
HailTrack—Improving Radar-Based Hailfall Estimates by Modeling Hail Trajectories

JORDAN P. BROOK,a ALAIN PROTAT,b JOSHUA SODERHOLM,b JACOB T. CARLIN,c,d HAMISH MCGOWAN,a AND

ROBERT A. WARREN
e

aAtmospheric Observations Research Group, University of Queensland, Brisbane, Queensland, Australia
bRadar Science and Nowcasting, Science and Innovation Group, Australian Bureau of Meteorology, Docklands, Victoria, Australia

cCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
dNOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

e School of Earth, Atmosphere and Environment, and Centre of Excellence for Climate Extremes, Monash University, Melbourne,

Victoria, Australia

(Manuscript received 4 April 2020, in final form 1 November 2020)

ABSTRACT: A spatial mismatch between radar-based hail swaths and surface hail reports is commonly noted in mete-

orological literature. The discrepancy is partly due to hailstone advection and melting between detection aloft and ob-

servation at the ground. This study aims to mitigate this problem by introducing a model namedHailTrack, which estimates

hailfall at the surface using radar observations. The model operates by detecting, tracking, and collating hailstone trajec-

tories using dual-polarized, dual-Doppler radar retrievals. Notable improvements in hailfall forecasts were observed

through the use of HailTrack, and initializing the model with radar retrievals of hail differential reflectivityHDR was found

to produce the most accurate hailfall estimates. The analysis of a case study in Brisbane, Australia, demonstrated that

trajectory modeling significantly improved the correlation between hail swaths and hail-related insurance losses, increasing

Heidke skill scores from 0.48 to 0.58. The accumulated kinetic energy of hailstone impacts also showed some skill in

identifying areas that were exposed to particularly severe hailfall. Other unique impact estimates are presented, such as

hailstone advection information and hailstone impact angle statistics. The potential to run the model in real time and

produce short-term (10–15 min) nowcasts is also introduced. Model applications include improving radar-based hail cli-

matologies, validating hail detection techniques and insurance claims data, and providing real-time hail impact maps to

improve public awareness of hail risk.
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1. Introduction

Hailstorms pose a significant risk to life and property in

many parts of the world, resulting in over USD 1 billion in

insured losses annually (Jewell and Brimelow 2009; Sander

et al. 2013). The economic cost of hail damage highlights the

need to develop capabilities to accurately quantify the spatial

extent and intensity of hail impacts on the ground. The areal

extent of hail swaths, in combination with hail intensity metrics

such as maximum hail diameter or hail kinetic energy, form the

basis of hail climatologies and hail damage modeling in the

insurance industry (e.g., Kunz and Puskeiler 2010). Accurate

hail swath information is also important for assessing the

ability to detect hail by radar, understanding hailstorm dy-

namics and microphysics, and verifying high-resolution nu-

merical weather model predictions (Changnon 1970; Snook

et al. 2016).

A review of hail literature reveals four common approaches

for estimating the extent of hail impacts, namely, using hail

reports (e.g., Zhang et al. 2008; Ortega et al. 2009; Allen et al.

2015; Kahraman et al. 2016; Allen and Allen 2016; Jin et al.

2017), in situ measurements such as hail pads (e.g., Changnon

1968; Auer and Marwitz 1972; Smith and Waldvogel 1989;

Fraile et al. 1999), insurance claims data (e.g., Hohl et al. 2002;

Schuster et al. 2006; Brown et al. 2015; Warren et al. 2019), and

weather radar imagery (e.g., Basara et al. 2007; Cintineo et al.

2012; Ortega 2018). Issues such as population bias, reporting

insufficiency and secular trends from population changes and

reporting practices plague all of these data sources except

those derived from weather radar (Allen et al. 2015; Ortega

2018). Estimates made from radars also benefit from fine spa-

tiotemporal resolution, measurement homogeneity and the

ability to measure in three dimensions. These benefits make

radar-based hail impact estimates a compelling option for

quantifying the footprint of hail events.

Despite the observational advantages of using radars to

predict hail impacts, it remains a challenging task. First, hail

detection and sizing by radar is essentially an underresolved

problem as size, liquid water content and distribution, and the

number concentration of hailstones all contribute to a vol-

ume’s backscattering characteristics. This leads to a high level

of uncertainty when using radars to estimate hail size distri-

butions aloft (Depue et al. 2007; Wilson et al. 2009; Blair et al.

2011; Ortega 2018). Further uncertainty is introduced when

radar-based hail retrievals are used to estimate the extent and

intensity of hailfall on the ground (Schiesser 1990; Hohl et al.

2002; Schuster et al. 2006). Most attempts at comparing radar

measurements directly to hail observations at ground level

introduce two implicit assumptions: 1) hailstone sizes remain

constant from detection aloft until impact, and 2) hailstones

land directly below where they are detected aloft. This study

aims to relax these assumptions by modeling hailstones fromCorresponding author: Jordan Brook, j.brook@uq.edu.au
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detection aloft to their expected impact locations. We expect

this approach to significantly improve the skill of hailfall esti-

mates, while acknowledging that the inherent uncertainty in

estimating hail sizes with radar data places an upper bound on

the potential accuracy of such endeavors.

Previous hail trajectory and impact mapping studies have

shown that hailstones can advect considerable distances from

their initial position aloft to their impact position on the

ground, affecting the ability to match radar-based hail obser-

vations directly to ground truth (Schiesser 1990; Schmid et al.

1992; Conway and Zrnić 1993; Hohl et al. 2002; Schuster et al.

2006; Warren et al. 2019). Many studies use low-level tilts of

volumetric radar scans to mitigate the effects of advection as

hailstones at lower altitudes have less potential to advect large

distances (e.g., Depue et al. 2007; Ortega et al. 2016). However,

this approach is not suited for nowcasting purposes as it re-

duces the lead time for hail warnings and effectively extends

the interval between subsequent radar measurements by

omitting higher elevation tilts. Furthermore, the use of exclu-

sively low-level scans is not feasible for vertically integrated

hail retrievals such as maximum expected size of hail (MESH)

and vertically integrated liquid (VIL) (Greene and Clark 1972;

Witt et al. 1998). To mitigate the effects of advection, many

radar validation studies use a neighborhood approach when

matching radar-derived swaths to ground truth. This can in-

volve matching hail reports to radar-derived properties any-

where within the spatiotemporal bounds of a storm (Blair et al.

2011; Ortega 2018), within a predefined radius around each hail

report (Nanni et al. 2000; Cintineo et al. 2012; Warren et al.

2019) or more complex methods based on the vertical re-

flectivity distribution (Ortega et al. 2016). The use of these

matching techniques reflects the inability of current radar-

based hail retrievals to adequately predict the spatial extent

and location of hail swaths on the ground.

Previous research has also attempted to improve the point-

to-point match between radar products and ground truth by

shifting radar-based swaths horizontally to account for hail-

stone advection. This has been demonstrated to significantly

improve the correlation of radar-derived swaths with crop

damage (Schiesser 1990), hailpad impacts (Schmid et al. 1992),

and insurance claims (Hohl et al. 2002; Schuster et al. 2006).

While this type of advection correction does improve damage

estimates, its accuracy and applicability are limited. First,

assuming a constant advection displacement for the entire ra-

dar swath does not consider that hailstones with different ter-

minal velocities and different initial altitudes will advect

different distances. Second, these corrections rely on high-

resolution ground-truth observations to derive a representa-

tive swath displacement vector. This technique is therefore not

suitable for use in regions with limited hail observations or in

real-time nowcasting applications. A study by Schiesser (1990)

is an exception to the simple, uniform horizontal shift method.

The authors account for the height of hail observations and

advect hailstones with a constant horizontal velocity. A rep-

resentative horizontal velocity vector for the whole storm is

selected by optimizing the correlation between radar mea-

surements and hail-pad impacts. Once again, this method un-

derresolves the complexity of hail advection calculations by

assuming constant velocities for all hailstones and constant

wind speeds throughout each storm.

The model presented here (subsequently referred to as

HailTrack) targets the aforementioned limitations involved

with associating radar retrievals aloft to hail observations on

the ground. We introduce a trajectory modeling approach that

uses radar data to predict the areal extent and intensity of

hailfall at the surface. The aim of this new approach is to im-

prove current radar-based hail impact predictions by directly

modeling the effects of hailstone advection and melting. The

HailTrack method is first outlined in section 2, and it is sub-

sequently validated using insurance data from an Australian

case study in section 3. Amore in-depth hail trajectory analysis

is included in section 4, followed by a brief discussion on model

sensitivity in section 5. A summary of the findings from this

study and a discussion of future research directions are pro-

vided in section 6.

2. HailTrack method

a. Overview

The method introduced in this study requires a repre-

sentative thermodynamic profile of the atmosphere (e.g.,

radiosonde or numerical model data) and polarimetric, dual-

Doppler radar coverage. Polarimetric information is used to

estimate the initial size and position of hailstones within each

modeled hailstorm, and dual-Doppler measurements are used

to retrieve the three-dimensional wind field. Dual-Doppler

observations are required to fully resolve storm-induced wind

perturbations and their effects on hail trajectories; however,

this requirement limits the method’s operational applicability

in many radar networks due to the rarity of dual-Doppler

coverage. After hailstones are initiated within the model, their

trajectories are estimated by modeling their interaction with

3D wind retrievals. Hailstone melting estimates are coupled to

the trajectory model to account for reductions in hailstone size

and terminal velocity as they fall below the environmental

melting level. All hailstones that reach the ground in the model

are collated into a unique, advection-corrected hailfall estimate.

The remainder of this section describes the implementation of

these processes by outlining how methods from the existing lit-

erature have been adapted for this purpose. Refer to Fig. 1 for a

visual representation of this process.

b. Hail detection and sizing

The trajectory modeling approach used in this study requires a

radar-based hail detection and sizing method to initiate hailstone

simulations. The requirement for each hail sizing/detection algo-

rithm is to provide a domainwide, numerically continuous hail size

and position in three dimensions.

1) HAIL DIFFERENTIAL REFLECTIVITY (HDR)

Following a review of hail detection literature, the only

continuous, three-dimensional hail size retrieval is based on

the hail differential reflectivity, or HDR, parameter. This

technique exploits bulk geometric differences between hail

and rain distributions by identifying hail as a combination of
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high equivalent horizontal reflectivity ZH and low differential

reflectivity ZDR. The reader is referred to Aydin et al. (1986)

for a detailed description of the HDR parameter. Depue et al.

(2007) presented an empirical relationship between the HDR

parameter and hail size at S band using a collection of 86 hail

reports. The approximate HDR–hail size relationship inferred

from Depue et al. (2007, their Fig. 5) is as follows:

d
hdr

5

8<
:

0; H
DR

, 21 dB

0:03H2
DR 2 0:37H

DR
1 11:69; H

DR
$ 21 dB

, (1)

where dhdr is the resulting HDR-based equivolume hail diam-

eter estimate in millimeters; HDR values below 21 dB are

assigned a hail diameter of 0 because the HDR–dhdr relation-

ship in Eq. (1) was developed using values above this threshold.

TheHDR lower bound corresponds to a minimum dhdr hail size

estimate of 17 mm (to the nearest millimeter). This ‘‘minimum

observable size threshold’’ is applied to all hail retrievals in this

study to ensure consistency between approaches. Note that

hailstones smaller than this minimum threshold may be large

enough to cause crop damage but are unlikely to damage

common building materials (Schiesser 1990; Marshall et al.

2002). Depue et al. (2007) noted a large standard deviation of

10.6 mm between hail reports and the hail size relationship

introduced above. This highlights the uncertainty involved in

estimating one-to-one hail sizes using theHDR parameter. The

small ground-truth sample size used to calibrate the HDR–dhdr
relationship also limits our confidence in the method. Despite

these concerns, HDR hail sizes have been noted to show skill

in detecting the presence of severe hail and are unique in

producing three-dimensional, continuous hail size estimates

(Aydin et al. 1986; Nanni et al. 2000; Depue et al. 2007; Murillo

and Homeyer 2019).

2) MESH

MESH is a single-polarized hail detection algorithm involving

a weighted integration of ZH above the melting level to

produce a two-dimensional grid of the maximum estimated hail

size at the surface (1 km grid spacing in this study). Refer toWitt

et al. (1998) for a full description of the MESH method. Two-

dimensional MESH grids are not immediately applicable to this

study as three-dimensional hail retrievals are required to initiate

trajectories. To resolve this problem, the MESH estimates are

extended into three dimensions by linearly varying MESH

values according to the corresponding vertical ZH profile (in

decibel units, with 0.5-km vertical grid spacing). Cartesian

gridding of radar variables is performed with the Barnes (1964)

weighting scheme and a constant, 2-km radius of influence using

the Python ARM Radar Toolkit (Py-ART; Helmus and Collis

2016). The resulting three-dimensional MESH hail size estimate

dmesh is formalized below:

d
mesh

5
Z

H

Z
H,max

MESH, (2)

where ZH,max is the maximum reflectivity in the column. This

formulation ensures that for each column dmesh is equal to the

FIG. 1. A schematic showing the physical process of hail advection that motivates this trajectory modeling ap-

proach. The image represents an idealized version of hail core advection due to a ground-relative wind profile,

resulting in a spatially offset hail swath.
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two-dimensional MESH value at the altitude with the highest

reflectivity while the dmesh values below and above decrease

proportional to the vertical ZH profile.

The accuracy of the 3D MESH formulation above [defined

as dmesh in Eq. (2)] is limited by two main factors: 1) ZH does

not vary proportionately to hail size as it is also influenced by

hydrometeor geometry, liquid water coating, and number

concentration; and 2) the underlying MESH estimates used in

Eq. (2) have been shown to exhibit limited skill in estimating

one-to-one hail sizes when compared with hail reports (Witt

et al. 1998; Wilson et al. 2009; Ortega 2018). In light of these

limitations, dmesh should be interpreted solely as a means of

initiating hail trajectories within HailTrack and is not intended

as a stand-alone hail retrieval method. The investigation of this

retrieval method within HailTrack represents an attempt to

account for the effects of storm-driven hail advection in con-

ventional MESH estimates. These efforts are motivated by the

persistent use of MESH for hail detection in operational

forecasts and historical datasets, especially in regions such as

Australia with predominantly single-polarized radar coverage

(Richter and Deslendes 2007; Warren et al. 2019).

3) HDR-WEIGHTED HSDA HYBRID APPROACH

Fuzzy-logic algorithms have superseded the more empirical

approaches previously used for hydrometeor classification al-

gorithms (HCA). These techniques are better suited to hail

detection as they provide a framework to handle the uncer-

tainty involved in classifying hydrometeor types from radar

data (Park et al. 2009). Hail is separated from other hydro-

meteor types in this study using S-band modifications to the

HCA outlined in Dolan and Rutledge (2009) and Dolan et al.

(2013). The hail size discrimination algorithm (HSDA) is ap-

plied following the HCA classifications by dividing the ‘‘hail’’

category into ‘‘small’’ (,25 mm), ‘‘large’’ (25–50 mm), and

‘‘giant’’ (.50 mm) hail size classes. These size classifications

are used throughout the text to ensure consistency in hail size

nomenclature. For a detailed description of the HSDA

method, refer to Ryzhkov et al. (2013a,b). HSDA hail size

retrievals cannot be implemented directly in HailTrack due

to their categorical hail size outputs. Instead, HDR retrievals

are used to introduce a continuous hail size spectrum within

each HSDA class. Hail sizes are varied proportionally to the

HDR values within each size class. Therefore, small hail varies

between 0 and 25 mm and large hail varies between 25 and

50 mm. The giant category introduces additional complexity

because of the absence of a prescribed upper bound.

Accurately estimating the maximum hail size within an

entire storm using radar data is a difficult task. MESH is

commonly used operationally for this purpose despite the

aforementioned limitations in estimating one-to-one sizes. In

the absence of a more robust, radar-based maximum hail size

estimation technique, we use a stationary 75-mm (;3 in.)

upper bound for all giant HSDA classifications. For giant

hailstones, the absolute size has a limited effect on the un-

certainty of trajectory calculations, as large terminal veloci-

ties associated with giant hailstones limit the potential for

advection in the presence of horizontal winds. To confirm

this, we consider the sensitivity of the model to the arbitrarily

chosen hail size upper bound by varying this predefined

‘‘maximum’’ hail size in section 3. The hail size classifications

for this method are summarized as follows:

d
hsda

5

8>>>>>>>>>>><
>>>>>>>>>>>:

25
d
hdr

2d
S,min

d
S,max

2 d
S,min

; HSDA 5 small

25
d
hdr

2d
L,min

d
L,max

2d
L,min

1 25; HSDA 5 large

25
d
hdr

2d
G,min

d
G,max

2 d
G,min

1 50; HSDA 5 giant

, (3)

where dS,min is the minimum dhdr value within the small HSDA

size class, dG,max is the maximum dhdr value within the giant

HSDAclass, and so on. This approach should allow further size

discrimination within each HSDA class because dhdr theoret-

ically varies proportionally with hail size.

c. 3D wind retrievals

Accurate trajectory modeling requires a realistic estimate of

the three wind components within the hailstorm. This study

follows the method outlined in Protat and Zawadzki (1999) by

using dual-Doppler data to resolve the three-dimensional wind

field. The reader is referred to Protat and Zawadzki (1999) and

Collis et al. (2013) for a complete description of this method.

3D wind calculations are performed in a Cartesian coordinate

system with a horizontal resolution of 1 km and a vertical

resolution of 500m. The ground-based radars used in this study

are not suited to sampling near-surface altitudes due to the

effects of ground clutter and beam divergence at increasing

range. As a result, the lowest altitude for the 3D wind retrieval

is 500 m above sea level. Reflectivity–fall speed relationships

reported in Conway and Zrnić (1993) are applied based on

HCA classifications to account for errors in vertical velocities

due to the suspension of large hydrometeors. Regions with

nearly collinear beam orientations between radars are discounted

from the analysis due to the requirement for dual-Doppler mea-

surements. We define these nearly collinear regions where the

cosine of the angle between the two radar beams is greater than

0.95. The resulting dual-Doppler lobes (e.g., Fig. 3) ultimately

limit the wind retrieval domain and the maximum effective

range of the HailTrack method.

The gaps resulting from these nearly collinear regions, along

with weak echo regions, present an issue for hail trajectory

modeling as a small portion of hail simulations may fall into

such regions with missing 3D winds data. When this occurs in

the model, a gap-filling method is used to find a representative

velocity value. In missing wind data regions, the vertical wind

velocity is set to zero and the horizontal components are set to

the mean value of the horizontal velocity in the closest hori-

zontal cross section. This method allows hailstones that fall out

of precipitating regions or out of the Doppler lobes to continue

advecting with the altitude-specific mean velocity value until

they reach the ground or reenter an area of valid velocity

values. The inclusion of the gap fillingmethod greatly improves

the spatial continuity of hail swaths, especially for storms that

move through the nearly collinear region between the radars.
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d. Microphysical considerations

Melting plays an important role in altering the terminal

velocities of hailstones as they fall (Rasmussen et al. 1984). A

melting process is implemented within HailTrack using the

model presented by Ryzhkov et al. (2013a, hereinafter R13A).

Hailstone mass losses occur due to thermodynamic processes

such as sublimation and evaporation, as well as the meltwater

shedding parameterization introduced byR13A. Thermodynamic

environmental variables used in the model are sourced from a

representative vertical profile (e.g., radiosonde or numerical

model data) for each individual storm. No hail growth pro-

cesses are simulated due to the inability to accurately estimate

environmental variables such as supercooled liquid water

content in real time using current remote sensingmethods. The

initial density of hailstones aloft follows modeling experiments

by Rasmussen and Heymsfield (1987), which assume hailstone

densities increase with size from small, low density graupel

(600 kg m23) to large stones composed of roughly solid ice

(917 kg m23). This size-dependent density function was also

employed in R13A (their Fig. 1), and is written as follows:

r
0
(d)5

�
6002 0:25d2 1 17:61d; d, 36mm

917; d$ 36mm
, (4)

where r0 is the prescribed initial hailstone density. The true

density r of a hailstone at any subsequent point along its tra-

jectory is calculated with consideration to the accumulation of

meltwater within internal air cavities and on the hailstone ex-

terior. For a comprehensive thermodynamic description on the

melting model used and its effects on hailstone terminal veloc-

ities, the reader is referred to the appendix material in R13A.

e. Trajectory modeling and collation

It is currently not possible to accurately estimate hail size

distributions aloft using polarimetric weather radar informa-

tion. Therefore, instead of attempting to simulate a represen-

tative size distribution, trajectories are initiated based on the

maximum expected hail size within each grid box (MESH) or

radar voxel (HDR, HSDA). This approach captures the spatial

distribution of the most damaging hail while avoiding any as-

sumptions about hail distributions in the atmosphere. Initial

maximum size estimates are based on the hail detection/sizing

methods discussed earlier. The only forcing mechanisms for

hailstone trajectories are gravity and drag from the 3D wind

field.At every point along their trajectory, horizontal components

of the wind field (u, y) are used as the horizontal hydrometeor

velocity, and vertical velocities are the sum of vertical air velocity

w and the terminal velocityVT. Therefore, the true velocity vector

for hydrometeors as they move through the atmosphere is (u, y,

VT1 w). Using this velocity vector, positions at a new time step n

can be calculated on the basis of the previous step (n 2 1):

x
n
5 x

n21
1 u

n21
Dt

y
n
5 y

n21
1 y

n21
Dt

z
n
5 z

n21
1 (V

T
1w

n21
)Dt , (5)

where Dt is the time step. A time step of 10 s was deemed

sufficient for avoiding truncation errors after considering the

maximum expected updraft velocities and the vertical grid

spacing of wind retrievals (Ziegler et al. 1983; Conway and

Zrnić 1993). Terminal velocities are updated at each time step

and new positions are calculated until the hailstone trajectory

intersects the ground. 3D wind fields are not temporally ad-

justed or spatially shifted according to storm motion between

radar scans as the temporal resolution of operational radar

scans (;6-min volumes) is deemed sufficient to capture the

evolution of the wind field for hailstones with significant du-

rations aloft. In this implementation, the nearest-neighbor

method was chosen to interpolate 3D winds to exact hail-

stone positions in an effort to achieve the computational ef-

ficiency required for real-time operations. More accurate

interpolation methods (e.g., trilinear) could be used in ap-

plications where computational efficiency is not prioritized.

Once hailstones hit the ground, variables such as initial di-

ameter, final diameter, initial position, final position, impact

velocity, and trajectory duration are stored. Two analyses are

then derived from all simulated hailstone impacts on 1-km2

grids at the surface: 1) a maximum hail size swath and 2) a

cumulative kinetic energy field KEH. KEH calculations are

formalized below:

KE
H
5�

n

i50

1

2
m

i
V2

i 5�
n

i50

1

12
pr

i
d3
i u2

i 1 y2i 1 (V
T,i

1w
i
)2

h i
, (6)

where m is hailstone mass, r is hailstone density, d is hailstone

equivolume diameter, n is the number of hailstone impacts

within each grid square, and the subscript i indicates a

hailstone-specific property for the ith hailstone impact within

each grid square. Equation (6) underestimates the total kinetic

energy of hail impacts because only a single, maximum size

hailstone is initialized per voxel/grid point, per radar scan.

Accordingly, we normalize KEH values between 0 and 1 to

indicate that this statistic should be interpreted as a ‘‘storm

specific’’ measure and should only be used to highlight

regions with the most intense hailfall within an event. A

33 3 median filter is employed to reduce speckle noise and

increase readability in maximum size and KEH swaths

(Lakshmanan et al. 2013).

f. Model validation

Conventional radar-based hail impact swaths based on

hail detections aloft (MESH, HDR, and vertical maximum

reflectivity) are calculated in this study to compare with

trajectory-based HailTrack swaths. Conventional swaths

are calculated by accumulating the maximum values for

each parameter on a 1-km grid throughout the storm life-

time. However, the temporal resolution of radar volumes

(;6 min) introduces spatial discontinuities between con-

secutive radar scans due to storm motion. A cell-tracking

technique is used to identify and match cells between radar

scans in order to interpolate discontinuous swaths spatially

along the storm path. For more information on the cell

identification and matching techniques used in this study,

the reader is referred to Lakshmanan et al. (2009) and
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Dixon and Wiener (1993), respectively. Intermediate grid

points between radar scan times are interpolated by shifting

the cell at time t forwards, and the cell at time t 1 1 backward

along the storm motion vector. The resulting value of the

intermediate grid points is then a linear combination of the

values at time t and t 1 1, weighted by their temporal

proximities. The result is a spatially contiguous hail swath

capable of providing a robust comparison to the trajectory-

based swaths calculated in this study.

Insurance data are used as a validation dataset for the oc-

currence of damaging hail due to a lack of hail reports. Hail-

related insurance claims were provided by Suncorp Insurance

and are collated into daily 1-km grids comprising the number of

insurance claims and the number of contracts. Refer toWarren

et al. (2019) for more details on the Suncorp Insurance dataset.

The extent of damaging hail is estimated by creating a binary

damage grid (1 for hail damage, 0 for no damage, and21 for no

data), and a damage intensity metric is defined as the per-

centage of insurance contracts that made hail-related damage

claims during the event. Various hail size thresholds are tested

for each hail size estimation method to determine the strongest

correlation with damaging hail at the corresponding grid

points. If the swath value at a point exceeds the threshold, a

positive prediction is made and if the value is less than the

threshold, a negative prediction is made. By comparing these

predictions to the actual binary insurance grid, contingency

tables are developed containing true positives a, false positives

b, false negatives c, and true negatives d. Contingency tables

are used to derive common verification statistics such as the

probability of detection (POD), false-alarm rate (FAR), and

critical success index (CSI; Schaefer 1990). To compare vali-

dation values with recent literature, Heidke skill scores (HSS;

Heidke 1926) are also calculated as follows:

HSS5 2(ad2bc)/[(a1 c)(c1 d)1 (a1 b)(b1d)] . (7)

The number of correct forecasts is scaled by the number ex-

pected due to chance in the HSS formulation, ensuring scores

measure only the fractional improvement of the forecast

method (Doswell et al. 1990). Optimum hail size thresholds for

each hail detection method are defined as the threshold that

produces the highest HSS as it is considered the most robust

validation statistic.

3. Model validation

In this section we validate the HailTrack method using a

case study from 27 November 2014, in Brisbane, Australia.

The hailstorm followed a northerly path through the densely

populated Brisbane metropolitan area between 0500 and

0800 UTC, generating an estimated AUD 1.54 billion in in-

surance losses and roughly 7000 hail-related claims in the

Suncorp Insurance dataset (Insurance Council of Australia

2017). These significant financial impacts reflect the contribu-

tion of giant hailstones (;70 mm), strong surface level winds

(39 m s21 gusts), and the event timing (weekday during the

evening rush hour; Parackal et al. 2015). Dual-Doppler data

are sourced from two S-band radars, the Mount Stapylton

operational weather radar and the CP-2 dual-polarization

research radar (1.08 and 0.938 half-power beamwidths, re-

spectively; Protat and Soderholm 2020). All hail retrievals are

performed using the CP-2 radar due to its polarimetric capa-

bilities. Atmospheric inputs to the melting model are sourced

from a 0400 UTC sounding at Brisbane Airport (YBBN;

;10 km northeast of Brisbane central business district). While

the sounding data may not fully resolve the complexities of the

near-storm thermodynamic profile, or its evolution in the 1–

2 h preceding the event, we deem its spatiotemporal proximity

appropriate for use in the hailstone melting model. The sen-

sitivity of the model to changes in these thermodynamic inputs

is discussed in section 5.

The ultimate aim of this section is to validate whether

HailTrack hailfall predictions outperform other conventional

radar-based approaches. In addition, we seek to determine

which of the three hail retrieval methods introduced in

section 2b (HDR, MESH and HSDA) is the most performant.

Hailfall estimates are predominantly verified using insurance

loss data in this study due to the small number of hail size re-

ports collected during event. Although they are an extremely

valuable source of validation, insurance damage claims can

also be influenced by factors beyond the maximum size or in-

tensity of hailfall. These include but are not limited to 1) the

spatial density and value of insured assets, 2) the extent of

shielding (e.g., from other buildings and trees), 3) the type and

age of building components, 4) the extent and size of the

damage, 5) other damage types associated with intense rainfall

or severe wind gusts, 6) wind speed and direction, and 7)

whether contract holders reliably file claims for every instance

of damage. Despite these limitations, insurance data have been

noted to provide a valuable insight into the extent of damaging

hail at the surface, which makes it a suitable choice for vali-

dating the results in this study (Hohl et al. 2002; Brown et al.

2015; Warren et al. 2019).

Table 1 contains skill scores calculated by comparing each

hail retrieval method to a binary representation of insurance

damage as discussed in section 2f. Three retrievals without

trajectory corrections are included in this table and are herein

referred to as ‘‘conventional’’ swaths. Of the three conven-

tional swaths, a vertical-maximum reflectivity threshold of

64 dBZ is the most skillful predictor of binary insurance

damage with a HSS of 0.50. Uncorrected MESH and HDR

swaths showed slightly lower HSS values of 0.46 and 0.48, re-

spectively. There is a consensus among previous studies that

the optimal MESH threshold for predicting severe hail oc-

currence ($25 mm) in a similar spatiotemporal proximity to a

storm is around 30 mm (Wilson et al. 2009; Cintineo et al. 2012;

Ortega 2018; Murillo and Homeyer 2019; Warren et al. 2019).

In this study aMESH threshold of 46mm showed themost skill

for identifying regions with hail-related insurance damage. The

significant difference in optimal thresholds from previous

studies highlights the alternate method used here. Instead of

matching hail reports to either a single, spatiotemporally rep-

resentative value for an entire storm or within a predefined

neighborhood radius, we point match radar-based swaths to a

spatial grid. Warren et al. (2019) highlighted the effects of

these matching methods by showing that the optimum MESH

threshold changed from 44 to 32 mm when increasing the
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neighborhood radius used to construct contingency tables from

0 km (i.e., gridscale comparisons) to 5 km. Both the difference

in matching techniques and the type of ground-truth mean that

skill scores for the conventional swaths in Table 1 cannot be

reliably compared to previous literature; instead, they have

been included to demonstrate the benefit of applying the tra-

jectory model in this study.

HailTrack HSDA hail size retrievals produced the only

trajectory modeled swath that did not outperform the con-

ventional swaths. A large 69-mm optimum hail size threshold

led to a reasonable probability of detection (0.48), but this is

outweighed by a similarly high false alarm ratio (0.37),

resulting in a relatively poor Heidke skill score of 0.48. As

discussed previously, this hail retrieval method requires a

prescribed maximum hail size for giant HSDA classifications,

and it is possible that this assumption plays a significant role in

the skill scores observed. The sensitivity of the HSDA retrieval

method to the prescribed 75 mm maximum size threshold was

explored by varying threshold values between 55 and 85 mm.

These sensitivity experiments showed only small fluctuations

in the skill scores (,0.01), indicating that the accuracy of the

HSDA retrieval method is not strongly influenced by the

maximum hail size assumption. Instead, we find that the poor

skill of the HSDA method is a result of overestimating the

number of giant classifications, especially in the earlier stages

of storm development. This results in a significant amount of

giant hail in areas with no observed insurance damage, leading

to a high FAR and poor skill scores.

Conventional MESH and HDR hail swaths improved con-

siderably when HailTrack advection corrections were applied,

with HSS values increasing from 0.46 to 0.50 and from 0.48 to

0.58, respectively. The optimum MESH threshold changed

from 46 to 24 mm before and after the HailTrack corrections

were applied, due to the reflectivity scaling used to extend

MESH into three dimensions. The corrected MESH skill score

is consistent with Warren et al. (2019) who found HSS values

between 0.49 and 0.51 by using a neighborhood radius of 5–

7 km to account for hailstone advection. The corrected MESH

swath also outperformed the conventional HDR swath, indi-

cating that trajectory corrections to single polarized hail swaths

can outperform conventional polarimetric hail swaths. Results

for the HailTrack HDR method showed that combining dual-

polarized hail retrievals and trajectory corrections produces

the most accurate hailfall estimates. Skill scores for the

HailTrack HDR swath with a 37-mm threshold considerably

outperformed all other methods tested here. As a result, the

HDR approach is recommended as the default hail retrieval

method for HailTrack, all subsequent trajectory modeling and

verification in this study is performed using this method.

The threshold that optimizes the correlation between

HailTrack size swaths and insurance damages may vary when

the validation dataset is extended to include a larger set of

events. To verify that HailTrack improvements are robust to

these changes in the optimum threshold, it is also necessary to

verify that HailTrack swaths outperform conventional swaths

across a range of hail size thresholds. To this end, the validation

metrics in Table 1 were also calculated using hail size thresh-

olds between 0 and 50 mm. The CSI scores for this range of

thresholds are shown for both the HailTrack HDR and con-

ventional HDR swaths in Fig. 2. The corrected HDR swath

largely outperforms the conventionalHDR swath for nearly all

hail size thresholds, confirming that the benefit derived from

HailTrack modeling is insensitive to the specific threshold

chosen in this case. The optimum thresholds for the conven-

tional swath and corrected swath are identical (37 mm), but the

corrected swath has a significantly higher optimum CSI score

(0.47 vs 0.37 for the conventional swath). Note also that the

skill score improvements noted between conventional and

HailTrack-derived MESH swaths also persist across the full

range of possible hail size thresholds (not shown). This is rel-

evant to regions without polarimetric radar coverage where the

HDR retrieval method cannot be applied.

Having demonstrated that the HailTrack HDR method

provides the best correlation to insurance damage, the corre-

sponding maximum hail size and kinetic energy swaths are

provided in Fig. 3. Themaximumhail size swath shows a period

of weak multicell convection to the southwest of Jimboomba

with patchy, short-lived hailfall. There are also two contiguous

hailstreaks from separate storms that followed a northerly path

through the town of Fernvale and the city of Brisbane. These

swaths retain spatial continuity despite the discrete temporal

nature of the underlying radar data, which is a result of simu-

lating hailstone trajectories from all elevations and from a

range of radar volumes. The accumulated kinetic energy swath

in Fig. 3b also highlights a smaller region of particularly intense

hailfall, which in this case does not match precisely with where

the maximally sized hail fell (refer to Fig. 3a). This is a valuable

insight, and one that is particularly notable when considering

TABLE 1. Skill scores for each hail detection method used in this study. The optimum threshold is defined as the threshold that produces

the highest HSS.

Hail retrieval Threshold POD FAR CSI HSS Description

Reflectivity 64 dBZ 0.53 0.39 0.40 0.50 Reflectivity swath interpolated by tracking cell

movement

MESH 46 mm 0.46 0.38 0.36 0.46 MESH swath interpolated by tracking cell

movement

HDR 37 mm 0.47 0.36 0.37 0.48 HDR swath interpolated by tracking cell movement

HailTrack HSDA 69 mm 0.48 0.37 0.38 0.48 HDR-weighted HSDA swath corrected using

trajectory modeling

HailTrack MESH 24 mm 0.51 0.38 0.39 0.50 MESH swath corrected using trajectory modeling

HailTrack HDR 37 mm 0.60 0.32 0.47 0.58 HDR swath corrected using trajectory modeling
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that maximumhail diameter estimations are commonly used as

the sole indicator for hailfall intensity in radar-based hail de-

tection methods. It is important to note that only one hailstone

is simulated for eachHDR radar voxel, and that the true kinetic

energy distribution is likely heavily influenced by the size dis-

tribution and number concentration of large hail within indi-

vidual voxels. Accordingly, the KEH estimates defined here

should only be interpreted as a relative measure of hailfall in-

tensity. The HailTrack HDR verification scores reported in

Table 1 detail how a simple threshold can be used to accurately

predict regions experiencing hail damage; however, this pro-

vides little information on the accuracy of the actual hail sizes

predicted by the hail size swath. To this end, hail reports from

the Australian Bureau of Meteorology’s severe storms archive

for the event are also included in Fig. 3.

There is close (,5-mm difference) agreement between

hail size reports in the 30–50 mm range and the corre-

sponding hail swath values in Fig. 3. However, the remaining

70-mm hail report is underestimated by the model with a

size prediction of around 50 mm. This is a result of theHDR–

dhdr relationship in Eq. (1) underestimating the prevalence

of giant hail for this case. The HDR relationship was devel-

oped using only 86 hail reports from 12 storms in the United

States between 2001 and 2003. The dataset contained only

two reports greater than 55 mm in diameter; as a result, the

relationship is undercalibrated for giant hail size predic-

tions. The ability of HDR to estimate giant hail sizes is fur-

ther hindered by noting it is largely based on horizontal

reflectivity. The ZH alone is useful for discerning small from

large hail but shows limited skill for discriminating between

large and giant hail because of non-Rayleigh scattering ef-

fects (Blair et al. 2011; Ryzhkov et al. 2013b; Ryzhkov and

Zrnić 2019). Note also that the maximum MESH value of

76 mm more accurately predicted the maximum reported

hail size for this storm (;70 mm). However, unlike previous

radar-based hail detection studies, the aim here is to

produce a method that predicts the areal extent and inten-

sity of hailfall at the surface, not just the maximum size of

hail within a storm’s spatiotemporal bounds. This justifies

the use of the HDR method for the remaining analysis de-

spite the aforementioned limitations in estimating giant hail

sizes. The radar-based methods for estimating hail sizes

aloft introduce a considerable amount of uncertainty within

the model, as seen in the variations of optimal hail size

thresholds in Table 1. Furthermore, as subsequent methods

improve hail size estimates in the future, they should be

substituted for the current hail retrieval methods used in this

study. Any improvements to the specification of hail sizes

aloft should also lead to an improvement in the accuracy of

trajectory modeling within HailTrack.

FIG. 2. A Roebber performance diagram for the conventionalHDR maximum hail size swath and the HailTrack

HDR hail size swath. Each method has a separate line on the plot, and each dot represents a separate threshold for

thatmethod (refer to the color bar for threshold values). CSI skill scores are contoured and labeled in black, and the

point with the highest CSI value for each method is annotated.
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Figure 4 is intended to assist in visualizing the correlation

between the HailTrackHDR swaths in Fig. 3 by superimposing

them onto hail-related claims. The spatial bounds of Fig. 4 are

limited to the main Brisbane hailstreak because there are very

little insurance coverage and no hail-related claims outside of

this region (due, in part, to lower population density). The

spatial extent of hail-related damage is captured well by the

hail size contours in Fig. 4a, with the exception of a small

amount of hail damage on the western edge of the damage

swath. The kinetic energy ‘‘hot spot’’ region also correlates

well with the highest hail damage percentages, as shown in

Fig. 4b. The southern extent of the kinetic energy contours

appears to overestimate the relative hail intensity, although

there is a large number of grid points with no insurance data in

this region. An attempt was made to quantify the relationship

between the predicted and observed hail intensities. A point-

matched linear regression between the accumulated kinetic

energy field and damage percentage field (not shown) yields

an r2 value of 0.54. This indicates a moderate positive cor-

relation between accumulated kinetic energy and the per-

centage of contracts with damage claims. There is potential

to improve this damage intensity relationship by weighting

variables such as diameter or impact velocity, or by intro-

ducing new variables such as the impact angle of hailstone

impacts as wind-driven hail likely causes more severe

damage (e.g., Richter et al. 2014).

Figure 5 further illustrates the improvement in hailfall esti-

mation derived from modeling hail trajectories. The conven-

tional HDR swath in Fig. 5a exhibits a clear spatial offset from

the insurance damage swath as hailstones are detected aloft

before they are advected westward. Figure 5b shows this spatial

offset is mostly removed from the corrected swath as it is well

aligned with the insurance damage swath. This indicates that

hailstones predominantly advected toward the west in this case

study, and that accounting for this motion significantly im-

proves the correlation with surface damage. Figure 5 also

shows that the HailTrack swath is up to 7 km wider than the

conventional swath due to the effects of differential hail ad-

vection. A more direct discussion of the direction and magni-

tude of advection within these experiments is provided in

section 4. The poorest correlation to hail damage is located on

the meridional extremities of the hail swaths. Sensitivity tests

(not shown) indicate that decreasing the threshold size would

encompass these regions, but it would also result in a higher

false alarm rate, especially in regions south of the two radars. It

is difficult to assess whether these inaccuracies stem from

HailTrack modeling assumptions, initial hail size estimates or

the aforementioned observational limitations involved with

insurance claims. The sensitivity of the model with respect to

microphysical modeling assumptions is discussed in section 5.

4. Trajectory analysis

Figure 6 shows three selected 17-mm hailstones initiated

close to the updraft at 0642 UTC during the 2014 Brisbane

hailstorm. The initial positions and sizes of these trajectories

were chosen to illustrate the effects of assumptions within the

model and to demonstrate the importance of trajectory mod-

eling for estimating hail advection. First, trajectory A in Fig. 6

transects the updraft through the lower levels while advecting

toward the northwest. This hailstone is partially suspended

while traversing the updraft, increasing its residence time be-

low the melting level and allowing it to develop a;10% larger

meltwater fraction than trajectories B and C. Trajectory A also

FIG. 3. (a) Accumulated maximum hail size estimates and (b) accumulated hail kinetic energy for the 2014

Brisbane hailstorm using the HailTrackHDR method between 0548 and 0730 UTC. Open circles show the position

and size in millimeters of BoM hail reports, and in each panel the filled triangles indicate the positions of radars

(CP-2 research radar to the left and the operational Mount Stapylton radar to the right). Dotted lines show dual-

Doppler lobes for the 3D wind retrieval with these two radars.
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shows that hailstones initiated at low elevations (2.5-km alti-

tude in this case) may advect considerable distances in the

presence of strong low-level winds. Trajectory B is initiated in

the updraft at an altitude of 7 km. This hailstone exhibits what

is known as a ‘‘recycling’’ trajectory where hailstones are en-

trained within the updraft on multiple occasions. Hailstone

recycling was associated with the growth of large hailstones in

some early trajectory studies (e.g., Browning 1963); however,

more recent literature indicates these repeated vertical ex-

cursions are inhibited by hailstone growth processes (Kumjian

and Lombardo (2020) and references therein). The micro-

physical modeling within HailTrack considers hailstone melt-

ing alone, which limits its ability to accurately model trajectories

that are strongly affected by hail growth. This limitation high-

lights that the intended use of HailTrack is to simulate the tra-

jectories and fall out locations of hailstones once they have

grown close to their maximum diameter. Equivalently, hail-

stones that are still undergoing large amounts of growth at the

time of radar observation will likely be simulated more accu-

rately in subsequent radar scans.

Trajectory C in Fig. 6 is initiated at an 11-km altitude within

the updraft. Strong southwesterly winds associated with up-

draft divergence advected the hailstone into a downdraft re-

gion roughly 5 km to the east. Here, the hailstone descends

sharply before encountering the low-level southeasterly winds

also observed in trajectory A. This analysis indicates that the

horizontal wind profile in the updraft region is veering strongly

with increased height. The resulting hailstone impact locations

are separated by up to 8 km along the x axis, despite all having

been initiated along the center of the updraft (x 5 ;12 km).

These disparate advection magnitudes occurred on both sides

of the storm, perpendicular to the northerly bulk stormmotion.

To further quantify the magnitude and direction of hailstone

advection within this case study, the difference between the

initial and final hailstone positions during the HailTrack HDR

model run is shown in Fig. 7. The model predicts that small

hailstones can advect large distances greater than 9 km.

Figure 7 also shows that large hailstones capable of damaging

buildings and structures can advect up to 6 km away from their

initial locations aloft. These results provide evidence of size

sorting within the model as wind forcing has a disparate effect

on hailstones depending on their size. Sorting causes a gradient

in hail diameters across hail swaths and this has been observed

in a range of observational and modeling studies (Ryzhkov

et al. 2005; Kumjian and Ryzhkov 2008, 2012; Dawson et al.

2014). The broad distribution of advection vectors within size

classes also indicates that advection is heavily dependent on

the spatiotemporal path taken by the hailstones through the

3D wind field. Advection in this storm occurs predominantly

in a northwesterly direction relative to the surface. There is

very little advection toward the south, consistent with the

overall northerly storm motion.

FIG. 4. (a) Contours of the HailTrack HDR accumulated maximum hail size swath plotted over a binary repre-

sentation of hail damage from the 27Nov 2014Brisbane hailstorm.Grid boxeswith no insurance data aremarked as

‘‘unknown,’’ boxes with contracts but no damage claims are indicated as ‘‘no damage,’’ and boxes with damage

claims are marked as ‘‘damage’’ (shading). (b) Contours of normalized accumulated kinetic energy shown over the

percentage of contracts that incurred hail claims.
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Many previous studies have used a stormwide correction

vector to account for hail advection (Schiesser 1990; Schmid

et al. 1992; Hohl et al. 2002; Schuster et al. 2006). Here, such a

correction is approximated for comparison purposes by finding

the average of each individual advection vector shown in Fig. 7.

The resulting vector has a 2100mmagnitude and a bearing of N

308 W. To assess the accuracy of this simple horizontal shift

method, the conventional HDR swath shown in Fig. 5a was

shifted according to the average advection vector. The shifted

swath produced a HSS of 0.52 when compared with insurance

validation data, which is a modest improvement over the

conventional HDR method (HSS 5 0.48). The improvements

gained through the simple horizontal shift method are con-

siderably less than what are achieved through the trajectory

modeling approach introduced here (HSS 5 0.58). This is

largely because hail advection may not be accurately charac-

terized by a single spatial offset vector, owing to the overall

diversity of advection vectors (refer to Fig. 7). An inhomoge-

neous set of advection vectors effectively widens the resulting

hail swath on both edges of the storm, as illustrated by the

comparison of conventional andHailTrack swaths in Fig. 5. Put

concisely, the HailTrack method improves hailfall estimation

through a combination of both horizontal shifting and widen-

ing of conventional swaths in this case.

The average advection vector calculated above indicates

that hail advected approximately 308 to the left of the northerly
bulk storm motion. Previous studies have attempted to draw a

causal relationship between the underlying storm dynamics

and the resulting hail advection direction (Schiesser 1990;

Schmid et al. 1992; Schuster et al. 2006). These explanations

depend on storms exhibiting a quasi-stationary, supercellular

structure where storm dynamics are well understood. The

storm investigated here is categorized well by Nelson (1987)

as a hybrid multicell–supercell storm; evidenced by a large

elevated hail core (high reflectivity . 65 dBZ; differential

reflectivity , 0 dB), concurrent bounded weak echo regions

and multiple short-lived velocity couplets throughout the life-

time of the storm (Soderholm et al. 2017). This structural

classification precludes any robust, qualitative comparison to

previous storm dynamics literature. Such an analysis is also

complicated by the difficulties involved with accurately char-

acterizing the full set of advection vectors shown in Fig. 7 with a

single ‘‘average’’ advection direction.

Another novel aspect of the trajectory model in this study is

the ability to investigate the impact angle of hailstones. Impact

angles are defined as the angle between the hailstone’s impact

velocity vector and the vertical. Figure 8 shows the distribu-

tions of impact angles within HSDA size categories. Hailstones

that encountered gaps in the wind field (see section 2c) are

excluded from this figure. This was done to ensure the impact

angles presented result from interactions with direct wind field

retrievals and not gap-filled estimates. Both the mean and

standard deviation of the approximately Gaussian distribu-

tion of impact angles decrease with increasing hail size. This

is due to the terminal velocities of large hailstones having a

more significant influence on impact velocity vectors. The

FIG. 5. (a) A binary representation of insurance damage as in Fig. 4 overlaid with a grid of outlined cells con-

taining conventional HDR swath values greater than the optimum 37-mm threshold. (b) As in (a), but using the

HailTrack HDR swath.
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importance of hail impact angles is noted in studies based on

building damage due to hail (Hohl et al. 2002; Brown et al.

2015). Low impact angles limit hail damage to mostly roofing,

whereas high impact angles increase the potential for siding

and window damage to structures. Furthermore, large hori-

zontal velocity components associated with high impact angles

increase the magnitude of the total impact velocity. The ad-

dition of horizontal velocity components in this study increased

the average estimated impact velocities by 22%; however, this

is highly weighted by smaller sizes due to their prevalence in

the model. Discriminating into HSDA size categories reveals

that the addition of horizontal velocities increases the average

impact magnitude by 24% for small hailstones, 17% for large

hailstones, and only 4% for giant hailstones. To the authors’

knowledge, no observational studies have investigated the

impact angles of natural hail, preventing a comparison of these

results to existing literature. This, along with the aforemen-

tioned problems involved with retrieving low-level wind fields

from radar data limit the confidence level for the results shown

in Fig. 8. Nevertheless, we have included these results as a step

towardmore accurately estimating the potential impacts of hail

in the presence of strong low-level winds using remote sensing

methods.

In addition to mapping hailfall for historical events, the

forward trajectory approach used here can also be applied to

generate short-term predictions of hailfall. The lead time of

these nowcasts is reliant on both the simulated trajectory du-

rations and the computational efficiency of the model. For a

10-s trajectory time step (Dt 5 10 s), the current software im-

plementation of HailTrack processes an operational radar

volume (.10 000 trajectories in this case) in less than 20 s,

making it suitable for nowcasting without the need for parallel

processing. An example nowcast created using the HailTrack

HDR method for the Brisbane 2014 hailstorm is given in Fig. 9.

This nowcast incorporates all radar volumes up to 0642 UTC

and is intended to be successively updated with trajectories

from new radar volumes during an event. This figure illustrates

the immediate hail risk with a maximum of roughly 10–15-min

lead time. Each point on the figure represents a hail impact,

with colors indicating the expected time until impact and point

sizes varying proportionally to impact diameters. Although the

lead time of such a nowcast may be too short for most con-

ventional nowcasting applications, the specificity of these

warnings may reduce the number of false alarms commonly

associated with hail nowcasts. The trajectory model can

therefore potentially assist decision-making around hail risk in

the minutes leading up to hail events.

5. Sensitivity experiments

To test the sensitivity of the model to microphysical mod-

eling assumptions, five additional HDR-based simulations

were performed. These five experiments are compared to the

default HailTrack HDR model runs presented so far, which

initiated size-dependent hailstone densities based on Eq. 4 and

sourced thermodynamic variables directly from a representative

FIG. 6. Trajectories of three 17-mm hailstones inserted along the center of the updraft region for the 2014

Brisbane hailstorm at 0642 UTC. Cross sections of vertical wind speed are taken at x 5 12 km and y 5 25 km to

assist in relating hail trajectories to the underlying storm dynamics. Filled circles represent hailstone positions at

each 10-s trajectory step and are shaded according tomeltwater fraction to illustrate themelting process. Solid lines

represent a 2D projection of hailstone trajectories onto the surface of the model grid, with dotted lines linking the

initial position of hailstones to their corresponding projection.
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sounding. The sounding indicates that the 08C isotherm was

located at an altitude of 3900 m, with an approximately

constant temperature lapse rate of 6.9 K km21 beneath. The

five additional sensitivity experiments are named as follows:

‘‘spongy’’ (initial hailstone densities set similar to that of

graupel, 600 kg m23), ‘‘solid’’ (initial hailstone densities set to

that of solid ice, 917 kg m23), ‘‘hot’’ (108C offset added to the

entire temperature profile), ‘‘cold’’ (2108C offset added to

the entire temperature profile), and ‘‘no melt’’ (melting

model switched off within code). Note that the environmental

relative humidity profiles were held constant in the hot and

cold experiments. Notable properties for each of these ex-

periments are reported in Table 2.

The maximum change in diameter due to melting in the

default experiment was 12mm, resulting in aminimumhail size

of 5 mm at the surface. This indicates that even hailstones that

experience favorable melting trajectories (partial suspension

by the updraft beneath the melting layer; e.g., trajectory A in

Fig. 6), do not melt completely with default settings in this case

study. Complete hailstone melting was observed in the spongy

and hot experiments, results that are easily understood as a

combination of decreased ice mass and terminal velocity for

low density hail, and enhanced heat transfer for the hotter

environmental profile. The effects of enhanced melting also

translate to the impact estimates reported in Table 2. Enhanced

hailstone melting lowered the maximum impact velocity and

kinetic energy of hailstones within the additional experiments,

relative to the corresponding 43.5m s21 and 54.8-J values for the

default experiment, respectively. Microphysical changes can

also potentially affect the accuracy of hail swaths by altering the

amount of advection experienced by hailstones. Table 2 shows

that the low density, spongy experiment exhibited considerably

larger average and maximum advection magnitudes due to the

accompanying reductions in terminal velocity. Changes in ad-

vection magnitudes in the other sensitivity experiments are less

pronounced, indicating that changes in hailstone size and ter-

minal velocities due to melting do not significantly alter advec-

tion magnitudes in those cases.

Impact estimates created using theHDR method, along with

default microphysical settings achieved a HSS of 0.58. The

FIG. 7. Hail advection calculated by the difference between the initial and final horizontal position of each

modeled hailstone initiated using the HailTrack HDR method. Advection plots are split between HSDA hail size

categories, with the number of hailstones in each category shown in the title. Radial labels represent the advection

magnitude in kilometers. Individual hailstone points are colored and plotted in order of their sizes.
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damage prediction skill for the remaining experiments is sim-

ilar (0.58 6 0.01) despite the microphysical changes, as the

optimum hail size threshold adjusted according to the amount

of melting. This indicates that the observed increase in skill

scores relative to the conventional HDR method is predomi-

nantly the result of modeling hail advection and not hail

melting in this case. However, the observed variability in op-

timal thresholds for each of the sensitivity experiments does

have a physical significance. The model is ultimately account-

ing for the fact that hailfall intensity metrics (e.g., maximum

size and kinetic energy) can change between the observation

aloft and verification at the surface (e.g., using a hail size re-

port). When verifying conventional methods, these post-

observation melting effects are not explicitly accounted for,

and this additional variability is then introduced into rela-

tionships between remotely sensed observations and surface

FIG. 9. An example of a potential nowcast from HailTrack calculated using allHDR hail size

retrievals before the 0642 UTC radar scan. Points on the map indicate the position of modeled

hail impacts; these are shaded according to the time in minutes until hail impact plotted in

ascending order. Negative numbers indicate hail that has already fallen before 0642 UTC, and

positive numbers show how long after 0642 UTC hail that is currently aloft is expected to land.

FIG. 8. Frequency histograms for impact angles of the three HSDA hail size categories for all modeled hailstones using the HailTrack

HDRmethod. Impact angles are measured as the angle between the impact velocity vector and the surface normal vector. An impact angle

of 08 indicates a perpendicular impact relative to the surface.
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validation data. The significance of accounting for these effects

will become clear when attempting to find a consistent, opti-

mum hail size threshold between events with disparate ther-

modynamic environments or hail density distributions aloft, as

this postobservation variability will be partially alleviated

through the use of the melting model. Additional high-

resolution insurance validation datasets for severe hailstorms

will enable this testing in the future.

6. Summary and future directions

This study introduced HailTrack, a novel method aimed at

improving radar-based hail impact estimates. Radar retrievals

were used to estimate hail size and position aloft, before tra-

jectory simulations were run to predict where hailstones will

impact the ground. Three radar-based hail size retrievals

(MESH, HDR, and HSDA) were tested to initiate trajectories

and a dual-Doppler, three-dimensional wind field was used to

model hailstone advection. A thermodynamic melting model

was also coupled with trajectory simulations to reflect the

changing size and terminal velocities of hailstones below the

melting level.

We applied the model to a case study in Brisbane that

produced .70-mm hail and over AUD 1.5 billion in insured

losses. Hail-related insurance claims were used to verify the

model, and this analysis concluded that HailTrack-derived

swaths significantly outperformed the corresponding conven-

tional swaths. Further, the HDR hail retrieval method was

found to produce the most accurate results. A 37-mm hail size

threshold optimized the correlation between HDR swaths and

insurance damage, and the relative improvement of HailTrack

swaths (HSS 5 0.58) over conventional swaths (HSS 5 0.48)

was found to be insensitive to the specific choice of this

threshold. Kinetic energy accumulations of hail impacts also

showed a moderate linear correlation with the percentage of

insurance contracts that experienced hail damage.

Trajectory analysis in section 4 concluded that hailstones

may advect up to 10 km away from their initial positions aloft

due to strong winds in hail producing regions of the storm.

Smaller hailstones were shown to advect farther and impact

more horizontally than larger hailstones due to their smaller

terminal velocities. Hailstone advection in this storm occurred

predominantly in a northwesterly cardinal direction, ;408 to

the left of the bulk storm motion vector with an average

magnitude of 2100 m. Horizontally shifting conventional

swaths by this average advection vector improved the corre-

lation to insurance data by partially accounting for advection.

However, this improvement was considerably less than that

obtained by HailTrack, which can be attributed to the new

method’s ability to model the full complexity of hail advection.

The potential to produce a forward trajectory-based nowcast in

real time during hail events was also introduced and was noted

to produce lead times of around 10–15 min in this case.

Future work should involve extending the model validation

in this study to a larger sample size of hail events to more ro-

bustly quantify the improvements obtained through the use of

HailTrack. This research is currently limited by a lack of

ground-truth data, which highlights the need for improved hail

observations and further collaboration with the insurance in-

dustry. In the future, we aim to extend the lead time of

HailTrack nowcasts by applying the model to storms advected

forward in time or by adding an existing parameterization of

hail growth (e.g., Paluch 1978; Ziegler et al. 1983). Further

investigations should also quantify how rapid-scan radar data

could improve the existing implementation of HailTrack by

more accurately estimating the temporal evolution of wind

dynamics and the hail distribution aloft. Last, the applicability

of the trajectory modeling approach could be greatly improved

by removing the requirement for dual-Doppler radar coverage.

To this end, future studies should investigate the accuracy of

hail trajectories calculated using 3D, single-Doppler wind re-

trievals (e.g., Gao et al. 2006; Potvin and Wicker 2012).
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Expt Default Spongy Solid Hot Cold No Melt

Min diameter (mm) 5 0 5 0 14 17

Max diameter (mm) 58 49 58 54 60 61

Max melt (mm) 12 17 12 21 3 0

Max velocity (m s21) 43.5 40.4 43.5 43.5 42.5 43.5

Max KE (J) 54.8 17.7 54.8 43.6 61.6 63.2
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Max advection (m) 10 100 13 600 9300 10 300 10 500 10 100

Threshold (mm) 37.2 31.5 37.2 34.7 39.6 40.4

Swath area (km2) 557 555 551 518 535 523

HSS 0.58 0.58 0.59 0.58 0.57 0.58
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