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NUMERICAL GRAVITY WAVE AND LINEAR ADVECTION 
EXPERIMENTS ON A ONE-DIMENSIONAL NESTED GRID

Michael S. Moss

Numerical experiments with a mesh refinement 
technique are applied to the finite difference equations 
that represent one-dimensional gravity wave and advection 
phenomena. The grid consists of a coarse mesh and a fine 
mesh interfaced at the origin. The problem of a nearly 
monochromati’c sine wave approaching the interface from the 
fine-mesh side is examined. Numerical experiments that 
parallel the analytic study of Morse (1973) confirm most 
of his conclusions. In addition, there is a relatively 
short wave cutoff, below which practically all the energy 
is trapped on the fine mesh. Integrating a linear advection 
equation on the nested grid results in a 2 Ax separation 
of the solution on the fine mesh after the wave reaches 
the interface, The problem is corrected by using upstream 
differences for evaluating the tendency at the interface.

1. INTRODUCTION

Recently Moss and Jones (1973) discussed the results of 

experiments that incorporated a one-dimensional nested grid. In 

these experiments, the nested grid consisted of a fine mesh (30 km 

grid increment) centered on a coarse mesh (90 km grid increment).

The Matsuno (1966) time integration procedure was applied to a 

perturbation initially centered on both grids. Unfortunately, the 

events that occurred when the perturbation crossed the interface of 

the grids were obscured by computational dispersion and the tendency 

of the integration scheme to damp high-frequency gravity waves.

In this paper, results of experiments using "neutral" integra 

tion procedures applied to nearly monochromatic waves are presented. 

The first part of this paper discusses results from numerical



experiments comparable with those of Morse (1973)- He obtained an 

analytic solution to the one-dimensional wave equation on a nested 

grid. In the second part of this paper, results from various nested- 

grid linear advection experiments are presented.

2. MODEL EQUATIONS AND THE NESTED GRID

The partial differential equations used in this study are as 

follows. For the gravity wave,

3_
3t

p«u RT 3p“
3x 9 CD

3_
3x

p*u (2)

and the linear advection equation is given by

_3
3t

(3)

A derivation of equations similar to these is given by Moss and Jones

(1973).

The symbols are defined as follows: 

t - time,

x - east-west direction, 

u - east-west velocity component,

p* - surface pressure,

R - specific gas constant for dry air,

T - mean temperature (300° K), and 

H - constant advecting current.

2



The spatial domain is represented by two, mutually interacting, 

96 or 97 point, uniform grids, each having a different mesh length.

In most of the experiments, the ratio of the mesh lengths is 3:1 (see 

fig. 1); in which case the fine mesh coincides with the right one- 

third of a coarse mesh. This grid-mesh ratio is the same as that 

used in the National Hurricane Research Laboratory (NHRL), three- 

dimensional, nested-grid hurricane mode 1 (Jones, 197^)- For the 

other experiments, the ratio is 2:1, and the fine mesh coincides with 

the right half of the coarse mesh. The remaining discussion in this 

section refers to experiments with a 3:1 grid-mesh ratio.

X—u point on coarse grid O—p* point on coarse grid 
x —u point on fine grid ° — p* point on fine grid

--------------COARSE MESH-----------

OXOXO
GRID ARRANGEMENT 1

-j-------------- FINE MESH------------ ^

<{>XoxOxoXoxO xo
ii
ii

o o
GRID ARRANGEMENT 2

O O
GRID ARRANGEMENT 3

O

I
IIIIIII

III? o O

O o o

o o O

O

o

Figure 1. Sample data arrangements for various experimental grids 
(3:1 grid-mesh ratio). Vertical dashed line represents the mesh 
interface.
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In the gravity-wave experiments, the two dependent variables 

(p*u and p*) are staggered in space. An example of this grid 

arrangement is presented at the top of figure 1. In the advection 

experiments, two different grid arrangements were used (see bottom 

of fig. 1). When coarse-grid points coincide with the mesh interface 

(grid arrangement 2), the fine mesh tendency there is simply assigned 

the value of the coinciding coarse-mesh point. When coarse-grid 

points do not coincide with the interface (grid arrangement 3) the 

interface tendency is obtained by a linear interpolation of the coarse- 

grid tendency just outside the interface and the fine-grid tendency one 

fine-grid interval inside the interface. The computation of the inter­

face tendencies on grid arrangement 1 is a combination of the above 

two techniques. A detailed explanation of the interface tendency 

calculations for grid arrangement 1 is given by Moss and Jones (1973)• 

The integration of the equations proceeds from the coarse mesh 

to the fine mesh. Coarse-grid variables that overlap fine-grid points 

are reevaluated by applying a Schuman (1957) type three-point filtering 

operator to the coincident and adjacent fine-mesh data. The fine- 

mesh grid increment and time step are 30 km and *t0 sec, respectively. 

The coarse-grid space and time increments are appropriate Integer 

multiples of those for the fine mesh. For example, with a 3:1 grid- 

mesh ratio, the coarse-grid spatial increment is 90 km and the coarse- 

grid time step is 2 min. Some experiments had the time step the same 

on both grids.
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3. GRAVITY WAVE EXPERIMENTS

Following Morse (1973), the integration scheme used for the 

gravity wave (GW) experiments is

p*un+1
j

p*un
j

RT (p*n - p*" )
J+± J-i

At
Ax

(*)

>*n+l
j ~i

= p>
j'i

(p*un+1 - p*un+1) —
j j-1 Ax

(5)

where the subscripts denote relative spatial locations and the super­

scripts are the time levels. The norm of the amplification matrix for

the finite difference equations (h) and (5) is unity for c ■1 -— < 1
Ax

(Richtmyer and Morton, 1967); therefore, the scheme is neutral when 

this condition is satisfied. The propagation speed (c) is obtained 

from (1) and (2) and is

c =
+ (6)

The initial conditions are

p* (x,t = 0) = p = 103 cb

p*u (x,t * 0) = 0 * (7)

The lateral boundary conditions are specified by 

p* <x’°coarse' t( ° p - (8)

and
___ ^ jy

P* (x=jmaxAxf.ne, t) = p + sin (j^qq (9)
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The quantity jraaxAx represents the right-most point on the various 

grids. The computation of p*u at the lateral boundaries is obtained 

by a straight-forward application of (4).

Condition (8) effectively imposes a "solid wall" type lateral 

boundary; however, the experiments are terminated before the wave 

perturbations reach the wall. At the fine-mesh lateral boundary, 

we have a harmonic oscillator that determines the pressure for all 

time at that location. The amplitude of the oscillation is lcb 

(see Eqn. (9)), and its location insures that perturbations approach 

the interface of the grids from the fine-mesh sides only. The 

frequency of the oscillation (to) determines the wavelength of the 

perturbation. Table 1 lists wavelengths associated with various 

gravity-wave oscillator frequencies.

Table 1. Gravity-Wave Oscillator Frequencies 
and Associated Wavelengths

Frequency*
(to) hr-'

Wavelength 
(km) 

Fine Mesh
Intervals (No.)

1 1054.8 35.16
2 527.4 17.58
3 351.6 11.72
4 263.7 8.79
5 210.96 7-03
6 175.8 5.86
7 150.7 5.02
8 131.85 4.4

* The frequency is the number of complete oscillations per hour.
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Table 2 outlines the*specific gravity-wave experiments discussed

in this section.

Table 2. Gravity-Wave (GW) Experiments

Exp.
Grid-mesh 

rat io
Propagation 

speed 
(m sec )

Gr i d
arrangement 

(fig. 1)

Frequency of 
osci1lation 

(hr:1)
Comments

GW 1 3:1 293 1 1 fl:l ratio
GW 2 Do. Do. Do. k \of time 

( steps
GW 3 Do. Do. Do. Do. f3:l ratio 

<of time 
( steps

Figure 2 shows the pressure distribution at selected times 

for experiment GW1. The wave amplitudes and lengths are very nearly 

conserved throughout the time integration. Therefore, the 

presence of the mesh interface does not result in serious effects 

to perturbations with wavelengths of approximately 35Ax fine-grid 

intervals. The capability of our mesh refinement technique to deal 

with relatively long waves agrees with the analytic results obtained 

by Morse (1973)•
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Figure 2. Evolution of pressure profile for experiment GWl. Vertical 
dashed lines represent the mesh interface.

Figure 3 compares the theoretical ratio of the reflected-to- 

incident amplitude on the fine mesh (after Morse, 1973) with that 

obtained numerically. The technique used for approximating the 

amplitude of reflection in the numerical computations is presented 

in Appendix A. For the range of wavelengths shown, the numerical 

and theoretical computations agree reasonably well and show that the 

magnitude of reflection increases for decreasing wavelengths. The 

theoretical computations are not valid for wavelength of less than 

9.2 fine-mesh intervals. The numerical computations, discussed 

below, confirm this result.
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Figure 3. Theoretical (dashed 
curve) and numerical (solid 
curve) ratio of reflected to 
incident amplitudes for 
gravity wave experiments.

Figure illustrates the numerical absolute maximum, fine- 

mesh pressure deviation from the incident amplitude as a function 

of frequency. This deviation is an approximate measure of the 
reflected amplitude. The frequency to = 2.8 hr \ corresponding to 

a 9.2 fine-mesh interval wavelength, approximates a "cutoff" frequency, 

above which the reflected amplitude roughly equals the incident 

amplitude. Figure 4 also illustrates the maximum coarse-mesh trans­

mitted amplitude as a function of frequency.^ Up until to = 3-** hr

In both the amplitude calculations, we have not included the effect 
of the leading, computationally dispersed perturbation (e.g., the top 
of fig. 5). These precautions are particularly pertinent in computing 
the correct amplitudes for the shorter wavelength (higher frequency) 
perturbations, because the dispersion effects are more pronounced.
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Figure 4. Numerical maximum absolute pressure deviation from incident 
amplitude (s61id curve) and transmitted coarse-mesh pressure (dashed 
curve) as a function of frequency for gravity wave experiments.

(10.3 fine-mesh intervals), the transmitted amplitude continually 

increases. Thereafter, the amplitude decreases, and for w « ^ hr“^ 

it is only 18 percent of the incident value. Thus, the cutoff mentioned 

above is also manifested by a "trapping" Gf the wave energy on the fine 

mesh. Although Morse's (1973) computations only went down to 10.3 

fine-mesh intervals, he noted the same inverse relationship between 

transmitted amplitude and incident wavelength that we also observed 

up to that point. By showing the evolution of pressure distribution 

for experiment GW2, figure 5 illustrates how the reflection is mani­

fested on the integration domain. The reflected wave has considerable
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Figure 5. Evolution of pressure profile for experiment GW2. Vertical 
dashed lines represent the mesh interface.

magnitude, and interacts both constructively and destructively with 

the incident wave. Also, little energy is transmitted onto the coarse 

mesh.

Figure 6 compares the evolution of fine-mesh kinetic energy for 

experiments GW2 and GW3. Experiment GW3 differs from GW2 only in that 

the coarse-mesh time step is three time greater than that of the fine- 

mesh. The large amplitude fluctuations after 3.5 hours are a manifesta­

tion of reflection. The fluctuations in both these experiments are in 

phase; however, the amplitude is greater for experiment GW3. Therefore, 

the use of a longer coarse-mesh time step does not alter the propagation 

speed of the reflected wave, but it does increase the amplitude of the

11
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Figure 6. Fine mesh kinetic energy as a function of time for 
experiments GW2 (dashed curve) and GW3 (solid curve).

reflection. Morse (1973) speculated that a longer coarse-mesh time 

step would decrease the magnitude of reflection.

4. LINEAR ADVECTION (LA) EXPERIMENTS 

The integration procedure used in all but one of the linear 

advection experiments is the leapfrog scheme given by

p*n+1 = p*n-1
j j u At_

Ax ’ (10)
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which is neutral for u — < 1. The values of u chosen for the
Ax

experiments presented in this section are -10m sec"' or -300 m sec"'. 

The initial condition is

p* (x,t=0) = p (11)

and the lateral boundary conditions are

P* (x-0 , t) = p
coarse

(12)

and

p* (x=jmax4xf.ne, t) - p + sin »t) (13)

The speed u = -10 m sec"' is only about 4 percent of the gravity 

wave propagation speed. Therefore, the frequency of the oscillator 

must be changed accordingly. If we were to choose co = 2 hr ', for 

example, the perturbation wavelength would be only 0.6Ax fine-mesh 

grid intervals and could not be resolved on the grids. Table 3 lists 

the wavelengths associated with various oscillator frequencies for 

the linear advection experiments with u = -10 m sec"'. When the

Table 3. Selected Frequencies and Associated Wavelengths 
for the Linear Advection Experiments

Frequency 
(to) h r— 1

Wavelength
(km)

Fine Mesh
Intervals (No.)

0.0333. •. 1080 36
0.05 720 2b
0.0666 . . . 600 18
0.01 360 12

13



advecting current is -300 m sec-', the appropriate frequencies and 

corresponding wavelengths are essentially the same as those presented 

in table 1.

Table 4 outlines the specific linear advection experiments 

discussed in this section.

Table 4. Linear Advection (LA) Experiments

Exp. 
Grid-mesh 

Ratio
Advection 

Speed 
(m sec’^)

Gri d
Arrangement 

(Fig.1)

Frequency of
Osci11 at ion (hr-T) Comments

LAI 3:1 10 3 0.033.•• 3:1 ratio of 

LA2 Do. Do. Do. 0.05
time steps

Do.
LA3 Do. Do. Do. 0.066... Do.
LA4 2:1 Do. Do. Do. 2 :1 ratio of 

LA5 Do. Do. Do. 0.1
time steps

Do.
LA6 Do. Do. Do. Do. Lax-Wendroff 

i ntegration 
scheme; 2:1 
ratio of time 

LA7 3:1 300 Do. 4
steps

3:1 ratio of 

LA8 Do. Do. 2 Do.
time steps

Do.
LA9 Do. Do. Do. Do. Upstream dif-

ferencing for 
interface ten­
dency; 3:1 
ratio of time 
steps

14



Figure 7 compares the pressure profiles at 150 hr for experiments 

LAI, LA2, and LA3. The experiments differ only in the wavelengths of the 

perturbations. The 36 Ax fine-grid wave (experiment LAI) passes through 

the interface without any serious alterations in the wave train. The 

24 Ax fine-grid wave (experiment LA2) is well represented on the coarse 

mesh; however, some 2 Ax separation is noticeable in the troughs and 

ridges on the fine mesh. In experiment LA3, the 2 Ax noise is of greater 

magnitude than in experiment LA2 and is more widespread; this indicates 

that the amount of separation varies inversely with wavelength. Also, 

the transmitted amplitudes are considerably reduced on the coarse mesh.

PR
ES

SU
R

E (m
b)
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1020

EXPERIMENT LA 2 COARSE GRID FINE GRID
1040

1030

1020

EXPERIMENT LA 3 FINE GRIDCOARSE GRID

1030 -

1020 -

Figure 7. Pressure profiles at 150 hr for experiments LAI, LA2, and 
LA3. Vertical dashed lines represent the mesh interface.
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Browning et al. (1973) used a leapfrog scheme in numerical experiments 

with a different mesh refinement technique applied to the one-dimensional 

linear advection equation. They found that perturbation wavelengths <

6 Ax coarse-grid intervals could not be transmitted from the fine to the 

coarse mesh. Although our 6 Ax coarse-grid (l8Ax fine grid) waves are 

not completely void on the coarse mesh in experiment LA3, this wavelength 

is fairly close to the cutoff discussed below.

Figure 8 portrays the maximum fine-grid and the transmitted 

coarse-grid pressure as a function of frequency (see ff. l). The fine-

grid noise separation and the trasmitted amplitude increase slightly 

with decreasing wavelength up until co = 0.05 hr . After or85 0.05 hr , 

however, the separation is more pronounced on the fine grid, and the 

transmitted waves decrease sharply in amplitude. At u> = 0.075 hr 

(a 16Ax fine-grid or 5-33-•-Ax coarse-grid interval wavelength), the 

coarse-grid amplitude is only 10 percent of the incident fine-grid 

value. Therefore, wavelengths in the neighborhood of 16Ax fine-grid 

intervals may be though of as corresponding to a short-wave cutoff 

for the linear advection experiments with a 3*1 grid-mesh ratio.

16
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Figure 9 illustrates the evolution of pressure distribution for 

experiment LA3- Before the wave reaches the interface (50 hr), the 

wave train is relatively undisturbed. At 100 hr, some noise appears 

on the fine mesh near the interface, and by 150 hr it has propagated 

(at the same speed as the advecting current) well back into the fine 

mesh. The implication of the above sequence is that the noise is 

generated at the interface of the grids.
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Figure 9. Evolution of pressure profiles for experiment LA3. Vertical 
dashed lines represent the mesh interface.

Figure 10 compares the pressure distribution at 150 hours for 

experiments LA4, LA5, and LA6. In these experiments, the grid-mesh 

ratio is 2:1. The wavelengths of the incident perturbations are the 

same in experiments LA3 and LA*t; however, the fine mesh abberations are 

not as pronounced with the 2:1 grid-mesh ratio (c.f. the bottom segment 

of fig. 9). The waves in experiment LA^ are well represented on the 

coarse mesh. In experiment LA5, the incident perturbation wavelength 

is smaller than in experiment LA^ and fine mesh noise and coarse mesh 

amplitude reduction are evident. The results of experiments LA3, LA4,

18
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Figure 10. Pressure profiles at 150 hr for experiments LA4, LA5 and 
LA6. Vertical dashed lines represent the mesh interface.

and LA5 show that the magnitude of the fine-mesh separation and the 

amount of coarse mesh amplitude reduction are a function of both the 

incident wavelength and the ratio of the grid increments.

In experiment LA6, the Lax-Wendroff integration procedure given 

by

u(i:,

1 — ,Atx2
lu

At
2Ax

- 2p*n + p*n )
j j-1

CH)

is used; otherwise, this experiment is identical to experiment LA5. 

Some noise evident near the interface, but it does not encompass as 

much of the fine grid as is apparent in experiment LA5. The Lax-

19



Wendroff scheme contains the effect of artificial viscosity (the last 

term in Eqn. 14), and this causes the short wavelength components of 

the solution to be damped as the calculation progresses (Richtmyer and 

Morton, 1967)- Therefore, the result of experiment LA6 is not surprising.

The common properties of experiments LA7, LA8, and LA9 (fig. 11) 

are that they involve an 18Ax fine-grid wave with a 3:1 grid-mesh 

ratio and an advecting current of -300 m sec \ Experiment LA7 is 

identical to experiment LA3, except that the advecting currents differ.

The top of figure 11 illustrates the pressure distribution at 5 hr 

for experiment LA7- The noise generated with the large advection speed

is greater than that in experiment LA3 (c.f., the bottom of fig. 9).
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Figure 11. Pressure profiles at 5 hr for experiments LA7, LA8 f and 
LA9. Vertical dashed lines represent the mesh interface.
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Experiment LA8 is the same as experiment LA7 except that the computa­

tions were performed on grid arrangement 2. This arrangement results 

in more noise generation than what occurs with grid arrangement 3.

That is, averaging the fine-grid interval inside the interface and the 

coarse-grid tendency just outside the interface (to obtain the inter­

face tendency) gives a better result than does equating the interface 

tendency to a coinciding coarse-grid value (see fig. 1). tn both 

experiments LA7 and LA8, damping on the coarse grid is apparent.

An explanation for the increased fine-mesh solution separation 

that occurs in experiment LA8 is that the pressure at the interface 

is determined entirely from the coarse-mesh, large-scale, forecast.

This technique is feasible if the perturbation wavelengths are long, 

because the fine-mesh wave features are well represented on the coarse 

mesh. However, the incident perturbation wavelength is short and 

therefore the coarse grid determined interface pressure lacks sufficient 

fine-mesh scale structure. The unresolved fine-scale pressure is then 

reflected from the interface and excites a 2Ax separation of the 

solution in the fine-mesh domain. This effect is analogous to that 

generated by a wave reflected off a solid wall.

This argument may be essentially applied to the short-wavelength 
computations on grid arrangement 3 because the interface tendency is 
partially determined from the coarse grid computations.

21



Charney et al. (1950) showed that for a forecast of barotropic 

vorticity, the boundary vorticity must be specified (independent of 

the interior solution) on "... that part of the boundary at which the 

fluid is entering the interior region." In our computations for a 

wave traveling from the fine to the coarse mesh, the "interior region" 

may be considered as the coarse mesh and the "boundary" the mesh 

interface. Therefore, if the interface tendency is determined entirely 

from the fine mesh, the boundary specification quoted above would be 

satisfied. This, in combination with the arguments presented in the 

previous paragraph, forms the basis for experiment LA9-

Experiment LA9 is the same as experiment LA8, except that the 

interface tendency is computed by upstream differencing where

=-u (—___ Interface } ^ (15)

interface ^xfine

and p* is the pressure one fine-grid interval inside the interface.
2

Although the coarse-grid waves are still damped, there is no apparent 

separation on the f i ne grid. The effectiveness of this, technique in 

eliminating boundary induced noise, for a limited area fine-mesh 

forecast of vorticity, was demonstrated by Shapiro and O'Brien (1970).

5. SUMMARY AND CONCLUSIONS

In the gravity wave experiments having a 3:1 grid-mesh ratio, 

the amplitude of waves reflected and transmitted from the mesh inter­

face slowly increased for decreasing wavelengths down to approximately

22



10.3Ax fine-grid intervals. These amplitude changes agreed quite well 

with the theoretical results obtained by Morse (1973). He terminated 

his computations at 10.3^x fine-mesh intervals, however, and we performed 

numerical experiments with smaller incident wavelength perturbations.

As the wavelength approached 9.2Ax fine-mesh intervals, the reflected 

and incident amplitudes became almost equal and the transmitted amplitudes 

were considerably reduced. Morse (1973) also showed that the aber­

rations caused by short-wavelength interactions with the mesh interface 

could be reduced if a smaller grid-mesh ratio was implemented. To a 

certain extent, we confirmed this result in the linear advection 

experiments with a 2:1 grid mesh ratio.

Browning et al. (1973) found that wavelengths of approximately 

6Ax intervals and below could not be advected on a uniform grid. When 

the coarse-mesh wavelengths were this small, their numerical nested- 

grid computations allowed n£ transmission from the fine mesh onto the 

coarse mesh. Our linear advection experiments, with a different mesh 

refinement technique, showed essentially the same phenomenon.

In addition to verifying some of the results of Morse (1973) 

and Browning et al. (1973), we also demonstrated the following: Using

the same time step on both grids reduces the amplitude of gravity 

wave reflection; and that the 2Ax solution separation that occurs in 

the short wavelength linear advection experiments can be effectively 

eliminated by computing the interface tendency with upstream differences.
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APPENDIX A. TECHNIQUE FOR APPROXIMATING 
THE REFLECTED AMPLITUDE

Figure A.l illustrates the maximum fine-mesh pressure, as a 

function of time, in a region (points 20 to 60) well away from the 

interface and the harmonic oscillator, for a gravity wave experiment 

with to = 2hr '' The reflected waves do not reach this region until 

about 3-6 hr, and the pressure fluctuations until then are a mani­

festation of truncation error. From 3.6 to 5.k hr, the fluctuations 

are erratic and of relatively large amplitude. This occurs because 

the leading, computationally dispersed waves are not monochromatic 

and, thereby, contain very short wavelength components. These 

components are easily reflected and have relatively large amplitude. 

Since we are only concerned with the 17.58Ax fine-grid interval waves
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Figure A.l. Evolution of maximum pressure, in a selected region of 
the fine mesh, for a gravity wave experiment with w = 2 hr*1.
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(table 2), the pressure values until 5.4 hr are ignored. From 5.4 to 

6 hr, the interactions of the reflected and incident wave trains 

produce the steady oscillation that would be expected for a monochro- 

matic wave. The waves reflect off the fine-mesh oscillator and 

reenter the region at about 6 hr. Therefore, only the period from 

5.4 to 6 hr is used to approximate the amplitude of the wave reflected 

from the mesh interface.

After determining the appropriate time period to examine, we 

average the values in the peaks above and below 104 cb (the amplitude 

of the oscillator is 1 cb). The reflected amplitude is assumed to be 

equal to the absolute maximum of the deviation averages. The 

averaging procedure is applied to smooth out the abberations caused by 

truncation error.
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