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Frontispiece. Comparison between coherence squared obtained from the
R-(Yule-Walker) process (dashed) and the multichannel Burg process
for the nearly monochromatic signal described in section 2.
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COMPUTER PROGRAMS FOR MAXIMUM ENTROPY SPECTRAL
ANALYSIS OF REAL AND COMPLEX MULTICHANNEL TIME SERIES
(WITH MICROFILM PLOTS)

Otto Neall Strand
NOAA/ERL/Wave Propagation Laboratory
Boulder, Colorado 80302

ABSTRACT

This report describes various FORTRAN computer
programs for maximum entropy spectral analysis of a
complex or real vector time series. The descriptions
include sufficient detail to permit the programs to
be implemented correctly. All programs have been care-

fully checked out, and are available from the author

on request.
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1. INTRODUCTION

This report describes several computer programs written to implement
multichannel maximum entropy spectral analysis. The main objective of these
programs is to obtain an estimate of the multivariate power spectral density
for a real or complex multichannel time series. Although most of the pro-
grams described here can be used for single-channel series by setting the
number of channels equal to 1, a separate report (Strand, et al., 1977) and
separate programs have been written for the single-channel case because of
reduced storage and program complexity. In the present report we strive to
provide the user with enough information to enable him to implement the pro-
grams correctly. Many mathematical derivations have been intentionally
omitted, although we attempt to state most of the formulas required for the
solutions. For details one may consult Strand (1977). loannidis (1975) gives
a clear exposition of multichannel methods similar to some of those presented
here; derivations and discussions of the single-channel case are presented by
Burg (1975), Kanasewich (1973), Haykin and Kesler (1976), and Ulrych and
Bishop (1975). In this report many specific details regarding the computer
programs are also deliberately omitted. If such specific details are desired,
the user should consult the relevant source deck; in some cases COMMENT cards

indicate programming options.

We consider the complex p-channel vector time-series

vi(t)
y2(t)

G.i)
where we assume that y(t) is wide-sense stationary with zero mean. The
N-element forward filter (or forward filter of length N) has the form

; A . _ ;
y(t) + FKN y(t " kAt) = eN(t) 1.2

k=l



This is called a forward filter because y(t) is predicted ahead, in terms
of previous values y(t - kAt). The term e™(t) is called the output of the
filter and plays the role of an error. Similarly, we may define the N-element

backward filter

N *
y(t) + | BkN y(t + kAt) = b (D). (1-3)
k=l
In (1.2) and (1.3), the forward and backward filter coefficients, and
BkN’ respectively, are complex p x p matrices. The star * is used to denote
Hermitian conjugation; for instance, is the conjugate transpose of F/.

For optimum forward or backward filters (2.2) or (2.3) we impose the condi-

tion that the expected mean-square value of e”™(t) or b™(t) should be a

minimum. For (2.2) this involves determining FIKIt# Fé\,)g le/l such that
E((eN (t)] CeN(t)]} = minimum (1-4)

where E{ } denotes the expected value. Inserting the expression (1.2) for
e~ft) into (1.4) and minimizing with respect to the coefficients i gives
the system

R@R1 RN I Py

-1Vi ~o1 fin 0

R-NR-N+1 +'+ Ro fnn 0
where | is the_p X p identity matrix and the _squarg block submatrices in this

system are defined by
Rk = E[y()y*(t - kAY], k = 0,1,...N (1-6)

so that
Rkm< . (i-7)

We sometimes call the coefficient matrix in (1.5) the R-matrix or simply R.
The forward power matrix for the resulting optimum filter (that is, for
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FKN satisfying (1.5)) is

PN - E{eN(t)e*(t)} 1.9

Because the satisfy (1.5), it can be shown that

Py = Fy R FR (1.9)

where we define FN (single subscript) by
= e  F\YWNV/
Fm [”FIN'

System (1.5) is identical to the transposed form of the system resulting
from the multichannel equations cited by Wiggins and Robinson (1965) for the
real case, except that matrix transposes have been replaced by Hermitian
conjugates. Because of (1.7) it is apparent that the optimum backward
filter (1.3) satisfies

ROR-1 v+ | o
Ry |
R1R0 R-N+| bin o
. : (1.10)
>»n-1 ... R bnn ‘ o

We sometimes call the coefficient matrix in (1.10) the R -matrix, or simply

*

t
A v The backward power matrix for the resulting optimum filter is
PN - E{bN(t)bN(t)> (.H)

and it follows from (1.10) that

_ bn r' bn (1.12)

where
h Knl BNNA

=



If one has suitable approximations to the R,, he may solve (1.5) to obtain
)

the matrix coefficients Fk]l\)l(T after which ther power matrices IKZ(T and PN afe
determined by (1.9) and (1.12). However, itcan be shown that P” and P* may

be computed by the simple recursion formulas

PN = PNl - TN PNAT BN (1.13)

and

PN PN-1 " PN-1 CN (1.124)

where the forward and backward matrix reflection coefficients CN and CN are

defined by

cM = BXTM - 1.15
CN NN and N NN ( )

Because the expected values in (1.6) cannot be obtained from a finite sample
of a single realization of y(t), it is necessary to use approximations. We
denote by P and P" the result of substituting approximate values of into
(1.9) and (1.12) or equivalently (1.13) and (1.14). Thus an arbitrary set of
RM may or may not give rise to a positive definite set PQ, P®, ... PN
case R" does give rise to such a set of power matrices, it is known (Burg,
1975; Jones, 1974; loannidis, 1975) that the maximum entropy power spectral

density S(f) can be calculated in terms of the forward filter elements by

In

S(f) = At[F_1(i) I* pN[F_1(i) ] (1.16)

where
N (1.17)

F(z I + FIN z + ...
(2) + Fun

and z is the complex scalar defined by

z = exp [-2irifAt] (1.18)

The matrices F(1/z) are calculated in our programs by fast Fourier transform

(FFT).



It yl' y2r = a samPle of a realization of the time series

y() in (1.1), then the usual biased estimator of is
* i Nd;k
N "N J- ykHl YV k = ox jx oxx N ' (1719)

d 31

where it is assumed that N << N~ It can be shown that the estimator

always gives rise to a positive definite R-matrix. The corresponding un-
biased estimator, obtained by replacing the factor 1/N* by 1/(N~-k) in (1.19),
does not have this virtue. It can also be shown (as is suggested by (1.9))
that PQ, Pj, ... PN (and P®, P* ... P?) are positive definite if and only if
R is positive definite. AIll methods used in our programs to solve (1.5) and
(1.10) are recursive; that is, the solutions construct the filter coefficients
FIN' F2N’ FNN and BIN' B2N> BNN f°T the filteT °f length N fr°m the
corresponding solutions .. " and BNj

BN-1 N-lI °f tke systems (1*5) and (1.10) arising for filters of length N-I.

Two basic methods of solution are used in our programs. In the R-method,
sometimes called Yule-Walker estimation, we generate approximations 1"
(1.19) for k = 0, 1, ... N , where N is at least as large as the maximum
number of lags to be consi@g)r(ed, and theR solve (1.5) and (1.10) recursively.
We calculate spectra as desired by using (1.16), (1.17) and (1.18). Further
details on our implementation of the R method are presented in section 3.

In the multichannel Burg process we first estimate the reflection coef-

ficients and '

by minimizing a certain weighted sum of squares or resi-
duals for forward and backward filters, after which all forward and back-
ward filter coefficients F.qu and BkIX\lT are obtained by the modem Levinson
algorithm. Further computational detail is presented in section 2; a com-
plete theoretical discussion and all mathematical derivations are given

elsewhere (Strand, 1977; Burg, 1975).

A rough indication of the performance of either the multichannel Burg
process or the R method is given by Akaike’s MFinal prediction error! (FPE)
criterion (Akaike, 1969, 1971), calculated by
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/ NH + 1 + pN \K

FPE(N) = (dat P,) | °~——11l _ pN j (1.20)
where det ( ) denotes the determinant. According to this criterion, the
filter length N is properly chosen if it minimizes FPE(N). Formula (1.20)
is implemented in our programs, and FPE(N) is usually presented both as

printout and in graphical form.

2.  MULTICHANNEL BURG REFLECTION-COEFFICIENT PROGRAMS

2.1 Discussion of Computing Methods

The programs described in this section implement a new generalization
of Burg’s single-channel reflection-coefficient method. We summarize the
equations used; further details and mathematical derivations are given by

Strand (1977). Our programs assume an unbroken sample y», y», ... y*» . If
d

forward and backward positive definite weight matrices and Q2, respectively,
are used, then the system to be solved to obtain the p x p reflection-coeffi-

cient matrix CM is:

(2.1)
where
T > /1 «2 \/I1°"1 B
? _I /\
T2 CPN-1 E PNI> = 2.2)
T3 - - V1 «2 /1) 1G - ""\\V'1 G PN-1 =
Yoo e
m m
(2.3)
I bN (bN)
m m



The solution of the p2 X p2 system (2.1) is implemented in our multichannel
Burg programs. The theory of systems such as (2.1) is given briefly by
Bellman (1960), pp. 175-76 and 231. Thus our programs permit the use of
arbitrary weight matrices Q and Q9. However, not all choices of Q and Q2
will give rise to positive definite power matrices and P~ It has been
shown by Strand (1977) that the choice

- PN-1
(2.4)
27 NPl

gives a direct generalization of Burg’s single-channel reflection-coefficient
method (Burg, 1975), and that all resulting power matrices are positive
definite. We use (2.4) in all our programs, although it is a simple matter
to implement other choices for and Q2, as is indicated by COMMENT cards in
the source decks. In case the choice (2.4) is made, then the equations (2.1)

to be solved can be written in the form

BCN * \/I CN Pn-1 E G (2.5)

In (2.3), is the residual resulting from applying the fitted forward
filter of Iengtth—I to the last N vectors of the mth N+I-tuple and bN is
the residual resulting from applying the fitted backward filter of length N-I
to the first N vectors of the m”™ N+I-tuple. M=NA-N is the number of con-
secutive N+I-tuples in the data string of length N~ Asan example, let
N~=7, N=3, and suppose the forward and backwardfilters of length 2,as well
as P2 and P have been determined. Then the data consist of the 7 vectors
i, v2 Yy y& y5 y6 y7) and for N = 3 the N+I-tuples are (y™ y2, y3®
v4)> (Y2 Yy y& y5)» (y3 ydb y5 y6) and (yd vy Yyy7) so thatM = 4-
The required residuals resulting from the fitted Tfilters of length (N-I) = 2

are
el = yi4+ Fl12 y3 + F22y2
e2 = Y5+ F12 y4 + F22y3
(2.6)
el = y6+ Fl12 y5 + F22 y4
e4d = yi7+ F12 y6 + F22 y5



and

3 * *
b1 =yl + Bl2 y2 + B22 y3
3 * *
b2 = y2 + Bl2 y3 + B22 yy
* *
bg = y3 + BI2 ya + B22 ys5 2.7
3 * *
b4 ) + B12 y5 + B22 yp

from which E, G and B are determined by (2.3) for N = 3 and may be obtained

by solving (2.1). It has been shown (Strand, 1977) that the residuals
e and b" obey the recursion

m m
N+l _ N ¥,
S M Br|n+1'

(2.8)

oNHZ pN L R N
m m

form = 1,2, ..., (M-l) = N*-N-I and that
t ro* 1 29
VIR NI VI N E (2.9)

(The apparent lack of symmetry in (2.8) is caused by the particular notation
employed.) Furthermore, the filter coefficients obey the recursions

FNN = C
(2.10)
1kN 1k,N-1 + BN-k,N-l1 CN' k 1’2 (N2
and
BNN CN
(2.11)

BkN Bk,N-I + FN-k,N-1 CN’" k 1,2

In our example above, we compute C' by (2.9), é and b4, m= 1,2,3, by (2.8),
0 rmarm

and we update the power matrices by (1.13) and (1.14) and the filter coeffi-

cients by (2.10) and (2.11). The recursive solution is initialized by setting

1
m = ¥Ym+l
(2.12)

bm =\ m" 1-2- mw \/!|

and



(2.13)

in (2.3) and (2.2). Equation (2.1) is equivalent to a linear system of size
p2 X p ,’_Lariris computed by using a complex matrix inversion subroutine,
CMINV, where the matrix to be inverted is first calculated as a Kronecker
product. Also note that, according to (2.8), computer storage is required
only for the set of e™ and b” corresponding to the current value of N. To

compute the p x p block autocovariance matrices R”, one may recursively apply

the formula

k-1
Rk - - jJo VK Rk-j-I> k - 1,2, ... (2.14)

obtained by taking the Hermitian conjugate of the last of equations (1.5)

with N replaced by k. Although our present Burg programs do not provide the
R”, as they have not been needed, we have used (2.14) for checkout. A series
of R* were computed by (2.14) and punched onto cards which were then used as
input to one of the R-method programs of section 3. Exact agreement between

the results of the multichannel Burg process and the R method was observed.

For further clarification, we briefly review the computing procedure for
the multichannel Burg programs. First, we compute Pq and Pq by (2.13) and E,
B and G by (2.12) and (2.3) with N = 1 and M = Nd, - 1. Then (2.1) is solved

for Cj and (2.9) is used to compute C*. The filter coefficients are then

computed by (2.10) and (2.11), where only the formulas F * and BN =
C' apply for N = 1. We compute the forward and backward residuals e2 and b2
i rmrm



resulting from N = 1 by formulas (2.8) and the resulting power matrices P
and Pl.l\ by (1.13) and (1.14). We continue the algorithn? for N = 2, computing
E, 6 and B by (2.3), solving (2.1) for C9, computing C* by (2.9), etc.,
repeating the process for successively larger values of N. Whenever desired,

the spectra are computed by (1.16), (1.17) and (1.18).

2.2 General Discussion of Computer Programs

All programs have been written in a relatively unsophisticated
dialect of FORTRAN. Because zero subscripts are not allowed, all subscripts
that can be zero in the formulas of this section have been increased by 1.
Thus, for instance, R(I+1) is the same as R”. Because the filter coeffi-
cients are being updated by (2.10) and (2.11), and need not remain in

storage separately for each N, they are denoted by
(((CF(,J,K),CB(1,J,K),1=1,NP),J=1,NP),K=1,N+1);

that is, NP = p, K corresponds to k+1 in (2.10) and (2.11), and only three

subscripts are used.

The program BRGPC1 will be described in detail here, as it is the
most general of the programs implementing the new multichannel Burg
algorithm. As presently dimensioned, it accommodates complex time series
having up to p = 4 components. No effort has been made to minimize the
amount of storage used. If a saving of storage is required, those matrices
that are Hermitian symmetric could be stored in "Hermitian mode" to eliminate
redundancy; this is left to the user. Program BRGPCl1 has been implemented
on the CDC 6600 at Boulder, Colorado, and uses two IMSL (1975) subroutines,
VCVTCH and EIGCH, as noted under subroutine CPRINT. The program also uses
AUTOPLT, a microfilm plotting subroutine written by J. Leise. For successful
operation on the 6600, both IMSL and AUTOPLT must be attached. For other
implementations the eigenvalue calculation could be eliminated or some
other eigenvalue routine for complex Hermitian symmetric matrices could

be used. If the eigenvalue calculation is eliminated, however, some other

10



calculation of the determinant in (2.15) must be provided if one desires

to calculate FPE(N), as the current program uses the product of the
eigenvalues. If a computer system other than our local 6600 is used,

different graphics would also be required. Several of our programs are

provided without graphics, so that the user may implement his own plotting
routines.

2.3 Program BURGPC1

We begin the description of the program BRGPCl1 with a simplified flow
chart, presented as fig. 1, and follow this by a detailed description of
the function of each subroutine.

2.3.1 BRGPC1l, the Main Program

This program reads in the data and calls subroutines as indicated in

fig. 1. The data input is described as follows

NC Maximum Filter length.

NP Number of channels (components) in time series

(at present 1<NP<4).

NSPE Minimum filter length for which spectrum is desired.
NDAT Number of data points.
NPRS Minimum filter length for which full printout is desired.

((YT(,K),1=1,NP),K=1,NDAT) Time series data, complex.
In performing the calculations, this program calls subroutines DETREND

and CALFIL. The READ formats should be modified by the user as desired.

The present program uses card input.

11



DETREND

(DETREND
DATA AS
DESIRED)
CALFIL
UPDAT (INITIALIZE
(RECUR BURG RECURSION
MULTICHANNEL AND CALL OTHER
BURG SUBROUTINES FOR
PROCESS) INCREASING FILTER
LENGTH N)
CPRINT
(COMPUTE EIGENVALUES
OFPn,Pn,B,E AS WELL AS
DET (PN) AND FPE(N);
IF NANPRS, PRINT ALL
RELEVANT QUANTITIES)
SPECAL
N*=NSPE ? (COMPUTE AND
OUTPUT
SPECTRUM
AS COMPUTED

Figure 1. Simplified flow chart for the program BRGPC1
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2.3.2 Subroutine DETREND

This subroutine detrends the time-series data in three possible ways.
If the control cards ISKIP=1 and IF(ISKIP.EQ.1)GO TO 30 are placed between
the COMMENT cards marked with repeated 1’s, the data will not be detrended;
if these control cards are placed between the 2's, the data will be reduced
by subtracting the mean vector; finally, if these control cards are placed
between the 3's a least-squares linear trend will be removed from the data.
These options are also indicated by COMMENT cards in the source deck. The

printouts of this subroutine are self explanatory.
2.3.3 Subroutine CALFIL

This subroutine initializes all quantities required for the recursion
of the multichannel Burg process and calls the recursion in a DO loop on N.
In this subroutine N is called 19 and N+l is called IFP1. For orientation

we define some of the variables used in CALFIL and elsewhere as follows:

(((CF(,3,K),1=1,NP),J=1,NP),K=1,N+1)
Forward reflection coefficients F, comPlex

ccB(1,3,K),1=1,NP),J=1,NP),K=1,N+1)
Backward reflection coefficients B”, complex

SS(1,9)
Sum of squares Pq as given by (2.13), complex

BT (1,K),ET (1,K)
Forward and backward residuals, complex

P((1,J)

Forward power matrix PN> complex
PP(,J)

Backward power matrix P”, complex

AEIG(1,J)
Buffer matrix used for eigenvalue routines

13



ELP (N+I,1)
Maximum eigenvalue of P , real

ELP(N+I,2)
Minimum eigenvalue of P , real

ELPP(N+I,1)
Maximum eigenvalue of P , real

ELPP(N+I,2)
Minimum eigenvalue of P | real

DETP(N+I)
Determinant of P”, real

FPE(N+I)
Akaike FPE criterion, FPE(N), as defined by (1.20), real.

Calls to the two IMSL subroutines typically appear in the forms

CALL VCVTCH(AEIG,NP4,AEL1G)

and
CALL EIGCH(AEIG,NP,0,EL,VI,4,WK,IER).

IT one changes the DIMENSION NPMAX describing the maximum number of channels
for the time series y(t), then the constant 4 in all such calls must be
changed to equal NPMAX. Such modifications must also be made in SPECAL and
CPRINT. The printout of CALFIL consists of the matrix SS(l1,J) and its trace.

2.3.4 Subroutine SPECAL

This subroutine computes the spectrum by (1.16), (1.17) and (1.18).

The computation of F(1/z) is accomplished by fast Fourier transform (FFT),

(Cooley and Tukey, 1965). The parameters N2 and M2 appearing in the
statement COMMON/FFDATA/A(256),M2,N2,W(10), as well as N3 = N2/2 must be
set (as the first executable statement) to correspond to the DIMENSION of A.
We require N2=DIMENSION of A and 2**M2=N2. Because of peculiarities in

the subroutine CMINV, described below, the same DIMENSION must be used for

14



every matrix to be inverted. This DIMENSION is determined by the Kronecker
product computed in subroutine KRONPR described below. Thus whenever a
matrix is to be inverted, it is first stored as a buffer matrix EINV whose
dimension is (NPMAX)2X(NPMAX)2, where NPMAX is the DIMENSION describing

the maximum number of channels in y(t); in the present case NPMAX=4 and
EINV has dimension 16x16.

All printouts of the spectrum and the corresponding microfilm plots
are generated in SPECAL. Other outputs generated by SPECAL are maximal
and minimal eigenvalues of the spectrum, determinants of P , and Akaike's
FPE criteria as given by (1.20). Figures 2-11 present the graphical micro-
film output for the signal

Re(YT(l, K)) = cos(y*r— +(I-Drad.)+.25(Ranf-.5)

IM(YT(I,K) = sin(ygt +(1-1)rad.)+.25(Ranf-.5)

(2.15)
| = 1,2; NP = 2; K= 1,2, ..., 128; NDAT E Nd = 128;

DT = 1 sec; NSPE = NC = 7.

The quantities Ranf are independent samples from a random number generator
having a uniform distribution between 0 and 1.

2.3.5 Subroutine CPRINT

The main function of this subroutine is to print most quantities
relevant to the multichannel Burg recursion. It also calculates and
prints out eigenvalues of the matrices E, B, Pl,j,J and PN,, defined by |(2.3),
(1.8) and (1.11), and determinants of PT\I and PN.. IT either PM or PN is
found not to be positive semi-definite, the program stops with a diagnostic
printout. As has been mentioned, this can only happen by computation error
if and are assigned as inverse power matrices as in (2.4). If other
choices of and are made and the program runs satisfactorily, it can

be concluded (because of the tests made) that all power matrices encountered

15
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are positive definite.

Because of the large amount of printout involved, especially for
NP > 2, a control integer NPRS is input in the main program (see fig. 1)

such that all printout of CPRINT is suppressed for N < NPRS. In this case,
all eigenvalue calculations are made, and the tests for positive definiteness

are performed.

2.3.6 Subroutine UPDAT

This subroutine performs the recursion of the multichannel Burg
reflection-coefficient method, as described earlier in this section. Most
variables for this routine are as defined under CALFIL above. COMMENT cards
indicate how to implement weight matrices and other than those defined
by (2.4). The proper steps to calculate

Qjl= Q1I(1,9), X = Q1(1,J), and Q2 = Q2(1,d)

should be placed between the dashed lines.

Before calling GETCN(AA,BB,CC,NP,CN), (see below) for the solution
of (2.1), subroutine UPDAT first calculates AA = T», BB = T2 and CC = by
(2.2).

2.3.7 Subroutine GETCN(A,B,C,N,CN)

This subroutine solves the matrix equation AX+XB=C, and outputs the
solution X=CN for given NxN matrices A, B and C. The method is essentially
that given by Bellman (1960), p. 231, in which we generate a Kronecker
product matrix AB using subroutine KRONPR(A,B,AB,N), and then invert AB
by subroutine CMINV. Note that i1f NPMAX is the DIMENSION describing the
maximum number of channels for the time series YT, then A,B,C and CN should
have DIMENSION (NPMAX,NPMAX),BB requires DIMENSION (NPMAX**2) and AB
requires DIMENSION (NPMAX**2 NPMAX**2),
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2.3.8 Subroutine KRONPR (2, B, AB, N)

This subroutine generates the N2 X N2 complex matrix AB defined by
AB=A8I+I8BT, where T denotes the ordinary transpose and 8 denotes the

Kronecker product. The matrix AB is the coefficient matrix for the elements

of CN in the equation ACN+CNB=C. For further clarification, consult

Bellman (1960) and Strand (1977).

2.3.9 Subroutine CMINV(A,N,B)

This subroutine inverts the complex N x N matrix A and replaces the
matrix argument A by A-*. If desired, it also simultaneously solves the

complex vector equation AX=B and replaces the argument B by the solution

vector X. In its present form, the matrix to be inverted must have DIMENSION
consistent with that given here; this is achieved by using a buffer matrix
of the proper DIMENSION whenever CMINV is called from various other sub-

routines. In the present version, we should have DIMENSIONS
IPIVOT(N2),A(N2,N2),B(N2),INDEX(N2,2) and PIVOT(N2),

where N2 is the square of the DIMENSION describing the maximum number of

channels for the given time series YT.

2.3.10 Subroutines FFT,INIFFT,REVBIT

This is a fast Fourier transform package which uses the well-known
Cooley-Tukey (1965) algorithm. It calls FORTRAN subroutines INIFFT and
REVBIT, both of which are included in the source deck. If it is desired to
change the DIMENSIONS of the variables in FFT, one should change the
COMMON/FFDATA/ statements appearing in SPECAL, FFT, INIFFT and REVBIT to
give A( ) a DIMENSION equal to the desired power of 2. Note that in sub-
routine SPECAL the statements N2=256$% M2=8% N3 = 128 should be changed
such that N2 is the DIMENSION of A( ), 2**M2=N2, and N3=N2/2. In the
multichannel Burg programs the FFT routines are used only to compute F(z)
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by (1.17) as needed to obtain the spectrum by (1.16). In the R-method

programs of section 3 they are also used to obtain covariance estimates
such as (1.19).

2.4 Other Multichannel Burg Programs

In addition to BRGPC1, various other closely related multichannel Burg
programs are available. Program BRGPC2 is similar to BRGPCl except that no
graphics are provided. Programs BRGPR1 and BRGPR2 are similar, respectively
to BRGPC1 and BRGPC2, except that the signal YT is assumed real; the
computation is simpler and less core storage is required. Programs
BRG2C1, BRG2C2, BRG2C3 and BRG2C4 are pilot programs written earlier than
the others. They are only valid for NP=2; however this may suffice for
many applications, for example, obtaining the coherence between two
single-channel real or complex signals. These subroutines use no external
subroutines except graphics for BRG2C1 and BRG2C2. General weight matrices
and may be used; the eigenvalue subroutine EIG implements a simple solution
to a quadratic equation in X. The test for positive definiteness is simply a
test for the positiveness of the 1,1-element and the determinant. Program
BRG2C1 provides full printout and 6600 graphics; BRG2C2 provides full 6600
graphics but prints only the original time series data before and after
detrending; BRG2C3 has no graphics and prints only the original time-series
data and the spectral data; and BRG2C4 has no graphics but gives a rather
complete printout. Program BRG2C4 has the main advantage that it is self

contained and requires no attached systems routines.
3. R-METHOD (YULE-WALKER) PROGRAMS
3.1 Theoretical Considerations and Computing Methods

A rather simple and efficient recursive solution of (1.5) and (1.10)
can be constructed by using the modern Levinson algorithm, (Levinson, 1947),
as has been pointed out by Burg (1975); however, the R-method solution

presented here was based on earlier analysis, and employs the simultaneous
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triangular decomposition of the R and R matrices (Rissanen, 1973), as
presented below. Our method does not differ substantially in efficiency
from the modern Levinson algorithm and, as the solutions of (1.5) and (1.10)
are unique, is necessarily equivalent to it. No loss of computing accuracy
has ever been observed, although the method has not been severely tested

by using many lags and a large number of channels.

Rissanen (1973) has developed an algorithm giving the recursive

simultaneous decomposition of the matrices R and R into the block-diagonal

forms
TRT*=D (3.1)
and
[ R IR
TR (T') =D (3.2)
where
T = (3.3)
T = (3.4)
N+L1 Tne12  N#LN
D = block diag[D1,D2, ... DN+J] (3.5)
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D = block diag[D1,D2, ... DN+J] (3.6)

and, as before, the stars denote Hermitian conjugation. Substitute (3.3)
and (3.5) into (3.1) and consider the last block row of (3.1). Because of

the form of D and the last factor T*, taking note of the (N+1,1) block element
of TRT shows that

N
I' TN+Lk+l R-k “ = 3.7)
k=0

where we let Txt . X -

I.  Now taking account of (3.7) and considering the
N+I,N+I

(N+l1,2)-element of TRT shows that

* 11

N
I TN+ILk+1 R-k+l - o* (3.8)
k=0

Taking account of (3.7) and (3.8) and examining the (N+I,3)-element of TRT |,

and continuing in this manner gives
J0 TN+1,k+l R-k+j - © j - °*1' *** (N_1) (3.9
and finally,

TN+1, k+1 ~-k °N+1' (3.10)

However, equations (3.9) and (3.10) may be written in the equivalent form

t"N+I.N*N+I.N-II ITN+I, 11 Ro R-i N
Ri Ro : R-N+|
% rn-i ro
D+ (0] ... 10], (3.11)

Comparison of the Hermitian conjugate of (3.11) with (1.10), which has a
unique solution, shows that
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tn+i,n bin

(3.12)

bnn

TN#+1.1

and that
' (3.13)

In order to obtain a formula like (3.12) for the forward filter coefficients,

we apply the same analysis as above to (3.2) and compare with (1.5) to

obtain

TN+LN FIN
: : (3.14)
t ok !
TN+1,1 P
or equivalently
FIN  (TN+LN-j+1) * * =1, 2, ... N, (3.15)
and
°N+1  pn N=20 1, (3.16)
It follows from (3.1), (3.5) and (3.13) and (3.2), (3.6) and (3.16) that
N
det R = [T det P, (3.17)
k=0
and N
det R = n det P, (3.18)
k=0
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It is easily shown by direct block multiplication that

r' = URU* (3.19)
where

0 001

0 010

U= e,

010 0

100 0
Since det U = + 1, it follows from (3.19) that

det R = det R’ (3.20)
Because det P det = det R, (3.17), (3.18) and (3.20) imply that

0
det PA = det PA, k = 0, 1, ... (3.21)

Finally, note that if y(t) is a single-channel time series, i.e., p = 1, then

Pr = P~ k=0, 1, ..., that is corresponding forward and backward powers
are the same.

The computation of T and T is accomplished by a complex version of
the Rissanen (1973) algorithm, for which the modification of the original
algorithm was slight. It was found that storage of only two rows of the
T and T -matrices was required, a "current” row and a "previous" row.
Because of differences between Rissanen's notation and ours, notably his
use of the star as indicating an interchange of R* and R ((i.e., his star
is the same as our prime) and the fact that he denotes our T and T matrices
by B and B*, respectively, we denote the current rows of T and T' by
(((B(1,J,K),BS(1,J,K),I=1,NP),J=1,NP),K=1,N+1) and the previous rows by
B1(1,J,K) and BS1(1,J,K). Similarly, we denote by D(k+1) and by
DS(k+l). Finally, we note that the Rissanen decomposition was checked
out by direct multiplication and comparison with the R matrix, and the
solutions were checked by substitution into (3.5) and (3.10).
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3.2 Program RYWPC1

This program provides an R-method solution in which the estimates ft of
k

the autocovariances (see (1.19)) are calculated by FFT for all k up to

the DIMENSION of R(l1,J,K), after which the solution is initialized and pro-

ceeds recursively by the Rissanen algorithm. It assumes a complex time series

YT, and will accommodate an arbitrary number, NP, of channels, provided that-

all variables are properly dimensioned, and sufficient storage exists. The

present version assumes NP < 4. It uses the same IMSL (1975) eigenvalue
raoutines as BRGPCl1 (see section 2) and also uses the same DDLIB 6600 micro-
We begin the specific description of program RYWPCL

film plotting routines.
12, and follow this with a

with a simplified flow chart, presented as fig.
detailed description of the function of each subroutine.

3.2.1 Subroutine RYWPC1

This is the main program. It reads in the data and calls subroutines

DETREND and INIT. AIll other calls to the various subroutines are made
in subroutine INIT. The inputs have the same meaning as those described

in section 2 under BRGPCL.

3.2.2 Subroutine DETREND

This subroutine detrends the data, and is identical to subroutine

DETREND as described in detail in section 2.

3.2.3 Subroutine RCALC(R)

This subroutine calculates autocovariances by (1.19), using the fast

Because FORTRAN cannot use zero subscripts,

Fourier transform (FFT).
NMAX) should

ft* is denoted by R(1,J,K+I1). The DIMENSION NMAX, of R( ,

exceed that of the Tilter coefficients by at least 1. The integer NN

This subroutine then computes R(1,J,K) for

should be set equal to NMAX.
The constants M2 and N2

K=1 2, ... NMAX in one loop of FFT calls.
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should be set as indicated under SPECAL in section 2. An unbiased

estimator of can be obtained by modifying statement 12.

3.2.4 Subroutine INIT

This subroutine initializes all quantities needed to get the
Rissanen (1973) algorithm started. The integer NMAX should be set equal
to the last DIMENSION of B( , ,NMAX). This subroutine calls two IMSL (1975)
subroutines, VCVTCH and EIGCH. The discussion of these subroutines in

section 2.3.2 also applies here.

3.2.5 Subroutine RECUR

This subroutine implements the Rissanen (1973) recursive algorithm
for the decompositions (3.1) and (3.2). It also provides checks for the
positive-definiteness of P , in case an estimator of R other than ft is

COMMENT cards indicate what quantities are being updated. The
Although Rissanen does

used.
notation described is that of Rissanen's paper.
not indicate the use of his algorithm for complex matrices, the current

program has made his algorithm complex. This subroutine calls FILCAL for the

(relatively trivial) calculation of the filter coefficients by (3.15) and

the printout of relevant quantities. Note also that the IMSL (1975)

eigenvalue routines are used here to test for positive definiteness and

to obtain determinants for use in calculating the Akaike criterion (1.20)

3.2.6 Subroutine FILCAL

This subroutine computes the filter coefficients (solutions of the

Hermitian conjugate system to (1.5)) by using (3.15). It was defined

as a separate subroutine at an earlier time when (3.15) was unknown, and
Two

First,

a more complicated procedure was used to find filter coefficients.
conventions used in FILCAL should be noted here to avoid confusion.

the Hermitian conjugate system to (1.5) is solved to obtain the FAN

instead of F.M. Furthermore, we use a sign convention occasionally
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seen in the literature in which all filter coefficients after the first
are negated. Thus H2, the solution obtained in FILCAL, is related to
the F_" given by (1.5) by

H2(1,3,1)=I
(3.22)
H2(1,J,K)=-CONJG(F (J, 1,K)) , K>1,

where F(1,J,K) is the corresponding solution of (1.5).

The main function of FILCAL is to provide printouts of the filter
coefficients and related quantites. The integer NPRS controls the
printout; the printout is suppressed 1T N<NPRS. Thus the amount of relatively
uninteresting printout can be kept small even for solutions involving
large numbers of lags.

3.2.7 Subroutine SPECAL

This subroutine is identical to that described under BRGPCl in section 2.
Figures 13-22 present the graphical microfilm output of FYWPCL for a signal
identical to that described by (2.15), for which the results of BRGPCl
were presented in figs. 2-11. The frontispiece of this report is a direct
comparison of the squared coherences obtained by the two methods and given
in figs. 6 and 17.

3.2.8 Subroutine CMINV

This complex matrix inversion subroutine is identical to that described
under BRGPCl in section 2.3.8.

3.2.9 Subroutines FFT,INIFFT,REVBIT

This fast Fourier transform package is identical to that described
under BRGPC1 in section 2.3.9. If FFT DIMENSION changes are made, they must
be made in RCALC(R) and SPECAL, as well as here.
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Graphical microfilm output for the program RYWPC1
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3.3 Program RYWPC2

This program is identical to RYWPCl except that all 6600 DDLIB
microfilm plotting has been eliminated. In its present form it still
requires the IMSL eigenvalue subroutines VCVTCH and EIGCH.

4.  SUMMARY

All computer programs described in this report are summarized in
table 1 below. These programs have names consisting of 6 alphanumeric
characters; the significance of these is as follows. The first three
characters indicate the method. BRG denotes the multichannel Burg
process (Strand, 1977), and RYW indicates the R-(Yule-Walker) method.
The fourth character indicates whether the program is valid for general
p(P) (currently 1 p £4) or only for p = 2 (2). The fifth character
indicates whether the time-series data is assumed real (R) or complex (C).
The last character is a number indicating different options. Thus RYWPC2 uses
the R-method for general p on complex data and is the second possible
option. In the checkout of all programs we implemented eq. (2.15),
punched out the values (YT(I,K),1=1,2),K=1,128), with a format ix.xxx, and
then modified all programs to accept the resulting cards as input. Thus
the inputs can be considered to be exact to the single-precision accuracy
of the CDC 6600, about 11 decimal places. Complete computer source decks
with this checkout data and graphical and/or printed output will be
provided. If it is desired to implement one of these programs on a
limited-accuracy computer, comparisons with the numerical printout supplied
should give some indication of the accuracy of the results. All programs
listed in table 1 are available from the author on request.
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