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Frequency Correlation of Atmospheric Scintillation 
James H. Churnside, Richard J. Lataitis, and James J. Wilson

ABSTRACT. We present the results of measurements of 
the correlation of scintillations of two colors of 
light made in the turbulent atmosphere. In strong 
path-integrated turbulence, the correlation is below 
that predicted by the weak-turbulence theory. A simple 
theoretical approximation is used to account for 
saturation effects. This simple theory provides a 
reasonable approximation to the data. Thus, we 
conclude that saturation effects reduce the frequency 
correlation of atmospheric scintillation.
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1 . INTRODUCTION
The problem of spectral correlation of optical propagation 

through the turbulent atmosphere has been studied for some time. 
Early work, motivated by stellar scintillation, used the method 
of smooth perturbations to calculate the correlation for plane- 
wave propagation.1'2 3 This same method was later applied to 
spherical-wave propagation.4 A similar approach was used to 
calculate the log-amplitude correlation under various propagation 
geometries.5 *"7

Gurvich et al.8 measured the two-frequency correlation in 
strong path-integrated turbulence, where the method of smooth 
perturbations and related methods are not valid. Zavorotnyi9 
developed an asymptotic expression for the correlation function, 
but this did not agree very well with the data. Much stronger 
path-integrated turbulence during the experiment would probably 
have resulted in better agreement.

The effect of a finite aperture on spectral correlation has 
also been considered. A theoretical expression was developed for 
weak path-integrated turbulence.10 For strong path-integrated 
turbulence, the investigation was experimental.11 No comparison 
of the theory and experiment was attempted because of the 
differences in conditions. Ben-Yosef et al.12 conducted an 
experiment over a wider range of experimental conditions, and 
compared the results to the weak path-integrated turbulence 
theory. They postulated an inner-scale effect to explain their 
data, although this could not be checked because inner scale was 
not measured in the experiment.

In this paper, we present data with similarly low 
correlation values. Simultaneous measurements of inner scale 
show that the postulated inner-scale effect is not present. A 
simple theory of saturation is presented that shows that the 
reduced correlation is probably because of saturation effects.

2. THEORY
The bichromatic covariance of the normalized irradiance

fluctuations I2 and I2 from two spherical waves at wavelengths
Xx and X2, respectively, as observed through an incoherent
receiver with a uniform circular aperture of diameter D, is given
by13
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where klf2 = 2ti/A1#2 is the optical wavenumber, L is the 
propagation path length, z is the position along the path of a 
refractive irregularity with transverse wavenumber K, and 9n is 
the three-dimensional spectral density of the refractive index 
fluctuations. The refractive index power spectrum Qn is assumed 
to be isotropic. Its dependence on the refractive index 
structure parameter C„, which describes the level of the 
spectrum, and on the inner scale 10, which characterizes the high 
wavenumber cutoff of the spectrum, is explicitly shown. Outer- 
scale effects are not included because of the dominance of the 
smaller-scale refractive irregularities in producing the observed 
irradiance fluctuations. The effects of dispersion are also 
neglected.13 Equation (1) is valid only in weak turbulence when 
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Several forms for the refractive index spectrum Qn can be 
used in Eq. (1). We consider only those that can be expressed as 
the product of the Kolmogorov spectrum14 <bK and a function FIS , 
which describes the high wavenumber cutoff of the spectrum 
associated with the inner scale. To this end we write

9n [K. C2(z) , l0{z)] = 9K[K, C„ (z) ] FIS [K, IJz)], (2a)

and

Qk[k, cliz)] = 0.033 C3 (z) K~11/3 , (2b)

where FIS can be any of a number of functions, including a 
Gaussian form proposed by Tatarskii,14 an exact numerical 
solution to the governing second-order linear homogeneous 
differential equation calculated by Hill,15 or a corresponding 
analytical approximation proposed by Churnside.16 We use the 
last in our calculations, given by

Fis[K'lo] = exp(-1.28K212q) + 1.45 exp{-0.97[ln(kTio) - 0.45]2}. (2c)

Equation (1) can be written in the following form, which 
makes the effect of a nonzero inner scale and aperture diameter 
on the corresponding bichromatic correlation coefficient R =
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Bi,2!i °2 more transparent:
L
J' dz C„ (z) z2 (L - z)(^•1 / X2 ' o)
o

/ <*FF4/3 FIS[F, I0<Z>] FFZi(K, yx^l) FFZ2(K,JJ^Fa(K,D),
o

where we have used Eqs. (2a) and (2b)

FFZljK, ^1<2L) = sine F2z(L-z)
2Jfi.a (3b)

FA(F, D) = J-1C (3c)

sine (x) = sin (x) /x and <7jc(x) = 2J1(x)/x. Note all the functions 
F(F, Ac) that appear in Eq. (3) describe low-pass wavenumber 
filters associated with the inner scale (IS), the Fresnel zones

and (FZX and FZ2, respectively) , and the aperture (A) .
These functions are unity below a cutoff wavenumber Kc ~ 2rc/Ac 
and tend to zero for K » Kc. Clearly, the function with the 
lowest wavenumber cutoff Kc dominates the convergence of the K 
integral in Eq. (3a).

First consider the limit i0 = D = 0 (i.e., FIS = FA = 1) and 
Xx = X2 = X (i.e., FFZi = Ffz = Ffz) for which the bichromatic 
cross-covariance B± 2 = o3 = <*2 snd R = 1. In this limit, the 
function Ffz dominates the convergence of the K integral by 
introducing a cutoff at wavenumber KFZ ~ 2n/JXZ. Now consider the 
limit la = D = 0 and X1 > X2. The functions Ffzi and FFZi, 
corresponding to the longer wavelength Xlf dominate the 
convergence of the K integral associated with the expressions for 
Bx 2 and q\, respectively. Both functions have a cutoff 
Kfz ~ 2ir/yO^L, so that to a good approximation, B12 ~ ax. The 
convergence of the K integral associated with the expression for 
O2 is dominated by the function Fk' which has a cutoff K^ ~ 
2n/JTJ. that is greater than the cutoff for Ffz. Therefore we 
expect 02 > o1 and R < 1.

To examine the effect of a nonzero inner scale, we consider 
the limit D = 0 (i.e., FA = 1) and Xx > X2. The function FIS 
introduces a wavenumber cutoff at KIS = 2n/la that affects the 
convergence of the K integral associated with the expressions for 
B,
a\
 
,̂
 and °i only when 

1
I
0
Q > ^X. For this case we still have Blr2 ~  as in the limit  = 0, though the individual values of B1>2

4



2and Oj have been proportionally reduced because of the lower 
wavenumber cutoff associated with FJS when compared to that for 
ffz,.' The inner-scale cutoff associated with the function FIS in 
the corresponding expression for a\ also dominates the 
corresponding K integration when 1 > because we haveassumed X1 > X2 . In this limit, o* * ~ Blr2 are all
independent of wavelength and R « 1. * Therefore the bichromatic 
correlation coefficient R tends to unity for inner scales 
that are larger than the larger Fresnel zone (i.e., 10 > JJ^L) .
This is equivalent to the well-known result that geometric optics 
is valid when the inner scale is large since geometric optics 
implies no wavelength dependence. An identical argument for the 
effect of a finite aperture shows that R tends to unity for 
aperture diameters D that are larger than the larger Fresnel zone 
(i.e., D > ^X1l) . We also note that for inner scales comparable 
to or larger than the larger Fresnel zone, aperture effects will 
become evident only when D > 1D, and will further increase the 
correlation between the fluctuating irradiances.

To numerically investigate inner-scale and aperture effects 
on the bichromatic correlation coefficient R, we assume uniform 
turbulence so that C„ and 1Q are independent of position along 
the path. We make the variable transformations u = z/L and x =

’ *2)/ *[L(X1  I X2)/2)-• -L̂-L2 cijlso aenne a = A.?) , +  , and P • D [I^ + X2)/2]~a- - ̂A2 - /(A- +  , we can write

R(a, p, A) = (1 - A2)"5/12 G(a, P, A)
p

k + A s/\ + A 0 G P
y/T=K

1/2 (4a)

where

G (a, P, A) = j du j dx x 8/3 FIS (ax)
O O

l+A)u(l-u)x2

— P ux (4b)2 y

x sin |-^-(l-A)u(l-u)x2 sin

and FIS(ax) is defined by Eq. (2c).
Note that the bichromatic correlation coefficient depends 

only on o, P, and A. For a point receiver and a medium with zero 
inner scale, P and a are both zero, and Eq. 4 reduces to12
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(5)R (0, 0, A) l - A5/6 
(1-A2)5/12 ‘

For nonzero inner scale, the correlation coefficient is 
higher. Figure 1 is a plot of the correlation coefficient for a 
point receiver with nonzero inner scale for A = 0.178 (= 0.633 
|im and X2 = 0.442 jim) and for A = 1/3 (X2 = X1/2) . In both 
cases,the correlation coefficient increases from the value of Eq. 
(5) for small inner scale to unity at large inner scale. The 
minimum correlation in each curve is due to the bump in the 
turbulent spectrum near the inner scale. The differences at the 
two wavelengths are enhanced when this bump coincides with the 
average Fresnel zone size.

A = 0.178

A= 1/3

« ■ ■ ■ »I

Figure 1. Correlation coefficient R as a function of inner-scale 
parameter a for a point receiver and for two values of wavelength 
separation A.
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The correlation coefficient is also higher for a nonzero 
aperture diameter. This is shown in Fig. 2, where the 
correlation coefficient increases to unity as the aperture 
diameter increases. Only the case of A = 0.178 is shown, but 
curves are plotted for several values of a.

a = 0.5

P
Figure 2. Correlation coefficient JR as a function of aperture 
size parameter p for several values of inner scale parameter a 
and for wavelength separation of A = 0.178.

For strong path-integrated turbulence, we postulate another 
filter function within the integrals of Eq. (1). There is no 
rigorous theoretical justification for this postulate. We note 
that the effectiveness of eddies larger than the transverse wave 
coherence length p0 is reduced because of the loss of coherence of the incident field. Thus, we consider a filter function given 
by the mutual coherence function (MCF) of the field at path 
position z and at a separation given by 2/K. This seems
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physically reasonable and describes the data fairly well without 
introducing adjustable parameters.

The MCF is given by

MCF = exp (6)

where the wave structure function is

D(z,p) = (p/p0)5/3
for po = (o . 545ic1ic2zCn) 3/5 >> I e (7a)

D(z,p) = (p/pD)2
for Po =(0.545k1k2zCUo/3)'1/2 << la-

(7b)

For numerical convenience, we define p as the normalized 
coherence length p = p0[L(X1 + A2)/2]_1/2. Figure 3 is a plot of 
typical values of correlation coefficient as a function of p for 
a point receiver (P = 0) and for A= 0.178. Several values of 
the inner-scale parameter a are considered. For p » 1, the 
values reduce to the weak turbulence limit as expected.

3. EXPERIMENT
An experimental investigation of the bichromatic correlation 

coefficient was performed at the Department of Commerce Table 
Mountain facility north of Boulder, Colorado. Data were 
collected during clear weather in July 1990. Propagation paths 
of 100 m, 250 m, 500 m, and 1 km were used, and all were 
horizontal at about 1.5 m above flat, uniform grassland. A 
schematic of the experimental configuration is given in Fig. 4.
In addition, optical instruments for measuring turbulence strength C2 17 and inner scale18 were operated near the 
propagation paths during the experiment.

The transmitter comprises two lasers: a 10-mW He-Ne with a
wavelength of 633 nm and a 20-mW He-Cd with a wavelength of 442 
nm. The beams from the two lasers are combined with a dichroic 
beamsplitter. A diverging lens was used to expand the beams; a 
different lens was used at each path length to maintain a spot 
diameter of about 1 m at the receiver. A radio-controlled 
shutter was placed in front of the transmitter to allow the 
background light level to be periodically measured.

8
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a = 0.5

a = 0.1

a = 0

p

Figure 3. Correlation coefficient R as a function of coherence 
length parameter p for several values of inner-scale parameter a 
with wavelength separation A = 0.178 and aperture parameter p = 
0.
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Red
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Dichroic
Beamsplitter
-m

Lens TTurbulent Aperture 
Atmosphere

Dichroic 
I Beamsplitter1 V

Red
PMT

Blue
PMTBlue 

Laser
Figure 4. Schematic diagram of experiment.

At the receiver, the light was passed through one of six apertures To obtain aperture diameters of 1 mm, 2.5 mm, 5 mm, 
and 1 cm,'an apertu^ plate was --^directly^^obtain^^^-
Sas^Soused'at infinity and placed at the front of the receiver. 
This has an effective aperture of 4.4 cm and produces a 
collimated beam of 4.4 mm in diameter, which is J£?u?e was
be detected. To obtain a 2.5-cm aperture, a 2.5 mm aperture was 
placed behind the binocular. Behind the aperture a second 
dichroic beamsplitter split the red and blue beams. Each bea 
was detected by an appropriate photomultiplier tube (P )•
PMT was equipped with a narrow band interference filter to m”im?ze background light and to ensure complete separation of
the two colors.

Each PMT current was fed into a transimpedance amplifier, 
and the resulting voltages were input to an analog to digital Jbnverteb instilled in a personal computer. The data collection 
sequence began by simultaneously sampling the two channels every 
2 ms until 10,000 sample pairs had been collected. Then the 
outputs of the turbulence strength and inner-scale instruments 
were sampled. Finally, the computer sent a radio signal to the 
transmitter to close the shutter and 300 sample pairs of 
background data were collected. This data ^nd @
repeated 25 times for each combination of path length and
aperture diameter.

4. RESULTS
Rpfore crocessinq the data, the noise characteristics of 

each PMT were measured using a constant, incoherent light source 
Both were found to be very nearly shot noise limited, with
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noise variance proportional to the output level. The measured 
proportionality constants were used to perform a statistical 
correction to the measured variances and covariance. All values 
reported are the corrected values.

Before presenting correlation data, it is instructive to 
plot the blue variance o* as a function of the red variance 
a2r for the 1-mm-diameter aperture data. This is done in Fig. 5. 
We see that the 100 m data and the 250 m data are near the line 
°b = (^jb/^r)7/6°p • This is true even though the variances at 250 m 
are too large for the weak-turbulence approximation to be 
strictly valid. As the path length increases, the blue 
wavelength reaches saturation first and the variance is reduced 
more than that of the red wavelength. For the 1-km path, the 
variances are nearly evenly scattered about the line o£ = a2.
Note also that the scatter in the data becomes greater at longer 
path lengths. This suggests that the correlation coefficient is 
decreasing since the data must be along a straight line for unity
correlation.

Figure 5. Plot of blue variance o£ as a function of red variance 
o2 for 100 m path (diamonds), 250 m path (hearts), 500 m path 
(clubs), and 1 km path (spades). Upper line is weak turbulence 
theoretical prediction o| = (Xb/Xr)7/6 a2 and lower line is o| = o2.

11



Figure 6 is a plot of correlation as a function of the 
coherence parameter p for the 1-mm aperture. The points 
represent the data from the four path lengths. The error bars 
represent the standard deviation of the 25 individual correlation 
values and the standard deviation of the 25 coherence parameter 
values calculated from individual and la values. The solid 
line was calculated using the theory with the MCF saturation 
filter. During the time the data were collected, C„ was about 
2 x 10'12 m_2/3 and the inner scale was about 8 mm. For these 
values, a = 1.56p1/2. With the 1-mm aperture, P = a/8. These 
values were used in the theoretical curve in Fig. 6.

1 I | ■f 'T I |

250 m

L= 1000 m

» fcjuyjji i a i, i jjJL

p

Figure 6. Plot of correlation coefficient R as a function of 
coherence length parameter p. Each point represents the mean and 
standard deviations at a particular path length, the solid line 
is the saturation theory, and the dashed line is the weak- 
turbulence theory.
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The dashed line in Fig. 6 was calculated in the same manner, 
but neglecting saturation effects, and it is thus a weak- 
turbulence calculation. Although it is plotted as a function of p 
to allow comparison with the data, it should be thought of as a 
function of a and plotted against p = 0.41a2. We see that the 
weak turbulence theory is a very poor description of the data. 
Adding the MCF as a filter function improves the agreement.

Although direct comparison is impossible, these data are in 
general agreement with the plane-wave case of Zavorotnyi.9 He 
uses the asymptotic theory to obtain a plane-wave correlation for 
the same wavelength separation of 0.43. The data value at the 
highest reported turbulence level is 0.55, which is similar to 
our long-path value of 0.61.

Figure 7 is a plot of the correlation as a function of 
aperture diameter parameter p for the 1000-m and 250-m paths.
The agreement with the saturation theory is fairly good. One 
discrepancy between the data and the theory is apparent. The 
theory makes a quicker transition from the point-detector value 
to unity than the data. This is probably because the theory 
still uses the weak-turbulence aperture filter that assumes a 
single scale size at the Fresnel zone. At larger turbulence 
levels, a scintillation pattern contains two spatial scales. One 
of these, at the phase coherence length, is smaller than the 
Fresnel zone, and the other, at the scattering disk size, is 
larger than the Fresnel zone. This scale splitting may extend 
the transition region. Despite this, the simple theory proposed 
here seems to describe the data fairly accurately.
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