second was a nocturnal precipitation event, and the third was a mixed diurnal and nocturnal event.

https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
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The mechanism for diurnal precipitation is deep convection due to surface heat and moisture flux,
while that for nocturnal precipitation is likely large-scale upward motion and moisture advection [30].
The three events had different spatial coverage but similar precipitation intensity. The precipitation
data are linearly interpolated onto the grids used by the WRF model (see Section 2.3) using the griddata
function provided by Matlab. We assimilate only the upper-left three grids of every 2-by-2 grid in the
WRFDA system, that is, 75% of the observations are used in the WRFDA system, and the remaining
25% are used as independent observations when computing statistical metrics.
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Figure 1. The three precipitation events studied in this paper. (a) The spatial distribution of total
precipitation amount and (b) the time series of hourly domain-mean precipitation during 0000–1800 UTC
August 9, 2015. Figure sets (c–f) are as for (a,b), but for precipitation during 1800 UTC August
4–1800 UTC August 5, 2016 and 0600 UTC August 5–0000 UTC 7 August 2017, respectively.

2.3. Model Configurations

For each event, the WRF model is configured with a single domain with horizontal grid spacing
of 10 km in the Lambert projection, and 30 vertical levels extending from the surface to 50 hPa.
The physics options follow the physics suite for the continental United States [31] except the
microphysics and cumulus schemes that are currently incompatible with the tangent linear and
adjoint models. The physics schemes include the WRF single-moment 5-class microphysics [32], the
Rapid Radiative Transfer Model-Global (RRTMG) for shortwave and longwave radiation [33], the
unified Noah land-surface model [34], the Eta similarity scheme for the surface layer [35–38], the
Mellor-Yamada-Janjic planetary boundary layer [36], and the Kain–Fritsch cumulus scheme [39]. The
initial and lateral boundary conditions are from the NCEP final analysis (FNL) with a spatial resolution
of 0.25◦ × 0.25◦ and a time resolution of every 6 h [40]. The WRF simulations are conducted every 6
h (i.e., t0= 2015-08-09-0000 UTC, t0= 2015-08-09-0600 UTC, etc.; Figure 2). Each simulation runs 12 h
with the first 6 h being spin ups and the last 6 h being warm-start estimations (Figure 2). For the last 6
h of the simulations, we output hourly precipitation data as open loop estimates (OPL), and hourly
meteorological data as the initial conditions (xb) for assimilations (Figure 2). The error covariance
of the initial conditions (B) is estimated through the National Meteorological Center (NMC) method
embedded in the WRFDA system.

2.4. Experiments Design and Evaluation Metrics

Figure 3 is a scatter plot of hourly domain-mean precipitation from OPL estimates and those
from the IMERG observations for the three precipitation events. It shows that the WRF model
underestimates the domain-mean precipitation for nearly all the 78 h we studied, which agrees with
previous studies that show the limitations of numerical prediction models in estimating summer
convective precipitation [41,42]. To find an appropriate way to assimilate the IMERG observations into
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the WRF 4D-Var system, we conducted five assimilation experiments, i.e., six-hour (EXP1) and hourly
(EXP2) assimilation windows (Figure 2), nontransformed (EXP2) and logarithmically transformed
observations (EXP3), and a different observation error for the nontransformed and logarithmically
transformed observations (EXP4 and EXP5). The setups of the five experiments are listed in Table 1. To
evaluate precipitation estimates from the experiments, we applied several statistical metrics, including
the bias, the mean absolute difference (MAD), the correlation coefficient (CC), the probability of
detection (POD), the false alarm ratio (FAR), and the Equitable Threat Score (ETS). The equation and
the perfect value of each metric are listed in Table 2.Water 2020, 12, x FOR PEER REVIEW 5 of 12 
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Table 1. Experimental setup used in this study.

Experiment Name Assimilation
Window

Transformation of
Precipitation

Errors in Regular
Space (mm/h)

Errors in Log
Space (mm/h)

EXP1 6-hour No transformation 2 (mm/6 h) –
EXP2 Hourly No transformation 0.3 0.3/(yi + 1)
EXP3 Hourly Log transformation 0.3 0.3/(yi + 1)
EXP4 Hourly No transformation 0.3 × (yi + 1) 0.3
EXP5 Hourly Log transformation 0.3 × (yi + 1) 0.3
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Table 2. Statistical metrics used in this study 1.

Statistical Metrics Equation Perfect Value

Bias Bias = Xe
− Xr 0

Mean Absolute Difference (MAD) MAD = |Xe
− Xr| 0

Correlation Coefficient (CC) CC = cov(Xe, Xr)/ (std(Xe)·std(Xr)) 1

Probability of Detection (POD) POD = a/(a + c) 1

False Alarm Ratio (FAR) FAR = b/(a + b) 0

Equitable Threat Score (ETS) ETS = (a − e)/(a + b + c − e),
where e = (a + b)(a + c)/(a + b + c + d) 1

1 Xe and Xr are estimates and reference, respectively. cov(Xe, Xr) is the covariance of Xe and Xr, and std(X) is the
standard deviation of X. a represents the number of grids that Xr

≥ x0 and Xe
≥ x0; b represents the number of grids

that Xr < x0 but Xe
≥ x0; c represents the number of grids that Xr

≥ x0 but Xe < x0; d represents the number of grids
that Xr < x0 and Xe < x0; and x0 is a threshold of precipitation magnitude.

3. Results

3.1. Evaluation of Precipitation Estimates from Six-Hour-Window and Hourly-Window Experiments

Figure 4 shows scatter plots of the statistical metrics of hourly estimates of the three events from
the six-hour-window experiment (EXP1)/hourly-window experiment (EXP2) and those from the OPL
experiment. Both EXP1 and EXP2 underestimate hourly precipitation for most of the hours, but the
underestimations from EXP2 are smaller than those from EXP1 and those from the OPL experiment
(Figure 4a). EXP1 shows slightly larger MADs and FARs and smaller CCs, PODs, and ETSs compared
with the OPL experiment. In contrast, EXP2 shows slightly smaller MADs, significantly smaller FARs,
and significantly higher CCs, PODs, and ETSs compared with the OPL experiment, suggesting that
hourly assimilation windows improve hourly precipitation estimates better than six-hour windows do.
We also looked at the statistical metrics of six-hour accumulated precipitation estimates from the two
assimilation experiments and the OPL experiment (Figures not shown); the results were similar to
those of hourly estimates and further suggest that the hourly windows have better performance than
six-hour windows. The high performance of hourly window experiments could be partially due to the
shorter integration length, which involves fewer uncertainties.
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3.2. Evaluation of Precipitation Estimates from Nontransformed and Logarithmically Transformed Experiments

Figure 5 shows the statistical metrics (the threshold for POD, FAR, and ETS is 0.001 mm/h) of
experiments of nontransformed/logarithmically transformed observations with a constant observation
error in regular space (EXP2/EXP3) or in the logarithmic space (EXP4/EXP5). The figure reveals
that all of these assimilation experiments showed better performance than the OPL experiment,
and that the differences among the assimilation experiments were small. However, the detection
scores (POD, FAR, and ETS) for each threshold (Figure 6) revealed differences among the experiments.
The POD and ETS decreased and the FAR increased with the threshold. For the experiments with
a constant observation error in the regular space (EXP2 and EXP3), logarithmically transformed
precipitation (EXP3) showed similar performance to the nontransformed precipitation, except that the
FARs of EXP3 were slightly lower when the threshold fell between 5 mm/h and 25 mm/h. This slight
improvement of FARs of EXP3 was likely due to more observations being used in EXP3 compared
to EXP2 (Figure 7b). For the experiments with a constant observation error in the logarithmic space
(EXP4 and EXP5), nontransformed precipitation (EXP4) showed significantly lower FARs than the
logarithmically transformed precipitation (EXP5), and EXP4 showed higher PODs and ETSs than
EXP5 when the threshold was less than 15 mm/h and vice versa. EXP5 used more observations than
EXP4 (Figure 7), but it did not yield better performance in this case, suggesting that logarithmic
transformation on precipitation is not an effective way of assimilating precipitation.

Water 2020, 12, x FOR PEER REVIEW 8 of 12 

 

 

Figure 5. Boxplots of statistical metrics of hourly precipitation estimates estimated from each 
assimilation experiment and the OPL experiment. The threshold for calculating the POD, FAR, and 
ETS is 0.001 mm/hr, which is the threshold of distinguishing precipitation or no precipitation in the 
IMERG data. EXP2 and EXP3 represent experiments with nontransformed and logarithmically 
transformed precipitation with constant observation error, respectively; EXP4 and EXP5 are as for 
EXP2 and EXP3, but with increasing observation error with precipitation magnitude. 

A constant error in the logarithmic space (𝛔′ = 0.3) corresponds to a linearly increasing error in 
the regular space (Equation (6)). On one hand, the linearly increasing error modifies the threshold of 
rejecting observations (Equations (3) and (8)), using more observations (especially heavy 
precipitations) that are rejected in the experiments with a constant error in the regular space (Figure 
7). On the other hand, the relative error—defined as the ratio of the precipitation error to the 
precipitation intensity—decreases with intensity, which means that heavy precipitation observations 
are more reliable than light precipitation observations in the assimilation processes. Therefore, the 
linearly increasing error of observations improves the detection skill (especially the detection for 
heavy precipitation) of the assimilation system, regardless of whether nontransformed precipitation 
(EXP2 and EXP4) or logarithmically transformed precipitation (EXP3 and EXP5) observations (Figure 
6) are used. 

 

Figure 6. Detection scores of hourly precipitation estimated from assimilation experiments and the 
OPL experiment at different thresholds ranging from 1 mm/hr to 30 mm/hr. EXP2 and EXP3 represent 
experiments with nontransformed and logarithmically transformed precipitation with constant 
observation error, respectively; EXP4 and EXP5 are as for EXP2 and EXP3, but with increasing 
observation error with precipitation magnitude. 

Figure 5. Boxplots of statistical metrics of hourly precipitation estimates estimated from each
assimilation experiment and the OPL experiment. The threshold for calculating the POD, FAR,
and ETS is 0.001 mm/h, which is the threshold of distinguishing precipitation or no precipitation in
the IMERG data. EXP2 and EXP3 represent experiments with nontransformed and logarithmically
transformed precipitation with constant observation error, respectively; EXP4 and EXP5 are as for EXP2
and EXP3, but with increasing observation error with precipitation magnitude.

A constant error in the logarithmic space (σ′i = 0.3) corresponds to a linearly increasing
error in the regular space (Equation (6)). On one hand, the linearly increasing error modifies the
threshold of rejecting observations (Equations (3) and (8)), using more observations (especially heavy
precipitations) that are rejected in the experiments with a constant error in the regular space (Figure 7).
On the other hand, the relative error—defined as the ratio of the precipitation error to the precipitation
intensity—decreases with intensity, which means that heavy precipitation observations are more reliable
than light precipitation observations in the assimilation processes. Therefore, the linearly increasing
error of observations improves the detection skill (especially the detection for heavy precipitation)
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of the assimilation system, regardless of whether nontransformed precipitation (EXP2 and EXP4) or
logarithmically transformed precipitation (EXP3 and EXP5) observations (Figure 6) are used.
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Figure 6. Detection scores of hourly precipitation estimated from assimilation experiments and
the OPL experiment at different thresholds ranging from 1 mm/h to 30 mm/h. EXP2 and EXP3
represent experiments with nontransformed and logarithmically transformed precipitation with
constant observation error, respectively; EXP4 and EXP5 are as for EXP2 and EXP3, but with increasing
observation error with precipitation magnitude.
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Figure 7. (a) Fraction of observations used in each assimilation experiment to the total available
observations at each hour. (b) Number of observations used for all the hours at different magnitude
classes with 1 mm/h intervals. EXP2 and EXP3 represent experiments with nontransformed and
logarithmically transformed precipitation with constant observation error, respectively; EXP4 and EXP5
are as for EXP2 and EXP3, but with increasing observation error with precipitation magnitude.

4. Discussion

Based on three summer convective events over the central United States, this study evaluated the
effect of assimilating IMERG precipitation into the 4D-Var WRFDA system with several experiments.
The improvement of precipitation estimates varied with each experiment. We found that the 4D-Var
method with hourly windows improved the precipitation estimates significantly more than that with
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six-hour windows. Then, we assimilated logarithmically transformed precipitation and nontransformed
precipitation into the 4D-Var WRFDA system with hourly assimilation windows. Statistical metrics
revealed that logarithmically transformed precipitation does not improve the precipitation estimates
compared with nontransformed precipitation. This implies that the non-Gaussian structure of
observation error may not be a problem for 4D-Var precipitation assimilation. Another advantage of
logarithmic transformation—utilizing more observations in the assimilation process by modifying
the threshold of rejecting observations—can be achieved by changing the error of observations in the
4D-Var WRFDA system with nontransformed observations (as in EXP4). Therefore, it was shown
that the WRF 4D-Var method with logarithmically transformed precipitation is not a superior method
of assimilating the IMERG precipitation observations compared with the regular 4D-Var method.
However, this study is based on only one setting of WRF parameterizations, and the results may
vary with different settings; hence, we provide the 4D-Var method with logarithmically transformed
precipitation observations for future investigations.
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Appendix A

Appling natural logarithmic transformation (Lx = ln(x + 1)) on precipitation gives the following
cost function:

J(x) =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

N∑
i=1

(LHiMix− Lyi)
TR

′−1
i (LHiMix− Lyi). (A1)

The precipitation error covariance after transformation (R′i) is calculated as follows:

R′i = E
[
(Ly− Lyi)

T(Ly− Lyi)
]
= E

[
(ln(y + 1) − ln(yi + 1))T(ln(y + 1) − ln(yi + 1))

]
. (A2)

Applying Taylor expansion of ln(y + 1) at ln(yi + 1) and keeping the first two terms gives

R′i = E
[
(yi + 1)−T(y− yi)

T(y− yi)(yi + 1)−1
]
= (yi + 1)−TRi(yi + 1)−1. (A3)

The incremental expression of the transformed cost function is organized as follows:

J(δx) = 1
2 (δx− δxg)TB−1(δx− δxg)

+ 1
2

N∑
i=1

(LHiMi(δx + xg) − Lyi)
TR

′−1
i (LHiMi(δx + xg) − Lyi),

(A4)

where δx = x− xg is the increment relative to the first guess xg. Taylor expansion of LHiMi(δx + xg) at
LHiMixg is

LHiMi(δx + xg) = LHiMixg + LHiMiδx + O
(
(δx)2

)
(A5)
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where L, Hi and Mi are the tangent linear version of L, Hi and Mi at xg, respectively. Keeping the first
two terms of Equation (A5) and substituting it into Equation (A4) gives the transformed incremental
cost function:

J(δx) =
1
2
(δx− δxg)TB−1(δx− δxg) +

1
2

N∑
i=1

(LHiMiδx− d′i)
TR

′−1
i (LHiMiδx− d′i), (A6)

where d′i = Lyi − LHiMixg.
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