
Supplementary Material S5: Simulation validation and diagnostics 

 

To help create and validate the realism of our simulated DGN fishery we compared between 

observed and simulated data: 1) the seasonality of swordfish catches (Fig. S5.1), b) the frequency 

distribution of swordfish catch rates (number per set; Fig. S5.2), c) the offshore distribution of 

fishing effort (Fig. S5.3), d) step distances between consecutive fishing sets (Fig. S5.4), and the 

distribution of fishing effort (Fig. S5.5). Observed data was taken from the 1990-2000 period, 

which was pre-PLCA, so we compared this to our ‘no turtle closure’ scenario which was designed 

to represent the 1990-2000 period. We focus here on swordfish catches, because swordfish was the 

driver of profit-maximizing fisher location decisions. The agreement between observed and 

simulated seasonality of catch (Fig. S5.1) validates our allocation of fishing effort and simulated 

catch rates. The agreement between catch frequencies (Fig. S5.2) helps validate our approach for 

sampling integer catches given predicted mean catch rates; this comparison was also used to tune 

the ‘accuracy’ term in our ABM (m, Table S4.7). Comparisons of offshore distances, step 

distances, and general effort distribution were used to tune the ABM parameters Dset, h, Nmax 

(Table S4.7), helped validate the initial step times (Table S4.6), and were crucial in applying 

additional constraints on offshore movement (Fig. S4.1).  

  



 

 

Fig. S5.1. Comparison of seasonal swordfish landings for simulated (red lines) and observed data 

(black lines), for the SF1 (a) and SF2 (b) swordfish catch models. Each line is one of the 1991-92 

to 1999-00 fishing seasons. Simulated catches were taken from the ‘no turtle closure’ scenario, and 

observed catches were taken from the DGN logbooks. Simulated landings were expected to be 

more similar among seasons because fishing effort was constant (3000 sets per season), whereas 

observed fishing effort varied considerably (~2000-4500 per season). For reference, the start and 

end dates of the actual PLCA are indicated (dashed vertical lines). 

  



 

 

Fig. S5.2. Histograms of observed (a) and simulated (b-c) swordfish catch rates per set. Observed 

data was from 1990-2000, and the simulated was from the ‘no turtle closure’ scenario for both the 

swordfish catch models. The red line indicates the mean. Generally, the mean and frequency 

distribution of simulated swordfish catches per set were similar to observed, although the BRT 

(fitted using a Poisson family) underestimated the number of zeros. 

  



 

Fig. S5.3. Histograms of the distance offshore of DGN sets for the observed (a) and simulated (b-

c) data. Observed data was from 1990-2000, and the simulated was from the ‘no turtle closure’ 

scenario for the two swordfish catch models. The red line indicates the mean. The mean distance 

offshore was similar between observed and simulated, but simulated vessels fished less often 

closer to shore than observed vessels. This was largely driven by observed vessels fishing close to 

shore in Southern California, which was an area predicted by our model to have relatively poor 

catch rates, and was thus not often fished by the dynamic agents.  

  



 

 

Fig. S5.4. Histograms of the distance vessels moved between consecutive DGN sets (i.e. steps) for 

the observed (a) and simulated (b-c) data. Observed data was from 1990-2000, and the simulated 

was from the ‘no turtle closure’ scenario for both swordfish catch models. The red line indicates 

the mean. Simulated vessels on average made slightly longer steps than observed vessels, and 

made no very large steps, which were impossible given our restrictions on set and travel durations. 

The ‘stepped’ shape of the simulated histograms is due to the discrete space in our model (i.e. step 

distances must be the fixed distances between cells) compared to the continuous space in the 

observer data. We also specified that vessels could not fish the same cell consecutively, which may 

made steps in the first histogram bin impossible.  

 

  



 

 

Fig. S5.5. The distribution of simulated fishing effort for the two swordfish catch models. This 

represents the total number of sets per 0.3°-degree cells during Phase 3 of our simulation (i.e. 5 

fishing seasons and ~15,000 sets). Simulated data were from the ‘no turtle closure’ scenario, and 

for one iteration of the LB1 OM. There was little difference among iterations. The same resolution 

data for the observer data may contain confidential information, so we show only the 95% effort 

contour (from a KDE) for the 1990-2000 observer data (red line). The hot-spot of fishing effort in 

Southern California near the southern EEZ agrees with observed data (see Fig. 1 in Scales et al. 

2017). 

  



Allocating sources of variation 

We were able to interrogate our simulation runs to approximate broad sources of variation in 

simulation results. The key to attributing variation is controlling for some sources while varying 

others. More simulation runs were not feasible in our study, but our simulation structure was such 

that some broad sources of variation were controlled. We chose two key model outputs to examine: 

total swordfish catch per season, and total leatherback turtle bycatch per season. For each closure 

strategy, we calculated pairwise differences in simulated fishing seasons accordingly: 

𝐷𝑖𝑓𝑓𝑎𝑙𝑙 = |𝐶𝑎𝑙𝑙1 − 𝐶𝑎𝑙𝑙2| 

𝐷𝑖𝑓𝑓𝑖𝑡𝑠 = |𝐶𝑖𝑡𝑠1 − 𝐶𝑖𝑡𝑠2| 

𝐷𝑖𝑓𝑓𝑠𝑒𝑎𝑠 = |𝐶𝑠𝑒𝑎𝑠1 − 𝐶𝑠𝑒𝑎𝑠2| 

Where C is total swordfish catch (or turtle bycatch), and Diff if the absolute difference in catch. 

Call1 and Call2 represent recorded catch in two randomly selected fishing seasons, that vary in both 

fishing season and simulation iteration (e.g. season 1996 iteration 1, and season 1998 iteration 3). 

Because these ‘all’ draws vary across both season and iteration they include all sources of 

variation, including ocean conditions and stochasticity associated with closure creation, and thus 

represent, on average, the maximum pair-wise difference in catch that we simulated. Cits1 and Cits2 

represent two recorded catches from the same randomly selected fishing season, but from different 

iterations (e.g. season 1995, iterations 2 and 4). Because ‘its’ draws keep the same fishing season, 

differences in ocean conditions are excluded from these pairwise differences, and thus the 

difference between Diffall and Diffits approximates the variation due to this ‘environmental’ 

variation (we simulate constant fishing effort among years, so this is excluded as a source of 

variation). Cseas1 and Cseas2 represent recorded catch in two randomly selected seasons, but from the 

same iteration (e.g. 1993 iteration 2, and 1997 iteration 2). Because ‘seas’ draws keep the same 

iteration, they share the same simulated closure and observer program, thus the difference between 

Diffall and Diffseas approximates the variation due to which catch and bycatch events were observed 

and how this affected closure creation. 

 

We bootstrapped 1000 pairwise comparisons and calculated the mean for each Diff, and then 

calculated the differences of these means to apportion sources of variation: 

𝑉𝑎𝑟𝑒𝑛𝑣𝑖𝑟𝑜 =
𝐷𝑖𝑓𝑓𝑎𝑙𝑙 − 𝐷𝑖𝑓𝑓𝑖𝑡𝑠

𝐷𝑖𝑓𝑓𝑎𝑙𝑙
 



𝑉𝑎𝑟𝑐𝑙𝑜𝑠𝑢𝑟𝑒 =
𝐷𝑖𝑓𝑓𝑎𝑙𝑙 − 𝐷𝑖𝑓𝑓𝑠𝑒𝑎𝑠

𝐷𝑖𝑓𝑓𝑠𝑒𝑎𝑠
 

𝑉𝑎𝑟𝑜𝑡ℎ𝑒𝑟 = 1 − (𝑉𝑎𝑟𝑒𝑛𝑣𝑖𝑟𝑜 + 𝑉𝑎𝑟𝑐𝑙𝑜𝑠𝑢𝑟𝑒) 

Where Varenviro is the proportion of observed variation in catch that is due to variation in the 

environment, and likewise for the closure creation process, and the remaining other (mostly 

stochastic) variation. These values were calculated for each combination of turtle and swordfish 

model, and for each closure scenario. For simplicity, and because the results were similar, for the 

comparison of static and dynamic closures we took the mean of the Static-obss and Static-pred 

closures (static), and the mean of the Dyn-multis and Dyn-turts closures (dynamic). We note that 

these proportions are approximations only, and a more thorough sensitivity analysis could be 

constructed to better identify sources of variation. 
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