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ABSTRACT

The Multi-Radar-Multi-Sensor (MRMS) system was transitioned into operations at the National Centers

for Environmental Prediction in the fall of 2014. It provides high-quality and high-resolution severe weather

and precipitation products for meteorology, hydrology, and aviation applications. Among processing mod-

ules, the radar data quality control (QC) plays a critical role in effectively identifying and removing various

nonhydrometeor radar echoes for accurate quantitative precipitation estimation (QPE). Since its initial

implementation in 2014, the radar QC has undergone continuous refinements and enhancements to ensure its

robust performance across seasons and all regions in the continental United States and southern Canada.

These updates include 1) improved melting-layer delineation, 2) clearance of wind farm contamination,

3) mitigation of corrupt data impacts due to hardware issues, 4) mitigation of sun spikes, and 5) mitigation of

residual ground/lake/sea clutter due to sidelobe effects and anomalous propagation. This paper provides an

overview of the MRMS radar data QC enhancements since 2014.

1. Introduction

TheMulti-RadarMulti-Sensor (MRMS) system (Zhang

et al. 2016; Smith et al. 2016) integrates data frommultiple

radars, rain gauges, lightning detection systems, and fore-

cast models, and delivers a suite of severe weather and

quantitative precipitation estimation (QPE) products

for severe weather, flash flood, and river flood forecasts

and warnings. Among various input data sources, radar

observations have a high spatial and temporal resolu-

tion, providing three-dimensional coverage of weather

systems. As a result, radar data are essential and

crucial for the MRMS product generation. The radar

data quality control (QC) plays a critical role in as-

suring high-quality MRMS products. MRMS radar

data QC contains two major components: the dual-

polarization radar QC developed by Tang et al. (2014)

(hereafter ‘‘dpQC’’), and the single-polarization radar

QC developed by Zhang et al. (2004) and Lakshmanan

et al. (2012). The former was applied to the U.S.

Weather Surveillance Radar-1988 Doppler (WSR-88D)

network (S-band dual polarization) while the latter to the

Environment Canadian radar network (C-band single

polarization).

In weather studies, the nonmeteorological radar ech-

oes include biological clutter (i.e., birds and insects), the

electromagnetic interference with transmitters (e.g., sun

strobes), the ground/sea clutter, anomalous propaga-

tion, and the echoes from the chaff or other nonweather

targets. There are different discrimination algorithms to

separate nonprecipitation echoes from the weather in-

formation (Berenguer et al. 2006; Gourley et al. 2007;

Lakshmanan et al. 2014; Chandrasekar et al. 2013;

Krause 2016) and to classify different hydrometeors

further using the dual-polarization radar data (Liu and

Chandrasekar 2000; Park et al. 2009). Due to its sim-

plicity and effectiveness, the dpQC has been applied in

the MRMS system since 2014. It is based on the dis-

tinctly different characteristics of correlation coefficient

(rHV) for hydrometeor and nonhydrometeor returns

(Balakrishnan and Zrnić 1990; Doviak and Zrnić 1993;

Zrnić and Ryzhkov 1999; Berenguer et al. 2006; Melnikov

and Zrnić 2007; Kumjian 2013a). The dpQC combines

rHV filters that separate precipitation (high rHV values)Corresponding author: Lin Tang, lin.tang@noaa.gov
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from nonprecipitation (low rHV values) areas with a set

of heuristic rules that handle exceptions to the basic

rHV filters. Such exceptions include 1) areas of hail,

nonuniform beam filling, and a melting layer (ML)

associated with low rHV values, and 2) clutter and bi-

ological pixels with high rHV values. Zhang et al. (2004)

used intensity, texture, and vertical continuity of re-

flectivity (Z) to identify ground clutter and biological

returns from normal and anomalous propagations (AP).

Lakshmanan et al. (2012) developed a statistical ap-

proach to creating seasonal clutter maps for each radar.

The statistical clutter removal was necessary for re-

ducing the contaminations from ground clutter because

the clutter mitigation in signal processing was lim-

ited in Canadian radars. It is worth noting that the

Canadian radar network is undergoing an upgrade to

S-band polarimetric capabilities. The dpQC applica-

tion would significantly improve the data quality once

the upgrade is complete.

This work is to refine and improve the QC algorithms

in the MRMS system based on real-time observations

and operational feedback. Such issues include but are

not limited to erroneous removal of mixed-phase pre-

cipitation due to inaccurate background freezing-level

information, residual clutter of sun spikes, and wind

farms (WF). Further, a hardware issue was identified

recently, causing corruption in dual-polarization radar

fields and sometimes a wipeout of the entire radar do-

main. For Canadian radars, the sea or lake clutter was

found from a few radars located near the Lake Superior

and the Gulf of St. Lawrence. Several refinements were

made to the radar QC algorithms in MRMS to address

these issues. Those improvements include 1) melting-

layer delineation, 2) clearance of wind farm contami-

nation, 3) mitigation of corrupt data impacts due to

hardware issues, 4) mitigation of residual clutter and sun

spikes, and 5) reduction of residual ground/river/lake

clutter due to sidelobe effects and AP. This paper pro-

vides an overview of these refinements and their impacts

on the MRMS products.

The paper is organized as follows. Section 2 pro-

vides the details of the improvements through case

studies. Section 3 presents the performance of the

updated QC algorithm and evaluations through real-

time observations. A summary and future work are

given in section 4.

2. Overview of MRMS radar QC updates

a. Reduced false alarms in the melting hydrometeors

The ML consists of melting snow aggregates (strati-

form precipitation) or melting graupel or hail (convective

precipitation; Brandes and Ikeda 2004). The ML depth

is generally a few hundred meters near the 08C height

based on profiler radar observations (Fabry and

Zawadzki 1995). Due to the beam broadening ef-

fect, the ML may impact WSR-88D measurements

for a much thicker layer, especially on a low ele-

vation angle (e.g., Zhang and Qi 2010; Andrić

et al. 2013).

When radar beams propagate through the ML, radar

variables of Z (rHV) generally show increased (de-

creased) values (Brandes and Ikeda 2004; Kumjian

2013b). The low rHV feature caused by melting hy-

drometeors shows a similar signature as those caused

by nonprecipitation clutter. ML detection algorithms

using different combinations of polarimetric radar

variables have been developed during the past two

decades (e.g., White et al. 2002; Gourley and Calvert 2003;

Tabary et al. 2006; Giangrande et al. 2008; Wolfensberger

et al. 2016). The dpQC utilizes the combination of

rHV features and the temperature profile to delineate

the bottom of the melting layer (Tang et al. 2014).

The algorithm catches the ‘‘belt’’ shape of rHV (ob-

served in the plan position indicator) near the 08C
height, where the average rHV decreases among the

melting zone and stays high in the below/above re-

gions. The actual ML thickness and contour is ad-

justed using the rHV field.

Using a single 08C height as reference causes issues in

the dpQC when temperature horizontal gradients are

large, e.g., near frontal zones. Figure 1 demonstrates

an example using the data collected from the radar at

La Crosse, Wisconsin (KARX), at 0003 UTC 14 April

2014. The sounding at the radar site showed a 08C
height of 1.1 km above the mean sea level. With the

input of single reference height as the reference, the

dpQC only delineated a small region to the northwest

of the radar (white area, Fig. 1a) as a potential ML

region, but did not catch the ‘‘belt’’ rHV feature in

other directions because of the high elevation in the

08C height. As a result, some precipitation echoes with

relatively low rHV (black rectangle, Fig. 1b) were re-

moved incorrectly (black rectangle, Fig. 1c). The single

freezing-level reference height used in Tang et al.

(2014) was replaced with a two-dimensional freezing-

level height field in the updated dpQC (‘‘dpQC2’’

hereafter), which provides more accurate delineation

reference ML heights across the radar domain.

The two-dimensional freezing-level field was derived

from a combination of the contiguous U.S. (CONUS)

High-Resolution Rapid Refresh (HRRR) and the

Rapid Refresh (RAP) (Benjamin et al. 2009, 2011,

2013, 2016) model analyses to encompass the MRMS

domain. The hourly updated HRRR and RAP models
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have 3- and 13-km resolutions, respectively. Figure 1d

shows the strong horizontal gradient across the ra-

dar. The two-dimensional model analysis indicated a

freezing level ranging from 0.5 km (northwest) to

3.2 km (southeast) above the mean sea level within a

distance of 100 km.

In dpQC2, the melting likelihood field (S) (e.g.,

Fig. 2b) is created as follows:

If

8>>>><
>>>>:

0:80# r
HV

(i, j), 0:98
0:98# r

HV
(i, j)# 1:00

r
HV

(i, j). 1:00
r
HV

(i, j), 0:80
r
HV

(i, j)5missing

then

S(i, j)5 3
S(i, j)5 2
S(i, j)5 1
S(i, j)5 0
S(i, j)521

Possible melting particles
Liquid precipitation
Low SNR weak echoes
Nonprecipitation
Missing echoes

, (1)

where i and j are the indices along azimuth and range

directions, respectively. The melting likelihood field

is an initial grouping based on rHV ranges from dif-

ferent scatterers (Kumjian 2013a). At the operating

frequency of WSR-88Ds (S band), pure rain produces

high values of rHV (.0.98), and the nonmeteorological

scatterers generally yield low rHV (,0.80). Three zones

near the 08C height (e.g., Fig. 2a) are defined as ML2,

ML0, and ML1 as follows:8>>><
>>>:

H
08CL

2 2 km# h(r),H
08CL

2 1 km ML2

H
08CL

2 1 km# h(r),H
08CH

ML0

H
08CH

# h(r),H
08CH

1 1 km ML1

, (2.1)

FIG. 1. An example case to show the changes using different model data inputs to the radar at La Crosse (KARX). With the information of

single model sounding data, the dpQC delineated a small region of ML, which was highlighted in white on top of the Z field observation in (a).

(b) The zoom-in rHV field and (c) theQCedZ field with false alarms. (d) The two-dimensional field of 08C height close to radar KARX derived

from the CONUS HRRR and RAP. (e) The ML area identified using the two-dimensional model data. (f) The Z field processed with the

updated dpQC2. The rectangle frame highlights the region ofmelting hydrometeor that is mistakenly removed in (c). These precipitation echoes

are retained in the updated scheme in (f). Themodel data are valid at the 0000UTC, and the radar data are observed at 0003UTC 14Apr 2014.
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8>>><
>>>:

H
08CM

2 2 km#h(r),H
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H
08CM

2 1 km# h(r),H
08CM

ML0

H
08CM

# h(r),H
08CM

1 1 km ML1

, (2.2)

where h(r) is the radar beam (center) height at the bin

of range r. Based on the two-dimensional 08C height

(e.g., Fig. 1d), the radar data at each bin are associated

with one referential 08C height correspondingly. The

termsH08CL
and H08CH

are the lowest and highest 08C
heights along this radial direction, respectively; H08CM

is

the average 08C heights. Equations (2.1) and (2.2) are

applied when the difference between H08CL
and H08CH

is

larger and less than 1km, respectively. Figure 2 shows

example fields from the radar at Dodge City (KDDC).

Figure 2a is the range–height indicator of the S field at

0.58 elevation along the direction marked in Fig. 2b.

The red dots pinpoint the radar beam center, and the

transparent blue–yellow–blue zones indicate the three

sections in Eq. (2.2). The average S in these three zones

[Eqs. (3.1)–(3.3)] and rHV in ML0 [Eq. (3.4)] are then

calculated for each radial:

S2 5

8><
>:

1

N2 �
N2

1

S(r) N2 . 0

0 N2 5 0

, ML2 , (3.1)

S0 5

8>><
>>:

1

N0 �
N0

1

S(r) N0 . 0

0 N0 5 0

, ML0 , (3.2)

FIG. 2. (a) The range–height indicator (RHI) and (b) the plan position indicator (PPI) of the melting likely (S)

field. (c) Themelting-layer outlines (white lines) on top of the rHV and (d) the outlines on top of theZ field after the

quality control. All fields validate at 1812 UTC 25 Aug 2017, observed by radar KDDC at Dodge City. In (a) the

RHI of the radar beam is shown at 0.58 elevation along the direction marked in (b). The red dots pinpoint the radar

beam center, and the three sections in Eq. (2.2) are indicated as transparent blue–yellow–blue zones. The yellow

ellipses in (c) and (d) highlight the difference before and after the outline smoothing.
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S1 5

8>><
>>:

1
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N1

1

S(r) N1 . 0

0 N1 5 0

, ML1 , (3.3)

r0HV 5

8>><
>>:

1

N0�
N0

1

r0HV(r) N0 . 0

0 N0 5 0

, ML0 , (3.4)

where N1, N0, and N2 are the total gate numbers

of possible melting particles, liquid precipitation, and

nonprecipitation [Eq. (1)] in each of the three zones,

respectively. Derived from Eqs. (3.1)–(3.4), if the aver-

age r0HV is larger than 0.90 and the average melting

likelihood S0 in ML0 is larger than the S2 and S1 from

the other two layers, the radial potentially contains a

melting region. The pixels inside the melting area are

retained as precipitation echoes regardless of their rHV

values. Although the majority of precipitation echoes

have a rHV between 0.80 and 0.98, the melting hydro-

meteors could be associated with lower values (,0.80).

This process is performed radially for the entire volume

data. As indicated in Fig. 2c, the recordedML top/bottom

heights are marked with white lines on the top of the rHV

field. The white lines are smoothed in the azimuthal di-

rection to keep the spatial continuity (Fig. 2d). In the

example of radar KARX, Fig. 1e shows the potential ML

areas derived from the two-dimensional reference freez-

ing level, and Fig. 1a is the result using a single reference

08C height. The dpQC2 preserves the precipitation ech-

oes associated with low rHV (black rectangle, Fig. 1f).

Note that the ML region does not label melting

hydrometeors pixel by pixel but instead provides an

approximate range potentially impacted by the ML.

The newML delineation reduces the erroneous removal

of mixed-phase hydrometeors.

b. Clearance of the wind farm contamination

As an ideal environmental clean power resource, the

wind energy industry has grown significantly in the

United States since the 1970s. However, large-size wind

turbines, together with the rotation of the blades, cause

interference in the radar echoes observed by weather

radar systems (Isom et al. 2009; Vogt et al. 2007; Norin

and Haase 2012). The established wind farms located

in the WSR-88D beam of sight show that wind turbine

clutter impacts the radar measurement as well as an

internal algorithm that generates alerts and derived

weather products, such as precipitation estimation (Vogt

et al. 2011).

To identify the location of a wind turbine and miti-

gate its interferences on radar echoes, automatic wind

turbine detection algorithms have been developed using

single- or dual-polarization radars. For example, Hood

et al. (2010) proposed a fuzzy-logic based detection ap-

proach, which integrates variables derived from level-I

time series data such as spectral flatness, higher-order

spectral moment, clutter phase alignment, and hub-to-

weather ratio. A similar fuzzy logic approach using

level-II single-polarization data (Z, radial velocity Vr,

and spectrum width sy) was developed by Cheong et al.

(2011). Other signal processing techniques include the

work fromBachmann et al. (2010), Nai et al. (2011), etc.,

and these adaptive clutter filters require level-I raw data

as inputs. With the dual-polarization capability, the low

rHV signature is used as an indicator of wind turbine

clutter. However, cases are observed where low rHV

caused by wind turbines is not distinct from weather

signals. For example, the hydrometeors mixed in size

and shape (i.e., big drops, hail) could also be associated

with the low rHV. It is challenging when the power re-

turns from WF are embedded in convective storms.

Although the WF clutter residue is only observed some-

times, the accumulated QPE could be biased from even a

few scans. This refinement of the QC process on WFs

can remove the contamination from wind turbines.

1) WF IDENTIFICATION

An efficient and robust method to identify areas from

wind turbine clutter is to generate a lookup table of wind

turbine location. The first version of the table, including

wind turbine locations and their effect areas (wind tur-

bine clutter), was generated by National Severe Storms

Laboratory (NSSL) in 2010. To ensure the most accurate

and updated dataset of wind turbine locations, numerous

sources of informationwere compiled and cross-referenced

with each other since the first version table. Comprehensive

information on in-progress andbuiltwind turbine locations

originated from the Federal Aviation Administration

Obstruction Evaluation/Airport Airspace Analysis was

provided to NSSL by the Radar Operations Center.

Additional information was gathered from the American

Wind Energy Association, Alternative Energy Institute,

KansasEnergy InformationNetwork,Great PlainsEnergy

Corridor, Massachusetts Government, U.S. Department

of Energy New England Wind Forum, and Iowa State

University/Iowa Energy Center. Existing wind turbine

locationswere also identified or verified using the imagery in

onlinemap servers such asGoogleMaps andEnvironmental

Systems Research Institute’s ArcGIS Online.

After wind turbine locations were identified, the clutter

contamination region is determined using 12-month ac-

cumulated precipitations estimated by MRMS (Zhang

et al. 2016). In the current work, themean (mrain) ofQPE

accumulation was calculated in an area around each
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wind farm. Any radar gate associated with an anoma-

lously high accumulation (.2mrain) is determined as the

possible wind turbine clutter region (Fig. 3a). The pos-

sible clutter area was delineated with a polygon (Fig. 3b)

that was then included in a wind turbine clutter shapefile

for the CONUS.

The negative impact of wind farms on weather radars

decreases exponentially as a function of the distance to

the radar. The impact distance is highly dependent on

local terrain and radar propagation (Vogt et al. 2011).

Given windmills’ heights and possible AP of radar

beams, a list of windmills within an 80-km range is

created for each radar. The simple-format tables include

the identity number (ID) and location information of

each WF center regarding azimuth angle (8) and range

(km). The power returns are identified as possibly con-

taminated at these designated locations.

2) CORRECTION ON THE WIND FARM VOIDS

The contaminated radar returns from the wind tur-

bine regions have different severity levels depending on

the environmental conditions and radar beam propa-

gation. The downwardAP radar beamwould worsen the

clutter contamination. In another scenario, the echoes

from the wind turbines do not appear distinguished from

the neighboring echoes of heavy convective storms. For

example, Fig. 4 demonstrates an event of WF clutter

embedded inside the precipitation echoes observed by

radar KVNX on 7 June 2014. The WF contamination

appears severe at 0623 UTC shown in Figs. 4b and 4d,

while the visual impact in Z is minor in the scans at

0712 UTC (Figs. 4e,f). The white ellipses mark the lo-

cations identified in theWF table. The six plots are from

two scans: 1) at 0623 UTC, raw Z with marked WF lo-

cations (Fig. 4a), raw Z before WF correction (Fig. 4b),

the associated rHV (Fig. 4c), the Z field after the QC

process (Fig. 4d); 2) at 0712 UTC, the raw Z where no

WF correction is needed (Fig. 4e), and the associated

rHV (Fig. 4f). In this work, the pixels from the WF

area are classified into different groups and processed

separately.

Centered at each of the WF locations, the WF neigh-

boring regions are defined as near neighbor (8km3 108)
(purple areas inside the white ellipse in Fig. 4a) and far

neighbor (12km 3 128) (outer layers around the purple

regions in Fig. 4a). The near-neighboring area is vulner-

able to the WF contamination under AP propagation,

while the far-neighboring area does not contain WF

clutter. Generally, the WF clutter is associated with large

spatial variability (SPIN) of the reflectivity field (Steiner

and Smith 2002), enhanced Z (Fig. 4b), and decreased

rHV (Fig. 4c) within the near-neighboring region. Isolated

clutter also shows a lack of reflectivity continuity in the

vertical direction. In situation 1, the nonmissing echoes,

associated with lower rHV than light rain, are observed

inside the near-neighbor area while with a clean far-

neighbor region. These isolated echoes are possible re-

sidual WF clutter or mixed with small-size convective

cells. For a radar echo that is associated with lower rHV

(,0.98) in the near-neighboring region, the correspond-

ing echo top of 18dBZ is checked by going through

higher tilts (Tang et al. 2016). Potential storm cells of a

mixture of hail/rain are associated with a high echo top

(.6km) and will be retained; otherwise WF clutter will

be removed entirely. In situation 2, the WF contamina-

tion is embedded in the precipitation returns when the

near-neighboring and far-neighboring regions are filled

with returns from precipitation targets, turbine blades, or

themixture (Fig. 4). Under this situation, the local texture

of the Z and rHV values show visible contamination in

FIG. 3. (a) The region of possible wind turbine clutter identified from exceptionally high values in a 12-month

MRMS precipitation estimate accumulation. (b) Polygons delineating an area of wind turbine clutter.
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each WF location near-neighbor region. If the low rHV

(,0.98) bins number is equal or larger amount than the

high rHV ($0.98) bins inside the near neighbor (purple

rectangles in Fig. 4a), it is an indication of a possible

mixture of the returns frommeteorological targets andWF

clutter. The average Z value within the near neighbor is

compared with themeasurement from the far-neighboring

echoes (white layers in Fig. 4a). In the radar scan at

0712 UTC (Figs. 4e,f), the difference of the average Z

values are small (,10 dBZ) between the near-neighbor

and far-neighbor regions, and the bias is considered

minor; therefore, no correction was made. Otherwise,

the pixels associated with decreased rHV and large SPIN

are flagged as WF contamination. Complete removal

of the biased echoes leaves voids in the reflectivity

maps; therefore, the contaminated echo is replaced

using the mean value of the far neighbors. A cor-

rection is applied when the mean value from the

near neighbors is much higher than the far neighbors

($10 dBZ). In Fig. 4d, the pixels with highly biased

reflectivity are corrected.

The dpQC removes the majority of nonprecipitation

echoes from WF areas, and the dpQC2 updates apply

WF tables further clear the occasional residual clutter.

When the clutter echoes are embedded in storms, the

dpQC2 corrects the biased echoes using the mean nearby

measurement if severe WF contamination is observed. It

leaves the echoes retained if there are no evident changes

in the intensity of texture at the WF locations. The QC

refinement benefits the accumulatedQPEproducts in the

MRMS system.

c. Quality control with the degraded noise level

1) IMPACT AND IDENTIFICATION OF THE BIASED

HORIZONTAL/VERTICAL NOISE LEVEL

Generally, noise levels in horizontal (H) and vertical

(V) channels are stable, and their variations show con-

sistency. Degraded noise information in any channel

cause biases in radar data, and such phenomena have

been observed in WSR-88Ds during real-time opera-

tions. The degraded noise in the H channel impacts

FIG. 4. A precipitation event observed by the radar at Vance Air Force Base (KVNX) at 0.58 elevation angle on 7 Jun 2014, where the

white ellipses mark the locations identified in the WF table. (a)–(d) Observations at 0623 UTC: (a) raw Z with marked WF locations,

(b) raw Z before WF correction, (c) the associated rHV, and (d) the Z field after the dpQC2 process. Inside the white ellipse in (a), the

purple areas are the nearest-neighbor region, and the whited-out layers are the far-neighbor regions centered at theWF locations. (e)–(f)

Observations at 0712 UTC: (e) the raw Z where no WF correction is needed, and (f) the associated rHV. The color scales of Z and rHV

fields are shown at the top of the figure.
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the estimated Z field, while the degradation of the

V channel noise impacts the differential reflectivity

(ZDR) and rHV (M. Simpson et al. 2019, unpublished

manuscript). Consequently, it biases modules and

products, including radar QC processes, hydrometeor

classification, QPE, and flash flood warnings. Figure 5

shows examples of polarimetric variables, hydrome-

teor classification results, and rain rate estimations,

respectively. The radar data are observed at Tulsa,

Oklahoma (KINX), at 1430 UTC 20 February 2018.

Although Z fields (Fig. 5a) are in the reasonable

range, the ZDR (Fig. 5b) values reach, 6 dB for most

of the regions, much higher than normal values for

typical hydrometeors. Because of the biased measure-

ment in the polarimetric variables, the operational

product of hydrometeor classification derived by the

National Weather Service (Fig. 5c) did not correctly

classify the precipitation categories. It also affected the

MRMS precipitation products, i.e., the mosaicked field

of rain rate, shown in Fig. 5d. The MRMS rain rate

grids are derived using the mosaicked reflectivity field

generated from individual radars (Zhang et al. 2016).

The biased dual-polarization variables caused false

alarms in the QC process on KINX. The falsely re-

moved radar data in the mosaicked field negatively

impacted on the MRMS QPE products. A special QC

process is applied to avoid the adverse effects of these

abnormal channel noises on downstream products.

Simpson et al. (2019) developed a novel approach to

diagnose real-time instances of degraded H and/or V

channel noise. Based on the azimuthal H and V noise

values, the azimuth is flagged as degraded if the H or V

noise for a given azimuth on a given tilt exceeds 1.5 6
mean H noise or 1.5 6 mean V noise. The mean H/V

noise is the mean value of the H/V noise within a given

full volume scan. The bad radials are flagged in real-time

and provide a reference input to the QC process.

Figure 6 shows the example outputs of the noisemonitor

in the MRMS system.

2) SINGLE-POLARIZATION QC FOR V NOISE

CONTAMINATION

The degraded V channel noise impacts the dual-

polarimetric values such as ZDR and rHV but does not

have significant impacts on the horizontal data such asZ,

Vr, and sy. Figure 7 shows examples of radar variables

collected by the radar at Chicago, Illinois (KLOT), at

1356 UTC 5 April 2018. The fields of Z, rHV, ZDR, Vr,

and sy are shown in Figs. 7a–e, respectively.When the V

channel noise is degraded, the biased polarimetric

fields of rHV and ZDR (Figs. 7b,c) lead to a failure of

the dpQC algorithm. On the other hand, the fields

FIG. 5. The observations when the noise data were degraded. (a)–(c) Single radar measurements and derivations from Tulsa (KINX) at

1430UTC 20 Feb 2018: (a)Z, (b)ZDR, and (c) the derived hydrometeor classification (HCA). (d) TheMRMSmosaicked field of rain rate

(MRMS-R). The color scales of the products in (a)–(d) are listed from left to right, respectively, beside the four panels. In these panels, the

Z field in (a) shows reasonable values, butZDR in (b) is contaminated. The degradation of the input data leads to the HCA in (c) of a false

classification in the precipitation categories and the MRMS-R in (d) of biased estimation.
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estimated from the H channel show reasonable values

in this case (Figs. 7a,d,e).

To identify nonprecipitation echoes from precipi-

tation radar echoes when the V noise degradation is

detected, a Bayesian quality control (bqc) method was

developed in the current work. Comparing to other

clutter identification algorithms in single-polarization

radars (i.e., Bachmann and Tracy 2009; Lakshmanan

et al. 2012; Steiner and Smith 2002), the proposed

approach has a simple framework and less computa-

tional cost, therefore, could be an optimal candidate

of the supplements of the dpQC.

The bqc takes Z, Vr, and sy as inputs and classifies the

radar echoes into either precipitation or nonprecipitation.

It applies the idea of the naïve Bayes theorem (Walpole

et al. 2016), while instead of the real probability, it scores

the classes using Eq. (4):

P(cjx)5P(x
1
jc)P(x

2
jc)P(x

3
jc) , (4)

where x1, x2, and x3 are the predictors (Z, Vr, and sy),

and c is the class (c1: precipitation; c2: nonprecipitation).

In Eq. (4), P(cjx) is the posterior score of the class. For

the given c (class), P(xjc) is the conditional score

applying a function of half-Gaussian half constant.

Equation (5) shows P(Zjc1) as an example:

P(Zjc
1
)5

8>>>>><
>>>>>:

1ffiffiffiffiffiffiffiffiffiffiffi
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p exp

"
2(x2m)2

2s2

#
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p x.m

, (5)

where m and s are the mean and standard deviation

estimated from the precipitation returns in the training

data. Oppositely, the conditional score of P(Zjc2) uses
the half-Gaussian function in the higher value end and

the constant at the lower value end. The similar func-

tions are also applied to predictors Vr and sy. Since the

instances of noise degradation occasionally occur (Simpson

et al. 2019), the parameters of likelihood are trained and

updated using the uncontaminated data from the previous

scan with no degradation in the dual-polarization variables

when the dpQC performs a full function in identifying the

FIG. 6. Real-timemonitoring system of the biased noise level. (top left) Selecting the radar and time, (top right) using Chicago (KLOT)

as an example, (bottom) the noise levels at each tilt are shown. The blue and red lines are the horizontal and vertical noise (dBm),

respectively. The x axis is the radial direction on each tilt. In the degradation directions (the most east and south regions), the asymptotic

bottoming-out of the horizontal and vertical channels can be observed. The impacted radials are identified with the black color shown in

the top-right image.
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nonprecipitation clutter. The statistical m and s of the

precipitation and clutter classes are recorded, and they

are applied when the polarimetric variables are de-

graded, i.e., the statistics derived from the earlier scan

is used to identify the clutter at the current scans if the

contamination is identified. The bqc takes advantage

of the weather consistency to classify the precipitation

and nonprecipitation echoes. Therefore, it is limited in

removing the instantaneous clutter or the applications

over a long gap in time. The bqc is able to identify the

majority of nonprecipitation clutter and the remained

clutter removed through checking the reflectivity tex-

ture. In regions close to the radar, a vertical gradient

test is employed to check the vertical continuity of

echoes at the lowest tilts. The echoes are identified as

clutter if their intensities dramatically decrease in

height (i.e.,.50 dBZ km21). The checking window is a

box of 1.25 km3 1.5 azimuth degrees centered at every

nonmissing reflectivity bin. If more than one-half bins

have missing values or the averaged reflectivity of the

adjacent nonmissing bins is less than 25% of the center

bin’s reflectivity, this center pixel is considered as

noise or AP and removed.

The performance of the proposed complementary

QC was demonstrated in Fig. 7. In this case, the po-

larimetric variables rHV and ZDR show significant

biases because of the degraded noise level in the V

channel (Figs. 7b,c). The biased measurements will

cause failures in polarimetric quality control approaches

(such as dpQC). The proposed bqc, on the other hand,

provides reasonable quality control results, as shown in

Fig. 7f. It can identify and remove the majority of the

biological clutter near the radar site using the Doppler

variables (Figs. 7a,d,e).

3) DISABLE THE RADAR DATA APPLICATION FOR

H NOISE CONTAMINATION

Although observed rarely, the degradedH noise is also

found in the operational system (Simpson et al. 2019).

Under this situation, not only the dual-polarization

variables are contaminated but also the Doppler mea-

surements in the horizontal direction, including Z.

Because all inputs are problematic, the corrupted ra-

dar data are removed from the radar network to avoid

contamination in the downstream processing. In the

mosaickedQPE field, the void area from removing the

FIG. 7. Contaminations in dual-polarization variables are observed in the radar at Chicago (KLOT) at 1356 UTC 5 Apr 2018. (a)–(e)

The level-II data ofZ, rHV,ZDR,Vr, andsy, respectively. Biasedmeasurement is observed in the polarimetric fields of (b) rHV and (c)ZDR

but not in the Doppler variables (a) Z, (d) Vr, and (e) sy. (f) When the polarimetric variables are contaminated, the bqc applies the

Doppler variables to deliver the quality-controlledZmaintaining the precipitation information clear of clutter. The color maps ofZ, rHV,

ZDR, Vr, and sy are listed from top to bottom, respectively, above the panels.
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corrupted data is filled with the estimations from

adjacent radars.

d. Other improvements in WSR-88Ds

When ground clutter and biological returns combine

with AP, these nonprecipitation echoes could appear at

farther ranges and higher tilts than their actual locations

(Fig. 8a). It has been challenging to identify such non-

precipitation echoes when they are embedded in pre-

cipitation echoes near the ML. An integrity check near

the ML bottom is added to avoid the artificial edges

caused by partial removal of the clutter (Fig. 8b). Based

on the characteristics of Z and rHV fields, the echoes are

segmented into groups along with radial directions. If

ground/biological clutter is identified below the ML, the

echoes from the same section are also cleared, even they

extend beyond the ML height (Fig. 8c). The dpQC2 al-

gorithm can further remove the residual clutter when

they appear at a high altitude/far range.

The sun spike is associated with low rHV. When the

sun spike is embedded among precipitation echoes

(Fig. 9a), the sun spike removal would leave a spike gap

(Fig. 9b). In the QC refinement, the gap pixels are re-

covered with the original value when the sun spike is

surrounded by the weather information (Fig. 9c).

e. Canadian radar QC update

1) COMBINATION OF DOPVOL AND

CONVOL DATA

Different from typical volume coverage patterns (VCP)

operated in the United States, Canadian radars complete

FIG. 8. (a) The raw base reflectivity field from Huntsville, Alabama (KHTX), at 0.58 elevation angle, (b) the reflectivity field after the

dpQC process, and (c) the field processed by dpQC2. The red ellipses highlight the residual clutter at far ranges that were completely

removed. The fields are observed at 1050 UTC 18 Sep 2014.

FIG. 9. (a) The raw Z field observed by the radar at Springfield (KSGF) at 1306 UTC 14 Feb 2014, (b) the Z field processed

by dpQC, and (c) the Z field processed by dpQC2. In this case, the update recovers the precipitation echoes that mixed with sun

spike clutter.
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one-volume scan in 10min. Each volume consists of 24 tilts,

and only 3 of them associated withDopplermeasurements.

The full three-dimensional volume scan (CONVOL) base-

level data are used in creating the three-dimensional re-

flectivity grid and QPE (Tang et al. 2016) in the MRMS

system. Due to negative-elevation-angle-scans and limited

quality control of level-I signal processing in Canadian

radars, the ground clutter has significant impacts on

CONVOL data. Although the clutter mitigation scheme

can identify and remove the ground clutter, it will leave

voids in the rain rate field when the clutter is embedded

in precipitation echoes.

In the early version Canadian radar QC, the voids

were corrected using the reflectivity values at higher tilts

from the CONVOL data. Figure 10b shows an example

scan observed by the radar at Brandon, Manitoba

(XFW), at 2339 UTC 20 October 2015. However, the

adoption of reflectivity data using higher tilts potentially

leads to inaccurate rainfall rate estimation inside the

void regions. For example, the reflectivity field after the

quality control in Fig. 10b mitigates the ground clutter

observed in Fig. 10a, where the higher tilts field was

applied in the void region. The corrected field (Fig. 10b)

shows dampened intensity at the range of 50 km south-

west to the radar site, which would directly lead to

rainfall rate underestimation in shallow precipitation.

On the other hand, theDoppler volume scans (DOPVOL)

contain the moments of velocity and spectrum width. By

analyzing spectral domain with filter functions, the pro-

cessed reflectivity data in DOPVOL mitigate the clutter’s

adverse effect with the less degrading quality of meteoro-

logical data. However, the DOPVOL data are available

only at the lowest three elevation scans with different

resolutions and ranges from the CONVOL data. In the

update of Canadian QC, the reflectivity field from

CONVOL volume is combined with Doppler variables

considering the time shifts between their scans, the dif-

ference of their scanning elevation, as well as the field

resolution and range. Figure 10c shows the combination

of the CONVOL and DOPVOL data contains ample

volume coverage and reasonable clutter identification

and correction near the radar site.

2) LAKE/SEA CLUTTER MITIGATION

The radars at Montreal River (WGJ) and Val d’lrene

(XAM) suffer lake/sea clutter, especially when radar

beams anomaly propagate. Figure 11b demonstrates an

example of the reflectivity field contaminated with se-

vere clutter from the Lake Superior, observed by WGJ

at 2019 UTC 9 February 2017. It is challenging to re-

move the clutter completely, especially under the winter

VCP where the scanning tilt could be as low as 0.28 for
WGJ and 20.58 for XAM. The contamination is ob-

served in both CONVOL and DOPVOL data. In the

update of Canadian QC, the reflectivity from the lowest

four tilts were collected at the lake regions. The poten-

tial clutter contamination is identified when the re-

flectivity intensity has a fast deduction along with the

vertical height. The echoes from higher tilts were ap-

plied in the correction to mitigate the overestimation of

the rainfall rate due to the mixture of precipitation

echoes and lake clutter (Fig. 11c).

3. Real-time performance

The performance of the updated dpQC2 was validated

in real-time on the MRMS system. A 4-yr evaluation

(from 2015 to 2019) found the updated dpQC2 shows

enhanced performance in robustness and accuracy com-

pared to the dpQC. Figure 12 shows an example of the

FIG. 10. A case when AP and regular ground clutter mixed with precipitation echoes observed by Brandon (XFW) at 2339 UTC 20 Oct

2015. (a) The raw Z field at 0.58 elevation angle, (b) the result corrected with the CONVOL data from a higher tilt, and (c) the result

corrected with the data from the Doppler scans.
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performance at 0500 UTC 30May 2015. Figure 12a is the

mosaicked composite reflectivity (CREF) field across

CONUS before the QC process; Fig. 12b is the CREF

field processed by dpQC; and Fig. 12c is the CREF field

processed using the updated dpQC2. Observing Figs. 12b

and 12c, the red and white ovals point out some of the

differences in the regions of radars at Rapid City, South

Dakota (KUDX), Brownsville, Texas (KBRO), El Paso,

Texas (KEPZ), and Laughlin AFB, Texas (KDFX). The

echoes around KUDX and KBRO (red ovals) are re-

moved by dpQC2 (Fig. 12c), while the echoes close to

KEPZandKDFX(white ovals) are retained compared to

Fig. 12b. The quality-controlled results are further

validated with ground gauge measurements, and no

precipitation is observed around KUDX and KBRO

within the time frame. It shows that the refined algo-

rithm shows enhanced quality control in removing bio-

logical clutter close to the radar site and better retaining

the precipitation echoes.

To quantitatively measure the influence of the upda-

ted QC algorithm on the QPE products, a comparison

between radar QPE and gauge measurement over a

5-day (20–24 February 2018) time window is presented

in the current work. During this period, the hardware

FIG. 12. (a) Themosaicked composite reflectivity (CREF) field across CONUS before anyQC process, (b) the CREF field processed by

dpQC, and (c) the CREF field processed using dpQC2. The fields are observed at 0500 UTC 30 May 2015. The red ovals highlighting the

residual echoes around KUDX and KBRO are removed in (c). The the white ovals show the echoes close to KEPZ and KDFX are

retained in (c).

FIG. 11. (a) The location of radar WGJ at Montreal River and the surrounding environment; (b) the reflectivity field at 0.28 elevation
after the process of dpQC at 2019 UTC 9 Feb 2017, where sea clutter still can be observed; and (c) the sea clutter is mitigated

using the dpQC2.
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issues were observed from the radar at Tulsa, which

leads to the enhanced bias in rain rate estimation.

Figure 13 shows the selected domain at the central

United States covering 134.758 to 137.758 latitude

and293.408 to297.758 longitude. The validation data

are collected from six radars atWichita, Kansas (KICT),

Vance Air Force Base, Oklahoma (KVNX), Oklahoma

City, Oklahoma (KTLX), Tulsa (KINX), Fort Smith,

Arkansas (KSRX), and Springfield, Missouri (KSGF),

respectively. The ground observation is from daily

Community Collaborative Rain, Hail and SnowNetwork

(CoCoRaHS) gauges. In the evaluation, the individual

radar data were first processed with the original dpQC

(Tang et al. 2014) and the proposed dpQC2. The quality-

controlled radar fields from individual radars were then

mosaicked, and the radar QPE was calculated using the

approach proposed by Zhang et al. (2016). The multiple

R–Z relationships [Eqs. (1)–(6) in Zhang et al. 2016] were

used to compute the surface precipitation rate for dif-

ferent precipitation types (Fig. 10 in Zhang et al. 2016).

The 24-h accumulated radar rain rate or snow water

equivalent was compared with the gauge network

observations.

Figure 13 presents a pair of example fields at UTC

1300 24 February 2018, where the gauge measurements

are shown as colored bubbles on the top of the 24-h

accumulated QPE field derived from the radar Z field

processed by dpQC (Fig. 13a) and dpQC2 (Fig. 13b).

The bubble size indicates the measurement value. The

bubble color indicates theQPEbias: thewarmcolor (red) is

underestimation, cool color (blue) shows overestimation,

and the neutral color (white) implies the match. Within

the 5-day testing time window, a total of 1013 pairs of

QPE and gauge measurement are used in the statistics.

Statistical measurements score the validation of the

radar rainfall estimation: the average bias, the mean

absolute error (MAE), and the correlation coefficient

(CC) (Ryzhkov and Zrnić 2019). During the study pe-

riod, the noise degradation of the vertical channel noise

is identified from radar KINX. The contamination in

the polarimetric measurements negatively impacted

the dpQC performance. Some precipitation returns are

falsely removed due to the degraded rHV and other

polarimetric variables. Although the multiple radar mo-

saicking scheme took advantage of the observation from

neighboring radars to mitigate the underestimation,

the mean bias of the QPE estimation over gauge mea-

surement is 0.883. The updated dpQC2 involves a sup-

plementary single-polarization QC and improves the

robustness in real-time performance. As highlighted

with the red ovals, the dpQC2 reduced the discontinu-

ities in theQPE field andmitigated the underestimation

(Fig. 13b). As a result, the product derived from the

dpQC2 has an enhanced mean bias of 0.900; the MAE

decreased from 0.428 to 0.412 cm. The CC improvement

is slight from 0.859 to 0.860. The updates are able to

ensure a consistent QC performance during the inci-

dental data corruption. The updates not only improve

FIG. 13. The gauge measurements on top of the 24-h accumulated QPE field derived from the radar Z field

processed by (a) dpQC and (b) dpQC2 at 1300 UTC 24 Feb 2018. The bubble size is proportional to the gauge

measurement, and the bubble color indicates the bias of QPE. Thewarm color (red) represents an underestimation,

cool color (blue) shows an overestimation, and the neutral color (white) implies the perfect match. The validation

data are collected from six radars at Wichita (KICT), Vance Air Force Base (KVNX), Oklahoma City (KTLX),

Tulsa (KINX), Fort Smith (KSRX), and Springfield (KSGF). The ground observation is from daily Community

Collaborative Rain, Hail and Snow Network (CoCoRaHS) gauges.
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the radar-based QPE but also benefit the downstream

applications in hydrological modeling.

4. Summary and discussion

The radar data QC algorithm directly impacts the

quality of the MRMS three-dimensional radar mosaic

and the severe weather and precipitation product suites.

The three-dimensional mosaic product is used in the

operational HRRR model; therefore, its quality can

impact the data assimilation and accuracy of the

quantitative precipitation forecasts. The MRMS se-

vere weather products are used by the NWS weather

forecast offices (WFOs) for real-time situational aware-

ness, and the precipitation products are used for flash

flood warnings at the WFOs and as forcing to the

operational hydrological models at the River Forecast

Centers and National Water Center. Misdetection of

the ground clutter in the dual-polarization QC could

result in false precipitation forecasts and overesti-

mation bias in streamflow predictions. Erroneous re-

moval of weather echoes could potentially result in

missed detection of severe weather and underesti-

mation in streamflow predictions.

Several major updates to the radar QC are imple-

mented in the MRMS system, and their impacts are

presented in this paper. The updated dpQC2 algo-

rithm provided the following improvements: 1) better-

preserving precipitation echoes by more accurately

locating the melting layer associated with the decreased

correlation coefficients, 2) identifying wind farm clutter

and correcting the biased reflectivity associated with

WFs embedded in precipitation, 3)minimizing impact of

the corrupt data related with radar hardware issues, 4)

further reducing the residual clutter from biological

migration and/or due to anomalous propagation of the

radar beams, and 5) further reducing lake/river clutter

from specific Canadian radars.

Compared to existing approaches, the proposed up-

dates highlight the novelty in three aspects. First, the

two-dimensional freezing-level field, derived from a

combination of the HRRR and the RAP model ana-

lyses, combined with radar observations, is applied in

the melting-layer detection for the first time. Second,

the radar hardware issue of noise level degradation

was addressed using an approach based on the Bayes

theory. The proposed bqc is straightforward and able

to provide a consistent quality control result when the

dual-polarization variables are biased. Third, different

from the methods of signal processing schemes, the

proposed update mitigates the WF contamination in

level-II radar data. It not only identifies the contami-

nation region through a lookup table and radar data but

also provides a set of correction schemes depending

on the contamination severity. The QC updates showed

statistical improvements in reducing nonprecipitation

clutter and better retaining the weather information.

The real-time process accommodates the costs and

benefits of the computational resource since it is running

upon over 140 radars in the CONUS. They are designed

to improve the QC robustness in different issues for

individual radars with an economic computational cost.

For example, by applying the referential location tables,

the mitigation of the WF contamination can handle in-

dividual radars efficiently with minimum impact of the

QC process in other radars. The bqc scheme works as a

quick substitute to avoid false alarms due to biased radar

measurements. The proposed refinements are able to

extendedly improve the quality control of the radar data

in the MRMS system.

Due to the range difference between the polarimetric

variables, such as rHV (300 km) and reflectivity field

(460 km) of the WSR-88Ds, it is still challenging for

the clutter at a range further than 300 km away from

the radars due to anomalous propagation. Some residual

clutter, while infrequent, may still be seen far offshore,

and additional data sources (e.g., satellite)may be needed

to reduce these nonprecipitation echoes further.
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