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NUMERICAL GRAVITY WAVE AND LINEAR ADVECTION
EXPERIMENTS ON A ONE-DIMENSIONAL NESTED GRID

Michael S. Moss

Numerical experiments with a mesh refinement
technique are applied to the finite difference equations
that represent one-dimensional gravity wave and advection
phenomena. The grid consists of a coarse mesh and a fine
mesh interfaced at the origin. The problem of a nearly
monochromatic sine wave approaching the interface from the
fine-mesh side is examined. Numerical experiments that
parallel the analytic study of Morse (1973) confirm most

of his conclusions. In addition, there is a relatively

short wave cutoff, below which practically all the energy

is trapped on the fine mesh. Integrating a linear advection

equation on the nested grid results in a 2 Ax separation

of the solution on the fine mesh after the wave reaches

the interface, The problem is corrected by using upstream

differences for evaluating the tendency at the interface.

1. INTRODUCTION

Recently Moss and Jones (1973) discussed the results of
experiments that incorporated a one-dimensional nested grid. In
these experiments, the nested grid consisted of a fine mesh (30 km
grid increment) centered on a coarse mesh (90 km grid increment).
The Matsuno (1966) time integration procedure was applied to a
perturbation initially centered on both grids. Unfortunately, the
events that occurred when the perturbation crossed the interface of
the grids were obscured by computational dispersion and the tendency
of the integration scheme to damp high-frequency gravity waves.

In this paper, results of experiments using "neutral” integra

tion procedures applied to nearly monochromatic waves are presented.

The first part of this paper discusses results from numerical



experiments comparable with those of Morse (1973)- He obtained an
analytic solution to the one-dimensional wave equation on a nested
grid. In the second part of this paper, results from various nested-

grid linear advection experiments are presented.

2. MODEL EQUATIONS AND THE NESTED GRID

The partial differential equations used in this study are as
follows. For the gravity wave,

3p

3
_ RT CD
3t p«u 3x 0
o @)
3X Pu
and the linear advection equation is given by
3 3)

3t
A derivation of equations similar to these is given by Moss and Jones
(1973).
The symbols are defined as follows:
t - time,
X - east-west direction,
u - east-west velocity component,

p* - surface pressure,
R - specific gas constant for dry air,

T - mean temperature (300° K), and

H - constant advecting current.



The spatial domain is represented by two, mutually interacting,
96 or 97 point, uniform grids, each having a different mesh length.
In most of the experiments, the ratio of the mesh lengths is 3:1 (see
fig. 1); in which case the fine mesh coincides with the right one-
third of a coarse mesh. This grid-mesh ratio is the same as that
used in the National Hurricane Research Laboratory (NHRL), three-
dimensional, nested-grid hurricane mode! (Jones, 1977)- For the
other experiments, the ratio is 2:1, and the fine mesh coincides with
the right half of the coarse mesh. The remaining discussion in this

section refers to experiments with a 3:1 grid-mesh ratio.

X—u point on coarse grid O—p* point on coarse grid
X —uUu point on fine grid °—p* point on fine grid

S COARSE MESH--mmmmmeeee o R FINE MESH

OO > <{>XoxOxoXoxO xo
GRID ARRANGEMENT 1 ‘

o o O o 0 0]
GRID ARRANGEMENT 2

0 o] O * o O o o O g

GRID ARRANGEMENT 3

Figure 1. Sample data arrangements for various experimental grids
(3:1 grid-mesh ratio). Vertical dashed line represents the mesh
interface.



In the gravity-wave experiments, the two dependent variables
(p*u and p*) are staggered in space. An example of this grid
arrangement is presented at the top of figure 1. In the advection
experiments, two different grid arrangements were used (see bottom
of fig. 1). When coarse-grid points coincide with the mesh interface
(grid arrangement 2), the fine mesh tendency there is simply assigned
the value of the coinciding coarse-mesh point. When coarse-grid
points do not coincide with the interface (grid arrangement 3) the
interface tendency is obtained by a linear interpolation of the coarse-
grid tendency just outside the interface and the fine-grid tendency one
fine-grid interval inside the interface. The computation of the inter-
face tendencies on grid arrangement | is a combination of the above
two techniques. A detailed explanation of the interface tendency
calculations for grid arrangement | is given by Moss and Jones (1973)e

The integration of the equations proceeds from the coarse mesh
to the fine mesh. Coarse-grid variables that overlap fine-grid points
are reevaluated by applying a Schuman (1957) type three-point filtering
operator to the coincident and adjacent fine-mesh data. The fine-
mesh grid increment and time step are 30 km and *0 sec, respectively.
The coarse-grid space and time increments are appropriate Integer
multiples of those for the fine mesh. For example, with a 3:1 grid-
mesh ratio, the coarse-grid spatial increment is 90 km and the coarse-

grid time step is 2 min. Some experiments had the time step the same

on both grids.



3. GRAVITY WAVE EXPERIMENTS
Following Morse (1973), the integration scheme used for the

gravity wave (GW) experiments is

prun+l prun  RT (prn - p ) A *)
J j J+t J-i AX

>-*n.f.| _ - (p*u[-']+1 - p*u!j+1) R — (5)

j—i JUi ] J-1 AX

where the subscripts denote relative spatial locations and the super-

scripts are the time levels. The norm of the amplification matrix for
the finite difference equations (h) and (5) is unity for c l;\x— < 1
(Richtmyer and Morton, 1967); therefore, the scheme is neutral when
this condition is satisfied. The propagation speed (c) is obtained

from (1) and (2) and is

The initial conditions are
p* (x,t = 0) = p = 103 cb

p*tu (<t *0) =0 (7)

The lateral boundary conditions are specified by

p* <x”°coarse' t( ° p - (C))

and

P* (x=jmaxAxf.ne, t) = p + sin (j?\jéq 9)



The quantity jraaxAx represents the right-most point on the various
grids. The computation of p*u at the lateral boundaries is obtained
by a straight-forward application of (4).

Condition (8) effectively imposes a '"solid wall" type lateral
boundary; however, the experiments are terminated before the wave
perturbations reach the wall. At the fine-mesh Ilateral boundary,
we have a harmonic oscillator that determines the pressure for all
time at that location. The amplitude of the oscillation is Icb
(see Egn. (9)), and its location insures that perturbations approach
the interface of the grids from the fine-mesh sides only. The
frequency of the oscillation (o) determines the wavelength of the
perturbation. Table | lists wavelengths associated with various
gravity-wave oscillator frequencies.

Table 1. Gravity-Wave Oscillator Frequencies
and Associated Wavelengths

Frequency* Wavelength Fine Mesh
(to) hr-' (km) Intervals (No.)
! 1054.8 35.16
2 527.4 17.58
3 351.6 11.72
4 263.7 8.79
5 210.96 7-03
6 175.8 5.86
7 150.7 5.02
8 131.85 4.4

* The frequency is the number of complete oscillations per hour.



Table 2 outlines the*specific gravity-wave experiments discussed

in this section.

Table 2. Gravity-Wave (GW) Experiments

Grid-mesh Propagation Grid Frequency of
Exp. ratio speed arrangement  oscillation Comments
(m sec ) (fig. 1) (hr:1
GW 1 3:1 293 ! ! fl:1 ratio
GW2 Do. Do. Do. k \of time
( steps
GW3 Do. Do. Do. Do. f3:1 ratio
<of time
( steps

Figure 2 shows the pressure distribution at selected times
for experiment GW1. The wave amplitudes and lengths are very nearly
conserved throughout the time integration. Therefore, the
presence of the mesh interface does not result in serious effects
to perturbations with wavelengths of approximately 35Ax fine-grid
intervals. The capability of our mesh refinement technique to deal
with relatively long waves agrees with the analytic results obtained

by Morse (1973)e



t= 2.0 Hours COARSE GRID FINE GRID

PRESSURE (MB.)

t= 4.0 Hours COARSE GRID FINE GRID

PRESSURE (MB)

t=5.17 Hours COARSE GRID FINE GRID

PRESSURE (MB.)

Figure 2. Evolution of pressure profile for experiment GWIL. Vertical
dashed lines represent the mesh interface.

Figure 3 compares the theoretical ratio of the reflected-to-
incident amplitude on the fine mesh (after Morse, 1973) with that
obtained numerically. The technique used for approximating the
amplitude of reflection in the numerical computations is presented
in Appendix A. For the range of wavelengths shown, the numerical
and theoretical computations agree reasonably well and show that the
magnitude of reflection increases for decreasing wavelengths. The
theoretical computations are not valid for wavelength of less than

9.2 fine-mesh intervals. The numerical computations, discussed

below, confirm this result.



INCIDENT AMPLITUDE

Figure 3. Theoretical (dashed
curve) and numerical (solid
curve) ratio of reflected to
incident amplitudes for
gravity wave experiments.

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6
— WAVELENGTH (NO OF FINE GRID INTERVALS)

Figure illustrates the numerical absolute maximum, fine-
mesh pressure deviation from the incident amplitude as a function
of frequency. This deviation is an approximate measure of the
reflected amplitude. The frequency to = 2.8 hr \ corresponding to
a 9.2 fine-mesh interval wavelength, approximates a "cutoff'" frequency,
above which the reflected amplitude roughly equals the incident

amplitude. Figure 4 also illustrates the maximum coarse-mesh trans-

mitted amplitude as a function of frequency. Up until to = 3-* hr

In both the amplitude calculations, we have not included the effect
of the leading, computationally dispersed perturbation (e.g., the top

of fig. 5). These precautions are particularly pertinent in computing
the correct amplitudes for the shorter wavelength (higher frequency)

perturbations, because the dispersion effects are more pronounced.



20 24 28 32 36 40 44 48 52 56 6.0 64 68 72 76 8.0 84 88

T-TT 104.3 2
1043
104.1 cz
2
1040 o

103.9
0 .
_h
-1 103.7 Z co
a X
1036 X
> M
1035 Rt
103.4 ggj
03 —

103.3
z

103.2
103.1 @
>
X . ) ],ll

1.0 1 i1 i1 1|,1|l 103.0

20 2.4 28 32 36 40 44 48 52 56 60 64 68 7.2 76 80 84 88
OMEGA

Figure 4. Numerical maximum absolute pressure deviation from incident
amplitude (s61id curve) and transmitted coarse-mesh pressure (dashed
curve) as a function of frequency for gravity wave experiments.

(10.3 fine-mesh intervals), the transmitted amplitude continually
increases. Thereafter, the amplitude decreases, and for w « * hr

it is only 18 percent of the incident value. Thus, the cutoff mentioned
above is also manifested by a "trapping" Gf the wave energy on the fine
mesh.  Although Morse's (1973) computations only went down to 10.3
fine-mesh intervals, he noted the same inverse relationship between
transmitted amplitude and incident wavelength that we also observed

up to that point. By showing the evolution of pressure distribution

for experiment GW2, figure 5 illustrates how the reflection is mani-

fested on the integration domain. The reflected wave has considerable

10
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PRESSURE

(MB.)

PRESSURE

PRESSURE  (MB.)

1040 t=2.0 Hours COARSE GRID FINE GRID

t = 4.0 Hours COARSE GRID FINE GRID

t = 5.17 Hours COARSE GRID FINE GRID

Figure 5. Evolution of pressure profile for experiment GW2. Vertical
dashed lines represent the mesh interface.
magnitude, and interacts both constructively and destructively with
the incident wave. Also, little energy is transmitted onto the coarse
mesh.
Figure 6 compares the evolution of fine-mesh kinetic energy for
experiments GW2 and GW3. Experiment GW3 differs from GW2 only in that

the coarse-mesh time step is three time greater than that of the fine-

mesh. The large amplitude fluctuations after 3.5 hours are a manifesta-

tion of reflection. The fluctuations in both these experiments are in

phase; however, the amplitude is greater for experiment GW3. Therefore,

the use of a longer coarse-mesh time step does not alter the propagation

speed of the reflected wave, but it does increase the amplitude of the

11



500.0
4400
380.0
320.0
o 260.0
200.0

140.0

TIME (HRS)

Figure 6. Fine mesh Kinetic energy as a function of time for
experiments GW2 (dashed curve) and GW3 (solid curve).

reflection. Morse (1973) speculated that a longer coarse-mesh time

step would decrease the magnitude of reflection.

4. LINEAR ADVECTION (LA) EXPERIMENTS
The integration procedure used in all but one of the linear

advection experiments is the leapfrog scheme given by

* - *_
pj N+ |oJ n-! y ﬁ;_ ' (10)

12



which is neutral for u A_ < 1. The values of u chosen for the
X

experiments presented in this section are -10m sec'™ or -300 m sec'™.

The initial condition is
p* (X,t=0) = p (11)

and the lateral boundary conditions are

P* (x-0 , ) =p (12
coarse
and
p* (Xsjmax4xf.ne, t) - p + sin »t) (13)
The speed u = -10 m sec™ is only about 4 percent of the gravity

wave propagation speed. Therefore, the frequency of the oscillator
must be changed accordingly. If we were to choose w = 2 hr *, for
example, the perturbation wavelength would be only 0.6Ax fine-mesh
grid intervals and could not be resolved on the grids. Table 3 lists

the wavelengths associated with various oscillator frequencies for

the linear advection experiments with u = -10 m sec''. When the

Table 3. Selected Frequencies and Associated Wavelengths
for the Linear Advection Experiments

Frequency Wavelength Fine Mesh

(to) hr-1 (km) Intervals (No.)
0.0333. . 1080 36

0.05 720 2b

0.0666 . . . 600 18

0.01 360 12

13



advecting current is -300 m sec-", the appropriate frequencies and

corresponding wavelengths are essentially the same as those presented
in table 1.

Table 4 outlines the specific linear advection experiments

discussed in this section.

Table 4. Linear Advection (LA) Experiments

Grid-mesh  Advection Gri d Frequency of

Exp. Ratio (mSgg%d, " Arrgglgglrrf)ent OS(lel_ﬁ ion Comments

LAI 31 10 3 0.033.e° 3:1 ratio of
time steps

LA2 Do. Do. Do. 0.05 Do.

LA3 Do. Do. Do. 0.066... Do.

LA4 2:1 Do. Do. Do. 2:1 ratio of
time steps

LA5 Do. Do. Do. 0.1 Do.

LAG Do. Do. Do. Do. Lax-Wendroff
i ntegration
scheme; 2:1
ratio of time
steps

LA7 3:1 300 Do. 4 3:1 ratio of
time steps

LA8 Do. Do. 2 Do. Do.

LA9 Do. Do. Do. Do. Upstream dif-

ferencing for
interface ten-

dency; 3:1
ratio of time
steps

14



PRESSURE (mb)

Figure 7 compares the pressure profiles at 150 hr for experiments
LAI, LA2, and LA3. The experiments differ only in the wavelengths of the
perturbations. The 36 Ax fine-grid wave (experiment LAIl) passes through
the interface without any serious alterations in the wave train. The
24 Ax fine-grid wave (experiment LA2) is well represented on the coarse
mesh; however, some 2 Ax separation is noticeable in the troughs and
ridges on the fine mesh. In experiment LA3, the 2 Ax noise is of greater
magnitude than in experiment LA2 and is more widespread; this indicates
that the amount of separation varies inversely with wavelength. Also,

the transmitted amplitudes are considerably reduced on the coarse mesh.

EXPERIMENT LA 1 COARSE GRID FINE GRID
1040
1030
1020

EXPERIMENT LA 2 COARSE GRID FINE GRID
1040
1030
1020

EXPERIMENT LA 3 COARSE GRID FINE GRID

1030 -

1020 -

Figure 7. Pressure profiles at 150 hr for experiments LAI, LA2, and
LA3. Vertical dashed lines represent the mesh interface.

15



Browning et al. (1973) used a leapfrog scheme in numerical experiments
with a different mesh refinement technique applied to the one-dimensional
linear advection equation. They found that perturbation wavelengths <

6 Ax coarse-grid intervals could not be transmitted from the fine to the
coarse mesh. Although our 6 Ax coarse-grid (I8Ax fine grid) waves are
not completely void on the coarse mesh in experiment LA3, this wavelength
is fairly close to the cutoff discussed below.

Figure 8 portrays the maximum fine-grid and the transmitted
coarse-grid pressure as a function of frequency (see FFf. 1). The fine-
grid noise separation and the trasmitted amplitude increase slightly
with decreasing wavelength up until © = 0.05 hr . After or$y 0.05 hr ,
however, the separation is more pronounced on the fine grid, and the
transmitted waves decrease sharply in amplitude. At » = 0.075 hr
(a 16Ax fine-grid or 5-33---Ax coarse-grid interval wavelength), the
coarse-grid amplitude is only 10 percent of the incident fine-grid
value. Therefore, wavelengths in the neighborhood of 16Ax fine-grid
intervals may be though of as corresponding to a short-wave cutoff

for the linear advection experiments with a 3*1 grid-mesh ratio.

16
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MAXIMUM PRESSURE

1044

—
‘

1043
1042

1041

1038
1037
1036
1035

1034

017 025 033 042 050 058 067 075 083 092 100

OMEGA (Hr.'1) |

Figure 8. Maximum fine-grid
pressure (solid curve) and
transmitted pressure (dashed
curve) as a function of
frequency for linear advec-
tion experiments with 3:1
grid mesh ratio.

Figure 9 illustrates the evolution of pressure distribution for

experiment LA3- Before the wave reaches the interface (50 hr), the

wave train is relatively undisturbed.

At 100 hr, some noise appears

on the fine mesh near the interface, and by 150 hr it has propagated

(at the same speed as the advecting current) well back into the fine

mesh. The implication of the above sequence is that the noise is

generated at the interface of the grids.

17
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PRESSURE

t =50 hours
COARSE GRID

1020

t= 100 hours
COARSE GRID

1040

t=150 hours
COARSE GRID

1040

1030

1020

FINE GRID

FINE GRID

FINE GRID

Figure 9. Evolution of pressure profiles for experiment LA3. Vertical
dashed lines represent the mesh interface.

Figure 10 compares the pressure distribution at 150 hours for

experiments LA4, LA5, and LA6. In these experiments, the grid-mesh

ratio is 2:1. The wavelengths of

the incident perturbations are the

same in experiments LA3 and LA*t; however, the fine mesh abberations are

not as pronounced with the 2:1 grid-mesh ratio (c.f. the bottom segment

of fig. 9). The waves in experiment LA" are well represented on the

coarse mesh. In experiment LA5, the incident perturbation wavelength

is smaller than in experiment LAM

amplitude reduction are evident.

and fine mesh noise and coarse mesh

The results of experiments LA3, LA4,

18



EXPERIMENT LA 4

COARSE GRID FINE GRID
1040

1030

1020

EXPERIMENT LA5
£1040

b)

COARSE GRID FINE GRID

1030

PRESSURE

EXPERIMENT LAG6

COARSE GRID | FINE GRID
1040

1030

Figure 10. Pressure profiles at 150 hr for experiments LA4, LA5 and
LA6. Vertical dashed lines represent the mesh interface.

and LA5 show that the magnitude of the fine-mesh separation and the

amount of coarse mesh amplitude reduction are a function of both the

incident wavelength and the ratio of the grid increments.

In experiment LA6, the Lax-Wendroff integration procedure given

by
i- At
U(I 07 2AX
J -1

is used; otherwise, this experiment is identical to experiment LAS.
Some noise evident near the interface, but it does not encompass as

much of the fine grid as is apparent in experiment LA5. The Lax-

19



PRESSURE (mb)

Wendroff scheme contains the effect of artificial viscosity (the last

term in Egqn. 14), and this causes the short wavelength components of

the solution to be damped as the calculation progresses (Richtmyer and

Morton, 1967)- Therefore, the result of experiment LA6 is not surprising.
The common properties of experiments LA7, LA8, and LA9 (fig. 11)

are that they involve an 18Ax fine-grid wave with a 3:1 grid-mesh

ratio and an advecting current of -300 m sec \ Experiment LA7 is

identical to experiment LA3, except that the advecting currents differ.

The top of figure 11 illustrates the pressure distribution at 5 hr

for experiment LA7- The noise generated with the large advection speed

is greater than that in experiment LA3 (c.f., the bottom of fig. 9).

EXPERIMENT LA 7 COARSE GRID FINE GRID
1040

EXPERIMENT LA 8 COARSE GRID FINE GRID
1030

EXPERIMENT LA 9 COARSE GRID FINE GRID

Figure 11. Pressure profiles at 5 hr for experiments LA7, LA8f and
LA9. Vertical dashed lines represent the mesh interface.

20



Experiment LA8 is the same as experiment LA7 except that the computa-
tions were performed on grid arrangement 2. This arrangement results
in more noise generation than what occurs with grid arrangement 3.
That is, averaging the fine-grid interval inside the interface and the
coarse-grid tendency just outside the interface (to obtain the inter-
face tendency) gives a better result than does equating the interface
tendency to a coinciding coarse-grid value (see fig. 1). tn both
experiments LA7 and LA8, damping on the coarse grid is apparent.

An explanation for the increased fine-mesh solution separation
that occurs in experiment LA8 is that the pressure at the interface
is determined entirely from the coarse-mesh, large-scale, forecast.
This technique is feasible if the perturbation wavelengths are long,
because the fine-mesh wave features are well represented on the coarse
mesh. However, the incident perturbation wavelength is short and
therefore the coarse grid determined interface pressure lacks sufficient
fine-mesh scale structure. The unresolved fine-scale pressure is then
reflected from the interface and excites a 2Ax separation of the
solution in the fine-mesh domain. This effect is analogous to that

generated by a wave reflected off a solid wall.

This argument may be essentially applied to the short-wavelength
computations on grid arrangement 3 because the interface tendency is
partially determined from the coarse grid computations.

21



Charney et al. (1950) showed that for a forecast of barotropic
vorticity, the boundary vorticity must be specified (independent of
the interior solution) on *'... that part of the boundary at which the
fluid is entering the interior region.” In our computations for a
wave traveling from the fine to the coarse mesh, the "interior region"
may be considered as the coarse mesh and the "boundary"” the mesh
interface. Therefore, if the interface tendency is determined entirely
from the fine mesh, the boundary specification quoted above would be
satisfied. This, in combination with the arguments presented in the
previous paragraph, forms the basis for experiment LA9-

Experiment LA9 is the same as experiment LA8, except that the
interface tendency is computed by upstream differencing where

=-u (—__ Interface } * (15)

interface ~xfine

and p; is the pressure one fine-grid interval inside the interface.
Although the coarse-grid waves are still damped, there is no apparent
separation on the fine grid. The effectiveness of this, technique in
eliminating boundary induced noise, for a limited area fine-mesh

forecast of vorticity, was demonstrated by Shapiro and O'Brien (1970).

5. SUMMARY AND CONCLUSIONS
In the gravity wave experiments having a 3:1 grid-mesh ratio,
the amplitude of waves reflected and transmitted from the mesh inter-

face slowly increased for decreasing wavelengths down to approximately

22



10.3Ax fine-grid intervals. These amplitude changes agreed quite well
with the theoretical results obtained by Morse (1973). He terminated

his computations at 10.3”x fine-mesh intervals, however, and we performed
numerical experiments with smaller incident wavelength perturbations.

As the wavelength approached 9.2Ax fine-mesh intervals, the reflected

and incident amplitudes became almost equal and the transmitted amplitudes
were considerably reduced. Morse (1973) also showed that the aber-
rations caused by short-wavelength interactions with the mesh interface
could be reduced if a smaller grid-mesh ratio was implemented. To a
certain extent, we confirmed this result in the linear advection

experiments with a 2:1 grid mesh ratio.

Browning et al. (1973) found that wavelengths of approximately
6Ax Iintervals and below could not be advected on a uniform grid. When
the coarse-mesh wavelengths were this small, their numerical nested-
grid computations allowed n£ transmission from the fine mesh onto the
coarse mesh. Our linear advection experiments, with a different mesh
refinement technique, showed essentially the same phenomenon.

In addition to verifying some of the results of Morse (1973)
and Browning et al. (1973), we also demonstrated the following: Using
the same time step on both grids reduces the amplitude of gravity
wave reflection; and that the 2Ax solution separation that occurs in
the short wavelength linear advection experiments can be effectively

eliminated by computing the interface tendency with upstream differences.

23
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APPENDIX A. TECHNIQUE FOR APPROXIMATING
THE REFLECTED AMPLITUDE

Figure A.l illustrates the maximum fine-mesh pressure, as a
function of time, in a region (points 20 to 60) well away from the
interface and the harmonic oscillator, for a gravity wave experiment
with to = 2hr ** The reflected waves do not reach this region until
about 3-6 hr, and the pressure fluctuations until then are a mani-
festation of truncation error. From 3.6 to 5.k hr, the fluctuations
are erratic and of relatively large amplitude. This occurs because
the leading, computationally dispersed waves are not monochromatic
and, thereby, contain very short wavelength components. These
components are easily reflected and have relatively large amplitude.

Since we are only concerned with the 17.58Ax fine-grid interval waves

MAXIMUM PRESSURE . FINE MESH (CB)

30 35 4.0 45 50 55 60 65
104.10 — — 104.10
104.05 — 104.05
104 00 104.00
10395 103.95

TIME
(HOURS)
Figure A.l. Evolution of maximum pressure, in a selected region of

the fine mesh, for a gravity wave experiment with w = 2 hr*1.
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(table 2), the pressure values until 5.4 hr are ignored. From 5.4 to
6 hr, the interactions of the reflected and incident wave trains
produce the steady oscillation that would be expected for a monochro-
matic wave. The waves reflect off the fine-mesh oscillator and
reenter the region at about 6 hr. Therefore, only the period from
5.4 to 6 hr is used to approximate the amplitude of the wave reflected
from the mesh interface.

After determining the appropriate time period to examine, we
average the values in the peaks above and below 104 cb (the amplitude
of the oscillator is | cb). The reflected amplitude is assumed to be
equal to the absolute maximum of the deviation averages. The
averaging procedure is applied to smooth out the abberations caused by

truncation error.
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