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GRAVITY WAVE PROPAGATION IN THE PRESENCE 
OF A CURRENT WITH AN ARBITRARY VERTICAL PROFILE

Bob Weber

ABSTRACT

This paper determines analytically the effect of current shears 

upon the phase velocity of gravity waves on the oceans surface and the 

resulting consequences for an HF sea echo radar which measures surface 

currents. Past treatments of this subject have restricted the current 

profile in order to avoid singularities in the Rayleigh equation or 

they have required the use of numerical methods which do not readily 

allow generalizations to be drawn. It is found that the phase velocities 

of these waves depend upon the current at all depths but with more weight 

given to the current near the surface. For weak shears and deep water, 

the weighting approaches the exponential weighting derived by Stewart 

and Joy (1974). Therefore, an HF sea echo radar does not measure the 

current just at the surface with the result that its estimate of the 

surface current will be in some error due to a shear. However, large 

errors (amounting to more than 10% of the phase velocity of the gravity 

wave causing the sea echo) should be detectable by measuring the excess 

separation of the advancing and receding Bragg lines in the sea echo 

Doppler spectrum.
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GRAVITY WAVE PROPAGATION IN THE PRESENCE
OF A CURRENT WITH AN ARBITRARY VERTICAL PROFILE

Bob Weber

Introduction

While the study of gravity waves on the ocean’s surface is one of 

the oldest in hydrodynamics, it is also a study that has been revitalized 

in recent years by fresh theoretical inquiry and by new experimental 

techniques. In particular, the sea echoes obtained with high frequency 

(HF) radars can be used to measure both surface gravity waves [Hasselman 

(1971) and Barrick et al. (1974)] and currents near the ocean’s surface 

[Barrick et al. (1974) and Stewart and Joy (1974)] over hundreds of 

square kilometers in real time. A portable radar system [Barrick et al. 

(1977)] is currently under development at WPL* and has actually been 

employed over the past year to map currents in the Gulf Stream off the 

east coast of Florida and in the Lower Cook Inlet of Alaska. In the 

interest of brevity, we shall henceforth refer to this radar unit as CSR 

(for Current-Sensing Radar).

The radar does not measure the current directly, but rather it 

measures the phase velocity of certain ocean waves which propagate



radially with respect to the radar and which have wavelengths equal to 

half the HF wavelength; this is referred to as the Bragg mechanism. Since 

the phase velocity of these ocean waves is known with confidence for 

deep water in the absence of currents, any deviation of the measured 

phase velocity from this accepted velocity is normally attributed to 

currents. Of course, Barrick and Weber [1977], as well as others have 

shown that nonlinear wave-wave interactions can also contribute a signi­

ficant shift to this phase velocity, especially in high sea conditions.

Thus, the connection between wave phase velocity and current velocity is 

not always trivial.

Another potential complication in the interpretation of the phase 

velocity of the Bragg waves is caused by vertical shears in the current 

near the surface. For currents that are constant with depth, there is no 

problem because the phase velocity is simply shifted by an amount propor­

tional to this current velocity. However, when the current varies with 

depth below the surface, the shift in the phase velocity is an integrated 

result of the current over some depth [Stewart and Joy (1974), Benjamin 

(1962), and Fenton (1973)]. Past treatments of this problem have re­

stricted the current to special profiles in order to avoid (1) singularities 

in the governing differential equations of (2) the use of numerical solutions 

for these equations. This then is the purpose of the present paper:

(1) to determine analytically the effect of arbitrary vertical current 

shears upon the phase velocities of gravity waves and (2) to calculate 

the resulting impact upon the current measuring capability of the CSR 

system.
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We are not concerned here with how the near-surface currents are

generated or why they exhibit certain spatial and temporal patterns, 

although these will no doubt be elucidated with the help of radar 

techniques. In general, these currents affect not only the phase velocity 

but also the heights [Longuet-Higgins and Stewart (1960) and Huang et al. 

(1972)] and the directions [Evans (1974)] of gravity waves. In addition, 

if the present study is carried to higher perturbation orders, then it is 

found that sea echo Doppler spectra are not uniformly shifted by the 

current when a shear is present but, rather, are possibly distorted.

This subject will not be considered further here but will be deferred 

to a later study.

Equations of Motion

The propagation of gravity waves on the ocean’s surface in the presence 

of currents is controlled by the usual equations [Phillips (1969)] which 

express the conservation of mass, the conservation of momentum, and 

the continuity of the air-water boundary. The first conservation 

equation is normally simplified by neglecting density variations on time 

and distance scales that are meaningful to a discussion of gravity waves. 

Hence, the water velocity u is required to have zero divergence.

^ • u = 0. (1)

Of course, some ocean circulation is induced by changes in the water density 

due to temperature, pressure, or salinity gradients. But, these contributions 

to (1) are small and are not considered here.
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The velocity u is separated into two distinct components, one of which 

is the background current u^ that exists in the absence of waves. The 

other current component v contains all of the contributions due to the 

waves, including the effects of wave-current interactions. Now, the 

divergence condition (1) must be obeyed in the absence of waves. As a 

result, the current uq separately has zero divergence and, hence, so 

does the wave-induced velocity v. We make an additional restriction 

upon the current uq for the present problem. That is, it is assumed 

that the horizontal variations in the current are negligible and that uq 

is a function only of the depth below the mean sea level at z = 0. This 

restriction combined with the divergence condition (1) implies that the 

vertical current uq • z equals a constant which we shall take to be zero.

The Navier-Stokes equation expresses the conservation of momentum.

If we ignore the Coriolis term and the viscosity of water, then this 

equation is

cju
3t + (U (2)

where g = -gz is the acceleration due to gravity, p is the pressure, and p is

the water density. Just as the velocity u was separated into two parts,

we decompose the pressure p into the zero-wave pressure pQ and the wave-

induced partial pressure q. We require that Equation (2) must be obeyed

in the absence of waves when u = u and p = p . If the current is constant
o o

with time and homogeneous with horizontal position, then the pressure 

PQ = -Pgz is simply the hydrostatic pressure.
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Therefore, the propagation of gravity waves in the presence of a 

current field uq is governed by

^ • v = 0 (3)

and
(|y + uo • ^)v + (v • z) + (v • ^)v = - ^ (4)

where the current u is horizontal and a function of z only. In addition 

to these equations, we have the boundary conditions which state that the 

sea surface z = p remain continuous

v • z| = [I— + (u + v)| • ^]p (5)
1 z=p Ldt o 1 z=n J v

and that the surface pressure vanish

q|z=n = pgn (6)

where the atmospheric pressure is neglected. The displacement p of the 

surface from the mean level z = 0 is caused by gravity waves which may 

have an arbitrary spectral distribution. The changes in the sea level 

due to tides and storm surges and the corresponding vertical velocities 

of the surface are not included in these expressions. In addition, there 

is the boundary condition at the bottom z = -d which states that the 

velocity v = 0. In the interest of consistency, the background current 

uq should also be forced to zero at the bottom.
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Method of Solution

The sea surface can quite generally be represented by a Fourier integral 

or series given by

n(r,t) = n(k,a)) exp[i(k • r - cot)] (7)
k,a),

->■ A Awhere r = xx + yy gives the horizontal position in the plane (z = 0) of 

the undisturbed surface and where k and go are the wavevector and frequency, 
respectively. The velocity can be similarly expanded to give

v(r, z,t) = l v(k,z,co) exp [i(k* r - wt) ] (8)
k,co

and the partial pressure is expressed by

q(r, z,t) = l q(k, z,oj) exp[i(k*r - tot)] . (9)
-*k,co

The z-dependence of the velocity and pressure is a function of the 

particular vertical profile for the current and will be determined from 

the equations of motion and the boundary conditions.

Following the procedure outlined by Barrick and Weber (1977), the 

Fourier coefficients are expanded in perturbation series as follows:

00

n(k,w) = l n (k,<»o (io)
n=l

oo
v(k,z,w) = l vn(k,z,(*)) (11)
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and

q(k,z,co) = l q (k, z, to) (12)
n=l

where the subscript indicates the perturbation order. In addition to the 

perturbation expansions of the waveheight, velocity, and pressure, we 

also expand the wave frequency

00

^ = l \ (13)
n=0

so that we allow for the most general dispersion relation. Therefore, 

the phase velocities will depend upon the waveheights through the higher- 

order terms, which arise from the nonlinearities in the equations of 

motion. The wavevectors k and the first-order waveheights n^CkjO)) are 

the independent parameters in terms of which all the higher-order per­

turbation variables are to be derived. In order for the perturbation 

expansions to converge, the slopes on the surface must be small. That 

is,

l |n(k,co)k| < 1 . 
k,0)

By using the above Fourier transformations in conjunction with the 

perturbation expansions, it is possible to derive a self-consistent and 

general solution for gravity waves.

The first-order divergence condition is obtained from (3) and is 

given by
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(14)ik -* (k,z,w) 3
+ 37 (k,z ,w)) = 0 .

Meanwhile, the first-order part of Equation (4) is

-i(w0 - k • uq(z)) Vjfk, z,co) +

JTuoiz)
+ -ikq (k,z,w)

(z • v1(k,z,to)) = ----- -------- z 3- f srVk.*.*) • as)

Of course, there are an indefinite number of additional equations which 

express the higher-order perturbation variables in terms of the lower- 

order ones. As a result, once we obtain the solutions to these first- 

order equations, then we can derive all of the higher-order results (at 

least, in principle).

The solutions to (14) and (15) are restricted by the boundary conditions 

(5) and (6) at the surface which, to first order, become

z • Vj(k,0,w) = -i(u)Q - k • uo(0))n1(k,0)) (16)

and

q1(k,0,w) = pgri1(k,UJ) (17)

respectively. We note that these boundary conditions place restrictions 

upon the dynamic variables at the mean surface (z = 0). This form for 

the boundary conditions was obtained by expanding the dynamic variables 

in Taylor series in terms of the z-coordinate about the mean surface 

before the Fourier transformation was performed upon (5) and (6).
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The Rayleigh Equation

The scalar equation (14) and the vector equation (15) can be combined

to produce a single second-order differential equation for the partial 
—►pressure q^(k,z,co) or for one of the vector components of the velocity 

->v^(k,z,oj). We shall choose the differential equation for the z-component of

velocity

vx (k, z,co) )
k*u (z)o ^ O, 2 dzk - -------------

(0) - k*u (z))
o o

z • v^(k,z,U)) (18)

which is known as the inviscid Orr-Sommerfeld equation or the Rayleigh 

equation. Peregrine (1976) reviews some solutions to this equation for 

special current profiles. Meanwhile, Lin (1961) and Yih (1972) approach 

this equation through the theory of hydrodynamic stability. Certainly, 

(18) indicates that there might be a problem if the phase velocity equals 

the projected current (i.e., U)^ = k • u^(z)) at some critical depth 

below the surface. It is well known that one of the solutions to this 

equation could contain singularities at these critical depths, which are 

physically unrealistic. A more complete description is needed in these 

cases, although the solutions to Rayleigh’s equation may still be of 

interest for locations away from these critical depths. We shall avoid 

questions of stability and refer the reader to the voluminous literature 

on this subject. Therefore, the present study does not apply to those 

situations where either the current profile or wave is unstable.

The Rayleigh equation (18) contains the independent variable z, 

the independent parameter k, and the arbitrary stable background current

9



u (z). The wave frequency oo however can not assume just any value 
o o

because the surface boundary conditions will determine the dispersion 

relation. The dependent variable z • v^(k,z,co) is now expressed as

zz • v^(k,z,a)) = z • v^(k,0,u)) sinh[k(z+d)] exp / dz1 h(zf)/sinh(kd) (19)
o

where h(z) contains the influence of the background current and carries 

the dimensions of length It is obvious from (18) that h(z) must

vanish for linear current shears because, in that case, the second- 

derivative of uq(z) vanishes. The form of (19) was chosen so that the velocity 

will vanish at the bottom z = -d. When we substitute the expression 

(19) in the linear and homogeneous second-order differential equation 

(18), we obtain the following non-linear and non-homogeneous first-order 

differential equation or Riccati equation (Davis [I960]).

+ h2(z) + a (z) h(z) = 3 (z) 
o o (20)

where

aQ(z) = 2k coth[k(z+d)] (21)
and

e0(z)
k*u (z) r\ z o dz

(w - k*u (z)) 
o o

(22)

The function h(z) can be redefined to be equal to

3 (z)
h(z) " 1TT?> + hi(z) ' <23)
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In this case, (20) produces an equation for h^(z) formally identical to (20). 

9h (z)
------- + h^z) + a^z) h^z) = (z) (24)

dz

where

3 (z)
“l<*> - uo(z> * 2 (25)

and
R { , 3_/V^\ /B0<Z> \2
1<Z> ' ' M“o(z)/ ' l“o<z)/ (26)

Because (24) is formally identical to (20)', we can repeat the above 

process ad infinitum so that

h(z)
OO

l
n=0

^(z)
an(z) (27)

where each consecutive term in this infinite series is generated by 

recurrence relations like (25) and (26). In other words,

an+l(z) = Vz)
23n(z)
an(Z) (28)

and

/en(2)\ /3n(z)\2

\an(z)/ " Van(z) ) (29)

A cursory examination of these equations reveals that higher-order terms in 

(27) contain higher-order derivatives of the current profile and become 

increasingly more nonlinear in the current velocity itself. It is also 

apparent that this series can not converge unless there are some restrictions
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placed upon the size of the various derivatives of the current shear. Later, 

it will become evident that the proper restrictions are given by

Bn -* ->|—— k*u (o) | « [2k coth(kd) ]n v'gk . (30)
9X1 oz

However, the convergence of the series (27) is not a prerequisite for the 

existence of the solution to the Rayleigh equation. In this case, the 

function h(o) at the surface is approximated by

00 nh(o) - (wo-k*uo(0))-1 l [-2k coth(kd)]1_nk*uo(o) . (31)
n=2 3zn

This last expression is the result of (30) and the fact that |a)o-k*uo(o) | - i/gk,

which will be obvious once we have discussed the dispersion condition. Also,

closer examination of h(z) reveals that (oj - k • u (z)) is a factor in
o o

the denominator of every term.

The First-Order Dispersion Relation

Up until now we have not really used the boundary conditions at the 

surface. In all of the equations, the wave frequency enters as some 

unspecified parameter. By using the boundary equations (16) and (17) 

with the equations of motion (14) and (15), the following dispersion relation 

is easily derived.

(k + h(o))(o)Q - k*uQ(o))2 + k-uQ(o) (o)q - k*uQ(o)) = gk2 . (32)
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When the function h(o) vanishes at the surface, this result reduces to 

that of Plate and Trawle (1970) who used Biesel's (1950) model to calculate 

the change in wave speed due to a linear current shear. It also goes 

without saying that this expression reduces to the correct deep water 

dispersion relation in the absence of any currents (namely, = gk).

Apart from changing the phase velocity of a gravity wave, the current 

shear has one other surprising effect upon radar sea echoes. Whereas a 

constant current simply Doppler shifts or displaces in frequency the entire 

sea echo spectrum, a current shear introduces a slight non-uniform frequency 

shift in different regions of the spectrum. For example, the advancing 

and receding first-order sea-echo spectral peaks may be spread apart by 

a current shear in excess of the expected separation 2/gk. This non- 

uniform Doppler shift arises from those terms in (32) which contain odd 

powers of the wave frequency. It should be noted that the non-uniform 

Doppler shift occurs in the presence of any current shear, even a linear 

one, and that the present generalization of vertical current profiles 

predicts nothing fundamentally new in this respect.

We recall that h(o) in (31) is inversely proportional to the first 

power of (u)q - k*uo(o)). This fact along with the dispersion relation (33) 

indicates that the phase velocity and the projected current velocity at the 

surface can never be equal (i.e., (0q ? k«uo(o)). Therefore, the critical 

depth at which h(z) has a "singularity" must not be z = 0. This is the 

reason that the possible singularity in h(z) need not prevent a general

treatment of the effects of arbitrary current shears upon phase velocity 

of surface gravity waves. The dispersion relation then can be formally

written as

'-SbSnW*22513



(U)Q - k*uQ(o))2 -2 a(0)o - k*uQ(o)) = gk (33)

where a contains all of the effects of the current shear. That is

a = ][ [-2k coth(kd)] n k*uQ(o)
n=l

(34)

where we have placed the restriction that a « /gk which implies that the 

effect of the current shear is merely to perturb the phase velocity.

Despite the potential complexity of the vertical current profile (19), the 

influence on the dispersion relation is simply consolidated in the factor a. 

Now, the two roots to (33) are

o + k*u (o) + o (35)

where we define the Bragg frequency 0)^ = v'gk as that which the radar would 

see scattered from a wave with wavenumber k and where terms with higher 

powers of a/ca^ are not explicitly shown. From this expression it is 

clear that lea - k*u (o) | - (jaD and hence (31) follows. The two principal 

effects of the shear that were mentioned earlier are obvious from this 

expression. First, the current shifts the phase velocity by an amount which 

depends not only upon the value of the current velocity at the surface but 

also upon the details of the vertical profile. Second, the phase velocities 

of any two waves propagating in opposite directions are spread apart by the 

current shear.
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Implications for Sea Echo Doppler Spectra

In the absence of any currents, the radar sea echo spectra [Barrick 

et al. (1974)] contain two strong peaks, referred to as Bragg lines.

One of these lines is located at a frequency of +0)^ and is caused by HF 

scattering from a gravity wave advancing towards the radar. The other 

spectral line is located at -a) and is caused by a wave receding from
D

the radar. Both of these lines are Doppler shifted in the same direction 

by an amount (see Figure 1)

I (-2k) k*u (o) (36)

This is the result we would get if we averaged the Doppler frequencies (35) 

for the advancing and receeding Bragg lines. A Doppler velocity vD = u)D/k 

can then be inferred as the surface current measured by the radar. 

Therefore, the Doppler shift depends upon the current at the surface, 

the gradient of the current profile at the surface, the curvature of the 

profile at the surface, etc.

In a private communication, D. E. Barrick pointed out the series (34) 

and (36) in terms of the derivatives of the background current can be 

reformulated in integral form using the following identity.

2k coth(kd) / dz k*uQ(z) exp[2kz coth(kd)] =
_oo

I [-2k C0th(kd)]"n k*u (o) . 
n=0 9zn °rx n dz
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Thus, the results given here agree with those of Stewart and Joy (1974) 

in the case of great depth kd » 1 and weak shear a « co^. An integral 

formulation of (35) is then given by

o^o = 1 + 2k coth(kd) / dz (z) exp[2kz coth(kd)]
_oo

[it*uo(o) - 2k coth(kd) _£ dz lc*u (z) exp(2kz coth(kd))]2 .
1 ^

Example: Exponential shear profile [uq(z) = uQ(0)exp(az)] .

Figure 2 shows how the Doppler velocity vD = uq(1 + ^-)_1 measured 

From a sea echo frequency spectrum deviates from the surface current u
o

for exponential current shears. This same result for the exponential

model was obtained by Stewart and Joy (1974) who restricted u to small
o

values much less than the wave phase velocity. No such restriction is 

made here. For this discussion vD is defined to be the average offset 

in velocity (from (36)) for the advancing and receding Bragg waves. The 

results in this figure are valid only if |ot| < 2k (so that the terms 

neglected in (31) will be small), and only if the surface current u
o

satisfies the condition |v^ - uq| << v^, where the Bragg velocity 
VB = The Bra&S velocity vg equals Jgc/Aiw^ , where vHp equals

the radio frequency and c is the speed of light. We note that this 

condition does not necessarily limit the size of the current velocity u 

but it does imply that one cannot have both large currents and large 

shears at the same time. Of course, if these conditions are not satisfied,

16



then the phase velocity can be computed using the more complete (and 

complicated) expression for h(o) from (27) in the dispersion relation 

(32). For a radio frequency of 25.4 MHz, the Bragg velocity v is about 

6 knots, which allows for a very large range of currents and shears. 

Figure 3 gives the upper limit for the magnitude of the surface current 

uq = vR| 1 + for a range of shears. Actually, the current velocity 

must be much less than this limit in order for the approximations made 

earlier to hold. We note that currents which increase with depth are 

much more restricted than currents which decrease with depth.

In addition, the Bragg lines are separated by an amount equal to 

(see Figure 1)

A = ojb(2 + cr2/Wg) (37)

which is somewhat larger when the current varies with depth. This equation 

can also be used to obtain the relative velocity of two gravity waves 

with wavenumber k traveling in opposite directions. In general, a vertical 

shear increases this relative velocity above that value which would exist 

for a constant current. The fractional spreading of the Bragg lines is 

given in Figure 4 for different exponential current shears. The fact 

that the separation of the Bragg lines is greater when the current 

varies with depth suggests that the radar might possibly afford a means 

for measuring not only near surface currents but also near surface 

current shears. Of course, the sensitivity of this method decreases for 

weaker shears which may be more prevalent in natural situations than the

17



stronger shears. However, there is a positive implication for the radar 

even in this case. If the shear is not detectable by the radar, then in 

some cases this may mean that the shear introduces negligible error in 

the radar measurement of the surface current.

The excess spreading of the Bragg lines is given in Figure 5 for 

different Doppler velocities v^ inferred from the sea echo Doppler spectrum. 

The relationship between these two quantities is simply

A-2o).B
(jl)_

v -u 2 D o (39)

This expression is quite general and applies to any shear profile, not just 

exponential ones. It is noted that the excess splitting of the receding 

and advancing Bragg lines is not a sensitive measure of current shears. For 

example, Figure 5 shows that, if the radar measured Doppler velocity shift 

and surface current differ by 30 cm/s, then the Doppler velocities from 

the receding and advancing Bragg lines disagree by about 3 cm/s (or 10%).

18



Conclusions

One obvious result of this study is the conclusion that HF radars 

like the CSR system do not simply measure currents just at the surface. 

Multiple HF techniques have been suggested (Barrick et al. [1974] and 

Stewart and Joy [1974]) for extracting the current shear and surface 

current. The splitting of the Bragg lines, discussed here, provides an 

additional measure for detecting strong vertical shears, although this 

latter method does not uniquely determine the shear. However, a com­

bination of the multiple-frequency and Bragg-line-splitting techniques 

may provide both the surface current and the shear profile (i.e., the 

slope and curvature of the shear) at the surface.
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With Depth

Current Decreases 
With Depth

—I 0)

Figure 2. Change m phase velocity for exponential current profile
uUJ - uQe . The positive z-axis is vertical upward from surface and
u is the current at the surface, v = u (1 + 
u Do 2k
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Figure 3. Surface current upper limit for different exponential current
2k ishears. The maximum surface current u = vn 1 + -—o B 1 a 1

24



(cm/s)

0.1

A-2ojb

k

30.35

3.04

_ B

=0.32

RF= 25.4 MHz
vB =303.49 cm/s 

= 5.89 Knots
k = 0.01 cm-1

I iii i i in i iif i i i i i
-1 0 1

a
2k

I-------------------- _L_______________________L
-0.02 0 0.02

a (cm-')

Figure 4. Fractional excess spreading of Bragg lines due to current 
shear (from Equation (37)).
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Figure 5. Fractional excess spreading of Bragg lines as a function of 
the Doppler velocity (from Equation (39)).
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