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GRAVITY WAVE PROPAGATION IN THE PRESENCE
OF A CURRENT WITH AN ARBITRARY VERTICAL PROFILE

Bob Weber

ABSTRACT

This paper determines analytically the effect of current shears
upon the phase velocity of gravity waves on the oceans surface and the
resulting consequences for an HF sea echo radar which measures surface
currents. Past treatments of this subject have restricted the current
profile in order to avoid singularities in the Rayleigh equation or
they have required the use of numerical methods which do not readily
allow generalizations to be drawn. It is found that the phase velocities
of these waves depend upon the current at all depths but with more weight
given to the current near the surface. For weak shears and deep water,
the weighting approaches the exponential weighting derived by Stewart
and Joy (1974). Therefore, an HF sea echo radar does not measure the
current just at the surface with the result that its estimate of the
surface current will be in some error due to a shear. However, large
errors (amounting to more than 10% of the phase velocity of the gravity
wave causing the sea echo) should be detectable by measuring the excess
separation of the advancing and receding Bragg lines in the sea echo

Doppler spectrum.
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GRAVITY WAVE PROPAGATION IN THE PRESENCE

OF A CURRENT WITH AN ARBITRARY VERTICAL PROFILE

Bob Weber

Introduction

While the study of gravity waves on the ocean’s surface is one of

the oldest in hydrodynamics, it is also a study that has been revitalized

in recent years by fresh theoretical iInquiry and by new experimental

techniques. In particular, the sea echoes obtained with high frequency
(HF) radars can be used to measure both surface gravity waves [Hasselman

(1971) and Barrick et al. (1974)] and currents near the ocean’s surface

[Barrick et al. (1974) and Stewart and Joy (1974)] over hundreds of
square kilometers in real time. A portable radar system [Barrick et al.
(1977)] 1is currently under development at WPL* and has actually been

employed over the past year to map currents in the Gulf Stream off the

east coast of Florida and in the Lower Cook Inlet of Alaska. In the

interest of brevity, we shall henceforth refer to this radar unit as CSR

(for Current-Sensing Radar).

The radar does not measure the current directly, but rather it

measures the phase velocity of certain ocean waves which propagate



radially with respect to the radar and which have wavelengths equal to
hal¥ the HF wavelength; this is referred to as the Bragg mechanism. Since
the phase velocity of these ocean waves is known with confidence for

deep water in the absence of currents, any deviation of the measured

phase velocity from this accepted velocity is normally attributed to
currents. Of course, Barrick and Weber [1977], as well as others have
shown that nonlinear wave-wave iInteractions can also contribute a signi-
ficant shift to this phase velocity, especially iIn high sea conditions.
Thus, the connection between wave phase velocity and current velocity is
not always trivial.

Another potential complication in the interpretation of the phase
velocity of the Bragg waves is caused by vertical shears in the current
near the surface. For currents that are constant with depth, there is no
problem because the phase velocity is simply shifted by an amount propor-
tional to this current velocity. However, when the current varies with
depth below the surface, the shift in the phase velocity is an iIntegrated
result of the current over some depth [Stewart and Joy (1974), Benjamin
(1962), and Fenton (1973)]- Past treatments of this problem have re-
stricted the current to special profiles in order to avoid (1) singularities
in the governing differential equations of (2) the use of numerical solutions
for these equations. This then is the purpose of the present paper:

(1) to determine analytically the effect of arbitrary vertical current
shears upon the phase velocities of gravity waves and (2) to calculate
the resulting iImpact upon the current measuring capability of the CSR

system.



We are not concerned here with how the near-surface currents are
generated or why they exhibit certain spatial and temporal patterns,
although these will no doubt be elucidated with the help of radar
techniques. In general, these currents affect not only the phase velocity
but also the heights [Longuet-Higgins and Stewart (1960) and Huang et al.
(1972)] and the directions [Evans (1974)] of gravity waves. In addition,
if the present study is carried to higher perturbation orders, then it is
found that sea echo Doppler spectra are not uniformly shifted by the
current when a shear is present but, rather, are possibly distorted.

This subject will not be considered further here but will be deferred

to a later study.

Equations of Motion

The propagation of gravity waves on the ocean’s surface in the presence
of currents is controlled by the usual equations [Phillips (1969)] which
express the conservation of mass, the conservation of momentum, and
the continuity of the ailr-water boundary. The first conservation
equation is normally simplified by neglecting density variations on time
and distance scales that are meaningful to a discussion of gravity waves.

Hence, the water velocity u is required to have zero divergence.

N e u = 0. (l)

Of course, some ocean circulation is induced by changes in the water density
due to temperature, pressure, or salinity gradients. But, these contributions

to (1) are small and are not considered here.



The velocity u is separated iInto two distinct components, one of which
is the background current u” that exists in the absence of waves. The
other current component v contains all of the contributions due to the
waves, iIncluding the effects of wave-current Iinteractions. Now, the
divergence condition (1) must be obeyed in the absence of waves. As a
result, the current uq separately has zero divergence and, hence, so
does the wave-induced velocity v. We make an additional restriction
upon the current ug for the present problem. That is, it is assumed
that the horizontal variations in the current are negligible and that uq
is a function only of the depth below the mean sea level at z = 0. This
restriction combined with the divergence condition (1) implies that the
vertical current ugq * z equals a constant which we shall take to be zero.

The Navier-Stokes equation expresses the conservation of momentum.
IT we ignore the Coriolis term and the viscosity of water, then this

equation is

cju

g * U (2)
where g = -gz is the acceleration due to gravity, p is the pressure, and p is
the water density. Just as the velocity u was separated into two parts,

we decompose the pressure p into the zero-wave pressure pQ and the wave-

induced partial pressure . We require that Equation (2) must be obeyed

in the absence of waves when u = u and p = p . If the current is constant
o o}

with time and homogeneous with horizontal position, then the pressure

PQ = -Pgz is simply the hydrostatic pressure.



Therefore, the propagation of gravity waves iIn the presence of a

current field ug is governed by

N e v =0 (3)

and
(ly + uo « ™Mv + v ez + (Vve™MDV= - (O]
where the current u is horizontal and a function of z only. In addition

to these equations, we have the boundary conditions which state that the

sea surface z = p remain continuous
v e z] = [I=+ (u + v * Mp (©)
| z=p Ldt o] | z=n J v

and that the surface pressure vanish

dlz=n = pgn (6)

where the atmospheric pressure is neglected. The displacement p of the
surface from the mean level z = 0 is caused by gravity waves which may
have an arbitrary spectral distribution. The changes in the sea level

due to tides and storm surges and the corresponding vertical velocities

of the surface are not included in these expressions. In addition, there
is the boundary condition at the bottom z = -d which states that the
velocity v = 0. In the iInterest of consistency, the background current

ug should also be forced to zero at the bottom.



Method of Solution
The sea surface can quite generally be represented by a Fourier integral

or series given by

n(r,t) = n(k,a)) exp[i(k * r - cot)] (@)
k,a),
where T = x& + y§ gives the horizontal position in the plane (z = 0) of

the undisturbed surface and where k and g are the wavevector and frequency,

respectively. The velocity can be similarly expanded to give

v(r, z,t) = 1 v(k,z,co) exp[i(k*r - wt)] )

k,co

and the partial pressure is expressed by

a(r, z,t) = | ack, z,0)) expLick*r - toD)] . ©
k,co
The z-dependence of the velocity and pressure is a function of the
particular vertical profile for the current and will be determined from
the equations of motion and the boundary conditions.
Following the procedure outlined by Barrick and Weber ((1977), the

Fourier coefficients are expanded in perturbation series as follows:

ntk,w) = 1 n (k,<»0 (io)
n=1

vk,z,w) = 1 wvn(k,z,(*) (1D



and
g(k,z,co) = 1 g (k, z,t) (12)
n=1
where the subscript indicates the perturbation order. In addition to the
perturbation expansions of the waveheight, velocity, and pressure, we

also expand the wave frequency

T I N 13)

so that we allow for the most general dispersion relation. Therefore,
the phase velocities will depend upon the waveheights through the higher-
order terms, which arise from the nonlinearities in the equations of
motion. The wavevectors k and the first-order waveheights n”Ckj0)) are
the independent parameters in terms of which all the higher-order per-
turbation variables are to be derived. In order for the perturbation
expansions to converge, the slopes on the surface must be small. That

is,

I In(k,co)k] < 1

k,0)
By using the above Fourier transformations in conjunction with the
perturbation expansions, it is possible to derive a self-consistent and

general solution for gravity waves.

The Ffirst-order divergence condition is obtained from (3) and is

given by



ik T kzw) %7 K,z.w) = 0 . 14

Meanwhile, the Tfirst-order part of Equation (4) is

SiW0 - k + ua(z)) Vjfk, z,c0) +

+ -ikg (k,z,w) 3
JTuoiz) z * vi(k,z,t0)) = ———— ———————o - Firvk.x =y as)

OFf course, there are an iIndefinite number of additional equations which
express the higher-order perturbation variables iIn terms of the lower-
order ones. As a result, once we obtain the solutions to these Ffirst-
order equations, then we can derive all of the higher-order results (at
least, in principle)

The solutions to (14) and (15) are restricted by the boundary conditions

(5) and (6) at the surface which, to first order, become

z ¢« Vj(k,0,w) = -i(u)Q - k ¢ uo(0))ni(k,0)) (16)
and

g1(k,0,w) = pgril(k,ud) an
respectively. We note that these boundary conditions place restrictions

upon the dynamic variables at the mean surface (z = 0). This form for
the boundary conditions was obtained by expanding the dynamic variables
in Taylor series in terms of the z-coordinate about the mean surface

before the Fourier transformation was performed upon (5) and (6).



The Rayleigh Equation

The scalar equation (14) and the vector equation (15) can be combined
to produce a single second-order differential equation for the partial
pressure qA(th,co) or for one of the vector components of the velocity
VA(RiZ,Qj). We shall choose the differential equation for the z-component of

velocity

wx (k, z,c0)) k™ - S z + v (k,z,U)) s

which is known as the inviscid Orr-Sommerfeld equation or the Rayleigh
equation. Peregrine (1976) reviews some solutions to this equation for
special current profiles. Meanwhile, Lin (1961) and Yih (1972) approach
this equation through the theory of hydrodynamic stability. Certainly,
(18) 1iIndicates that there might be a problem if the phase velocity equals
the projected current (i.e., U)"» = k « u™(z)) at some critical depth
below the surface. It is well known that one of the solutions to this
equation could contain singularities at these critical depths, which are
physically unrealistic. A more complete description is needed in these
cases, although the solutions to Rayleigh’s equation may still be of
interest for locations away from these critical depths. We shall avoid
questions of stability and refer the reader to the voluminous literature
on this subject. Therefore, the present study does not apply to those
situations where either the current profile or wave is unstable.

The Rayleigh equation (18) contains the independent variable z,

the independent parameter k, and the arbitrary stable background current



u (z). The wave frequency w however can not assume just any value
o o
because the surface boundary conditions will determine the dispersion

relation. The dependent variable z « v*(k,z,co) is now expressed as

z + v(K,z,a)) = z + v™(k,0,u)) sinh[k(z+d)] exp /° dz! h(zf)/sinh(kd) (19)
o

where h(z) contains the iInfluence of the background current and carries

the dimensions of length It is obvious from (18) that h(z) must

vanish for linear current shears because, in that case, the second-

derivative of uq(z) vanishes. The form of (19) was chosen so that the velocity

will vanish at the bottom z = -d. When we substitute the expression

(19) in the linear and homogeneous second-order differential equation

(18), we obtain the following non-linear and non-homogeneous first-order

differential equation or Riccati equation (Davis [1960]).

+ h2@) + a (@) h(@) = 3 (@

o o (20)
where
aQ(z) = 2k coth[k(z+d)] (21)
and
k*u (2)
0,2 o]
eO0(2) (22)
w - k*u (2))
o o]
The function h(z) can be redefined to be equal to
3 (@
h(z " 1TT?> + hi(@) ' <23)

10



In this case, (20) produces an equation for h~(z) Tformally identical to (20).

9h (2)
——————— + hnz) + an~z) h™z) = (2) 24
dz
where
3 (2)
“I<*> - uo(z> * 2 (25)
and
R {, 3 /\NV/T™N\ /BO<Z> \2

1Bt M) o<z @

Because (24) is formally identical to (20)", we can repeat the above

process ad infinitum so that

o @D
h(z) | @7

n=0 an(z)

where each consecutive term in this infinite series is generated by

recurrence relations like (25) and (26). In other words,
23n(2)
an+1(2) - VZ) an() (28)
and
Zen(2)\ Z3n(z)\2

\an(z)/ " Van(2) ) @

A cursory examination of these equations reveals that higher-order terms in
(27) contain higher-order derivatives of the current profile and become
increasingly more nonlinear in the current velocity itself. It is also

apparent that this series can not converge unless there are some restrictions

11



placed upon the size of the various derivatives of the current shear. Later,

it will become evident that the proper restrictions are given by

Bn -* >
| k*u (©0) | << [2k coth(kd) In v"gk . (30)
gm o
However, the convergence of the series (27) is not a prerequisite for the
existence of the solution to the Rayleigh equation. In this case, the

function h(o) at the surface is approximated by

h(0) - (o-k*uo(0))-1 OIO [-2k coth(kd)] L nr‘nk*uo(o) . 1)
n=2 3zn
This last expression is the result of (30) and the fact that |a)o-k*uo(o) | - 1i/gk,

which will be obvious once we have discussed the dispersion condition. Also,
closer examination of h(z) reveals that (j - k ¢« u (2)) is a factor in

[} (0]

the denominator of every term.

The First-Order Dispersion Relation
Up until now we have not really used the boundary conditions at the
surface. In all of the equations, the wave frequency enters as some

unspecified parameter. By using the boundary equations (16) and (17)

with the equations of motion (14) and (15), the following dispersion relation

is easily derived.

(k + h(0))(0)Q - k*uQ(o))2 + k-uQ(0) (oJa - k*uQ(o)) = gkz . G2

12



When the function h(o) vanishes at the surface, this result reduces to

that of Plate and Trawle (1970) who used Biesel®s (1950) model to calculate
the change in wave speed due to a linear current shear. It also goes
without saying that this expression reduces to the correct deep water
dispersion relation in the absence of any currents (namely, = gk)

Apart from changing the phase velocity of a gravity wave, the current
shear has one other surprising effect upon radar sea echoes. Whereas a
constant current simply Doppler shifts or displaces in frequency the entire
sea echo spectrum, a current shear introduces a slight non-uniform frequency
shift in different regions of the spectrum. For example, the advancing
and receding Ffirst-order sea-echo spectral peaks may be spread apart by
a current shear in excess of the expected separation 2/gk. This non-
uniform Doppler shift arises from those terms iIn (32) which contain odd
powers of the wave frequency. It should be noted that the non-uniform
Doppler shift occurs iIn the presence of any current shear, even a linear
one, and that the present generalization of vertical current profiles
predicts nothing fundamentally new in this respect.

We recall that h(o) in (31) is inversely proportional to the first
power of (ug - k*uo(o)). This fact along with the dispersion relation (33)
indicates that the phase velocity and the projected current velocity at the
surface can never be equal (i.e., (0g ? k«uo(0)). Therefore, the critical
depth at which h(z) has a "singularity”™ must not be z = 0. This is the
reason that the possible singularity in h(z) need not prevent a general
treatment of the effects of arbitrary current shears upon phase velocity
of surface gravity waves. The dispersion relation then can be formally

written as

'-SbSnNW™>*225

13



Q - k*uQ(o))2 -2 a(oo - k*uQ(o)) = gk (33)

where a contains all of the effects of the current shear. That is

a= ] [-2k coth(kd)] n k*uQ (o) (34)
n=I
where we have placed the restriction that a << /gk which implies that the
effect of the current shear is merely to perturb the phase velocity.
Despite the potential complexity of the vertical current profile (19), the
inFluence on the dispersion relation is simply consolidated in the factor a.

Now, the two roots to (33) are

+ k*u (0) + O (35)

where we define the Bragg frequency 0 = v'gk as that which the radar would
see scattered from a wave with wavenumber k and where terms with higher
powers of a/ca® are not explicitly shown. From this expression it is

clear that lea - k*u (0)| - (0 and hence (31) follows. The two principal
effects of the shear that were mentioned earlier are obvious from this
expression. First, the current shifts the phase velocity by an amount which
depends not only upon the value of the current velocity at the surface but
also upon the details of the vertical profile. Second, the phase velocities
of any two waves propagating iIn opposite directions are spread apart by the

current shear.

14



Implications for Sea Echo Doppler Spectra
In the absence of any currents, the radar sea echo spectra [Barrick
et al. (1974)] contain two strong peaks, referred to as Bragg lines.
One of these lines is located at a frequency of +0)* and is caused by HF
scattering from a gravity wave advancing towards the radar. The other
spectral line is located at -a) and is caused by a wave receding from
D

the radar. Both of these lines are Doppler shifted in the same direction

by an amount (see Figure 1)

I (-2 k*u (o) (36)

This is the result we would get if we averaged the Doppler frequencies (35)
for the advancing and receeding Bragg lines. A Doppler velocity vD = u)D/k
can then be inferred as the surface current measured by the radar.
Therefore, the Doppler shift depends upon the current at the surface,
the gradient of the current profile at the surface, the curvature of the
profile at the surface, etc.

In a private communication, D. E. Barrick pointed out the series (34)
and (36) in terms of the derivatives of the background current can be

reformulated in integral form using the following identity.

2k coth(kd) 7/ dz k*uQ(z) exp[2kz coth(kd)] =

_oo

| [-2k COth(kd)]''n k*u (o)
n=0 g%n °

15



Thus, the results given here agree with those of Stewart and Joy (1974)
in the case of great depth kd >> 1 and weak shear a << co®. An integral

formulation of (35) is then given by

o
~o = 1 + 2k coth(kd) / dz (z) exp[2kz coth(kd)]

_oo

[itYuo(0) - 2k coth(kd) _ £ dz Ic*u (2) exp(kz coth(kd))]2

1 PN

Example: Exponential shear profile [uq(z) = uQ(0)exp(az)]

Figure 2 shows how the Doppler velocity vD = uq(l + ~-)_1 measured
From a sea echo frequency spectrum deviates from the surface current u
o
for exponential current shears. This same result for the exponential
model was obtained by Stewart and Joy (1974) who restricted u to small
o
values much less than the wave phase velocity. No such restriction is
made here. For this discussion vD is defined to be the average offset
in velocity (from (36)) for the advancing and receding Bragg waves. The
results in this figure are valid only if |Jot] < 2k (so that the terms
neglected in (31) will be small), and only if the surface current u
o
satisfies the condition |v* - uQ << v», where the Bragg velocity
VB = The Bra&S velocity vg equals Jgc/Aiw” , where vHp equals
the radio frequency and c is the speed of light. We note that this
condition does not necessarily limit the size of the current velocity u

but it does imply that one cannot have both large currents and large

shears at the same time. OF course, iIf these conditions are not satisfied,

16



then the phase velocity can be computed using the more complete (and
complicated) expression for h(o) from (27) in the dispersion relation
(32). For a radio frequency of 25.4 MHz, the Bragg velocity v is about
6 knots, which allows for a very large range of currents and shears.
Figure 3 gives the upper limit for the magnitude of the surface current
ug = VR|1 + for a range of shears. Actually, the current velocity
must be much less than this limit in order for the approximations made
earlier to hold. We note that currents which increase with depth are
much more restricted than currents which decrease with depth.

In addition, the Bragg lines are separated by an amount equal to

(see Figure 1)

A = ojb(2 + cr2/Wg) @37

which is somewhat larger when the current varies with depth. This equation
can also be used to obtain the relative velocity of two gravity waves

with wavenumber k traveling in opposite directions. In general, a vertical
shear increases this relative velocity above that value which would exist
for a constant current. The fractional spreading of the Bragg lines is
given in Figure 4 for different exponential current shears. The fact

that the separation of the Bragg lines is greater when the current

varies with depth suggests that the radar might possibly afford a means

for measuring not only near surface currents but also near surface

current shears. Of course, the sensitivity of this method decreases for

weaker shears which may be more prevalent in natural situations than the

17



stronger shears. However, there is a positive implication for the radar
even in this case. If the shear is not detectable by the radar, then in
some cases this may mean that the shear introduces negligible error in
the radar measurement of the surface current.

The excess spreading of the Bragg lines is given in Figure 5 for
different Doppler velocities v» inferred from the sea echo Doppler spectrum.

The relationship between these two quantities is simply

A-20). vp-u o2

) B D o 39)
n_

This expression is quite general and applies to any shear profile, not just

exponential ones. It is noted that the excess splitting of the receding

and advancing Bragg lines is not a sensitive measure of current shears. For

example, Figure 5 shows that, if the radar measured Doppler velocity shift
and surface current differ by 30 cm/s, then the Doppler velocities from

the receding and advancing Bragg lines disagree by about 3 cm/s (or 10%).

18



Conclusions

One obvious result of this study is the conclusion that HF radars
like the CSR system do not simply measure currents jJust at the surface.
Multiple HF techniques have been suggested (Barrick et al. [1974] and
Stewart and Joy [1974]) for extracting the current shear and surface
current. The splitting of the Bragg lines, discussed here, provides an
additional measure for detecting strong vertical shears, although this
latter method does not uniquely determine the shear. However, a com-
bination of the multiple-frequency and Bragg-line-splitting techniques
may provide both the surface current and the shear profile (i.e., the

slope and curvature of the shear) at the surface.
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o570

Current Increases Current Decreases
With Depth With Depth

Figure 2. Change m phase velocity for exponential current profile

uUJd - uQe . The positive z-axis is vertical upward from surface and

u is the current at the surface, v = u (1 +
u Do 2k
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uQ(cm/s)

5.465s 6.07 s

303.49 3.64s

RF= 25.4 MHz

vB =303.49 cm/s

5.89 Knots
k 0.01 cm-1

0.60 s
30.35 L

-0.02 0 0.02

Figure 3. Surface current upper limit for different exponential current
2k
shears. The maximum surface current u_= VE 11 + T
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A —220jb
(cm/s)

30.35 0.1

B
=0.32
3.04
RF= 25.4 MHz
vB =303.49 cm/s
= 5.89Knots
k= 0.01 cm-1
T T O R L N1 A T
1 0 !
a
2k
I L L
0.02 0 0.02
a (cm-"

Figure 4. Fractional excess spreading of Bragg lines due to current

shear (from Equation (37)).
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RF= 25.4 MHz
vg =303.49cm/s

= 5.89Knots
k= 0.01cm-*
Figure 5. Fractional excess spreading of Bragg lines as a function of

the Doppler velocity (from Equation (39)).
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