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1. Description of Satellite AOD Sources

We use AOD retrieved from radiances measured by four satellite instruments: twin MODerate 

resolution Imaging Spectroradiometer (MODIS) instruments, the Multi-angle Imaging 

Spectroradiometer (MISR) instrument, and the Sea-viewing Wide Field-of-view Sensor 

(SeaWiFS) instruments. A summary of the satellite AOD sources used is given in Table S1a.

The twin MODIS instruments have flown on the Terra and Aqua satellites since 2000 and 2002, 

respectively. Terra has a descending orbit, passing the equator at 10:30 local time, while Aqua has 

an ascending orbit, passing equator at 13:30 local time. Both MODIS instruments have a wide 

spectral range of 0.41 m to 14.5 m and a broad swath width of 2330 km which allows for nearly 

global daily coverage.1 We use AOD retrieved from three retrieval algorithms that process MODIS 

measured radiances: Dark Target (DT), Deep Blue (DB), and the Multi-Angle Implementation of 

Atmospheric Correction (MAIAC). 

The DT retrieval algorithm2 performs a simultaneous inversion of two visible (0.47 m and 0.66 

m) and one shortwave-IR (2.12 m) channel to retrieve AOD over dark surfaces (i.e. vegetated 

land surfaces and dark soils). DT also retrieves AOD over ocean, but we are not using those data 

here. The DB retrieval algorithm3 uses blue wavelength measurements where the surface 

reflectance over land tends to be much lower than at longer wavelengths, allowing for the retrieval 

of aerosol properties over both bright and dark surfaces. This is especially true over desert surfaces. 

Both MODIS DT and DB are reported at a wavelength of 550 nm and a nominal spatial resolution 

of 10 km at nadir. We use the recently reprocessed MODIS collection 6.1 (C6.1) products which 

employ (1) an updated radiometric calibration that improves instrument stability over time, (2) 

updates to the surface reflectance treatment used in the DT algorithm,4 (3) improvement to the 
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surface modelling in elevated terrain, (4) reduction in artifacts in heterogeneous terrain, and (5) 

improved internal smoke detection masks used in the DB algorithm.3,5 

The MAIAC algorithm6 retrieves aerosol information at 470 nm over both bright and dark land 

surfaces simultaneously with surface bidirectional reflectance using time-series analysis of 

MODIS L1B radiance measurements for up to 16 days. With removal of the long-term calibration 

trends and cross-calibration of MODIS Terra to MODIS Aqua in Collection 6,7 MAIAC processes 

the two sensors jointly, which creates significantly increased observation frequency required for 

accurate surface characterization. MAIAC was officially released in May 2018, providing AOD at 

a fine spatial resolution of 1 km globally over the land and coastal ocean for the entire MODIS 

record. However, this work started earlier and used an internally released MAIAC dataset that 

lacked parts of Canada, eastern Siberia, and the Indo-Pacific region (e.g., Indonesia, Oceania, 

Australia, New Zealand).

The SeaWiFS instrument flew on SeaStar, which had a noon overpass time, and was operational 

between 1997-2010. SeaWiFS maintained a highly accurate and stable calibration over its 

lifetime.8 SeaWiFS provided measurements in eight spectral bands between 402-885 nm and had 

a 1500 km swath width that provided nearly daily global coverage. We used the version 4 SeaWiFS 

Deep Blue8,9 data set that offers AOD at a wavelength of 550 nm with a horizontal pixel size of 

13.5 km at nadir.

The MISR instrument is onboard the Terra satellite along with MODIS, and has been operational 

since 2000. MISR observes the earth at nine different viewing angles and four spectral bands (446, 

558, 672, and 866 nm), with a swath width of 380 km all view angles that provides global coverage 

about once per week, every nine days at the equator, up to every two days near the poles.10 The 

MISR retrieval algorithm uses the same-scene multi-angular views provided by the nine view-
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angles to solve for surface and top-of-atmosphere reflectance contributions, providing AOD 

retrievals over bright and dark land surfaces without absolute surface reflectance assumptions.11 

We use AOD retrieved at 550 nm from the recently released MISR v23 algorithm,12,13 which 

provides AOD at a spatial resolution of 4.4 km, which is a significant improvement over the 17.6 

km resolution in the previous version of MISR AOD, along with better cloud screening and pixel-

level uncertainty estimates.12 

2. Description of the GEOS-Chem simulation

We use v11-01 of the GEOS-Chem chemical transport model (http://geos-chem.org) to simulate 

, and as an additional AOD source. The simulation is driven by assimilated meteorological data 𝜂

from the recent MERRA-2 Reanalysis of the NASA Global Modeling and Assimilation Office 

(GMAO), which offers a consistent assimilation from 1979, including updates in both the Goddard 

Earth Observing System Model and the assimilation system.14 Our simulation is conducted for the 

years 1998–2018 at a spatial resolution of 2◦ × 2.5◦ with a nested resolution of 0.5 x 0.625 over 

North America, Europe, and China, and 47 vertical levels. The top of lowest model layer is 

approximately 100 m. We follow the recommendations of Philip et al.15 to use a chemical and 

transport operator duration of 20 min and 10 min, respectively. We include a non-local boundary 

layer mixing scheme.16 We spin up the model for one month before each global and regional 

simulation to remove the effects of initial conditions.

GEOS-Chem contains a detailed oxidant-aerosol chemical mechanism.17,18 The aerosol simulation 

includes the sulfate–nitrate–ammonium system,18–20 primary carbonaceous aerosol,21 sea salt,22 

and mineral dust23 with an improved fine dust size distribution.24 We include an anthropogenic 

fugitive, combustion, and industrial dust (AFCID) emissions inventory.25  Semivolatile primary 

http://geos-chem.org
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organic carbon and secondary organic aerosol (SOA) formation26 is included with updated SOA 

formation from isoprene via an irreversible up-take scheme.27 HNO3 concentrations are reduced 

to commensurate with prior work.28 Relative humidity dependent aerosol optical properties are 

based on the Global Aerosol Data Set (GADS)29,30 with updates for organics and secondary 

inorganics from aircraft observations,31 mineral dust,24,32,33 and for absorbing BrC.34 

The anthropogenic emissions inventories in our simulation are summarized in Table S4. Global 

anthropogenic emissions are from the EDGAR v4.3.1 global inventory,35 with speciated volatile 

organic compound (VOC) emissions from RETRO.36 Emissions are over-written in areas with 

regional inventories, including the US (NEI1137),  Canada (CAC; http://www.ec.gc.ca/pdb/cac/), 

Mexico (BRAVO38), Europe (EMEP; http://www.emep.int/), China (MEIC v1.239,40), India (Lu et 

al.41) and elsewhere in Asia (MIX39,40).  We doubled the Indian OC and BC emissions from Lu et 

al.41 based on Philip et al.42 and Fu et al.43 Emissions from open fires for individual years from the 

GFED4 inventory44 are included covering the years 1998-2018. 

3. Algorithm for calculating combined PM2.5 from satellites and simulation 

Our algorithm to combine information from satellites and simulation follows van Donkelaar et 

al.,45 with updates to ground-based AOD measurements, to the satellite AOD products, to the 

GEOS-Chem simulation, and to the resolution of our analysis.

The first step in the calculation of our combined PM2.5 estimates is the common calibration of the 

separate AOD sources. Each source is translated onto a common 0.05 x 0.05 grid. For a 

consistent definition of uncertainty, we compare each AOD source with AERONET (Aerosol 

Robotic Network)46 AOD at 550 nm. AERONET is a global sun photometer network that provides 

multi-wavelength AOD measurements with a high level of accuracy (the uncertainty associated 

with AERONET measurements is <0.02). We use level 2 of the version 3 AERONET data.47
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There are different sources of error associated with satellite retrieved AOD than with simulated 

AOD, therefore their uncertainties need to be accounted for differently. For cloud-free and snow-

free daytime scenes, one of the main sources of uncertainty associated with satellite retrieved AOD 

is the surface treatment used in the retrieval.48 Therefore the daily satellite AOD retrievals are 

sampled to within 0.25 of each AERONET site and binned according to the Normalized 

Difference Vegetation Index (NDVI), which represents seasonally based changes in vegetation. 

Locally, calibrations are calculated at each AERONET site as the median slope and offset from 

reduced major axis linear regression of retrieved AOD with the AERONET values. The local 

calibrations are then expanded globally by calculating each pixel as the weighted average of all 

AERONET site-specific local calibrations, using inverse squared distance and the inverse of the 

Land Cover Similarity (LCS):

                                              [S1]𝐿𝐶𝑆𝑖,𝑗,𝑘 =  ∑𝑁𝐿𝑇

𝑛 = 1|𝐿𝑇𝑖,𝑗,𝑛 ― 𝐿𝑇𝑘,𝑛|

where  is the land cover type percentage of the pixel (i,j) for each land cover type (n)  and 𝐿𝑇𝑖,𝑗,𝑛 𝐿

 is the land cover type percentage of AERONET site (k) for each land cover type (n). The land 𝑇𝑘,𝑛

cover type categories are defined by the MODIS land cover product.49 The LCS allows similar 

mixtures of land cover to be weighted more strongly.

The residual uncertainty between the calibrated and observed AOD at each AERONET site is then 

calculated as the normalized root mean square difference:

                                  [S2]𝑁𝑅𝑀𝑆𝐷 =
(𝑀𝐸𝐴𝑁(𝐴𝑂𝐷𝐶𝐴𝐿𝐼𝐵𝑅𝐴𝑇𝐸𝐷 ― 𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇)2)0.5

𝐴𝑂𝐷𝐴𝐸𝑅𝑂𝑁𝐸𝑇

Local NRMSD are globally extended using inverse squared distance and LCS, following the 

approach used for the local calibration factors.
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For the simulated AOD, to account for errors due to species-specific emissions and assumed 

aerosol microphysical properties, we calculate the relative uncertainty by applying the simulated 

fractional aerosol composition to each daily AERONET observation following van Donkelaar et 

al.50 The local calibration factors are calculated as the absolute error of each species at each station 

as a function of magnitude. The local calibration factors are then extended globally using inverse 

distance squared and the cross-correlation weighted average of each AERONET site to each global 

pixel. The residual uncertainty is calculated as the component-specific NRMSD, and is extended 

globally using the inverse squared distance and cross correlation. The daily surface PM2.5 

concentrations from each source are obtained by applying the daily simulated AOD to PM2.5 ratios 

( ). Evaluation of the simulation versus ground-based measurements indicates consistency with 𝜂

both AERONET AOD (R2=0.71) and PM2.5 monitors (R2=0.61).

The daily AOD and PM2.5  values are used to calculate monthly mean values. Missing AOD and 

PM2.5 values within areas of more than 50% coverage are approximated using the interpolated ratio 

with the same data source during other years, or if necessary the interpolated ratio with simulated 

values during the same time period. Monthly AOD values from all  sources are combined using 𝑁

a weighted average, weighted by the product of the inverse residual AOD NRMSD, the inverse 

absolute percent difference between calibrated and uncalibrated AOD  and the local data (Δ𝐴𝑂𝐷𝑎𝑑𝑗

𝐴𝑂𝐷 ) 

density ( ) such that:𝑁𝑜𝑏𝑠

                                    [S3]𝐴𝑂𝐷 =
∑𝑁

𝑛 = 1
1

𝑁𝑅𝑀𝑆𝐷𝑛
×  (Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛

𝐴𝑂𝐷𝑛 ) ―1
× 𝑁2

𝑜𝑏𝑠,𝑛 × 𝐴𝑂𝐷𝑛

∑𝑁
𝑛 = 1

1
𝑁𝑅𝑀𝑆𝐷𝑛

×  (Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛
𝐴𝑂𝐷𝑛 ) ―1

× 𝑁2
𝑜𝑏𝑠,𝑛

 and  are set to a minimum of 0.01, and  is set to a maximum of 5 observations Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛 𝐴𝑂𝐷𝑛 𝑁𝑜𝑏𝑠

per month for the purpose of weighting, even when more observations are included 
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in the calculation. The squaring of  penalizes sparse observation density. Values exceeding 3 𝑁𝑜𝑏𝑠

standard deviations of those within the surrounding 1 x 1 are replaced via linear interpolation. 

Figure S1 shows a scatter plot of the combined AOD data versus AOD measurements from 

AERONET. A high degree of consistency is apparent (R2=0.84, slope=0.97).

The monthly PM2.5 estimates are combined using similar weighting:

                            [S4]𝑃𝑀2.5 =
∑𝑁

𝑛 = 1
1

𝑁𝑅𝑀𝑆𝐷𝑛
×  (Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛

𝐴𝑂𝐷𝑛 ) ―1
× 𝑁2

𝑜𝑏𝑠,𝑛 × 𝑃𝑀2.5,𝑛

∑𝑁
𝑛 = 1

1
𝑁𝑅𝑀𝑆𝐷𝑛

×  (Δ𝐴𝑂𝐷𝑎𝑑𝑗,𝑛
𝐴𝑂𝐷𝑛 ) ―1

× 𝑁2
𝑜𝑏𝑠,𝑛

Spatial information from the 1 km MAIAC AOD retrieval is then incorporated by applying the 

climatology of its retrieved relative variation between 0.01 and 0.05. Where MAIAC is 

unavailable, monthly AOD and PM2.5 are linearly interpolated onto a 0.01 x 0.01 grid.

We use Geographically Weighted Regression (GWR) to predict and account for the bias in the 

annual mean of our geophysical PM2.5 estimates ( ). GWR is a statistical technique that 𝐺𝐸𝑂 𝑃𝑀2.5

allows the modelling of processes that vary over space.51 GWR is an extension of least-squares 

regression that allows predictor coefficients to vary spatially by weighting the estimate-

observation pairs at multiple geographic locations according to their inverse squared distance from 

individual observation sites.

We fit our GWR model coefficients at 1 x 1 intervals using PM2.5 measured with ground-based 

monitors ( ) following the form:𝐺𝑀 𝑃𝑀2.5

              [S5](𝐺𝑀 𝑃𝑀2.5 ―   𝐺𝐸𝑂 𝑃𝑀2.5) = 𝛽1𝐷𝑆𝑇 + 𝛽2𝑆𝑁𝐴𝑂𝐶 + 𝛽3𝐸𝐷 × 𝐷𝑈

where

 to : represent spatially varying predictor coefficients,𝛽1 𝛽3
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: the log of the elevation difference between the local elevation and the mean elevation within 𝐸𝐷

the simulation grid cell according to the 1 x 1 ETOPO1 Global Relief Model (from the National 

Geophysical Data Center; http://www.ngdc.noaa.gov/mgg/global/seltopo.html),

: inverse distance to the nearest urban land surface based on the 1 resolution MODIS Land 𝐷𝑈

Cover Type Product (MCD12Q1),49

 and : compositional concentrations of mineral dust ( ) and the sum of sulfate, 𝐷𝑆𝑇 𝑆𝑁𝐴𝑂𝐶 𝐷𝑆𝑇

nitrate, ammonium, and organic carbon ( ) are represented by the simulated relative 𝑆𝑁𝐴𝑂𝐶

contributions of each species applied to  by weighting the near-surface aerosol 𝐺𝐸𝑂 𝑃𝑀2.5

concentration by the simulated compositional contribution of each species.42

We interpolate all predictors onto a common 0.01 grid. The GWR adds the most value where 

ground monitors are available, and the method will only improve as more ground monitors are 

added globally.

http://www.ngdc.noaa.gov/mgg/global/seltopo.html
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Table S1a: Summary of Satellite AOD Sources

Instrument Satellite
(Overpass Time)a

Retrieval 
Algorithm

Time Period 
Available

Time Period 
Used Spatial Resolution Temporal 

Resolution

C6.1 Dark TargetTerra
(10:30) C6.1 Deep Blue 2000-present

C6.1 Dark TargetAqua
(13:30) C6.1 Deep Blue 2002-present

2002-2018b 10 km x 10 km

MODIS

Terra/Aqua Combined MAIAC 2000-present 2001-2018c 1 km x1 km

Daily under viable 
conditions

MISR Terra
(10:30) MISR v23 2000-present 2001-2018d 4.4 km x 4.4 km Weekly under 

viable conditions

SeaWiFS SeaStar
(12:00)

Deep Blue 
version 4 1997-2010 1998-2010e 13.5 km x 13.5 km Daily under viable 

conditions

a. Local time at the equator.

b. The years 2000-2001 were not yet available for the Terra MODIS C6.1 products at the time this project began.

c. The year 2000 was not yet available for MAIAC at the time this project began.

d. The year 2000 was not yet available for MISR v23 at the time this project began.



Page S11

Table S1b: Summary of Other Data Sources 

Data Source Time Period 
Used

Spatial Resolution Temporal 
Resolution

Usage

GEOS-Chem 1998-2018 2° × 2.5° (global) and 
0.5° × 0.625° over 

nested regions.

10 - 15 min 
(transport), hourly 

(chemistry and 
emissions)

AOD source, AOD to 
PM2.5 relationship, 

speciated GWR 
predictors

AERONET 
version 3, Level 2

1998-2016a Point observation 15 minutes under 
cloud- free 
conditions

AOD uncertainty 
assessment and 

calibration

MODIS 
Collection 5 Land 
Type Percentage 

(MCD12C1)

2001-2012 1 × 1 regridded onto 
global 0.01° × 0.01° 

grid.

Annual
Global extension of 

AERONET- observed 
uncertainty, and GWR 

predictor (urban 
landcover)

ETOPO1 Global 
Relief Model N/A 1 × 1 regridded onto 

global 0.01° × 0.01° 
grid.

N/A GWR predictor

PM2.5 surface 
monitors

2010-2018 Point observation Annual Assessment and GWR 
calibration

a. The years 2017-2018 were not yet available for download from AERONET version 3 at 
the time this project began.
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Table S2: Summary of anthropogenic emissions used in the GEOS-Chem simulation

Region Inventory
(Coverage)

Used Species Annual Scale Factora Reference

EDGAR v4.3.1
(1970-2010)

CO, NOx, SO2, NH3, 
OC, BC

N/A Crippa et al.35World

RETRO
(2000)

VOCs from EDGAR v4.3.1, 
1970-2010

Schultz et al.36

U.S. EPA NEI11
(2011)

CO, NOx, SO2, NH3, 
OC, BC, VOCs

NEI historical 
emission, 1990-2014

US Environmental 
Protection Agency37

Canada CAC
(2002-2008)

CO, NOx, SO2, NH3, 
OC, BC

APEI, 1990-2014 Environment Canadab

Mexico BRAVO
(1999)

CO, NOx, SO2 from EDGAR v4.3.1, 
1970-2010

Kuhns et al.38

Europe EMEP
(1990-2012)

CO, NOx, SO2, NH3 N/A Centre on Emissions 
Inventories and 

Projectionsc

China MEIC v1.2
(2000-2015)

NOx, SO2, NH3, OC, 
BC

N/A Li et al.39

India Lu et al.41

(1998-2010)
SO2, OC, BC N/A Lu et al.41

Asia MIX

(2008-2012)

CO, NOx, SO2, NH3, 
OC, BC, VOCs

CO, NOx, NH3,VOCs, 
from EDGAR v4.3.1, 
1970-2010,
SO2, OC, BC from Lu 
et al.41 

Li et al.39

a. Annual scale factors are spatially resolved and applied only when the emission inventory 
lacks data for a certain year. Data in the closest available year is used if outside the available 
range.

b. http://www.ec.gc.ca/pdb/cac/

c. http://www.emep.int/

http://www.ec.gc.ca/pdb/cac/
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Table S3: The global number of direct PM2.5 measurements available each year from the World 

Health Organization (WHO) Ambient (Outdoor) Air Quality Database.

Year Number of measurementsa

2010 1526

2011 1659

2012 1735

2013 1997

2014 2761

2015 3787

2016 4016

2017 3823

2018 2065
aOnly sites with greater than 75% annual coverage were included.

Table S4: The coefficient of variation (R2) and slope between the hybrid geophysical-statistical 

PM2.5 estimates (at cross validated sites) and in-situ values for V4.GL.03 from this work and 

V4.GL.02 from van Donkelaar et al.45 N is the number of comparison points.

R2 slope
Year

v.03 v.02 v.03 v.02
N

2014 0.90 0.80 0.96 0.88 2761

2015 0.92 0.85 0.91 0.94 3783

2016 0.92 0.85 0.97 0.88 4016
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Table S5: Population-weighted geophysical PM2.5 trend (g/m3/yr) for 1998-2018 with standard error in brackets, and population-weighted mean PM2.5 
(μg/m3) according to geophysical (GEO), GWR-adjusted hybrid (HBR), the Global Burden of Disease 2017 dataset (GBD)52 and monitor for 2015, by 
Global Burden of Disease region. Population data are from the Gridded Population of the World database,53 and unavailable years were obtained via linear 
interpolation.

At PM2.5 Monitor Locations
Region Population

[million people]
GEO PM2.5 

Trend
GEO 
PM2.5

HBR 
PM2.5

GBD 
PM2.5

GEO 
PM2.5

HBR 
PM2.5

GBD 
PM2.5

Monitor 
PM2.5

N  
[#]

Global 7345 0.04 (0.02) 41.8 46.9 55.7 40.8 43.2 50.8 44.9 3787

Asia Pacific, High Income 182 -0.09 (0.04) 18.8 18.9 16.9 32.1 32.7 25.2 23.3 24

Asia Central 86  -0.05 (0.03) 15.8 28.0 26.5 - - - - 0

Asia East 1430 -0.04 (0.09) 49.7 48.6 57.6 51.1 53.4 63.8 55.9 1456

Asia South 1721 1.34 (0.19) 55.1 67.9 80.9 61.5 77.75 99.80 80.6 13

Asia, Southeast 648 0.004 (0.11) 29.3 26.7 22.6 - - - - 0

Australasia 28 -0.03 (0.02) 2.7 4.8 8.3 2.8 5.4 6.9 7.4 35

Caribbean 39 -0.11 (0.05) 7.3 9.9 17.4 - - - - 0

Europe, Central 115 -0.33 (0.05) 14.6 19.1 20.2 15.5 21.5 21.6 22.6 150

Europe, Eastern 209 -0.08 (0.06) 11.9 14.0 17.3 4.5 5.3 8.6 9.7 48

Europe, Western 423 -0.12 (0.02) 11.0 12.9 12.8 10.7 13.7 13.8 14.3 938

Latin America, Andean 57 -0.08 (0.08) 12.3 22.4 22.8 10.0 53.0 44.0 25.0 1

Latin America, Central 251 0.04 (0.06) 15.1 16.2 19.8 24.9 23.5 23.6 24.6 17

Latin America, Southern 64 -0.01 (0.02) 7.1 8.6 16.1 5.0 8.0 12.0 10.0 1

Latin America, Tropical 214 -0.03 (0.03) 9.1 10.1 13.5 - - - - 0

North Africa/ Middle-East 488 0.09 (0.04) 22.7 29.1 55.8 43.2 57.6 63.0 72.0 4

North America, High Income 360 -0.06 (0.02) 9.0 8.5 7.8 8.9 8.5 8.0 8.6 1060

Oceania 10 0.05 (0.01) 5.9 5.4 12.0 2 2 12 8 1

Sub-Saharan Africa, Central 113 -0.12 (0.09) 30.0 32.6 42.4 - - - - 0

Sub-Saharan Africa, East 416  0.06 (0.03) 17.3 21.1 36.4 - - - - 0

Sub-Saharan Africa, Southern 78 0.04 (0.03) 11.2 11.9 25.2 - - - - 0

Sub-Saharan Africa, West 391 -0.09 (0.12) 53.7 76.1 60.2 - - - - 0
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Table S6: Root Mean Square Error (RMSE) of  GWR-adjusted hybrid PM2.5 (HBR RMSE) and out-of-sample 
RMSE for the GWR-adjusted hybrid PM2.5 (HBR_O RMSE) at monitor locations for 2015 by Global Burden 
of Disease region. 

 At PM2.5 Monitor Locations
Region

 

HBR 
RMSE

HBR_O 
RMSE

N 
[#]

Global 6.89 6.80 3787

Asia Pacific, High Income 9.54 8.23 24

Asia Central - - 0

Asia East 10.06 10.14 1456

Asia South 15.62 17.26 13

Asia, Southeast - - 0

Australasia 1.76 1.98 35

Caribbean - - 0

Europe, Central 4.46 4.71 150

Europe, Eastern 3.30 3.61 48

Europe, Western 3.20 3.16 938

Latin America, Andean 27.98 - 1

Latin America, Central 5.26 5.61 17

Latin America, Southern 2.29 - 1

Latin America, Tropical - - 0

North Africa/ Middle-East 20.82 27.25 4

North America, High Income 1.78 1.85 1060

Oceania 6.34 - 1

Sub-Saharan Africa, Central - - 0

Sub-Saharan Africa, East - - 0

Sub-Saharan Africa, Southern - - 0

Sub-Saharan Africa, West
- -

0
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Figure S1: Scatter plot of the monthly mean combined AOD estimates versus monthly mean 
AERONET AOD for 2015. Only sites with measurements for at least 80% of the month and 
elevation less than 3000 m were included in the analysis. Included on the plots are the coefficient 
of variation (R2), the normal distribution of uncertainty (N(bias,variance)), the line of best fit (y), 
and the number of comparison points (N). 
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Figure S2: Regional monthly timeseries anomaly plots for population weighted mean geophysical 
PM2.5 values coincidently sampled and evaluated with ground measurements. Blue lines and their 
corresponding linear fits (slope ± standard error) indicate geophysical PM2.5 values, while black 
lines and their corresponding linear fits indicate regional ground measurements. Over the eastern 
U.S. (top panel) measurements are from the EPA for 1999-2016. Over Europe (middle-panel) 
measurements are from the European Environmental Agency for 2009-2018. Over eastern China 
(bottom panel) measurements are from China’s national monitoring network for mid-2014-2018. 
Population estimates are from the Gridded Population of the World (GPW v4) database87, and 
unavailable years were obtained via linear interpolation.
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Figure S3: Bias predicted by geographically weighted regression between our geophysical PM2.5 
estimates (Figure 3) and in situ ground monitor data for 2015. Point locations correspond to 
individual monitors, with black dots representing direct PM2.5 observations. Grey denotes water.
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Figure S4: Net impact of individual predictors on the geographically weighted regression estimate 
of bias in geophysical PM2.5 for 2015. Gray denotes water.
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