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ABSTRACT

1. Under the Endangered Species Act, the National Marine Fisheries Service has authority to
protect listed species from any adverse actions that may jeopardize the population’s ability to recover
and increase to sustainable levels. Listed salmon species in the northwest United States are known to
travel through urban areas in their migration from river to ocean. Species such as the chinook
salmon (Oncorhynchus tshawytscha) often spend several weeks in these urban estuaries where they
can be highly exposed to urban-related contaminants that reside in the sediments and accumulate in
their prey species. The concern is that these contaminants are bioaccumulated to levels that may
impact the ability of individual salmon to grow and mature normally. This paper provides a
framework for determining the tissue and sediment concentrations of polychlorinated biphenyls
(PCBs) that are likely protective against adverse effects in listed salmonid species.
2. The relevant ecotoxicological literature was examined and 15 studies were selected that met the

pre-established criteria outlined here. For each study, the lowest tissue concentration (residue) of
total PCBs associated with a biological response was selected. The tissue concentration associated
with the 10th percentile of these 15 studies was chosen to represent the residue effect threshold (RET)
above which wild juvenile salmonids would be expected to exhibit adverse sublethal effects from
accumulated PCBs. This value (2.4 mg PCBs g�1 lipid) is expressed in terms of the lipid-normalized
concentration because of the large effect lipid can have on the expressed toxicity and the substantial
variability in lipid content observed in salmonids over their life cycle.
3. A sediment concentration that is expected to produce the RET was then determined using the

biota-sediment accumulation factor approach. The sediment effect threshold, which varies with the
total organic carbon content in sediment, is the level above which adverse effects may be expected in
juvenile salmonids due to accumulation of PCBs from environmental exposure. Bioaccumulation of
PCBs was examined in one river system as a model for determining an appropriate bioaccumulation
factor for wild juvenile chinook salmon.
4. Evaluation of exposure to potentially deleterious concentrations of PCBs based on tissue

residues is the preferred approach; however, the sediment effect threshold may also be used in cases
where bioaccumulation has been characterized in an estuary. The threshold values presented here are
intended as interim guidelines that should be modified as more data become available. Additionally,
because of the uncertainty around many of the factors and assumptions that comprise the single
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threshold effect values, it is recommended that future studies be employed to help determine a range
of acceptable values that would afford protection under various environmental and biological
conditions.
Published in 2002 by John Wiley & Sons, Ltd.
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INTRODUCTION AND BACKGROUND

The goal of this paper is to present the methods used to determine tissue and sediment threshold
concentrations of polychlorinated biphenyls (PCBs) in juvenile salmonids. These threshold concentrations
are levels that the National Marine Fisheries Service (NMFS) considers protective against adverse effects
and promotes recovery of the listed population. The approach was to examine the literature concerning
PCB toxicity in salmonids (not including early life stages) whereby a tissue residue could be associated with
a biological response. Once the residue effect threshold (RET) was established, the properties of
bioaccumulation were used to predict a sediment concentration that would result in the RET. Even though
the RET is preferred for assessing potential effects, the determination of a sediment threshold may be
desirable under certain circumstances. This analysis focused on juvenile salmonids because in the Pacific
Northwest, the highest exposure to contaminants occurs in urban estuaries where migrating salmon
complete their physiological transition from freshwater to marine water.

Endangered Species Act

Species listed under the Endangered Species Act (ESA) are afforded protection from several types of
adverse actions. Sections 4(d) and 9 of the ESA prohibit ‘take’ of a listed species, which is defined as
harming, harassing, pursuing, hunting, shooting, wounding, killing, trapping, capturing, or collecting of
listed species without a specific permit or exemption. The term ‘harm’, which is part of the definition for
take, extends the list of acts to include significant habitat modification or degradation that results in death
or injury to listed species by significantly impairing essential behavioural patterns such as breeding, feeding
and sheltering. The term ‘harm’ was recently clarified by the National Oceanic and Atmospheric
Administration (NOAA) (NOAA, 1999) and several activities that may constitute a take were listed.
Among the activities listed included discharging of pollutants, such as oil or toxic chemicals into a listed
species’ habitat, as well as contamination of other biota, such as prey, required by the listed species for these
essential behavioural patterns.

Water and sediment quality guidelines are generally based on analyses of the responses exhibited by
several species to a toxicant. Often the goal is to protect 95% of all species from effects that may impact
population abundance (Stephan et al., 1985). Consequently, these guidelines are based on the biological
responses (mortality, and alterations to growth and reproduction), which are generally recognized as
responses that will likely impact population dynamics. In contrast to this, protection of listed species under
the ESA must consider harm to individual fish because additional losses will impede the recovery of an
already severely depleted population. Because the probability of extinction is higher for ESA listed species,
protection of individuals is important to ensure overall population recovery to a more stable level. While
the standard sublethal responses of growth and reproductive impairment may be reasonably translated into
population effects, all other sublethal responses, such as altered hormone levels, increased enzyme activity
and disease susceptibility were considered in this analysis. This is primarily due to the potential effects that
PCBs may have on the complex physiological processes that allow individual salmon to make the transition
from a freshwater to marine mode of existence, resist disease, mature normally and successfully complete
their life cycle.
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Endpoint/response selection

The goal for this analysis was to develop a tissue-based threshold concentration for PCB contamination in
juvenile salmonids below which sublethal effects are not expected to occur. Many biological responses have
been reported for PCBs, including mortality, impaired growth and reproduction, immune dysfunction,
hormonal alterations, enzyme induction, neurotoxicity, behavioural responses, disease susceptibility and
mutagenicity. While some biological responses, such as mortality, growth inhibition, and reproductive
impairment, would likely have measurable impacts on a population (Forbes and Calow, 1999), other
endpoints, such as altered hormone levels or induced enzyme systems, may also have adverse physiological
effects on salmonids thereby reducing their fitness. For example, thyroid function is associated with many
physiological processes in fish metabolism. As noted by Mayer et al. (1977), thyroid metabolism plays a role
in respiration, carbohydrate and ammonia metabolism, oxygen consumption, nervous system function and
behaviour. Although it is well known that induction of the cytochrome P450 system will lead to an increase
in production of mutagenic compounds, these enzymes may also be involved in altering essential steroid
hormones that are required for normal physiological processes (Di Giulio et al., 1995).

Impairment of these vital functions may affect a fish’s ability to tolerate normal environmental
fluctuations, including the physiologically demanding process of smoltification (the ability to transition
from freshwater to seawater). Several physiological parameters (e.g. ATPase levels in the gill, thyroid and
pituitary hormones, liver glycogen, blood glucose and lipid metabolism) change during the parr to smolt
transformation in salmonids (Wedemeyer et al., 1980). Alteration of any associated physiological functions
may substantially reduce the chances of successful smoltification and the individual’s ability to thrive and
mature in the marine environment. For example, a recent eco-epidemiological study (Fairchild et al., 1999)
showed a strong negative association between catch of returning adult salmon and the percent of the
watershed sprayed with nonylphenol (a solvent used to apply the pesticide aminocarb). The authors
suggested that this historical decline in returning fish was due to nonylphenol-induced changes in the
endocrine system of juvenile outmigrant salmon and possible effects on smoltification. Many studies have
demonstrated that PCBs can affect the thyroid hormones important for smoltification in salmon (Mayer
et al., 1977; Folmar et al., 1982), which supports their ecological relevance and inclusion in this analysis.

Toxicity equivalent factors (TEFs)

In recent work it has been shown that some PCB congeners are much more toxic than others, which is
primarily a function of the position of the chlorine atoms and their ability to interact with the aryl
hydrocarbon (Ah) receptor. The most toxic PCBs are the non- and mono-ortho substituted congeners,
which tend to be planar compounds. Some of these responses listed above, such as developmental and
reproductive abnormalities, enzyme induction, and immunosuppression, can occur at extremely low
concentrations and are likely caused by ‘dioxin-like’ PCB congeners (planar congeners). These planar
congeners can occur in the Aroclor mixtures, but usually at low concentrations. The responses caused by
the non-planar congeners (‘non-dioxin-like’) are likely due to different modes of action and include
neurotoxicity, hypothyroidism, carcinogenicity, behavioural alteration and endocrine disruption (Giesy
and Kannan, 1998).

The toxicity equivalent factor (TEF) approach has been used to determine the relative toxicity of the
planar PCB congeners as a fraction of the toxicity elicited by 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD).
Tissue concentrations of PCB congeners are multiplied by the TEF to generate a toxicity equivalent (TEQ)
concentration in terms of its ‘dioxin-like’ potency. These TEQs are then summed to generate a total TEQ
concentration for the sample that can be compared to dioxin toxicity results. Ideally, the TEFs should be
species- and endpoint-specific because of the observed variability (Giesy and Kannan, 1998). The TEF
approach is not applicable for those ‘non-dioxin-like’ biological responses caused by the non-planar PCB
congeners, primarily due to the different modes of action.
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Most TEFs have been developed for mammals and birds and only very recently for fish (Walker and
Peterson, 1991). The TEFs for fish are somewhat limited because they apply only to early life stage
mortality in salmonids and enzyme induction (Giesy and Kannan, 1998). There are no TEFs for biological
effects occurring beyond the embryo/alevin state. Effects of PCBs to early life stages were not considered
in this analysis, primarily due to the lower risk of PCB exposure for fish in upstream areas. Because
the available relevant information on PCB responses in salmonids is based on total PCB concentrations
and because this study focused on juvenile salmon migrating through urban estuaries, TEFs could
not be considered in assessing PCB exposure and effects. If such congener specific toxicity infor-
mation becomes available for biological responses relevant for salmonid life stages beyond the embryo,
then this information should be incorporated into future assessments. For example, a recent study
demonstrated a significant increase in mortality for adult rainbow trout exhibiting a tissue concen-
tration (fillet) of TCDD of only 0.44 pg g�1 wet wt. (Jones et al., 2001). Future work linking this mortality
response caused by TCDD and dioxin-like PCB congeners may be important for determining impacts to
salmonids.

Tissue residue and biota–sediment accumulation factor (BSAF) approaches

One way to assess adverse effects in aquatic organisms is to relate a biological response to an exposure
concentration (e.g. water, food or sediment). These data would then be used to generate an effect
concentration based on the exposure media. For example, an LC50 may be generated indicating that 50%
of the individuals would be expected to die when exposed to a given water concentration. Another method
for assessing impacts is to relate adverse biological effects with tissue concentrations of toxicants. This
method is attractive because it reduces the variability inherent in linking biological responses to exposure
concentrations. First, a tissue residue deemed to be protective for a species (e.g. LOER or NOER; lowest or
no observed effect tissue residue), is determined from several controlled laboratory studies for a given
toxicant. With this information, LOERs for several species can be compared to determine a RET that
would protect all species for a given endpoint (e.g. growth, reproduction or mortality). In some cases there
are insufficient data to generate an endpoint-specific residue effect threshold or the goal is to protect one
species or group of species against a range of adverse biological effects (e.g. this study). For these situations,
one approach for assuring protection would be to combine all endpoints for a given species or family (e.g.
salmonids) and set the RET equal to a low value (e.g. 10th percentile of all studies).

Sediment concentrations are often the focus for determining if a site is contaminated, and sediment
quality guidelines or criteria are promulgated based on expected bioaccumulation and toxic effects resulting
from exposure to sediment-associated toxicants. Sediment concentrations are preferred over water or food
exposure concentrations because they are less variable spatially and temporally. Concentrations of
contaminants in sediment are used as a surrogate for characterizing the exposure of aquatic species to these
compounds found in water and the food that they ingest because concentrations of neutral organic
contaminants, such as PCBs, found in water and prey items are expected to be proportional to that found in
sediment (Di Toro et al., 1991).

A commonly accepted method for relating tissue and sediment concentrations is by calculating a biota–
sediment accumulation factor (BSAF) with the following equation:

BSAF ¼
½tissue�=flip

½sediment�=foc
ð1Þ

where [tissue] and [sediment] are concentrations, foc is the fraction of organic carbon (g g�1) and flip is the
fraction of lipid (g g�1).

Several factors, such as variable uptake and elimination rates, reduced bioavailability, reduced exposure,
and insufficient time for sediment–water partitioning or tissue steady state can affect bioaccumulation and
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ultimately the BSAF. Because of these differences in bioaccumulation, a species- and system-specific BSAF
is recommended for a more accurate representation of bioaccumulation as a function of the above factors.
Additionally, the BSAF should be expressed as a function of time, if the time for exposure is known (e.g. 10
day BSAF).

It should be noted that even though the BSAF is derived from sediment concentrations, there is no
implicit assumption of sediment ingestion. The BSAF value integrates exposure from all sources (prey,
water and sediment ingestion) because it is assumed that the concentrations of chemicals (in this case PCBs)
in the different matrices occur in predictable proportions. According to theory, the tissue concentration of
the target species can be determined by using the concentration in one of the matrices to represent all
others. In this case sediment concentrations are used because they are the easiest to determine, they are less
variable than water or prey concentrations, they are the focus for regulatory action, and large databases
already exist. This feature is especially advantageous when determining a system-specific BSAF value
because it does not matter if sediment concentrations are high or low, concentrations in the different
matrices are presumably related by the same proportion at all sites. Also implicit in this approach is that it
does not matter if the main source of PCBs to the organism varies between ventilation of water or ingestion
of sediment or prey, the sediment concentration can still be used to represent accumulation from all
sources.

Once the RET is established, the following method can be employed to generate a sediment quality
guideline (SQG), or in this case the sediment effect threshold (SET) for use in regulating exposure to a
contaminant in a particular system. The tissue residue associated with adverse biological effects (RET) is
converted to an organic-carbon-normalized sediment concentration (SET) by utilizing the species- and
system-specific BSAF value. (In this case system-specific refers to a particular estuary.) The rearranged
BSAF equation is

½sedoc� ¼
½tissuelip�

BSAF
ð2Þ

where sedoc is the organic-carbon-normalized sediment concentration, [tissuelip] is the lipid-normalized
tissue concentration used for protection (LOER, NOER or RET), and the BSAF is a species- and system-
specific value determined with field samples. The sediment effect threshold is total organic carbon (TOC)-
dependent and should be expressed in units of organic carbon (ng PCBs g�1 OC) or as a dry weight
concentration (ng PCBs g�1 sediment) using the average TOC content.

Lipid as a controlling factor

It is well known that the tissue concentration of a lipophilic toxicant causing the response is directly related
to the amount of lipid in an organism (Lassiter and Hallam, 1990; van Wezel et al., 1995). In other words,
for a given wet or dry weight tissue concentration, the higher the lipid content, the higher the resistance to
the toxicant because a higher proportion of the hydrophobic compound is associated with the lipid and is
not available to cause toxicity. It is also well known that salmonids exhibit variable lipid content over their
life cycle with low points during the fry and smolt stages (Brett, 1995). Additionally, studies have shown
that hatchery fish generally contain much higher whole-body lipids than wild fish during pre-smolt and
smolt stages (Wood et al., 1960; Don Larson, NMFS, pers. comm.). One recent study of wild spring
chinook salmon around Yakima, Washington found whole-body lipid levels in the 2–3% (wet weight)
range during the time of smoltification and migration to the estuary environment (Beckman et al., 2000).
Several other studies support the occurrence of low lipid concentrations in juvenile salmonids, especially
those in the smolt stage (Table 1).

Redistribution of PCBs within an individual is also a potentially confounding factor. One recent study
(J�rgensen et al., 1999) found a 10-fold increase in PCBs in the liver of arctic char (a salmonid) that had
been starved, even though the whole-body residue of total PCBs was unchanged. The lipid content of
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muscle decreased from 7.1% to 0.3%, presumably causing a mobilization of the PCBs to other lipid-
containing organs, such as the liver, which exhibited only a modest change in lipid content. Kidney and
brain PCBs also increased 2–3-fold in starved individuals. Toxicologically, this is an important observation
for salmonids. These species are known to exhibit large declines in muscle lipid content during
smoltification (Sheridan et al., 1983), which would make juveniles in the estuary susceptible to large
increases in PCBs in the liver and other organs. Additionally, because muscle tissue is the main lipid storage
organ for salmonids, starvation will reduce muscle lipids as the fish use these energy stores, causing PCBs to
be redistributed to other tissues. This would be expected during conditions of low food supply, which
salmon may encounter during the winter in open water when food resources are more limited. It is expected
that as total whole-body lipid declines, the lipid-normalized PCB concentration will increase, allowing for
more of the PCBs to occur in the free state and increase the potential for toxicity at the site of action. As

Table 1. Whole-body lipid content in adult and smolt-stage salmonid speciesa

Lipid % wet wt.

Study Species Source Range (%) n Mean (%)

Adults
1. Oncorhynchus mykiss Lab 8–12 3 8.4
2. Oncorhynchus mykiss Lab 6–10 36 8.3
3. Oncorhynchus tshawytscha Lab 7–11 4 9.2
4. Oncorhynchus mykiss Lab 8–10 16 9.2
5. Oncorhynchus mykiss Lab 8.4–8.5 3 8.5
6. Salvelinus fontinalis Lab 7.9–8.1 2 8.0
7. Salmo trutta Lab 6–16 8 10.8
8. Oncorhynchus mykiss Lab 7–13 51 9.7

Smolt and pre-smolt fish
9. Oncorhynchus kisutch Wild/smolts } 1 1.7
10. Oncorhynchus tshawytscha Hatch/smolts 2–3 16 2.4
11. Oncorhynchus tshawytscha Hatch/smolts 4–5 2b 4.6
12. Oncorhynchus tshawytscha Hatch/smolts 3–5 5 3.8
13. Oncorhynchus tshawytscha Hatch/smolts 2–4 3b 2.9
14. Oncorhynchus tshawytscha Wild/smoltsc 1–2 6 1.1
15. Oncorhynchus tshawytscha Wild/smolts 1.6–2.5 5 2.1
16. Oncorhynchus tshawytscha Hatch/smolts 1.4–2.9 5 2.2
17. Oncorhynchus tshawytscha Wild/smolts 1.8–3.8 5 2.4
18. Oncorhynchus tshawytscha Wild/smolts 1–3 } 2
19. Oncorhynchus kisutch Wild/smolts } 21d 2.5
20. Oncorhynchus kisutch Hatch/smolts } 30e 3.8
21. Oncorhynchus kisutch Wild/presmolt } 6d 1.8
22. Oncorhynchus kisutch Hatch/presmolt } 20e 3.5

aFish considered adults if greater than 20 g wet wt. Lab indicates laboratory study and hatch are hatchery-reared fish. Mean (standard
deviation) for studies 1–8 is 9.0% (0.9%). Citations 9–20 show lipid content for juvenile fish in the smolt stage. n=number of
measurements; some samples were composites of several individuals. A dry weight to wet weight ratio of 0.2 was used to convert some
values. 1. Beamish et al. (1986). 2. Hickie et al. (1989). 3. Shearer et al. (1997). 4. Reinitz (1983). 5. Lieb et al. (1974). 6. Phillips et al.
(1960). 7. Spigarelli et al. (1982). 8. Niimi and Oliver (1983). 9. Wood et al. (1960). 10–12. Collected at Soos Creek (Green River)
Hatchery, WA. 1993, 1998, 2000. 13–16. Collected at Kellogg Is. (estuary) Green/Duwamish River, WA. 1993, 1998, 2000. 17.
Collected from the Green River near Soos Creek Hatchery 2000. 18. Beckman et al. (2000). 19–22. Ludwig (1980). Numbers 10–17 are
unpublished data from the Environmental Conservation Division, NMFS. Oncorhynchus mykiss previously Salmo gairdneri.
bWere composed of 60 fish/sample.
cProbably wild fish based on size (3–4 g).
dWere composed of 10 fish/sample.
eWere composed of 4–5 fish sample.
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discovered by many authors, reduction in lipid levels in salmonids does not appear to decrease the amount
of whole-body PCBs (see Lieb et al., 1974; Gruger et al., 1975; J�rgensen et al., 1999) but leads to a
redistribution of these compounds to lipid-rich tissues.

The relationship between the PCBs found in whole body and that in liver appears to be highly variable
and related to whole-body lipid content. Because variable lipid has such a large effect on the concentration
of PCBs in various organs, tissue values reported here for juvenile salmonids are based on whole-body
concentrations.

METHODS

Selection of studies

Several databases were examined to identify studies for consideration in this analysis. These include the US
EPA database AQUIRE, Jarvinen and Ankley (1999) and Niimi (1996). The criteria for including studies in
this analysis were:

1. The species examined was a member of the salmonidae family.
2. Results were from a controlled laboratory study.
3. The biological response in one or more treatments was statistically different from that in the control.
4. Tissue concentrations were reported or exposure was by injection or dietary uptake.
5. The life stage was relevant (fry to adults).
6. Individuals were exposed only to PCBs and only to a mixture (e.g. Aroclor 1254).

All studies that met the criteria were included. Studies that demonstrated biological effects for other life-
cycle phases (e.g. eggs or embryos) were not included because they were not relevant for protecting juveniles
in the estuary. The main focus was on sublethal responses. If mortality was included, an acute to chronic
ratio of 10 was applied, which is standard for equating a lethal response to a sublethal response (McCarty
and Mackay, 1993; Chapman et al., 1998; Duke and Taggart, 2000).

Without additional data it cannot be determined if studies showing no significant effects had the
statistical power to detect adverse effects or if the biological endpoint selected was not sensitive to the action
of PCBs. In either case, these studies were deemed not useful for determination of adverse tissue
concentrations in salmonids. This criterion is based, in part, on the relative costs of type I (false positives)
versus type II (false negatives) errors inherent in hypothesis testing (Peterman, 1990). In assessing impacts
to natural resources, particularly endangered species, type II errors are far more costly than type I errors
and must be minimized.

Three studies that examined only one dose (concentration) of PCBs were included in Table 2.
Two of these studies examined endpoints other than enzyme induction (Folmar et al., 1982; J�rgensen
et al., 1999). The rest of the one-dose studies identified generally examined effects on enzyme
systems in rainbow trout (Sivarajah et al., 1978; F .oorlin, 1980; Voss et al., 1982; Celander
and F .oorlin, 1995; Celander et al., 1996; F .oorlin et al., 1996; Blom and F .oorlin, 1997). All of these
studies exposed rainbow trout to one very high dose of PCBs (all at 100 mg g�1, except F .oorlin, 1980;
500 mg g�1). This group of studies all used injection (except Voss et al., 1982; dietary) as a means to
introduce PCBs. Because Melancon and Lech (1983) examined enzyme induction in rainbow
trout at several concentrations and demonstrated a statistically significant response at 0.15 mg g�1

wet weight, the other one-dose studies were considered as a group. One study (Sivarajah et al., 1978)
was selected as representative of this group of one-dose studies because it demonstrated a statistically
significant increase in the activity of several enzymes in addition to a significant decrease in steroid
hormones.
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Determination of tissue residues

Eight of the 15 studies reported whole-body tissue concentrations and were used without modification.
Studies that contained information on the amount of PCBs injected or concentrations in the diet were used
according to the following assumptions about accumulation. These assumptions regarding tissue residues
from dietary uptake or injection are supported with the discussion presented below. In contrast, studies that
exposed fish to water borne PCBs were not included unless tissue residues were reported. The determination
of tissue residues from water exposure would introduce extreme uncertainty because the bioconcentration
factor (BCF) for PCB congeners varies about 10000 fold and there is no one BCF for Aroclor mixtures
(Bremle et al., 1995). Moreover, accumulation from water can be highly variable due to such factors as
variable water concentrations and the types of PCB congeners present in water. Uptake from water may
also be more variable than the other routes when temperature, stress (behaviour), and dissolved organic
carbon content are not constant or controlled. In contrast to this, many studies indicate fairly predictable
tissue residues for both dietary uptake and injection.

Studies that reported tissue concentrations generally expressed them as wet weights. The predicted tissue
concentrations based on injection or dietary exposure were also expressed as wet weights. A conversion
factor of 5 was used for converting all wet weight concentrations to dry weight concentrations ([tissue] wet
weight� 5=[tissue] dry weight). Dry weights were then lipid normalized because lipid content is a major
factor that controls the expression of toxicity, which was discussed above.

Injection studies

One study (Monosson et al., 1994) reported that liver concentrations of a tetrachlorobiphenyl in white
perch were about one-third to one-fifth of the injected concentration. These results are supported by
Melancon et al. (1989) who also reported that the ratio of PCB liver concentrations to the injected
concentration was about 0.3. Thuvander and Carlstein (1991) injected Clophen A50 into rainbow trout and
reported whole-body PCB concentrations that ranged from 50% to 80% of the intended concentration.
Similar results were reported by Guiney and Peterson (1980), who found that whole-body concentrations of
2, 5, 20, 50 tetrachlorobiphenyl in rainbow trout were about 75% of the injected dose. They also found a
similar distribution of this PCB for various tissues (skin, viscera and carcass) when given orally and
injected, indicating that injection studies are a reasonable way to introduce PCBs to salmonids. Based on
these studies and the variability encountered, it was concluded that the whole-body tissue concentration for
total PCBs would be best represented by a tissue residue that was 75% of the injected dose. Using the high
end of this range (75%) will produce a higher tissue concentration associated with adverse effects compared
to values derived from a lower value (e.g. 50%). We support the use of injection studies for PCB exposure
because of the similarity in tissue distribution as that for dietary studies, the lack of metabolism, and the
length of time needed for responses to develop.

Dietary studies

Many studies have demonstrated that salmonids absorb about 50% of the available PCBs in their diet. One
recent study (Madenjian et al., 1999) on coho salmon reported the efficiency of retention for various PCB
congeners ranged from 38% to 56% for a dietary route of uptake. Similar results were also reported by
Gruger et al. (1975, 1976) for coho salmon and by Opperhuizen and Schrap (1988) for guppies and other
fish species (see references cited therein). In a long-term study with rainbow trout, Lieb et al. (1974) fed
trout PCB-laden pellets for 32 weeks. Fish grew from 0.8 g to approximately 75 g and the percent retention
of PCBs was determined to be 68%. The authors also determined that the ratio between the wet weight
PCB concentration in fish and the PCB concentration in dry food was 0.54. Based on the studies listed
above, the whole-body wet weight tissue concentration of PCBs in fish was assumed to be one-half of the
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dietary dose. For example, fish in the study by Chen et al. (1986) were fed pellets containing 3 mg g�1 of
PCBs; hence the resulting wet weight tissue concentration in fish was assumed to be 1.5 mg g�1. (Fish pellet
concentrations are almost always dry weight values.)

RESULTS AND DISCUSSION

Normalization of tissue concentrations with lipid content

In general, adult salmon from lab studies have a higher whole-body lipid content (approximately 9.0% of wet
weight) (Tables 1 and 2) than juvenile chinook from the field (approximately 1–2% of wet weight). Because of
the high variability in lipid content found in salmonids at different life stages (Brett, 1995) and the toxicological
implications, the tissue effect threshold is presented in terms of the lipid-normalized concentration.

Most of the studies did not report lipid content in their test fish. For those studies, a predicted whole-
body lipid value was generated from an analysis of literature values. For adults, eight laboratory studies
with salmonids were used (citations 1–8 in Table 1), which produced a mean (S.D.) lipid value of 9.0%
(0.9%) of tissue wet weight. This value was then used to determine lipid-normalized tissue concentrations
for the laboratory studies in Table 2. For fry and juveniles, data from Wood et al. (1960) and Higgs et al.
(1995) were used, which generated a mean (S.D.) value of 4.2% (0.8%), n ¼ 16. The whole-body lipid
content for the fish used in Folmar et al. (1982) was estimated from data presented in Table 1 for cultured
coho smolts. Lipid content for J�rgensen et al. (1999) was estimated using the data from Phillips et al.
(1960) who reported whole-body lipid levels for another Savelinus species that was starved for essentially
the same length of time (144 versus 141 days).

Determination of the RET from literature values

Fifteen studies showing sublethal biological effects in salmonids exposed to PCBs passed all criteria and
were included in Table 2. The lipid-normalized tissue concentrations (lowest observed effect residue,
LOER) from Table 2 are plotted in Figure 1 as a function of the cumulative percent contribution by rank
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Figure 1. Cumulative distribution for tissue residue studies. Plot shows the cumulative distribution in rank order of all 15 studies
(Table 2) used in the tissue residue analysis. Abscissa shows lowest observed effect tissue residue (LOER) for a given study.
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order. This curve takes into account the variability produced by the different endpoints, statistical
limitations of each study, and other factors such as variable time allowed for responses to develop and
differences among species. The high variability in tissue concentrations associated with these LOERs is
likely due to the various modes of action for PCBs. For example, enzyme induction and hormone
alteration, would likely occur at tissue concentrations below that for growth impairment due to the
different physiological processes that would be impaired.

All of the concentrations reported in Table 2 are ‘effect’ concentrations determined by analysis of
variance (ANOVA), meaning that a significant biological response was observed at this tissue
concentration. These values are termed LOERs meaning that these are the lowest tissue concentrations
(residues) in the experiment where statistically significant effects were observed. The lipid-normalized tissue
concentration considered protective against biological effects in juvenile salmonids migrating through the
estuary was chosen as the 10th percentile of all the studies listed. This means that 90% of all studies were
expected to exhibit a higher ‘effect’ concentration. A low percentile of all listed studies is an appropriate
benchmark for protecting individual juvenile salmonids from sublethal effects that could decrease their
long-term survival. This approach of selecting a low percentile in a series of ranked values is similar to that
employed by the US EPA for determining national water quality criteria (Stephan et al., 1985).

The results from Table 2 indicate that the 10th percentile value of all studies considered valid in the
determination of a residue effect threshold for salmonids is 2.4 mg PCB g�1 lipid. Tissue residues below this
are considered relatively protective for juvenile salmonids migrating through urban estuaries. This tissue
concentration may indicate the potential for adverse effects in adult salmon as well. This threshold value is
presented in Table 3, to show how different levels of lipid will affect the dry weight concentration. As noted
in Figure 1, most of the studies reported effects in the range of 2 to 20 mg g�1 lipid. One study (Leatherland
and Sonstegard, 1978) appears to be an outlier in relation to all other studies in Table 2 due to the high
concentration reported for effects. The concentration reported by these authors (250 mg g�1 wet wt.) is
higher than the concentration generally associated with mortality and reduced growth in fish (Niimi, 1996).
A recent exhaustive review of the literature concerning the responses of aquatic organisms to PCB exposure
(Niimi, 1996) supports the assessment presented in Table 2, concluding that biochemical and cellular
changes generally occur in fish when total PCB concentrations are in the high ppb to low ppm wet weight
range.

Assuming that these 15 studies are a reasonable representation of most sublethal responses by salmonids
to PCBs, it can be assumed that this curve (Figure 1) represents all such studies and any studies that would
be conducted in the future. Considering that the tissue residues in Table 2 span the entire range from almost
background to almost lethal, it is not surprising that additional studies should fall in this range. It is also
likely that the next 10 or 15 studies will be distributed over this range, and will not be clumped at any

Table 3. RET for PCBs in salmonidsa

RET mg g�1

lipid
Whole-fish

lipid (% dry wt.)
Whole-fish

lipid (% wet wt.)
RET ng g�1

wet wt.
RET ng g�1

dry wt.

2.4 5 1 24 120
2.4 10 2 48 240
2.4 15 3 72 360
2.4 20 4 96 480
2.4 25 5 120 600
2.4 30 6 144 720
2.4 35 7 168 840
2.4 40 8 192 960

aLipid-normalized RET for PCBs from Table 2. RET converted to whole body wet and dry weights based on lipid content.
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particular concentration. This likely reflects the variability in experimentation and the different modes of
action responsible for the observed effects.

Because the percentile values are based on rank order, the lowest values (e.g. 10th percentile) should not
change dramatically with the addition of new results, unless they are relatively low. For example the 10th
percentile concentration changed from 2.4 to 2.2 mg PCBg�1 lipid with and without the concentration
(1667 mg g�1 lipid) reported by Cleland et al. (1988). In this case, the change in the 10th percentile is due to
the addition of one more study (increasing the number of studies), not the value of the LOER (1667 mg g�1

lipid).
As noted above, selecting a low percentile of all studies to determine a concentration for protection is an

approach used by the US EPA (Stephan et al., 1985). Analysis of the data presented in Table 2 using the
EPA’s algorithm for determining the final chronic value (FCV) produces a value of 1.7 mg g�1 lipid. An
alternative approach may have been to select a statistic, such as the geometric mean or median of the data,
and apply a safety factor for converting the LOER data to a ‘no effect’ value (NOER). Considering the high
variability in this dataset (Table 2), a safety factor of 10 would have been appropriate and is supported by
other such applications (Chapman et al., 1998; Duke and Taggart, 2000). Such an approach would have
produced a similar threshold concentration (e.g. the geometric mean of 31.9 divided by 10=3.2 mg g�1 lipid)
(Table 2). (The same calculation with the median value for all studies in Table 2 equals 1.2 mg g�1 lipid.)
Therefore, it is not necessarily the first few studies in Table 2 that determine the RET; all of the studies in
Table 2 contribute to the determination of the threshold value. The 10th percentile approach was selected
because it is consistent with that used by other agencies; however, the ‘safety-factor’ approach is also well
supported and in this case produces a similar value.

Uncertainty in the assumptions

Because the lipid content, wet to dry weight conversion factor, and the amounts of PCBs present in tissue
from dietary and injection studies were estimated, a discussion of the uncertainty around each factor is
warranted.

The mean lipid content for adults in Table 1 was used for nine of the 15 studies in Table 2. Several studies
in Table 1 indicate that the lipid content for adults in laboratory studies varies between 6% and 16%. The
coefficient of variation (CV) for the eight mean values listed in Table 1 is only 10%, indicating low variation
among studies. This low CV indicates that the lipid content (9.0%) assumed for adult fish in any one of the
Table 2 studies would likely be close to that value. The estimated lipid content used for the three studies
with fry or pre-adults was more variable; however, the CV was520%. The other two estimated values were
based on fewer studies, but were likely close to actual values. The lipid content used for BSAF
determinations was based on the data for wild, smolt-stage salmonids, which exhibited whole-body lipid
levels in the 1–3% (wet weight) range (Table 1). Most studies of salmonids in the smolt stage demonstrate
consistently low lipid values.

Another uncertainty concerns the use of total lipids when normalizing tissue concentrations. Lipids are
composed of different classes (e.g. polar and non-polar) that may vary in proportion to the total amount
present. Without information about the distribution of the various PCB congeners in the different lipid
classes and the relative proportions of these lipid classes, there is some uncertainty regarding the use of a
total lipid correction. However, even though PCB congeners may exhibit differential lipid-class partitioning
(Ewald et al., 1998), the toxicological significance of such partitioning is not known. Also, because we are
concerned with one group of related species (salmonids), large differences in the partitioning of congeners
and their relative effects as a result of such partitioning are not expected.

Whole-body tissue concentrations for PCBs were estimated in seven of the 15 studies. Three of these
studies introduced PCBs by injection and four were by ingestion. The variability in the assumption made
for dietary uptake is considered very low. Based on several studies cited above and comparable studies cited
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in these publications, there is general agreement for a dietary uptake efficiency of approximately 50% for
salmonids and several other fish species. The amount of variability associated with the injection mode of
PCB administration is less certain due to the general lack of data. According to the studies cited above, the
amount of PCBs retained by salmonids after injection ranges from 25% to 75%. Based on this variability
and the influence that two of these studies had on the determination of the 10th percentile RET (Table 2), it
was concluded that an assumption of 75% retention of the injected dose was reasonable. It is noteworthy
that most of the studies where tissue residues were estimated occurred in the upper 50th percentile of all
studies listed in Table 2.

A factor of five for converting wet weights to dry weights is standard, and low variability is usually
encountered. This factor was used by Jarvinen and Ankley (1999) in their tissue residue database and it is
also used by the EPA (Stephan et al., 1985). Another source of uncertainty is the length of time for
exposure. The longer an organism is exposed, the more likely it is to exhibit an adverse effect for a given
tissue concentration. However, it is apparent in Table 2 that the long- and short-term studies are fairly
evenly divided above and below the median tissue concentration.

The type of PCB mixture may also produce uncertainty in the analysis due to variable toxicity. Mayer
et al. (1977) tested three fish species exposed to four different Aroclor mixtures and found a large range in
LC50 values (10–100-fold) depending on the period of exposure and species. For the present study, 11 of
the 15 studies examined Aroclor 1254, two studies used other mixtures (Clophen A50 and Aroclor 1260),
and the other two exposed fish to combinations of different Aroclors (Table 2). Application of the RET and
SET values generated here must consider the Aroclor profiles determined for tissue and sediment samples
and their potential toxicity differences.

Ideally, a regression analysis producing an ERp is preferred for determining adverse effects (e.g. ER10;
ER stands for the ‘effective residue’, effective meaning sublethal; p represents the proportion responding).
This is in contrast to the NOER/LOER concept (or NOEC/LOEC for exposure concentrations), which is
determined by ANOVA. These values (LOER and NOER) are often information poor because they are
dependent on the quantal nature of allocating exposure concentrations and sound experimental design with
sufficient statistical power to avoid false negatives (i.e. accepting the null hypothesis of ‘no treatment effect’
when in fact an effect exists, but it cannot be detected with the current experimental design). If exposure
concentrations are too far apart or few replicates are used in the experimental design, the LOER value
determined by ANOVA may severely overestimate the true threshold value. In contrast, the ERp value is
determined directly with the dose–response curve and is a good statistical representation of the response,
especially when a low proportion (e.g. ER10) of the population is considered. None of the studies in Table 2
were sufficient to produce a regression equation linking exposure or tissue residues with a biological effect.
Also, many of these studies examined only two or three concentrations that differed by up to an order of
magnitude, leading to large gaps between the NOER and LOER values.

Case study: bioaccumulation of PCBs in juvenile salmon from the Duwamish River

Tissue residues

Determining the amount of PCBs accumulated by juvenile salmonids migrating through an urban estuary
provides some unique challenges. The best approach would be to examine bioaccumulation in each river or
estuary system of concern after determining concentrations in each compartment (water, sediment, prey
and fish). Unfortunately, data for many systems are lacking and only a few are thoroughly studied. The
following is one example of how to characterize bioaccumulation of PCBs in juvenile chinook salmon from
an urban estuary.

In the Puget Sound area, most of the available data on PCB concentrations in migrating juvenile salmon
make no distinction between wild and hatchery-reared fish. Recent data indicate that salmon raised in
hatcheries have significant amounts of PCBs that likely come from the pellets they are fed (Gina Ylitalo,
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NMFS, pers. comm.). Other sources of PCBs, such as maternal transfer, may also contribute to the overall
tissue burden; however, this has rarely been examined. The most extensive dataset available for this exercise
in the Puget Sound area is for the Green/Duwamish River system in Washington State (Table 4). Over the
past several years, the NMFS has sampled juvenile salmon at Kellogg Island in the Duwamish River
(Figure 2) because it is in the estuary, downstream of most of the industrial area, provides suitable salmon
habitat, and is accessible for beach seining. Most of the samples from Kellogg Island contain a mixture of
wild and hatchery-reared fish; however, most of the juvenile chinook outmigrating in the river system come
from the hatcheries (approximately 75% of the 11 million chinook salmon that migrate down this river)
(Varanasi et al., 1993). Only recently (spring 2000) have all hatchery fall-run chinook in the Green/
Duwamish River been marked, allowing wild fish to be distinguished from hatchery fish.

The first step in this analysis was to determine how much of the total PCBs were accumulated at the
hatchery and how much were accumulated in the river (Table 5). The point of this exercise was to provide
an estimate of the PCB concentrations that would occur in wild chinook, which is the main focus for ESA
protection in this river. For the samples taken in 1989 and 1993, it was determined that on average, juvenile
chinook captured at Kellogg Island accumulated approximately 1800 ng of PCBs for each 5–6 g fish in the
river after leaving the hatchery. The tissue concentrations for fish from the two independent sampling
periods were remarkably similar (310 and 320 ng g�1 dry wt.), leading to an average concentration of
315 ng g�1 dry wt.

Table 4. PCB concentrations in juvenile chinook salmon (O. tshawytscha) collected in the Green/Duwamish Rivera

Data Site Year Type Mean PCB
(ng g�1 dry)

n comp Mean wet
wt. (g)

n size

1. Green River hatchery 1989 Whole body 687 (63) 4 5.2 (1.3) 122
2. Kellogg Is. 1989 Whole body 960 (297) 5 5.5 (2.5) 215
3. Green River hatchery 1993 Whole body 410 (14) 2 4.9 (1.4) 42
4. Kellogg Is. 1993 Whole body 650 (252) 3 6.1 (1.2)b 42
5. Green River hatchery 2000 Whole body 78 (14) 5c 5.0 d

6. Fish trap } wild fish 2000 Whole body 42 (14) 14c 4.0 (1.3) 26
7. Kellogg Is. } wild fish 2000 Whole body 194 (137) 18c 4.8 (1.1) 28
8. Slip 4 2000 Whole body 1095 (1265) 8c 4.8 (1.2) 15
9. Kellogg Is. 1986/87 Stomach 3000 (350) 2 } }
10. Green River hatchery 1989/90 Stomach 550 (387) 2 } }
11. Kellogg Is. 1989/90 Stomach 1639 (638) 6 } }
12. Green River hatchery 1993 Stomach 600 1 } }
13. Kellogg Is. 1993 Stomach 2700 (1345) 3 } }
14. Green River hatchery 1986/87 Liver 290 (35) 1 } }
15. Kellogg Is. 1986/87 Liver 2600 (560) 3 } }
16. Green River hatchery 1989 Liver 215 (35) 2 } }
17. Kellogg Is. 1989 Liver 2167 (802) 3 } }
18. Green River hatchery 1993 Liver 243 (7) 3 } }
19. Kellogg Is. 1993 Liver 1077 (236) 3 } }

aSite of collection was the Duwamish estuary (Kellogg Island or Slip 4), Green River (Soos Creek) hatchery, or from a fish trap
upstream of the hatchery. Mean values along with respective standard deviation are shown. All entries are for hatchery-reared fish,
except for 6 and 7. n comp is the number of composite samples analysed for PCBs. Each whole-body composite contained 5–10
individual fish; liver composites contained � 60 livers (30 for McCain et al., 1990), and composites for stomach contents were variable.
n size is the number of fish weighed for the mean wet weight determination. Stomach contents for two sampling years (1989 and 1990)
were pooled. The dry to wet weight ratio = 0.20 for whole body, 0.21 for liver and 0.17 for stomach contents. Data for 1989/90 from
Varanasi et al. (1993) and values for 1993 and 2000 are unpublished data from the Environmental Conservation Division, NMFS.
Data for 1986/87 from McCain et al. (1990).
bFor the 1993 data, the mean wet weight for fish collected in the lower river was significantly larger (p50:001) than the mean for
hatchery fish.
cAre mix of individual fish and composites of 5–10 fish.
dValue determined by hatchery.
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A recent study that examined only wild juvenile chinook in the Duwamish River confirms these results,
although the average tissue concentration was lower (Table 5). Wild fish collected a few hundred metres
upstream of the Soos Creek Hatchery exhibited low PCB concentrations (42 ng g�1 dry wt.), whereas wild
fish collected at Kellogg Island contained total PCBs ranging from 100 to 475 ng g�1 dry wt. (NMFS 2000,
unpublished data) (Table 4, Figure 3). (The Soos Creek hatchery is approximately 35 km upstream of the
Duwamish estuary.) It is also important to note that the whole-body tissue concentrations for PCBs in
hatchery fish declined between 1989 and 2000 (Table 4). This trend may be due to declining PCB levels
found in the fish that are processed into fish pellets; however, additional samples are needed to assess the
variability of these concentrations.

Figure 2. Map showing the Duwamish Waterway. Harbor Island is just south and west of downtown Seattle.
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Table 5. Accumulation of PCBs in juvenile chinook in the Duwamish River estuarya

Pair Source Year Mean weight
of fish (g)

Total PCBs
(ng g�1)

PCBs
total (ng)

Conc. from estuary
exposure (ng g�1)

Average fish
1a Hatchery 1989 5.2 687 3572
1b Kellogg Is. 1989 5.5 960 5280 310
2a Hatchery 1993 4.9 410 2010
2b Kellogg Is. 1993 6.1 650 3965 320
3a Hatchery 2000 5.0 78 390
3b Slip 4 2000 4.8 1095 5256 1014
4a Wild } Upstream 2000 4.0 42 168
4b Wild } Kellogg Is. 2000 4.8 194 931 159

Maximum value
1c Kellogg Is. 1989 5.5 1300 7150 651
2c Kellogg Is. 1993 6.1 940 5734 611
3c Slip 4b 2000 3.1 4021 12 465 3895
4c Wild } Kellogg Is.b 2000 3.5 475 1663 427

aHatchery is Soos Creek (Green River) hatchery, Kellogg Island and Slip 4 are sites in the Duwamish estuary. Wild denotes naturally
reared fish collected near the hatchery and in the estuary. All pairs are hatchery fish, except number 4. Concentration of PCBs in fish
from estuary determined by subtracting total ng for hatchery fish from total ng in estuary fish and dividing by weight of estuary fish.
The same calculation was done for the maximum value. All concentrations as dry weight. Source for the 1989 data is Varanasi et al.
(1993) and the 1993 and 2000 data are from an unpublished report from NMFS, Environmental Conservation Division.
bDenotes individual fish, all others values are means from composites of several fish.
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Figure 3. Box plot for total whole-body PCBs accumulated in the Duwamish River estuary by juvenile chinook salmon. All values
were determined by subtracting out hatchery contribution. Circle (*) is the mean for the data. Lines forming the top and bottom of
box represent 75th and 25th percentiles of the data. Line in the middle of box is 50th percentile or median. Whiskers above and below
the box are the 90th and 10th percentiles. The arrow at 240 ng g�1 marks the tissue effect threshold (RET) concentration for a 10%
lipid content (dry wt.). Fish from Kellogg Island 2000 were all wild, whereas those from 1989/93 were a mixture of wild and hatchery

fish. Slip 4 samples consisted entirely of hatchery fish (see Tables 4 and 5 for more details).
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Additional data collected in May 2000 to support the current analysis examined juvenile chinook
sampled at a site of high PCB contamination in the Duwamish River system. This site, called Slip 4, is
approximately 4 km upstream of Kellogg Island. Whole-body concentrations as high as 4000 ng g�1 dry wt.
were observed in fish from this site, with the mean value approximately 3 times that for Kellogg Island fish
(Figure 3, Table 5) (NMFS 2000, unpublished data). Due to the high whole-body PCB concentrations, 75%
of all fish sampled from Slip 4 were higher than the RET. Based on the approximate lipid content for these
fish (10% dry wt. Table 1), the average PCB concentration was 10.1 mg PCBs g�1 lipid with the maximum
value of 39.0 mg PCBs g�1 lipid. These concentrations fall in the middle of the values for the 15 studies listed
in Table 2.

A box plot of these data are presented in Figure 3 for the 1989 and 1993 data (n ¼ 8 composite samples)
and the May 2000 data for wild fish from Kellogg Island and hatchery fish from Slip 4. The high variability
in this plot is likely due to the differences in the amount of time the fish spent in the lower river (Duwamish
waterway) after leaving the hatchery, fish size, and the inability to differentiate between wild and hatchery
fish (first box).

The data in Table 5 and Figure 3 demonstrate that juvenile chinook salmon were accumulating PCBs in
the lower Duwamish River, which is supported by the concentrations observed in stomach contents
(Table 4). The total PCBs in the stomachs of the fish in the lower river were 3–4 times higher than those
found in hatchery fish. Also noteworthy are the liver concentrations for PCBs. The concentrations of total
PCBs in the livers of juvenile chinook salmon collected in the lower river were 4–10 times higher than those
concentrations noted for hatchery fish (Table 4), yet the difference in whole-body concentrations were not
as large. This apparent increase in liver PCBs is consistent with the study of J�rgensen et al. (1999) with
arctic char showing a redistribution of PCBs to the liver when the whole-body lipid content declined in fish
that were starved. As noted in Table 1, the smolted fish collected from the lower river generally have much
lower lipid levels than fish from the hatchery.

Sediment concentrations

A study of 326 sediment samples from 88 strata (non-overlapping areas of the sediment surface) in the
Duwamish estuary was used to determine the mean of all PCB sediment concentrations (Industrial
Economics, 1998; Jennie Bolton, pers. comm.). A minimum variance unbiased (MVU) estimator (Gilbert,
1987) for lognormal values was used to determine the mean, which was found to be 324 ng g�1 dry wt.
(n ¼ 326), with the 95% confidence interval (CI) of 261–439 ng g�1. The variance for this mean was 5500.
These mean values were calculated using all values from the study, ignoring the strata that were sampled.
Applying the same MVU estimator to the means of all strata (n ¼ 88) produced a similar mean value
(319 ng g�1 dry wt.), but a much higher variance (7365). In most strata only a few samples were taken, often
producing high within-strata variability. The median of these data, which describes the 50th percentile, was
determined to be 74.1 ng g�1 dry wt. using an MVU estimator (Gilbert, 1987). Because this is a lognormal
distribution, the median is expected to be less than the mean. The MVU estimator was also used to
determine the mean sediment value based on organic carbon content. The mean of all TOC-normalized
sediment concentrations (n ¼ 326) was found to be 19665 ng g�1 OC. The 95% CI for this mean was
16 580–25 798 ng g�1 OC. The mean (S.D.) for TOC at these 326 stations in the Duwamish waterway was
1.5% (0.75%). The PCB chemistry data and their distribution as determined with the Normal Density
Function (Gilbert, 1987) are presented in Figure 4.

Biota-sediment accumulation factor (BSAF)

The next step was to determine the average BSAF value for juvenile chinook salmon in this estuary system.
The mean tissue concentration of PCBs acquired in the estuary at Kellogg Island (315 ng g�1) divided by the
approximate average dry weight lipid content of 10% (Table 1) for in-river smolts, gives a value of 3150 ng
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PCBs g�1 lipid. The lipid-normalized tissue concentration (3150 ng g�1 lipid) divided by the organic-carbon-
normalized sediment concentration (19 665 ng g�1 OC) yields a mean (S.D.) BSAF of 0.16 (0.13) for PCBs
accumulated by fish collected in 1989 and 1993 in the estuary. This is a value based on averages and it
assumes that juvenile chinook forage in an ‘average’ manner over the river, which may not be a valid
assumption. The mean (S.D.) BSAF for wild chinook captured during May 2000 at Kellogg Island was 0.10
(0.07).

Using the average TOC-normalized sediment concentrations for Slip 4 (n ¼ 8), the average BSAF for
hatchery fish collected from Slip 4 in May of 2000 was 0.03, with a maximum value of 0.13. Considering the
high variability in both sediment (302 000 ng g�1 OC) and tissue (10 140 ng g�1 lipid) concentrations (CV for
sediment = 200% and tissue = 100%) and the indeterminate time for residence, the BSAF was expected to
be highly variable in this localized inlet of the river. If one very contaminated sediment concentration is
eliminated from the analysis for Slip 4, the mean sedoc becomes 90 400 ng g�1 OC and the CV reduces from
200% to 63%. Based on this sedoc, the mean BSAF for juvenile chinook from Slip 4 would be 0.11, with a
maximum value of 0.44. Based on an ANOVA, this BSAF for Slip 4 fish (= 0.11) was not statistically
different than that for hatchery-reared fish (BSAF = 0.16) collected in, 1989/93 or wild fish (BSAF = 0.10)
collected at Kellogg Island in May 2000.

Because the Soos Creek hatchery released a large number of fish just 5 days before NMFS sampled the
lower Duwamish River in 2000, low BSAF values were expected. Consequently, the BSAF values reported
for hatchery fish are likely for a short exposure period (e.g. 5 days). It is not known how long the wild fish
were in the estuary. A review by Thorpe (1994), indicates that juvenile chinook salmon spend an average of
30 days, and up to 45 days, in the estuary before moving out to more open water. Based on this average
residence time, higher BSAFs than reported here are expected for juvenile chinook in the Duwamish
estuary.

The BSAF for chinook was in contrast to that for shiner perch (Cymatogaster aggregata) collected
concurrently with the salmon at Slip 4. These fish contained up to 10 mg g�1 dry wt. of total PCBs and their
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BSAF averaged 0.35, which is 3 times higher than the chinook values (NMFS, 2000, unpublished data).
Interestingly, the catch per unit effort (CPUE) for juvenile chinook in Slip 4 was about 5–10 times higher
than that for Kellogg Island on the same day, indicating extensive habitat use of this area by juvenile
chinook. Due to the large number of juvenile chinook captured in the Slip 4 area of the Duwamish, it is not
clear which sampling site is more representative of PCB exposure in this estuary.

Determination of the SET

Once the RET was established, it became important to relate this value to a sediment concentration.
Because sediment in urban areas can be a major source of PCBs to biota, the areas with high sediment
concentrations need to be identified so appropriate action can be taken to control their contribution to the
overall burden found in migrating salmon and the food webs on which they depend.

Using the tissue residue data (Table 2), predictions were generated for sediment concentrations below
which adverse biological effects in migrating juvenile salmon would be minimal. This was done by solving
for the sediment concentration using the BSAF formula (equation (2)). The PCB sediment concentrations
that are not expected to cause appreciable adverse effects in the ‘average’ juvenile chinook migrating
through the Duwamish estuary are listed in Table 6. Several values are listed as a function of total organic
carbon in the sediment. Assuming an average sediment TOC of 1.5% and a BSAF of 0.16, the SET would
be 225 ng g�1 dry wt. which is approximately 90 ng g�1 lower than the average sediment concentration for
the Duwamish River and 10–30 times higher than sediment concentrations found in non-urban areas
around Puget Sound and the West Coast of the United States (Malins et al., 1982; McCain et al., 1988;
Stehr et al., 1997). The BSAF value (=0.16) determined for the 1989/93 samples was selected because it was
generated with the most data. It should be noted that this BSAF (=0.16) was not statistically different from
the BSAFs generated for hatchery fish from Slip 4 or wild fish collected at Kellogg Island in May 2000.
Additional studies at different locations in the estuary with fish in residence for variable lengths of time are
needed to confirm or refine this value.

The Endangered Species Act explicitly protects most individuals, not just the ‘average’ individual. When
assessing the PCB tissue concentrations found in migrating juvenile salmon, an upper percentile (e.g. 90th
or 95th percentile) of the amount accumulated in the estuary is appropriate to evaluate biological effects,
not the average concentration. For the fish collected at Kellogg Island, the 95th percentile PCB tissue
concentration was 650 ng g�1 dry wt., which is 3 times higher than the RET (Figure 3). For Slip 4, the 95th
percentile concentration (= 3062 ng g�1 dry wt.) was 13 times higher than the RET, with most fish above
the threshold value. The same consideration should be used when assessing the SET. The 95th percentile

Table 6. SET concentration for total PCBs based on two BSAF valuesa

Tissue threshold
(RET) mg g�1 lipid

Sediment TOC %
dry wt.

SET ng g�1

dry wt. (BSAF=0.16)
SET ng g�1

dry wt. (BSAF=0.32)

2.4 1.0 150 75
2.4 1.5 225 113
2.4 2.0 300 150
2.4 2.5 375 188
2.4 3.0 450 225
2.4 3.5 525 263
2.4 4.0 600 300

aLipid-normalized RET for PCBs from Table 2. SET determined with equation (2). Sediment PCB concentrations determined as
ng g�1 OC but presented as ng g�1 dry wt. Values correspond to an organic-carbon-normalized sediment concentration (sedoc) of
15.0mg g�1 OC for the mean BSAF (= 0.16) and 7.5 mg g�1 OC for the 95th percentile BSAF (=0.32) (see text).
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BSAF value for fish (wild and hatchery mixed) collected at Kellogg Island was 0.32 (1989 and 1993 data;
Table 5), which was essentially the same value for Slip 4 fish (=0.34). The 95th percentile BSAF for wild
juvenile chinook collected in May 2000 was 0.24. If the 95th percentile BSAF (= 0.32) is used instead of the
mean value (= 0.16), the SET for the Duwamish system would be 113 ng g�1 dry wt. (TOC = 1.5%)
(Table 6).

Based on the distribution in Figure 4, the sediment concentrations in the Duwamish River comprising the
upper 10th percentile are from 2 to 25 times higher than the mean concentration. The high and variable
tissue concentrations seen in the results from Kellogg Island and Slip 4 (Figure 3), suggest that some of the
fish were not feeding in an ‘average’ fashion in their migration down the river. Obviously, some fish were
feeding more often in areas with high sediment concentrations of PCBs compared to areas with low
concentrations indicating differential habitat utilization. This was highly evident based on the fish from Slip
4, whose whole-body tissue residues were up to 10 times higher than the Kellogg Island fish. The
distribution of whole-body PCB tissue concentrations for fish sampled in the Duwamish estuary indicates
that only a small percentage of the fish that visited Slip 4 would likely visit or be collected at Kellogg Island.
Consequently, the marked differences in body burdens found in juvenile salmon from different sites (e.g.
Slip 4 versus Kellogg Island) suggests that these fish are exhibiting some degree of site fidelity during their
residence in the estuary.

Even though the overall mean sediment concentration for the Duwamish system was relatively low, there
were sites with very high concentrations (e.g. Slip 4), which obviously contributed to the elevated tissue
residues seen in some samples. Reducing the areal extent of these hotspots will likely reduce the amount of
PCBs accumulated. The main goal should be to achieve an acceptable mean or median sediment
concentration with a relatively low variance that would increase the probability that juvenile chinook
migrating through this system would exhibit tissue residues below the RET. One way to accomplish this
would be through an iterative process of reducing high sediment concentrations in parts of the river and
measuring the resulting concentrations in fish tissues, which may be a reasonable approach for a river
system such as the Duwamish. For example, lowering the highest 10% of the sediment concentrations to
50 ng g�1 in the Duwamish River (Figure 4) reduces the overall mean sediment concentration by 31% and
the variance by 53%.

One limitation for this framework of establishing an effect threshold is that cumulative effects are not
considered. The only way to accurately determine the relationship between biological effects and a
particular class of contaminants is with controlled laboratory studies. Because the results in Table 2 are
from laboratory studies that examined only PCBs, there is no assessment of the interactive effects that are
expected from other toxicants found in environmental matrices. Consequently, biological effects in juvenile
salmon may occur at even lower PCB tissue concentrations than reported here. Because of this, the
proposed SET may actually be lower when the additive or synergistic effects of additional toxicants, such as
PAHs, DDT, toxic metals, and organometallics, are considered. For example, the studies by Arkoosh et al.
(1998) and Varanasi et al. (1993) are field studies in the Duwamish River system that demonstrate adverse
biological effects in juvenile salmon at PCB tissue concentrations in the 0.5–1 mg g�1 dry wt. range (2.5–
10 mg g�1 lipid; for 10–20% dry wt. lipid, see Table 1), which are generally lower than comparable values for
these laboratory-generated endpoints presented in Table 2. These two studies suggest that the observed
biological responses (survival, growth, disease resistance) in field-exposed fish may be lower for a given
PCB concentration due to the effects of additional toxicants. Chemical analysis of the fish from the
Duwamish (Table 4; 1989/93 data) also detected PAHs in their stomach contents ranging from 10 to
169 mg g�1 wet wt. (Varanasi et al., 1993), indicating very high exposure to these important contaminants. It
is toxicologically valid to suggest that the results of these field studies may be due to the additive or
synergistic relationship among all bioaccumulated contaminants; however, we lack the data necessary to
assess such interactions. This is a feature that should be incorporated into future studies and ecological risk
assessments.
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SUMMARY

The residue effect threshold (RET) for salmonids exposed to PCBs was determined to be 2.4 mg PCB g�1

lipid. This was generated by calculating the 10th percentile of 15 research studies that examined biological
responses in various species of salmonids exposed to PCBs. Tissue concentrations below this value (RET)
are expected to protect juvenile salmon migrating through urban estuaries from adverse effects due to PCB
exposure. In some cases it may be desirable to convert the RET to an equivalent sediment effect threshold
(SET) for use in regulating exposure. Analysis of lipid-normalized tissue residues and comparison with the
RET is the preferred method for assessing adverse effects of PCBs on juvenile salmon; however, if
bioaccumulation can be characterized in an estuary of interest, then the BSAF approach and generation of
a SET may be a useful way to protect against injury.
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