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PROBABILITY DENSITY FUNCTION OF OPTICAL SCINTILLATIONS
(SCINTILLATION DISTRIBUTION)

ABSTRACT

The probability density function of optical scintillation in the turbulent at-
mosphere is investigated theoretically and experimentally. The lognormally
modulated Rician (LR) is the best available model for these fluctuations. For
large apertures, this model reduces to a simple lognormal density function,
which can be used under most practical situations.

1. INTRODUCTION

For modeling the performance of many electro-optical systems in the atmosphere,
the probability density function (PDF) of optical irradiance is required. From the PDF,
one can calculate the probability that some threshold level will be exceeded for laser
radar detection probability calculations or receiver damage probability calculations. One
can also calculate low-irradiance probabilities to obtain bit error rates for optical commu-
nications, miss probabilities for laser radar, or dropout rates for optical tracking systems.
These examples are but a few of many possible system modeling applications.

It is generally accepted that the probability density function of optical scintillations
will be lognormal, or very nearly so, after propagation through very weak turbulence in
the atmosphere (Tatarskii, 1971). The theoretical argument for this distribution is based
on the method of smooth perturbations (the Rytov approximation). In this approximation,
the effect of turbulence is to perturb the propagating wave by a large number of inde-
pendent, multiplicative events, and a central limit theorem argument leads to the lognor-
mal distribution. The data seem to agree very well with this prediction.

Under conditions of extremely weak turbulence, conventional perturbation theory
(the Born approximation) should be valid. Applying the central limit theorem to this
expansion leads to a prediction that the optical amplitude should obey Rice-Nakagami
statistics (Tatarskii, 1971) rather than lognormal. However, Strohbehn et al. (1975)
showed that the Rice-Nakagami distribution approaches the lognormal as the variance
becomes very small, which is the condition required by the Born approximation. This
seems to resolve the conflict between the two expansions. In fact, Parry and Pusey (1979)
have shown that all probability density functions have the same moments (and are there-
fore equivalent) in the limit of extremely small variances.

The probability density function after propagation through stronger turbulence or
over greater distances is not as well understood. Some of the early measurements sug-
gested that the fluctuations remained nearly lognormal even in very strong turbulence
where the variance saturated (Gracheva and Ourvich, 1965; Gracheva, 1967; Fried et al.,
1967; Ochs and Lawrence, 1969; Deitz and Wright, 1969). Wang and Strohbehn (1974)
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showed theoretically that the irradiance fluctuations could not be purely lognormal in very
high turbulence. In fact, it has been predicted that the density function of irradiance
should approach a negative exponential in the limit of infinite turbulence (Dashen, 1979;
DeWolf, 1968; Gochelashvili and Shishov, 1971; DeWolf, 1974). The argument is that the
field at the observer is the sum of contributions from many independent scattering paths
and should therefore have a circular Gaussian probability density function according to
the central limit theorem. This implies a Rayleigh density function of the optical ampli-
tude and a negative exponential density function of irradiance. However, if each contribu-
tion to the sum is a lognormal variate, the sum could remain very nearly lognormal under
rather high turbulence levels, owing to the slow central limit theorem convergence of
lognormal variates (Mitchell, 1968; Barakat, 1976; Consortini and Ronchi, 1977).

The extreme turbulence levels that produce Rayleigh amplitude statistics are not
common, however, and under typical strong turbulence conditions, these statistics do not
appear to be precisely lognormal (Wang and Strohbehn, 1974), Rayleigh (Gurvich et al.,
1968), or Rice-Nakagami (Wang and Strohbehn, 1974). This realization has led to a num-
ber of proposed density functions that are combinations of these. DeWolf (1969) sug-
gested a distribution that was Rice-Nakagami at low amplitudes and lognormal at very
high amplitudes. Later, he proposed a density function based on a model of the optical
field as a sum of a lognormal component and a Rayleigh component (DeWolf, 1974).
Wang and Strohbehn (1974), and Strohbehn et al. (1975), suggested a density function
based on the product of a Rice-Nakagami amplitude and a lognormal modulation factor.

The Rice-Nakagami and Rayleigh amplitude distributions are based on circular
Gaussian statistics for the complex field amplitude. An attempt has been made to fit data
better by replacing circular Gaussian statistics with the more general case of elliptical, or
joint, Gaussian statistics; the real and imaginary components of the field are not assumed
to be uncorrelated with equal variances. This distribution was introduced in the context of
interplanetary radio star scintillation (Rino et al., 1976; Valley and Knepp, 1976) and later
applied to the case of optical propagation through atmospheric turbulence (Knepp and
Valley, 1978; Bissonnette and Wizinowich, 1979). In its most general form, this distribu-
tion has five adjustable parameters and is somewhat cumbersome. In very strong turbu-
lence, the coherent component of the field is negligible, and the result is the Hoyt density
function for the probability of normalized irradiance. Although this density function pro-
vides reasonable agreement with data, both experimental (Knepp and Valley, 1978) and
theoretical (Bissonnette and Wizinowich, 1979) indications are that there is some multipli-
cative, lognormal process in the atmosphere that is not included in the elliptical Gaussian
density function. Fremouw et al. (1980) considered a distribution consisting of an ellipti-
cal Gaussian field and a lognormal modulation factor. This was shown to provide a good
description of radio propagation throughout the ionosphere. However, the addition of the
lognormal modulation adds another parameter for a total of six.

In another approach to the problem, Furutsu (1972, 1976, 1979) and Ito and Furutsu
(1982) applied the cluster approximation to the moment equation. For the special case of
a Gaussian spectrum of turbulence, the moments can be found exactly and the character-
istic function can be inverted to obtain the probability density function. Furutsu showed



that the logarithm of irradiance has a Rice-Nakagami density function in that case, which
would occur if the effect of the atmosphere were to induce random tilts of the optical
phase front. For the more realistic case of a Kolmogorov spectrum of turbulence, the
moments of all orders cannot be found and neither therefore can the density function. A
path integral approach to calculating the moments has been tried by Dashen (1984); it has
similar limitations.

A much less rigorous approach than solving the moment equation was adopted by
Parry et al. (1977). Physical intuition and the simplicity of the A distribution led them to
compare the A distribution with the results of propagation experiments in strong turbu-
lence (Parry and Pusey, 1979; Parry et al., 1977; Parry 1981) with very good results. The
A distribution arises where one has a strong scattering process (random phase fluctuations
of many wavelengths) with two distinct scale sizes (Jakeman and Pusey, 1976; Jakeman
and Pusey, 1978; Newman, 1985). This fact makes the A distribution intuitively appealing
for propagation through strong turbulence because of the observation of two distinct scale
sizes in the received irradiance pattern under these conditions (Gracheva et al., 1978).
Although it seems to fit the irradiance data better than either the lognormal or negative
exponential distributions in strong turbulence, the A distribution has several problems. It
can be applied only in cases of very high turbulence, and, even where it can be applied, it
tends to underestimate the probability of high irradiances and thus underestimate higher
order moments.

Phillips and Andrews (1981) made an extensive set of irradiance moment measure-
ments and tried to improve on the A distribution on the basis of the data obtained. One
such attempt (Phillips and Andrews, 1982) was to consider the field amplitude to be the
sum of two components, each of which had an m distribution (closely related to the
gamma distribution). The other (Andrews and Phillips, 1985) assumed a two-scale-size
process like the A distribution, but used an n distribution to describe the smaller scale
process. Neither of these density functions has gained the widespread acceptance of the A
distribution.

Here, we reexamine the probability density function of irradiance introduced by
Wang and Strohbehn (1975). The distribution results from the product of a Rice-
Nakagami amplitude and a lognormal modulation factor. The required parameters can be
calculated using the heuristic saturation theory of Clifford et al. (1974), Hill and Clifford
(1981), and Hill (1982). This is a great advantage of this density function over a number
of previous ones, which rely on parameters inferred from observed moments. With the
understanding gained since this distribution was first proposed, we are in a position to
answer the question raised by Knepp and Valley (1978): “Which physical processes give
the lognormal and which the joint-Gaussian statistics?” We show that the heuristic theory
suggests that the larger eddies in the turbulent medium produce the lognormal and the
smaller ones the Gaussian statistics.



2. THE LOGNORMALLY MODULATED RICIAN PDF

Following Strohbehn et al. (1975), we write the observed field as

U=(Uc + UD)exp(x +iS) , )

where \JC is a deterministic quantity, UG is a circular Gaussian complex random variable,
and x and S are teal Gaussian random variables. The irradiance is therefore given by

| = \UC + UG\2 exp(2X) , (2)
where \UC + UG\ has a Rice-Nakagami probability density function and exp(2”) is lognor-
mal.

The probability density function of irradiance can be calculated from

00

p(0 = }P\A exP(2)] plexp(2*)| d exp(2*) , (3)

where p[alb] represents the conditional density function of a given b. For the case at
hdredte VR{aliflvereghreesentso tiveal bondiihratedeRsiignfyb&)oRDHf a given b. For the case at

p@)

x 1/2 4)

where r is the coherence parameter \UC\2/ < \UG\ >, z represents exp(2”), /0 is the zero-
order modified Bessel function of the first kind, and  is the variance of the logarithm of

the irradiance modulation factor exp(2%). Unfortunately, an analytical evaluation of the
integral of Eq. (4) has not been found.

For large irradiance, the integral of Eq. (4) can be approximated using the method
of steepest descent. If we define the function
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the density function can be approximated by

>() = —— IT"WI 1/2exP|-r-./(r,,)| . (6)
d-

where/"(z0) denotes the second partial derivative of/with respect to z and evaluated at
Z(), where z() is the solution to the equation /'(z0) = 0. However, this transcendental equa-

tion must be solved numerically, and it may be just as easy to perform the integration
numerically.

Evaluation of the moments of the heuristic distribution is straightforward. Using Eq.
(4) in the moment definition
<r >= fdirp() )
«

yields an expression that can be evaluated analytically to get

<In> (8)

3. PARAMETER VALUES

In order to calculate the LR PDE for any particular case, the two parameters of the
PDF must be known. These can be calculated from the second and third moments of the
normalized irradianee. They can also be approximated using a heuristic propagation the-

ory.

3.1 Parameters from Moments

One obvious method of obtaining values for the parameters is from the second and
third moments. The coherence parameter can be found by solving the polynomial equa-
tion



(rR+4r+2) - <2 >3 9
(r+ 1)3(r3+9r2+ 18/'+6) </3> )

for r. In Fig. 1, the moment ratio < 12 >3 / < 13 > is plotted as a function of the coherence
parameter. Although it is a ratio of two sixth-order polynomials, the moment ratio is a
single-valued function of r that varies from 4/3 for incoherent light to | for coherent light.
Once r has been determined, the lognormal parameter of can be found from r and the

second moment according to

of -4 I(rV)\<j2>1- (100
| r+4r+2 J

In principle, one could start with the wave equation and a description of the medium and
calculate the required second and third moments of irradiance. In practice such a calcula-

10

Figure 1. Moment ratio < 12 >3 / < P > as a function of coherence parameter r.



tion is extremely difficult, and it is probably more practical to use measured moments to
estimate the parameters.

3.2 Parameters from Atmospheric Properties

Another method of obtaining parameter values is based on a physical model of
turbulent scattering introduced by Clifford et al. (1974) and Yura (1974), and described
in some detail by Strohbehn (1978). Simply, we recognize that the effect of a turbulent
eddy that is larger than the Fresnel zone size at its position along the path can be de-
scribed using geometrical optics. Each such eddy acts as a weak converging or diverging
lens, and the total effect is the product of the effects from the individual eddies. There-
fore, this is the process that produces the lognormal variations. The effectiveness of the
eddies smaller than the Fresnel zone in focusing radiation is reduced because of diffrac-
tion. The smaller eddies also introduce a small-scale random phase distortion into the
wave front, and thereby degrade the coherence of the wave. This is the process that
produces the Rice-Nakagami variations. This reduction in coherence also reduces the fo-
cusing effectiveness of the larger eddies when the eddy size is larger than the coherence
length g0. It is this process that leads to saturation of scintillation when the coherence
length becomes less than the Fresnel zone size. From this physical picture, it seems clear
that r should be the coherence of the wave over a Fresnel zone and of should be the
geometric optics portion of the log-irradiance variance.

The lognormal parameter, of, is that portion of the log-irradiance variance for which
geometrical optics is valid. From the heuristic theory of saturation of optical scintillation,
the total log-irradiance variance for spherical wave propagation can be written as (Hill
and Clifford, 1981).

02* = 167i2k2L j du j dKK <I>,(£) singj™> Lu™  — » 00

where k is the optical wavenumber, L is the propagation distance, u is the normalized
position along the path, <>, is the spectrum of refractive index fluctuations in the atmos-
phere, K is the spatial wavenumber of those fluctuations, and MST is the short-term mu-
tual coherence function. One commonly used spectrum is the Tatarskii model (Tatarskii,
1971) for the refractive index fluctuations:

4>,(A) = 0.033C2r n/3exp(- 0.028502K2) | (12)

where ta is the inner scale of turbulence and Cf is the refractive turbulence structure
parameter. This expression is valid within the inertial subrange. It does not apply for scale
sizes larger than the outer scale. For scales near the inner scale and smaller, it is only an
approximation. A more accurate model is available (Hill and Clifford, 1978), but only in
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terms of a second-order differential equation that must be solved numerically. Within the
inertial subrange or in the limit of zero inner scale, the two spectra both reduce to the
Kolmogorov power-law spectrum.

The mutual coherence function, also from Hill and Clifford (1981), is given by

Mst(q) = F- 48k2L J du' ~i2 J dK' -A»(A'p)I|, (13)
| 0 0 \

where J,, is the zero-order Bessel function of the first kind and h is a spectral cutoff
function. It is given by

h(K') = K'd(K' -K) + H(K' - K) | (14)

where 4 is the Dirac delta function and H is the Heaviside step function. A similar ex-
pression exists for plane wave propagation (Hill, 1982); this case will not be considered
explicitly.

We assume geometrical optics to be valid for turbulent eddies that are larger than
the Fresnel zone. Therefore, we include contributions only from turbulent wavenumbers
such that

K < [Lu(1 - u)/k]-1/2, 05)

where the square root is the Fresnel zone size at path position u. Note that the validity of
geometrical optics degrades smoothly with decreasing eddy size rather than abruptly as
we have assumed here. With this approximation, the parameter of can be found from Eg.
(11) by integrating K from 0 to the limit defined by Eqg. (15) instead of from 0 to oo. In
die limit of zero inner scale, the calculation of of is greatly simplified. We have

! 172
of = 2.950r I du t<5/6(1 - u)5/b | dy y/<h expl- 2.390] y5/6«5/6 (I - «)5/6| (16)

1 0 0

where aR is the log-irradiance variance predicted for spherical wave propagation by the
first-order Rytov theory, and is given by



¢fc = QA96KL/(Lu'*Cl . (17)

The zero-inner-scale limit of of from Eq. (16) is plotted as a function of the Rytov vari-
ance in Fig. 2. For non-zero inner scales, the behavior of of is similar to that of the
log-amplitude variance depicted in Fig. 7 of Hill and Clifford (1981). For very small inner
scale values, the peak of the curve is lowered slightly and shifted to lower Or values. As
the inner scale increases, the peak value increases above the zero-inner-scale value. As
the inner scale approaches the Fresnel zone size, the peak continues to increase and shifts

to r/fl values above that of the zero-inner-scale peak. For very large values of the inner
scale, of can be approximated by

06 —

Figure 2. Log-modulation variance of as a function of Rytov log-irradiance
variance cJr for zero inner scale.



of = 2.95(4 J du w5/6(1 - m)5/6 J dy y1/6

0 0
X exp[- 1.32a'/Vsy «(1-«)- ,,(1 ' (18)

where

a = 8.37 JZ/kf0 (19)

The coherence parameter, r, can be calculated from the mutual coherence function,
which is defined as

< \U\2 > (20)

where x\ and  denote two points in the receiver plane. If Eq. (1) is used to represent the
field, Eq. (18) can be rearranged to get

< [Uc(xi) + UG(xiN[Uc(x2) + Ug(£2)Y
X exp[*(xi) + x(£1) + iS(x.i) ~ i1SQb)] >
=< \UC+ UGV > exp[2X\M(xuX2) . o

In this case, we wish to restrict our attention to the contributions from eddies for which

geometrical optics are not valid. Under these conditions, the modulation parameters %
and S are constant over any separation of interest and disappear from Eg. (21). We can

then let the separation become very large to get

Itd? = (Itd? < It'cl . (22)

where MHF(”) is the high-frequency mutual coherence function, which is due to turbulent
eddies smaller than the Fresnel zone, evaluated at infinite separation. The coherence
parameter, defined as

\Uc |2
= <\ug\2> (23)
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is given by

!
[ Mh+( 00) (24)

The high-frequency mutual coherence function can be found from the short-term
mutual coherence function by putting the Fresnel zone spatial frequency limit into the
spectral cutoff function h to obtain

Mh{ce) = expj- agiaL | du~ j dke>, € | 4 Luf! - u) Lud - u)
; ud - u

(25)

For the case of zero inner scale, Eq. (25) can be integrated analytically. The resulting
coherence parameter is given by

r = [exp(0.398(") - I]-1 , (26)

which is plotted in Fig. 3 as a function of the Rytov variance.

The normalized variance of irradiance can be calculated using these parameters and
the formula

rR+4r+?2

(r+ 1y PO -1 (27)

obtained using Eg. (8). In Fig. 4, this is plotted as a function of the Rytov variance for the
case of zero inner scale. The irradiance variance is nearly equal to the Rytov variance at

very low values, reaches a peak value of about 2.5 at  of about 8, and decreases slowly
to | at very large oj\. This behavior is consistent with measured values. Parry and Pusey

(1979) measured a peak intensity variance of about 4 at a 4 value somew hat larger than
4. Parry (1981) later measured a peak intensity variance of about 3.5 at Or value of about
3. Phillips and Andrews (1981) measured peak values of about 3.5 at Or values of 3-4 in
one data set and of about 16 in another. Finally, Coles and Frehlich (1982) observed a
peak of about 5 at a value of about 5. Despite quite a bit of scatter in all these data sets,
each seems to define a curve similar to that in the figure. Some of the difference may be
due to inner scale effects; in particular, a non-zero inner scale will produce a peak ir-
radiance variance greater than 2.5.



10

Or?2

Figure 3. Coherence parameter r as a function of Rytov log-irradiance
variance aR.

Figure 4. Normalized variance of irradiance dj as a function of Rytov
log-irradiance variance for zero inner scale.
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4. ASYMPTOTIC LIMITS

The general form of the LR PDF requires two parameters. However, in the limits of
very weak and very strong path-integrated turbulence, the coherence parameter can be set
to infinity or zero, respectively. In the former case, one has the lognormal PDF as previ-

ously mentioned. In the latter, one has a lognormally modulated negative exponential
(LE) PDF.

4.1 Weak Turbulence Limit

In very weak turbulence, the parameters of the LR PDF are given by

of = 0.2484 (28)

r= 1/(0.3984) (29)

The variance of irradiance can be approximated by

4 = 4+—= 1044, (30)
r

which is very close to the accepted value of 4-

We expect that the distribution will be very nearly lognormal in this regime, with a
log-intensity variance of 4- If we substitute Egs. (26) and (27) into the moment equation
(8) and expand to first order in 4> the result is

</" >= | +0.522rt(«- 1)4 |, (31)

which is very nearly the first-order expansion of the lognormal moments

< In >= exp[0.500/7(77 - 1)4]| . (32)

Looking at the second and third moments, we see that r is infinite (hence a lognor-
mal PDF) when < 12 >3=</3 >, This can be seen from Eg. (9) and Fig. 1. Expanding Eq.

(9) in a Taylor series in 1/r for large values of r yields

/2 >

3
</3> =1+6/r . (33)
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Using Eq. (29). we can convert this to

- *
<o =1+095% (34)

so the PDF will be very nearly lognormal when <% is much less than 1.

Another technique that has been used to compare probability density functions with
lognormal is to plot the integrated density function, or probability distribution lunction. on
normal probability paper. A pure lognormal density function would plot as a straight line.
This has been done for the LR density function in Fig. 5 for Rytov variances 1.0 and 0.1
and also for the limit as *4 approaches zero. We see that significant deviations from
lognormal (recognized by significant curvature of the lines) do not appear until (7% begins
to approach unity and these curves are in agreement with the data of Gurvich et al.
(1968).

/n |

Figure 5. Probability distribution function of log-irradiance normalized by
Rytov variance (4 for (4 = 0. 0.1, and 1.0. The vertical scale has been adjusted

so that a lognormal distribution produces a straight line.

14 -



4.2 Strong Turbulence Limit

For the small-inner-scale case in very strong turbulence, we note that the exponen-
tial in Eq. (16) will be very small unless y is near zero. Therefore, little error is introduced
if we extend the upper limit of the y integral to infinity. The integrals can then be evalu-
ated with the result

in-1.9. (35)

This expression overestimates of by about 34% at a Rytov variance of 10, but only by
about 5% at 50. At very large inner scale values, a similar evaluation leads to

of = 4.icri/IfVW/3, (36)

Of course, as the inner scale becomes very large, the amount of turbulence contributing to
the scintillations becomes small. Equation (36) assumes large inner scale and also very
strong scattering; conditions under which both of these assumptions are satisfied may be

rare. "

The coherence parameter is approximately given by

r = exp(- 0.398¢4) , (37)

which goes to zero very quickly. The Rice-Nakagami distribution in this case is very nearly
Rayleigh, and the LR density function can be approximated by a lognormally modulated
negative exponential function,

p(D) =1/2az (38)

which, although simpler than Eq. (4), still cannot be evaluated analytically. The moments
can be found analytically, and are given by

< /" >=n\exp (39)

Dashen (1984) showed that the intensity moments approach this form in strong turbu-
lence, and this distribution is consistent with his result.
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[ or zero inner scale, the normalized variance ol intensity approaches
(f = | +38(k (40)

at extremely large values of <H. For this same ease, the asymptotic theory of Prokhorov et
al. (1975) predicts a variance of

<17= 1+ 1L\NT5 (41)

These two theories predict the same oR dependence ol intensity variance, and, since both
these expressions are valid only when (1R is much greater than unity, the actual numerical
values are fairly close. The discrepancy in the coefficients is disturbing, however, and
deserves further study. For plane-wave propagation, the two theories are in much better
agreement. The heuristic theory predicts the normalized intensity variance to be

[+ 1.<W/5, (42)

where <P is the Rytov variance for a plane wave and is given by 2.62 <R The asymptotic
theory predicts (Fante, 1983)

of = | + 0.86(//»4"5 (43)

and it appears that the heuristic theory more nearly describes plane wave propagation
than spherical wave propagation through very strong turbulence.

5. THE IK PDF

The IK PDF of Andrews and Phillips (1985) is another two-parameter distribution
that claims validity under all turbulence conditions. Therefore, data will also be compared
with this distribution. The IK PDF has been described in detail elsewhere (Andrews and
Phillips, 1985), but a brief review is presented here.

The IK PDF of the normalized irradiance / is given by (Andrews and Phillips, 1985)
P(D = 2«(1 +e) [y ]la"1,/2K«-.|]2(*C>),/2|

x u_{2Irt(L +p)/|l/2}  for /<TiL-
[+0Q

=20(1 +p)

x AV {2|«(1 +p)/|/2} for : (44)
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where a is the effective number of scatterers, p is the coherence parameter, and A« i and
la-1 are the modified Bessel functions. It has moments given by

n\ Yy Via +n) akgk
>“a’(I+e)\t'or(a +*) * (49)

where T is the gamma function.

The second and third moments are explicitly given by

3_ 1 + 2a-,)p2 (1 +a D +2«-1)
<; (T+ ejl 3 (|+ff))p +6 (‘IK/ ————— (47

Thus, the parameters q and a can be estimated from the second and third moments by
first solving the cubic equation

(<2352 -<I2>-—<P>+—)p3
3 y

+(B<2>2-2<12>-<P3>)(q2+p)+<2>2-<2>-y<T73>=0
for p and using that value in

al=p-A+p)</n> | pl

- 49
21+p1 (49)

to obtain a.

In very weak path-integrated turbulence, the coherence p goes to infinity and the
effective number of scatterers a goes to zero. The product of these two parameters is
large. The moments for this case are given by

<In>=1+n(n-ND@@p)l. (50)

Since the moments of any density function are given by

</">=! +y )W~ l)oz (51)
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when the variance a2 is small, we see that the variance of the IK PDF is 2/(ay) in weak
turbulence. The PDF in this case has the form

P(l) = jzla_/_3/4 (52)

In very strong path-integrated turbulence, the coherence parameter g goes to zero
and the IK PDF reduces to the K PDF (Parry and Pusey, 1979),

0(0 = ?g()_a(a+D/2] (a-1)/2Ka_"2(aiy/2\ (53)

which has moments

_n r(a+n) (54)
an r(a)
The parameter a is found from
a~I:E<|2>—1. (55)

6. EXPERIMENTS

Two series of experiments were conducted to investigate the validity of the LR PDF.
To obtain low to moderate path-integrated turbulence values, data were collected on sev-
eral days during the summer and fall of 1987. At different times, path lengths of 50, 100,
400, 1200, and 2400 m were used. All paths were horizontal and were at heights of 1.5 m
to 2 m above flat, uniform grassland. Optical instruments for measuring path-averaged
values of cross-wind, turbulence strength C2, and inner scale t0 were operating over paths
near and parallel to each of the propagation paths during the experiments.

The measurement configuration is depicted in Fig. 6. Light from the laser is di-
verged and allowed to propagate through the turbulent atmosphere. For the shorter paths
(<1 km), the source was a 5-mW He-Ne laser whose divergence was adjusted depending
on the path length. The source for the longer paths was an Ar+ ion laser producing 300 to
500 mW of 488-nm radiation. It was diverged to 4 mrad. After propagation through
turbulence, the optical signal was passed through an interference filter to remove back-
ground light, passed through an aperture, and detected. For the He-Ne signal, the aper-
ture was the 200-/1 m-square active area of the silicon photodiode. The Art ion signal
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Figure 6. Apparatus used for PDF measurements.

was detected by a photomultiplier tube behind a 250-"m-diameter circular aperture. In
both cases, the detected signal was amplified with a 10-kHz bandwidth and fed into a
microcomputer, where it was sampled, digitized, and recorded for later processing.

Each data run consisted of a number of repetitions of a collection cycle lasting just
over 1| minute. For the shorter paths, the cycle consisted of 32,000 data samples at 500
samples/second, followed by 6400 samples taken while the laser was blocked. This was
accomplished automatically by the computer using a radio link to the laser shutter. The
cycle was completed by recording cross-wind, turbulence strength, and inner scale values.
Each data run consisted of 29 such cycles. For the longer paths, the process was the
same, except that 64,000 samples were recorded at 1000 samples/second in each cycle
and 70 cycles went into each data run.

Data processing involved computation of the second and third moments and of his-
tograms of probability. In each case, the data were corrected for any offsets and normal-
ized by the average signal level. Generally, each data run was processed as a unit. The
exceptions to this were long-path data taken near dawn and dusk when turbulence was
low but rapidly changing. In these cases, each cycle of data was processed separately. The
noise variance of each data run or cycle was calculated and found to be negligible except
for the 400-m cases.

The configuration of Fig. 6 was also used to measure the probability density func-
tion of intensity during periods of high path-integrated turbulence in August 1985. A
40-mW He-Ne laser operating on the 633-nm line was used as the radiation source. The
natural beam divergence is about a milliradian. Since changes in vertical temperature
gradient along the path could conceivably move the beam up or down by some reasonable
fraction of this width, a negative cylindrical lens was used to expand the vertical beam-
width by about a factor of 2. The propagation range was | km at a height of about 2 m
above the surface, which was flat, uniform grassland. At the receiver, the signal was
detected by a photomultiplier tube after passing through a 1-mm aperture and a 1-nm
optical bandpass filter. After amplification, the intensity signal was fed into the computer.

- 19 -



In the computer, the intensity signal was digitized with 12 bits of resolution at a rate
of 5000 samples per second. After 10,833 samples had been collected, the system sam-
pled the output of an incoherent optical scintillometer. This instrument provides a meas-
ure of Cf averaged over a 25-m path parallel to the main propagation path. After Cf was
sampled, the data record, including Cl was stored on the system disk for later processing.
Each data run consisted of 50 such records, or a little more than 1/2 million intensity
samples. After each data run, a single record was recorded with the laser blocked to allow
estimation of offsets and noise in the receiver electronics.

6.1 lrradiance PDF

A typical PDF for the 50-m path is plotted in Fig. 7. The measured variance for this
case was 2.6 x 10-3, so the path-integrated turbulence is very low. From the linear plot
(a), we see that the data appear to be very nearly Gaussian. The calculated parameters of
the LR PDR were g = ° and of = 2.6 x 10-3, and the LR PDF was lognormal for this
case. With such a small variance, the lognormal is also very nearly Gaussian. However,
the calculated lognormal underestimates the peak of the data by about 5% and it seems
the measured variance is slightly high. From the logarithmic plot 7(b), we see that the
data begin to deviate from lognormal at irradiance values greater than about 3 standard
deviations from the mean. This would tend to make the measured variance slightly higher
than one would expect from a purely lognormal process. We hypothesize that these values
are due to the intermittency of atmospheric turbulence; brief periods of very strong turbu-
lence during the measurement time would produce a few irradiance values with relatively
large deviations from the mean.

For the IK PDF, g = 157 and a = 4.9 and the PDF was very nearly given by the
weak-turbulence limit of Eq. (52). We see that the IK PDF overestimates the peak prob-
ability by about 40%. It also has a cusp at the peak that is not representative of the data.
Generally, the IK PDF is a very poor match to these data.

Figure 8 is a typical case for the 100-m path. In this example, the measured vari-
ance was 0.12. The LR PDF is still lognormal in this regime with a log-irradiance variance
of 0.12. As before, the peak probability is underestimated by a few percent (4%) and the
probability on the tail is overestimated, but the general shape of the data is very nearly
lognormal within about 5 standard deviations of the mean. The parameters for the IK PDF
were g = 23 and a = 0.69. Again, the IK PDF significantly overestimates the peak prob-
ability and comes to a very sharp peak that is not representative of the data.

Figure 9 presents data taken on the 2400-m path during the low turbulence condi-
tions. The measured variance was 1.3. In this case, the LR PDF is beginning to deviate
from lognormal. The coherence parameter g = 1.7 and of = 0.36, which leads to a very
good fit to the data. Note that these data were taken over a much shorter time period, and
the effects of intermittency are not as noticeable. For the IK PDF, g = 0.27 and a = 2.3.
The IK is a sharply peaked function that does not fit the data at all near the peak. We
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Figure 7. Measured (circles), LR, and IK PDFs of normalized irradiance for
variance of 2.6 x 10-3. (a) Linear representation; (b) logarithmic representa-

tion.

Figure 8. Measured (circles), LR, and IK PDFs of normalized irradiance for
variance of 0.12. (a) Linear representation; (b) logarithmic representation.
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Figure 9. Measured (circles), LR, and IK PDFs of normalized irradiance for
variance of 1.3. (a) Linear representation; (b) logarithmic representation.

should point out that another possible solution exists for the IK PDF: g =21.7 and a =
0.068. However, this leads to a PDF with a peak at / = 0 and a second peak at / ~ 1 that
is a worse representation of the data than the solution that was chosen. Care must be
taken to ensure that the most reasonable solution to the IK PDF is used. No such ambigu-

ity exists with the LR PDF.

For the 1000-m data, a\ ranged from 12 to 43. These values are well into the strong
path-integrated turbulence regime where r = 0 and the LR PDF reduces to the single-pa-
rameter LE PDF. Similarly, the IK PDF reduces to the single-parameter K PDF. In this
regime data can also be compared with the lognormal PDF, which also has a single
parameter. In each case, the required parameter was found from the measured irradiance
variance.

Figure 10 represents the data run with the lowest irradiance variance out of the 10
data runs = 2.83). Comparing the theoretical density functions, one finds that the
lognormal density function is higher than the K PDF for irradiance values from some
small value to about 2 and for values greater than about 17. Elsewhere, the K is higher
than the lognormal. The lognormally modulated exponential function is between the log-
normal and the K functions at all irradiance values. The data points also tend to lie
between the K and lognormal functions. Figure 11 represents the data run with the highest
irradiance variance of the 10 data runs (of = 4.13). In this case, the points at which the
lognormal and the K PDFs cross are at larger irradiance values, occurring at about / = 2.5
and 23. Although the three density functions are fairly close together over the range of
available data values, the data favor the lognormally modulated exponential PDF over the
lognormal or the K.
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Figure 10. PDF of normalized irradiance for rrj = 2.83 (fil = 36): K (long-
dashed curve), lognormal (short-dashed curve), lognormally modulated expo-

nential (solid curve), and data (circles), (a) logarithmic representation; (b)
linear representation for | < 2.
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Figure 11. PDF of normalized irradiance for of = 4.13 (fil = 23): K (long-

dashed curve), lognormal (short-dashed curve), lognormally modulated expo-
nential (solid curve), and data (circles), (a) logarithmic representation; (b)
linear representation for / < 2.

The propagation model that leads to the lognormally modulated exponential PDF
suggests that the fluctuations due to the small-scale spikes of irradiance should be re-
duced by an aperture whose diameter is about a Fresnel zone size. The fluctuations ob-
served through such an aperture would therefore be expected to be very nearly lognor-
mally distributed. For this reason, a limited amount of data was taken through a 25-mrn
aperture. These data were, in fact, very nearly lognormal. Typical results are presented in

Fig. 12. The solid line represents the lognormal probability density function with the same
variance of irradiance (of = 2.45) as the data.
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Figure 12. PDF of normalized irradiance through a 25-mm aperture: lognor-
mal (solid curve) and data (circles), dj = 2.45.

6.2 Photon-Count PDF

Since some of the previous work has dealt with the statistics of photon-counting
experiments (Parry, 1981), it is interesting to examine the photon-count statistics pro-
duced by lognormally modulated exponential irradiance statistics. Photon counting allows
the use of much smaller apertures than does use of irradiance measurements. If the
spatial spikes of irradiance are progressively smaller in size for increasing irradiance (as
suggested by Prokhorov et al., 1975) then we have underestimated our measured ir-
radiance values because of aperture averaging by our 1-mm-diameter receiver aperture.
Thus photon-count PDFs might be more trustworthy in the extreme tails of the PDF.
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For counting times much less than the coherence time of the fluctuations, the prob-
ability density function of the photon count is a conditional Poisson process related to the
irradiance PDF by the formula

pin) = j d/, (/1*)" exp(-y/-)

. 1 (56)
0

where y is a constant related to the experimental configuration and 7' is the actual (un-
normalized) irradiance. For apertures much smaller than the transverse coherence length
of the irradiance fluctuations, y is given by

v = AT/hv, (57)

where A is the detector area, T is the count time, and hv is photon energy.

Assuming that the irradiance obeys lognormally modulated exponential statistics,
the photon-count statistics can be described by the density function

Pin) = IF(+1) 7 "exp[ (58)

where n is the mean number of photon counts. The equivalent expression under the
assumption of a K PDF is (Parry, 1981)

p(n) = L (AF"> (MIHUM +n, M, M/n) | )

where M = 2/(crj - 1) and U(a,b,z) is a Kummer function (Parry, 1981).

In Figs. 13 and 14, we have reproduced, as circles, the photon count data obtained
by Parry (1981). From his reported values of n and aj, we have calculated the corre-
sponding curves for the K PDF, represented by long dashes, and the lognormally modu-
lated exponential PDF, represented by a solid line. The short-dashed curve represents the
K PDF photon-count statistics corrected for the effects of photomultiplier tube dead time,
and was taken directly from Yura (1974). A similar correction, not shown, may be imag-
ined for the lognormally modulated exponential PDF. The lognormally modulated expo-
nential PDF is substantially closer to the data than is the K PDF.
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Figure 13. PDF of photon counts: K (long-dashed curve), dead-time corrected
K (short-dashed curve), lognormal!}' modulated exponential (solid curve), data

from Fig. 7a of Parry and Pusey (1979) (circles).
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Figure 14. PDF of photon counts: K (long-dashed curve), dead-time corrected
K (short-dashed curve), lognormally modulated exponential (solid curve), data
from Fig. 7b of Parry and Pusey (1979) (circles).
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6.3 Moments of Irradiance

Another method of comparing data with hypothesized probability density functions
uses the moments of normalized irradiance

/,,=</"> (60)

Typically, third, fourth, and fifth moments are plotted as functions of the second moment
or of the normalized variance, which is given by /2 - 1. Discussions in the literature have
considered moments up to eighth order (Majumdar, 1984).

For the lognormally modulated exponential PDF, evaluation of the /7th moment is
simple. Integration produces

In = n\ expli™V/(/? - 1)oN | (0]

We note that this expression is the first term in the asymptotic approach to exponential
statistics obtained by Dashen (1984). The higher-order moments can be written in terms
of the second momentas _ ... ._._. .. i

1, = n(212)"<"-"12 (62)

provided that /2 is greater than 2. If /2 = 2, the variance of the lognormal modulation (jt is

zero and the density function is the pure negative exponential that is expected in extreme
saturation.

For the K PDF, the higher-order moments are given by

I (63)
n

where V is the gamma function. Moments of the lognormal PDF are given by

(VT ‘ (64)

The third, fourth, and fifth moments of these three distributions are plotted as functions
of the second moment in Fig. 15. The moments of the lognormally modulated exponential
lie between those of the other two density functions. For /2 = 2, the lognormally modu-
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Figure 15. Third, fourth, and fifth normalized moments of irradiance, /3, /4, /5
as functions of second moment /2. K (long-dashed curves), lognormal (short-
dashed curves), lognormally modulated exponential (solid curves), data
(points).

lated exponential and the K density functions both reduce to the negative exponential
PDF, and therefore have the same values of their moments. As the second moment in-
creases, the higher-order moments of our function deviate from those of the K.

Experimentally measured moment values are also presented in Fig. 15. All the ex-
perimental values lie between those predicted by the K PDF and the log-normally modu-
lated exponential PDF. Phillips and Andrews (1981) reported two data sets. In one, the
data are consistently above the K values as observed here, but there is no obvious ten-
dency for the higher moments to be closer to the K at the larger second-moment values. In
their other data set, the higher moments do decrease relative to the K values as the
second moment increases, and, in fact, they fall below the moments of the K PDF.

Despite the excellent agreement between experimental PDFs and the lognormally
modulated exponential PDF in Figs. 10 and 11, the corresponding measured irradiance
moments in Fig. 15 do not agree. The few samples having / > 40 and therefore not plotted
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in Figs. 10 and 11 remain in agreement with the lognormally modulated exponential PDF.
Extreme caution must be exercised in considering measured moments. Consortini and
Conforti (1984), and Consortini et al. (1986) showed that the effects of detector satura-
tion on the higher-order moments can be severe. In their work, the lognormal distribution
and Furutsu distribution were considered.

The sensitivity of moments to large values of irradiance is easily seen from the
integrand of the moment integral (Gracheva et al., 1978). The moments are given by

00

(65)

The integrand, /"/?(/), is plotted in Fig. 16 for several values of n. These curves assume a
lognormally modulated exponential density function with a second moment of 4.5, which
is typical of our data. Because the amplifier gain was optimized for each run of the
experiment, our detector saturation voltage corresponds to values of / varying from about
40 to 100 depending on the run. All runs appear to be affected by saturation to some
extent. Thus Fig. 16 shows that the fourth and fifth measured moments are greatly under-
estimated. Figure 16 also shows the need for extremely large sample spaces to reduce
scatter in measured moments. To obtain accurate estimates of the third moment, Fig. 16
shows that several events near / = 100 should be observed. At / = 100, p(l) is a little over
10"7 and several tens of millions of independent samples are needed. The required num-
ber of samples to resolve the fourth and fifth moments is much greater.

Because of these uncertainties in the measured moments we truncated the theoreti-
cal and experimental probability density functions at a value of / = 40 and recalculated
the moments. The third, fourth, and fifth truncated moments are plotted as functions of
the second truncated moment in Fig. 17. The higher moments of the data tend to lie just
above those predicted by the lognormally modulated exponential PDF. They are well
above those predicted by the K PDF and, in fact, are nearer to the lognormal than to the
K. This resolves the contradiction between Fig. 16 and Figs. 10 and 11. Note that the
scatter of the truncated measured moments in Fig. 17 is much less than the scatter of the
untruncated measured moments in Fig. 15. We prefer truncating the PDFs to calculating
the detector saturation effect because each of our runs has a different saturation intensity,
thereby making graphical presentation difficult for the detector saturation calculation.

One statistic that should be less sensitive to truncation effects is the log-amplitude
variance. This is because the integrand (Enl-<£nl >)2p{l) is most sensitive to small values

of /. For lognormal statistics we have the relationship

c2x=1/4 (66)

eni2,
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Figure 16. Second, third, fourth, and fifth moment integrands (solid curves)
and irradiance PDF (dashed curve) for lognormally modulated exponential
with oj = 3.5.



/14
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Figure 17. Third, fourth, and fifth normalized moments of irradiance, /3, /4, 15
as functions of second moment 12 for PDF truncated at / = 40 K (long-dashed
curves), lognormal (short-dashed curves), lognormally modulated exponential

(solid curves), data (points).

where o% is the log-amplitude variance. Clifford and Hill (1981) evaluated the log-ampli-
tude variance of the K PDF to obtain

=K+j *+—T-
AR €

For the lognormally modulated exponential PDF the corresponding relationship is

62y=m2/24+1/4tn(12/2). 68,
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As for the untruncated higher moments, the lognormally modulated exponential PDF
predicts log-amplitude variance values that are between those of the lognormal and those
of the K functions.

6.4 Variance of Irradiance

In order to determine how well the irradiance variance, and hence the parameter of
could be inferred from the parameters of the medium, the normalized variance of ir-
radiance was calculated for each data record, and the results from each group of 50
records were averaged and error bars calculated. Similarly, the average value of o™ and
the error bars were found from the 50 samples of Cf- The result, a plot of measured
intensity variance as a function of Rytov variance, is given in Fig. 18. The theoretical,
zero-inner-scale curve is reproduced for comparison. Despite large error bars, the data
can be seen to generally follow the shape of the theoretical curve. However, they lie
consistently above it. This is probably due to non-zero inner scale. The inner scale under

9 mm

Figure 18. Normalized variance of irradiance of as a function of Rytov vari-
ance of;. The solid line represents zero-inner-scale theory, dashed lines include
approximate inner scale correction for 7-mrn and 9-mrn inner scales, and
points represent measured values, including error bars.
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the conditions for which these data were taken is generally between about 1 mm and
about 9 mm. Hill and Clifford (1981) showed that the increase in log-amplitude variance

due to an inner scale of 7 mm is about 50% for djf greater than about 10. For a 9-mm
inner scale, the corresponding increase is about 80%. If we assume that the effect of inner
scale on of is the same as the effect on log-amplitude variance calculated in Hill and
Clifford (1981) and Hill (1982), we obtain the dashed lines in the figure. Clearly, much
better agreement with the data is seen when the effects of inner scale are approximated.
Note also that the peak irradiance values for 7-mm to 9-mm inner scales are in the range
reported in other experiments (Parry and Pusey, 1979; Parry, 1981; Phillips and Andrews,
1981).

As Fig. 18 suggests, the results in this regime are extremely sensitive to the precise
value of the inner scale. For example, the change in normalized variance Aof due to a
change in inner scale size Aia was estimated for the experimental geometry with o| of 30
and an inner scale of 7 mm. We assumed that the variance could be represented by

(69)
of = 2 exp(aof) - 1,

where a includes the effects of inner scale and of is the zero-inner-scale value. From
Table 1 of Hill (1982) a can be found from

a(IXLIL,,) = oXQEXLI,)I<*=(») . (70)

It turns our that the logarithm of this quantity is very nearly linear in a linear
regression for the case of o* = 32 results in

£na = 1.2- 0.22 IXL/I0 . (71)

The derivative of variance with respect to inner scale can then be taken. At 7 mm, the
result is

Aof ~ 0.3mm 'A(0 (72)

for small changes in inner scale.

7. REFLECTED BEAMS

The probability density function of a reflected beam can be found by treating the
reflector as a secondary source. The power transmitted by this source is proportional to
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the power incident on the reflector and is a random variable because of turbulence effects
on the outgoing path. The conditional signal at the receiver for a given reflected power is
also a random variable due to turbulence effects on the return path. The total PDF is
given by

P(PS) jp(Ps\Pr)p(Pr)dPr, (73)

where p(Ps\Pr) is the conditional PDF of received signal power Ps given the reflected
power Pr, and p(Pr) is the PDF of the reflected power.

If the reflector is small (diameter < g0), the reflected power will have a lognornially
modulated Rician PDF. A larger aperture would produce a lognormal PDF. The latter is
probably the more common case. Note that if the target intercepts the entire beam, the
reflected power will be constant and p(Pr) is a delta function.

The conditional PDF of the reflected beam depends on the characteristics of the
target and of the receiver. For a small specular or retroreflecting target, the target can be
treated as a point source. Therefore, a small receiver will see a LR conditional PDF. In
this case, both the conditional PDF p(Ps\Pr) and the PDF p{Pr) are lognormally modulated
Rician, and the full PDF, which can be obtained from Eq. (73), is very complicated.

For a small target and a larger receiver aperture, the conditional PDF will be lognor-
mal. In this case, the received power is given by the reflected power times a lognormal
modulation factor caused by turbulence on the return path. The reflected power is given
by the product of a Rician random variable and another lognormal modulation factor.
Therefore, the received power is the product of a Rician random variable and two lognor-
mal random variables. Since the product of two lognormal random variables is lognormal
(Papoulis, 1965), the received power will have a LR PDF. Note that a large target and a
small receiver aperture will also produce a LR PDF for the same reason.

If the aperture and the target are both large, the conditional PDF and the PDF of
reflected power will both be lognormal. Therefore, the received power will also be lognor-
mal.

For diffuse targets, an extra modulation factor in the received power must be con-
sidered. This *“speckle” factor has a negative exponential PDF, and the conditional PDF
must also be integrated over this PDF. However, if the receiver is larger than the speckle
size, this factor can be neglected and the previous results hold. This is an easy condition
to satisfy since the speckle size is given by (Goodman, 1968)

Ds = 2A4XDJL (74)

where A is the optical wavelength, Dr is the reflector diameter, and L is the path length.
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8. CONCLUSIONS

We conclude that the lognormally modulated Rician (LR) probability density func-
tion (PDF) more nearly represents optical propagation through turbulence than does the
IK PDF. For systems using apertures larger than the phase coherence length ga, the log-
normal PDF seems to be a reasonable model.
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