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Compared to What?
Establishing Environmental Baselines for Tornado Warning Skill

Alexandra K. Anderson-Frey and Harold Brooks

ABSTRACT: In any discussion of forecast evaluation, it is tempting to fall back on statements 
reflecting unverified assumptions: “this tornado warning had lower skill because the underlying 
meteorology reflected a complicated or atypical scenario,” or “that forecast performed worse 
than we would have expected given the straightforward setup.” These statements of what is 
and is not a reasonable expectation for warning skill are particularly relevant as the meteorologi-
cal community’s focus has begun to emphasize non-classic storm environments (e.g., tornadoes 
spawned by quasi-linear convective systems). In this paper, we build a proof-of-concept meth-
odology to quantify the effect of the near-storm environment on tornado warning skill, and we 
then test these methods on a 15-yr dataset composed of tens of thousands of tornado events 
and warnings over the contiguous United States. Our findings include that significant tornadoes 
rated (E)F2+ have a higher probability of detection (POD) than expected based on their near-storm 
environments, that nocturnal tornadoes have both worse POD and false alarm ratio (FAR) than 
even their marginal near-storm environments would suggest, and that tornadoes occurring during 
the summer months also show worse POD and FAR than their environment-based expectation. 
Quantifying these shifts in performance in an environmental skill score framework allows us to 
target the situations in which the greatest improvements may be possible, in terms of forecaster 
training and/or conceptual models. This work also highlights the essential question that should 
always be asked in the context of forecast verification: what, exactly, is the baseline standard to 
which we are comparing forecast performance?
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Evaluating the success of a forecast is a necessary step in the development of a rigorous 
and useful forecast system; robust forecast evaluation can identify the situations in which 
the most substantial improvements can be made (Brier and Allen 1950), and ideally also 

provides a roadmap for the application of those improvements. Choosing the metrics by which 
we evaluate forecasts, however, is a process that is far from trivial. Murphy (1993, hereafter 
M93) identifies three distinct types of forecast “goodness”: consistency (correspondence 
between forecasters’ best judgment and the forecasts they issue), quality (correspondence 
between forecasts and their matching observations), and value (incremental benefits realized 
by decision-makers through the use of the forecasts). In the work that follows, we develop 
forecasting metrics based on some distinguishing aspects of the near-storm environment, 
which touches on aspects of all three types of goodness. For the sake of illustration, in the 
following discussion we focus on the challenge of issuing successful tornado warnings, but 
many of the arguments that follow can be applied to any forecasting situation in which there 
are regional differences in the environmental parameters of the forecast area.

When tornado warnings are issued, M93’s Type I goodness (consistency) is threatened if 
the prevailing near-storm environment of the forecasting region is not taken into account. 
Forecasting “rules of thumb” that may have been established with the U.S. Great Plains spring 
season tornadoes in mind may be inconsistent with, for instance, the actual best judgment 
of forecasters in the case of cool-season tornadoes in the southeastern United States. Even in 
the case where these non-regionalized rules are modified to reflect forecasters’ perceptions, 
these judgments may be qualitative and run the risk of exaggerating differences between one 
region and another (e.g., Broomell et al. 2020).

M93’s Type II goodness (quality) is also at stake. As the following discussion dem-
onstrates, warning quality is consistently lower for certain near-storm environments 
(Brotzge and Erickson 2009, 2010; Brotzge et al. 2011, 2013; Anderson-Frey et al. 2019; 
Anderson-Frey and Brooks 2019). If these environments occur preferentially in a given region 
or during a particular season, evaluating all tornado warnings on the same neutral baseline 
gives a skewed perspective: even if forecasters in a particular situation perform better than 
their specific environmental baseline would indicate, their skill is instead compared to a com-
mon baseline reflecting a different near-storm environment. Comparing metrics of forecast 
quality using the same baseline, for example, in the Southeast as in the Great Plains, or the 
same baseline in the spring as in the winter, or the same baseline at night as during the day, 
is likely not an accurate picture of the quality of these respective forecasts unless the baseline 
is formulated in a way that more appropriately reflects environmental features.

Finally, M93’s Type III goodness (value) is strongly impacted when the near-storm environ-
ment is not incorporated into forecast decision-making. National forecast metrics and evalu-
ations that do not reflect the abovementioned discrepancies in consistency and quality have 
limited value: environment-specific baselines in skill more accurately represent the true range 
in skill from one National Weather Service (NWS) office to another and in one season versus 
another. As databases of forecast skill help determine which best practices and recommenda-
tions are adopted within the NWS, both formally and informally (Brooks and Correia 2018), 
a careful choice of baseline is essential to ensure that quality and consistency are being ac-
curately assessed, reported, and evaluated.

Constructing environmental baselines
Any comparison of a metric of forecasting skill with a comparable baseline suggests the use 
of a skill score (Murphy 1996), the general format of which is as follows:

 Skillscore = Forecast BaselineScore 
PerfectScore BaselineS

−
− ccore

.
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In this equation, ForecastScore refers to the score for a particular forecast, PerfectScore refers 
to the mathematically best possible score obtainable, and BaselineScore is the score against 
which we are measuring skill: a skill score will hence measure whether or not a particular fore-
cast’s skill is better than, comparable to, or worse than our baseline. The selection of a relevant 
baseline score is clearly critical, and yet typically we default to using a climatological-mean 
or persistence reference (e.g., Brooks and Doswell 1996; Rasmussen and Blanchard 1998; 
Mason 2004; Aberson 2014). For the problem of issuing successful tornado warnings, as for 
many other forecasting problems, a single “one size fits all” baseline score is not reflective 
of the ways in which these forecasts are evaluated. Consider statements such as “we would 
expect tornado warning skill to be lower in this region because the near-storm environment 
presents a more difficult forecasting challenge”: an environment-specific baseline score would 
allow us to validate and quantify this assertion.

We will focus in what follows on two simple measures of warning skill: the probability 
of detection (POD; the percentage of all tornadoes for which a warning was issued ahead of 
time) and the false alarm ratio (FAR; the percentage of all tornado warnings within which no 
tornado was reported for the duration of the warning). These two metrics provide the basis for 
a performance diagram (Roebber 2009) that graphically depicts both axes of forecast skill. 
In addition, a performance diagram depicts the critical success index [CSI (Schaefer 1990); 
the CSI is a function of POD and FAR] as curves.

To begin, we consider two environmental near-storm parameters that are traditionally 
used in diagnosis and prediction of tornadic near-storm environments (Thompson et al. 2003; 
Anderson-Frey et al. 2016, 2019; Coffer et al. 2019): mixed-layer convective available 
potential energy (MLCAPE; a measure of atmospheric instability) and 0–6-km shear (SHR6; 
a measure of wind shear from the surface to 6 km AGL). The combination of high MLCAPE 
and high SHR6 is associated with an increased potential for supercell thunderstorms 
(Thompson et al. 2003).

To establish baseline POD and FAR for different combinations of these near-storm en-
vironmental parameters, we make use of a 15-yr climatology (2003–17) of tornado events 
and tornado warnings established by the NOAA Storm Prediction Center (Smith et al. 2012; 
Anderson-Frey et al. 2018). Since, for the purposes of this study, POD and FAR are assumed 
to be binary, our initial approach is to create multidimensional bins that consist of ranges of 
each of several environmental parameters so that POD and FAR can be calculated for tornado 
events/warnings meeting particular environmental criteria (i.e., MLCAPE, SHR6, low-level 
storm-relative helicity, etc., within particular ranges). Unfortunately, even a dataset of 49,740 
tornado warnings and 16,232 tornado events becomes sparse when splitting into that many 
bins; data were noisy and results were inconclusive.

As a result, we decided to approach the problem using a single parameter space as a proof of 
concept: MLCAPE–SHR6 (e.g., Craven and Brooks 2004; Anderson-Frey et al. 2016). In Fig. 1a, 
POD has been calculated for bins of SHR6 and MLCAPE, and Fig. 1b likewise demonstrates 
FAR for bins of SHR6 and MLCAPE; greater warning skill (i.e., higher POD and lower FAR) 
is generally most apparent for the combination of greater values of MLCAPE and SHR6 (i.e., 
toward the upper right quadrant of the plots).

We emphasize that the focus of this work on the MLCAPE–SHR6 parameter space represents 
a gross oversimplification of the forecast process, which in reality encompasses the use of 
facets such as longer-term outlook and watch products, mesoscale discussions, radar and 
satellite imagery, prior warnings in the region, severe weather reports, etc. These and many 
other factors influence a forecaster’s decision-making process, but they are inherently more 
difficult to quantify than the near-storm environment. This parameter space, then, is not in-
tended to fully represent the information available to forecasters issuing tornado warnings, 
nor is it intended to act as a complete proxy for the information available to forecasters about 

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/09/21 05:35 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y A P R I L  2 0 2 1 E741

the near-storm environment. Instead, we use this simple combination of two readily avail-
able parameters to emphasize how much can be gained in gauging tornado warning skill by 
incorporating even this incomplete picture of the near-storm environment.

Creating environmental skill scores
In this section we calculate environmental skill scores using POD and FAR baseline values 
calculated from the MLCAPE–SHR6 plots in Fig. 1 as follows:

1)  For each tornado event or warning that we wish to evaluate against this baseline, we 
obtain representative values of MLCAPE and SHR6 from the archive of SPC Mesoanalysis 
(Bothwell et al. 2002; Smith et al. 2012).

2)  We obtain values of POD and FAR from Fig. 1 based on these values of MLCAPE and SHR6. 
In our skill scores, these will be the baseline skill values.

3)  We calculate environmental skill scores based on POD (ESSP) and FAR (ESSF) using the 
following equations:
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Hence, values of ESSP and ESSF that are positive indicate that forecast skill is greater than 
that expected based on the near-storm MLCAPE–SHR6 environment alone, whereas values 
of ESSP and ESSF that are negative indicate that forecast skill is worse than that expected 
based on the near-storm environment alone. A performance diagram provides an easy means 
to expand upon these skill score results.

Fig. 1. Binned plots of (a) POD and (b) FAR for the MLCAPE–SHR6 parameter space. Note that the MLCAPE axis is nonlinear; 
MLCAPE has been converted to a maximum estimated wind speed via wmax = 2 × MLCAPE1/2. Bin sizes were determined 
qualitatively to provide adequate coverage of the parameter space: wmax = 6.5 m s−1 and SHR6 = 3.3 m s−1. Smoothing is 
accomplished by using a mean filter over a rectangle at each location (smooth2a: www.mathworks.com/matlabcentral 
/fileexchange/23287-smooth2a). Note that overall trends in POD and FAR were not sensitive to the extent (or even the 
absence) of the smoother; smoothing is only done to facilitate discussion.
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Season. We begin by considering how these environmental skill scores vary with season. 
In this context, season is defined as spring (MAM), summer (JJA), fall (SON), and winter 
(DJF). Figure 2 is a performance diagram reflecting the difference between the expected/
baseline skill using near-storm environmental data from Fig. 1 and the actual warning 
performance from 2003 to 2017. Values of ESSP and ESSF for each season are compiled in 
Table 1. As expected based on the typical ranges of POD and FAR values, there are gener-
ally greater-magnitude discrepancies in POD than in FAR (i.e., the arrows in Fig. 2 have 
longer vertical components than horizontal components); keep in mind that a relatively 
small shift in FAR values is historically more unusual than a similar shift in POD values 
(Brooks and Correia 2018).

For the spring, the pink arrow pointing toward the upper right of Fig. 2 indicates that both 
POD and FAR were better even than the values predicted using near-storm environmental 
data for these tornado events. Thus, while we might on the basis of Fig. 1 expect warning 
skill to be quite good in the spring (since values of the relevant parameters are typically 
most favorable during those months; Anderson-Frey et al. 2016), Fig. 2 shows that actual 
warning skill is even better than expected, both in terms of detecting tornadoes and in 
terms of avoiding false alarms. Quantifying these differences (Table 1), ESSP = +0.064 
and ESSF = +0.031, which both indicate a small improvement. To put this into perspective, 
these numbers reflect the difference between a POD of 0.687 (expected) and 0.707 (actual), 
and the difference between a FAR of 0.755 
(expected) and 0.731 (actual). Note that 
spring is the only season with a positive 
ESSF, which means that false alarm ratios 
are lower than we would expect based on 
the near-storm environment.

In the summer, we see the green arrow 
pointing toward the lower left of Fig. 2, which 
shows a decrease in skill along both axes 
for this season compared to what we would 
expect based on the near-storm environment 
alone. Hence, during the summer months 
we can accurately say that while warning 
skill is expected to be a little lower due to 
the more marginal tornadic environments 
(Anderson-Frey et al. 2016) and the common 
tornado parameters have been shown to de-
crease in utility in the summer months (Hart 
and Cohen 2016), actual skill is even lower 
than expected. Note that summer is the only 
season for which ESSP is negative (–0.096), 
i.e., the only season in which POD is lower 
than that expected based on the near-storm 
environment. ESSF is also negative (−0.028), 
although the skill drop is not as dramatic as 
in the fall months.

The fall months, represented by the orange 
arrow in Fig. 2, show poorer performance in 
terms of FAR but better performance in terms 
of POD than that expected based on the near-
storm environment. Thus, ESSP is positive 

Fig. 2. Performance diagram for seasonal performance, 
where the baseline has been established using MLCAPE and 
SHR6 from Fig. 1. The abscissa is the success ratio (SR), or 
1 − FAR, and the ordinate is the POD; better warning skill 
is hence toward the upper-right corner of the diagram, as 
indicated by increasing values of the curved contours of 
critical success index (CSI, another common measure of fore-
cast skill). Forecast bias score is depicted with dot–dashed 
lines; values are printed inside boxes for reference. Each 
season is depicted as an arrow, where the origin of the 
arrow indicates the expected performance based on the 
near-storm environment and the tip of the arrow indicates 
the actual performance for that season between 2003 and 
2017. Note that the skill for all events (black arrow) has not 
changed appreciably from expectation.
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(+0.057) and ESSF is negative (−0.041). Winter (blue arrow in Fig. 2) has better-than-expected 
POD performance (ESSP = +0.057) and as-expected FAR performance (ESSF = −0.003).

The environmental context provided by this analysis, although limited, suggests which 
seasons’ actual warning statistics may be better (e.g., spring) or worse (e.g., summer) than 
expected without the inclusion of the near-storm environment. These results are suggestive 
but not conclusive, given that this simple analysis has only looked at a limited subset of 
near-storm environmental parameters, and has completely excluded factors such as synoptic-
mesoscale context and report history.

Time of day. In the discussion that follows, time of day is split into day (between local 
sunrise and 2 h prior to local sunset), early-evening transition (EET; between 2 h before 
and 2 h after local sunset1), and night (between 2 h after local sunset and local sunrise). 
The performance diagram in Fig. 3 shows how warning skill compares to the environmen-
tal baselines established in Fig. 1 for these three times of day, and Table 1 summarizes 
skill scores.

For daytime tornadoes and warnings (red arrow in Fig. 3), 
FAR is generally similar to that expected based on the en-
vironmental data (ESSF = +0.005), but the POD is slightly 
worse than expected (ESSP = –0.051). In contrast, for noc-
turnal tornadoes and warnings (blue arrow in Fig. 3), both 
POD and FAR are worse than expected (ESSP = –0.100 and 
ESSF = –0.049), even given that nocturnal tornadoes dis-
proportionately occur in environments with more marginal 
values of MLCAPE (Anderson-Frey et al. 2016). The EET (green arrow in Fig. 3) has 
improvements in both POD and FAR (ESSP = +0.151 and ESSF = +0.014).

Coupled with the seasonal data in Fig. 2, these results highlight that scenarios associated 
with springtime tornadoes occurring within a couple hours of sunset are forecast even better 
than the near-storm environment alone would indicate, whereas more atypical scenarios 
in other seasons and times of day show improved skill only along one axis, if at all. Note, 
however, that this result assumes that the environment is the only control.

Table 1. Environmental skill scores according to POD (ESSP) and FAR (ESSF) by season, time of day, storm 
mode, and tornado intensity between 2003 and 2017 (2003–15 for storm mode data). Environmental 
baseline comes from MLCAPE–SHR6 data in Fig. 1. Note that storm mode and tornado intensity cannot 
be calculated for tornado warnings, only tornado events, and hence POD can be calculated but not FAR.

Baseline POD Actual POD ESSP Baseline FAR Actual FAR ESSF

All 0.654 0.656 +0.006 0.755 0.756 −0.001

Spring 0.687 0.707 +0.064 0.755 0.731 +0.031

Summer 0.613 0.576 −0.096 0.754 0.775 −0.028

Fall 0.625 0.646 +0.057 0.760 0.791 −0.041

Winter 0.671 0.686 +0.045 0.748 0.750 −0.003

Day 0.628 0.609 −0.051 0.755 0.752 +0.005

EET 0.683 0.731 +0.151 0.754 0.743 +0.014

Night 0.668 0.635 −0.100 0.753 0.790 −0.049

RMS 0.691 0.769 +0.255 — — —

QLCS 0.642 0.483 −0.443 — — —

(E)F0–1 0.640 0.625 −0.043 — — —

(E)F2–3 0.733 0.845 +0.420 — — —

(E)F4–5 0.813 0.992 +0.956 — — —

1 The EET, as shown in Anderson-Frey et al. (2016), 
encompasses a period of maximum MLCAPE, 
increasing SHR6 and low-level storm-relative 
helicity, and decreasing lifting condensation 
level heights, which contribute to higher POD 
and lower FAR for tornadoes.
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Storm mode. The SPC dataset also in-
cludes storm mode information between 
2003 and 2015, where radar data were 
manually examined for each tornado 
event (Smith et al.  2012). Two storm 
modes of particular interest to torna-
do research are right-moving supercells 
(RMS) and quasi-linear convective sys-
tems (QLCS) (Thompson et al.  2012; 
Anderson-Frey et al. 2019). Since estab-
lishing a null dataset that could be used 
to identify the storm mode of a false-alarm 
warning is beyond the scope of this work, 
FAR was not calculated; hence, only ESSP 
values are available in Table 1, and Fig. 4 
depicts POD values for the two storm modes 
in question.

In line with expectations established 
in the seasonal and diurnal performance 
diagrams, RMS tornadoes (which more typi-
cally occur in the high-MLCAPE high-SHR6 environments characterized by better warning 
performance; Fig. 1) have substantially higher POD values than would be expected based 
on the near-storm environment alone (ESSP = +0.255, corresponding to a jump in POD from 
0.691 to 0.769). This result is perhaps unsurprising given all the factors outside of MLCAPE 
and SHR6 that can contribute to warning a tornado with a parent supercell (e.g., distinctive 
radar signature).

In distinct contrast, QLCS tornadoes 
(which tend to occur in different parts 
of  the parameter space compared to 
RMS tornadoes; Thompson et al. 2012; 
Anderson-Frey et al. 2019) have dramatically 
lower POD values even than those expected 
based on the often-marginal near-storm en-
vironment (ESSP = –0.443, corresponding to 
a plunge in POD from 0.642 to 0.483). This 
major discrepancy also suggests that factors 
outside of MLCAPE and SHR6 contribute 
to warning a tornado in a QLCS storm, but 
the drop in forecast skill suggests that our 
understanding of these processes is limited 
and provides additional room for directed 
research and improvement.

Intensity. Finally, we consider tornado 
intensity, as estimated by the F scale prior 
to 1 February 2007 and by the EF scale after 
that date. False alarm warnings cannot 
have an EF scale assigned to them, and so 
only POD can be calculated. Hence, Table 1 
contains ESSP values and Fig. 5 shows POD. 

Fig. 3. As in Fig. 2, but for time of day.

Fig. 4. As in Fig. 2, but for storm mode, where RMS is 
right-moving supercell and QLCS is quasi-linear convective 
system. Note that storm mode data are only available from 
2003 to 2015 and storm mode was not determined for false 
alarm tornado warnings, so FAR cannot be calculated.
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We group tornado intensity into three 
categories: (E)F0–1, (E)F2–3, and (E)F4–5.

Even given the typically extreme environ-
ments in which (E)F2+ tornadoes occur, POD 
is dramatically higher than the environmen-
tal prediction for (E)F2–3 tornadoes (ESSP = 
+0.420, or a difference in POD from 0.733 to 
0.845) and especially for (E)F4–5 tornadoes 
(ESSP = +0.956, or a difference in POD from 
0.813 to 0.992). More marginal (E)F0–1 tor-
nadoes are characterized by a small drop in 
POD compared to the environmental baseline 
(ESSP = –0.043).

The vast majority of tornadoes (>80%) 
are rated (E)F0–1, but are responsible 
for fewer than 5% of all tornado deaths 
(Anderson-Frey and Brooks 2019). Hence, 
high skill for warnings on (E)F2+ tornadoes 
is extremely important from a public safety 
perspective; the results of this analysis show 
that the most dangerous tornadoes are also 
those with better-than-expected warning 
skill.

Adopting an environmental framework
Metrics based on an environment-specific baseline such as ESSP and ESSF can serve as a 
useful post-event evaluation tool: as an example, performance data for the major tornado 
outbreak that occurred on 27 April 2011 (Knupp et al. 2014) are depicted in Fig. 6. Note that 
for the event as a whole, POD and FAR are both a substantial improvement over what we 
would have expected based on the near-storm environment alone (ESSP = +0.396 and ESSF 
= +0.111). Even separating the event into daytime, early evening transition, and nocturnal 
tornadoes (Fig. 6a), we still see a general pattern of great improvement in POD and FAR, 
with only a slight dip in POD for daytime events. The improvement in POD is common across 
both RMS and QLCS tornadoes (Fig. 6b) as well as across all (E)F scales (Fig. 6c). Hence, 
while it may have been straightforward to recognize that this event was well forecast, the 
environmental framework has allowed us to state with some authority that the high skill 
was not, for instance, entirely due to anomalously high MLCAPE and SHR6 making for a 
perhaps less difficult forecasting problem; other important factors contributed to the high 
skill in this event.

Note that, while this environmental baseline constitutes an important step toward clari-
fying storm warning skill, there remains a wide variety of factors beyond the environment 
that strongly influence metrics of skill such as POD and FAR (proximity to radar, population 
density, etc.). The near-storm environment remains an important piece of the tornado warn-
ing puzzle, but it is far from the only piece.

While this discussion has been entirely couched in the example of tornado warnings, the 
general philosophy behind careful and purposeful baseline selection for forecast evaluation 
applies to a broad variety of applications. When we approach forecasting from the perspec-
tive of an environmental framework—when we evaluate forecast skill and ask “compared 
to what?”—we gain a more nuanced understanding of some of the ways in which forecasts 
succeed and fail.

Fig. 5. As in Fig. 2, but for (E)F scale. Note that (E)F scale rat-
ing cannot be determined for false alarm tornado warnings, 
so FAR cannot be calculated.
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Fig. 6. Performance information for the 27 Apr 2011 tornado outbreak. (a) As in Fig. 3, but for 27 Apr 2011. (b) As in Fig. 4, 
but for 27 Apr 2011. (c) As in Fig. 5, but for 27 Apr 2011.
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