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Frontispiece. Comparison between coherence squared obtained from the 
R-(Yule-Walker) process (dashed) and the multichannel Burg process 
for the nearly monochromatic signal described in section 2.
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COMPUTER PROGRAMS FOR MAXIMUM ENTROPY SPECTRAL 

ANALYSIS OF REAL AND COMPLEX MULTICHANNEL TIME SERIES 

(WITH MICROFILM PLOTS)

Otto Neall Strand
NOAA/ERL/Wave Propagation Laboratory 

Boulder, Colorado 80302

ABSTRACT

This report describes various FORTRAN computer 

programs for maximum entropy spectral analysis of a 

complex or real vector time series. The descriptions 

include sufficient detail to permit the programs to 

be implemented correctly. All programs have been care­

fully checked out, and are available from the author 

on request.
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1. INTRODUCTION

This report describes several computer programs written to implement 

multichannel maximum entropy spectral analysis. The main objective of these 

programs is to obtain an estimate of the multivariate power spectral density 

for a real or complex multichannel time series. Although most of the pro­

grams described here can be used for single-channel series by setting the 

number of channels equal to 1, a separate report (Strand, et al., 1977) and 

separate programs have been written for the single-channel case because of 

reduced storage and program complexity. In the present report we strive to 

provide the user with enough information to enable him to implement the pro­

grams correctly. Many mathematical derivations have been intentionally 

omitted, although we attempt to state most of the formulas required for the 

solutions. For details one may consult Strand (1977). Ioannidis (1975) gives 

a clear exposition of multichannel methods similar to some of those presented 

here; derivations and discussions of the single-channel case are presented by 

Burg (1975), Kanasewich (1973), Haykin and Kesler (1976), and Ulrych and 

Bishop (1975). In this report many specific details regarding the computer 
programs are also deliberately omitted. If such specific details are desired, 

the user should consult the relevant source deck; in some cases COMMENT cards 

indicate programming options.

We consider the complex p-channel vector time-series

yj(t)

y2(t)
(i.i)

where we assume that y(t) is wide-sense stationary with zero mean. The 

N-element forward filter (or forward filter of length N) has the form

y(t') + ^ FkN y(t ' kAt) = eN(t)’

k=l
(1.2)



This is called a forward filter because y(t) is predicted ahead, in terms

of previous values y(t - kAt). The term e^(t) is called the output of the 

filter and plays the role of an error. Similarly, we may define the N-element 

backward filter

N *
y(t) + l BkN y(t + kAt) = b (t) . (1-3)

k=l

In (1.2) and (1.3), the forward and backward filter coefficients, and

B, , respectively, are complex p x p matrices. The star * is used to denote 
kN . . *

Hermitian conjugation; for instance, is the conjugate transpose of F^.

For optimum forward or backward filters (2.2) or (2.3) we impose the condi­

tion that the expected mean-square value of e^(t) or b^(t) should be a

minimum. For (2.2) this involves determining F,*t# F^XT ... FKTM such that
IN 2N NN

E( (eN (t)] CeN(t)]} = minimum (1-4)

where E{ } denotes the expected value. Inserting the expression (1.2) for
*e^ft) into (1.4) and minimizing with respect to the coefficients gives

the system

RnR. ... R.. I p„,0 1 N N
"-iVi ^-1 fin 0

R-NR-N+1 • ’ • Ro fnn 0

_ — _ _ __
where I is the p x p identity matrix and the square block submatrices in this 

system are defined by

Rk = E[y(t)y*(t - kAt)], k = 0,1,...N (1-6)

so that
R.k ■ < • (i-7)

We sometimes call the coefficient matrix in (1.5) the R-matrix or simply R. 
The forward power matrix for the resulting optimum filter (that is, for
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FkN satisfying (1.5)) is

PN - E{eN(t)e*(t)}
(1.8)

Because the satisfy (1.5), it can be shown that

PM = F., R Fm, N N N (1.9)

where we define FN (single subscript) by

Fm = [I|F
IN'

•• *W

System (1.5) is identical to the transposed form of the system resulting 
from the multichannel equations cited by Wiggins and Robinson (1965) for the 

real case, except that matrix transposes have been replaced by Hermitian 
conjugates. Because of (1.7) it is apparent that the optimum backward 
filter (1.3) satisfies

R0R-1 • • • R

R1R0 ... R

. • .

¥n-1 ... R
i

-N

-N+l

__
__

i a.
1____

bin

II • o

bnn

1

. 
. O

______
1

(1.10)

We sometimes call the coefficient matrix in (1.10) the R -matrix, or simply
* t

^ • The backward power matrix for the resulting optimum filter is

PN - E{bN(t)bN(t)> (l.H)

and it follows from (1.10) that

= bn r' bn (1.12)

where

B„ =N
hKnI BNN^
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If one has suitable approximations to the R,, he may solve (1.5) to obtain
^ »

the matrix coefficients F1XT, after which the power matrices PXT and PXT arekN r N N f
determined by (1.9) and (1.12). However, it can be shown that P^ and P^ may

be computed by the simple recursion formulas

* ip = p - f P r N N-l N N-l UN (1.13)

and

PN PN-1 " PN-1 CN ’ (1.14)

where the forward and backward matrix reflection coefficients CXT and CXT are------------ ------------- N N
defined by

CN NN and CM = BXTM •

N NN
(1.15)

Because the expected values in (1.6) cannot be obtained from a finite sample 
of a single realization of y(t), it is necessary to use approximations. We 

denote by P^ and P^ the result of substituting approximate values of into
(1.9) and (1.12) or equivalently (1.13) and (1.14). Thus an arbitrary set of 

R^ may or may not give rise to a positive definite set PQ, P^, ... PN- In 
case R^ does give rise to such a set of power matrices, it is known (Burg, 

1975; Jones, 1974; Ioannidis, 1975) that the maximum entropy power spectral 
density S(f) can be calculated in terms of the forward filter elements by

S(f) = At[F_1(i) ]* pN[F_1(i) ] (1.16)

where
F(z) = I + F1N z + ... + F N

NN
(1.17)

and z is the complex scalar defined by

z = exp [-2irifAt] . (1.18)

The matrices F(l/z) are calculated in our programs by fast Fourier transform 

(FFT).
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If yl’ y2’ ’'* a samPle of a realization of the time series
y(t) in (1.1), then the usual biased estimator of is

* i Nd;k
\ ” N J- yk+Jl yv k = °* i* •** N ’ (1'19)

d 36= 1

where it is assumed that N « N^. It can be shown that the estimator 

always gives rise to a positive definite R-matrix. The corresponding un­
biased estimator, obtained by replacing the factor 1/N^ by 1/(N^-k) in (1.19), 

does not have this virtue. It can also be shown (as is suggested by (1.9)) 
that PQ, Pj, ... PN (and P^, P^ ... P^) are positive definite if and only if 

R is positive definite. All methods used in our programs to solve (1.5) and
(1.10) are recursive; that is, the solutions construct the filter coefficients

F1N’ F2N’ FNN and B1N’ B2N> BNN f°T the filteT °f length N fr°m th® 

corresponding solutions ... F^^ and B^j ...
BN-1 N-l °f tke systems (1*5) and (1.10) arising for filters of length N-l.

Two basic methods of solution are used in our programs. In the R-method,
sometimes called Yule-Walker estimation, we generate approximations 1^.

(1.19) for k = 0, 1, ... N , where N is at least as large as the maximum
max maxnumber of lags to be considered, and then solve (1.5) and (1.10) recursively. 

We calculate spectra as desired by using (1.16), (1.17) and (1.18). Further 

details on our implementation of the R method are presented in section 3.

In the multichannel Burg process we first estimate the reflection coef-
»ficients and by minimizing a certain weighted sum of squares or resi­

duals for forward and backward filters, after which all forward and back­

ward filter coefficients F. XT and B. XT are obtained by the modem Levinson
kN kN

algorithm. Further computational detail is presented in section 2; a com­
plete theoretical discussion and all mathematical derivations are given 

elsewhere (Strand, 1977; Burg, 1975).

A rough indication of the performance of either the multichannel Burg 
process or the R method is given by Akaike’s MFinal prediction error1’ (FPE) 

criterion (Akaike, 1969, 1971), calculated by

5



/ NH + 1 + pN \ K

FPE(N) = (dat P„) [ ^--■1 _ pN j (1.20)

where det ( ) denotes the determinant. According to this criterion, the 

filter length N is properly chosen if it minimizes FPE(N). Formula (1.20) 

is implemented in our programs, and FPE(N) is usually presented both as 

printout and in graphical form.

2. MULTICHANNEL BURG REFLECTION-COEFFICIENT PROGRAMS

2.1 Discussion of Computing Methods

The programs described in this section implement a new generalization

of Burg’s single-channel reflection-coefficient method. We summarize the

equations used; further details and mathematical derivations are given by

Strand (1977). Our programs assume an unbroken sample y^, y^, ... y^ . If
d

forward and backward positive definite weight matrices and Q2, respectively, 

are used, then the system to be solved to obtain the p x p reflection-coeffi­

cient matrix CM is:

(2.1)

where
T1 ’ 'Vi «2 Vl’'1 B

T2 ’ CPN-! E P^l> <

T3 - - 'Vl «2 Vl)_1 G - "W'1 G PN-1 <

(2.2)

v N , N,) e (e )
m m

I bN (bN)
m m

(2.3)
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2 2 .The solution of the p x p system (2.1) is implemented in our multichannel 

Burg programs. The theory of systems such as (2.1) is given briefly by 

Bellman (1960), pp. 175-76 and 231. Thus our programs permit the use of 

arbitrary weight matrices Q and Q9. However, not all choices of Q and Q2 

will give rise to positive definite power matrices and P^. It has been 

shown by Strand (1977) that the choice

- PN-1
(2.4)

^2 ’ 'VP'1

gives a direct generalization of Burg’s single-channel reflection-coefficient 

method (Burg, 1975), and that all resulting power matrices are positive 

definite. We use (2.4) in all our programs, although it is a simple matter 
to implement other choices for and Q2, as is indicated by COMMENT cards in 

the source decks. In case the choice (2.4) is made, then the equations (2.1) 

to be solved can be written in the form

B CN * Vl CN Pn‘-1 E 2G. (2.5)

In (2.3), is the residual resulting from applying the fitted forward 
m th N

filter of length N-l to the last N vectors of the m N+l-tuple and b^ is
the residual resulting from applying the fitted backward filter of length N-l 
to the first N vectors of the m^ N+l-tuple. M=N^-N is the number of con­

secutive N+l-tuples in the data string of length N^. As an example, let
N^=7, N=3, and suppose the forward and backward filters of length 2, as well

as P2 and P^ have been determined. Then the data consist of the 7 vectors 

(yj, y2> Yy y4> y5> y6> y7) and for N = 3 the N+l-tuples are (y^ y2, y3>
y4)> (y2» Yy y4> y5)» (y3> y4» y5> y6) and (y4» y5> Yy y7) so that M = 4-
The required residuals resulting from the fitted filters of length (N-l) = 2

are
el = y4 + F12 y3 + F22 y2

e2 = y5 + F12 y4 + F22 y3

e3 = y6 + F12 y5 + F22 y4

e4 = y7 + F12 y6 + F22 y5

(2.6)
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and

b

b

b

b

3
1
3
2
3
3
3
4

= yl +
*B12 y2 +

*B22 y3
* *

= y2 + B12 y3 + B22 y4
* *

= y3 + B12 y4 + B22 y5
* *II + B12 y5 + B22 y6

(2.7)

from which E, G and B are determined by (2.3) for N = 3 and may be obtained

by solving (2.1). It has been shown (Strand, 1977) that the residuals
e^ and b^ obey the recursion 

m m
N+l N * ,Ne = e + C b . m m+1 N m+1

, N+l b
m

, N= b + 
m

rrV N (CN> em

(2.8)

for m = 1,2, ..., (M-l) = N^-N-l and that

t 1 * !r = p r P N N-l N N-l* (2.9)

(The apparent lack of symmetry in (2.8) is caused by the particular notation 

employed.) Furthermore, the filter coefficients obey the recursions

F = C NN

1kN 1k,N-l + BN-k,N-l CN’ k l’2’ ’ (N_1^
(2.10)

and

BNN CN

BkN Bk,N-l + FN-k,N-l CN’ k 1,2>
(2.11)

» 4 4In our example above, we compute C_ by (2.9), e and b , m = 1,2,3, by (2.8),
o mm

and we update the power matrices by (1.13) and (1.14) and the filter coeffi­

cients by (2.10) and (2.11). The recursive solution is initialized by setting

1
e = y . m J m+1

bm = V m " 1-2- ■■■’ V1
(2.12)

and

8



(2.13)

N.
» 1 r“ *

P = P = -— )yvo o N, L. m m d m=l

in (2.3) and (2.2). Equation (2.1) is equivalent to a linear system of size

2 2.p x p , and is computed by using a complex matrix inversion subroutine, 

CMINV, where the matrix to be inverted is first calculated as a Kronecker 

product. Also note that, according to (2.8), computer storage is required 

only for the set of e^ and b^ corresponding to the current value of N. To 

compute the p x p block autocovariance matrices R^, one may recursively apply 

the formula

k-1
Rk - - jJo Vl,k Rk-j-l > k - 1,2, ... (2.14)

obtained by taking the Hermitian conjugate of the last of equations (1.5) 

with N replaced by k. Although our present Burg programs do not provide the 

R^, as they have not been needed, we have used (2.14) for checkout. A series 

of R^ were computed by (2.14) and punched onto cards which were then used as 

input to one of the R-method programs of section 3. Exact agreement between 

the results of the multichannel Burg process and the R method was observed.

For further clarification, we briefly review the computing procedure for

the multichannel Burg programs. First, we compute Pq and Pq by (2.13) and E,

B and G by (2.12) and (2.3) with N = 1 and M = N , - 1. Then (2.1) is solved
d

for Cj and (2.9) is used to compute C^. The filter coefficients are then

computed by (2.10) and (2.11), where only the formulas F ^ and B^ =

» 2 2C apply for N = 1. We compute the forward and backward residuals e and b 
i mm
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resulting from N = 1 by formulas (2.8) and the resulting power matrices P
Iand P. by (1.13) and (1.14). We continue the algorithm for N = 2, computing
^ »

E, G and B by (2.3), solving (2.1) for C9, computing C^ by (2.9), etc.,

repeating the process for successively larger values of N. Whenever desired,

the spectra are computed by (1.16), (1.17) and (1.18).

2.2 General Discussion of Computer Programs

All programs have been written in a relatively unsophisticated 

dialect of FORTRAN. Because zero subscripts are not allowed, all subscripts 

that can be zero in the formulas of this section have been increased by 1. 

Thus, for instance, R(I+1) is the same as R^. Because the filter coeffi­

cients are being updated by (2.10) and (2.11), and need not remain in 

storage separately for each N, they are denoted by

(((CF(I,J,K),CB(I,J,K),1=1,NP),J=1,NP),K=1,N+1);

that is, NP = p, K corresponds to k+1 in (2.10) and (2.11), and only three 

subscripts are used.

The program BRGPC1 will be described in detail here, as it is the 

most general of the programs implementing the new multichannel Burg 

algorithm. As presently dimensioned, it accommodates complex time series 

having up to p = 4 components. No effort has been made to minimize the 

amount of storage used. If a saving of storage is required, those matrices 

that are Hermitian symmetric could be stored in "Hermitian mode" to eliminate 

redundancy; this is left to the user. Program BRGPC1 has been implemented 

on the CDC 6600 at Boulder, Colorado, and uses two IMSL (1975) subroutines, 

VCVTCH and EIGCH, as noted under subroutine CPRINT. The program also uses 

AUTOPLT, a microfilm plotting subroutine written by J. Leise. For successful 

operation on the 6600, both IMSL and AUTOPLT must be attached. For other 

implementations the eigenvalue calculation could be eliminated or some 

other eigenvalue routine for complex Hermitian symmetric matrices could 

be used. If the eigenvalue calculation is eliminated, however, some other

10



calculation of the determinant in (2.15) must be provided if one desires 

to calculate FPE(N), as the current program uses the product of the 
eigenvalues. If a computer system other than our local 6600 is used, 

different graphics would also be required. Several of our programs are 

provided without graphics, so that the user may implement his own plotting 

routines.

2.3 Program BURGPC1

We begin the description of the program BRGPC1 with a simplified flow 

chart, presented as fig. 1, and follow this by a detailed description of 

the function of each subroutine.

2.3.1 BRGPC1, the Main Program

This program reads in the data and calls subroutines as indicated in 

fig. 1. The data input is described as follows

NC Maximum filter length.

NP Number of channels (components) in time series

(at present 1<NP<4).

NSPE Minimum filter length for which spectrum is desired.

NDAT Number of data points.

NPRS Minimum filter length for which full printout is desired.

((YT(I,K),1=1,NP),K=1,NDAT) Time series data, complex.

In performing the calculations, this program calls subroutines DETREND 

and CALFIL. The READ formats should be modified by the user as desired. 

The present program uses card input.

11



N*=NSPE ?

DETREND
(DETREND 

DATA AS 
DESIRED)

SPECAL 
(COMPUTE AND 

OUTPUT 
SPECTRUM 
AS COMPUTED

UPDAT
(RECUR

MULTICHANNEL
BURG

PROCESS)

CPRINT
(COMPUTE EIGENVALUES 
OFPn,Pn,B,E AS WELL AS 

DET (PN) AND FPE(N); 
IF N^NPRS, PRINT ALL 
RELEVANT QUANTITIES)

CALFIL 
(INITIALIZE 

BURG RECURSION 
AND CALL OTHER 

SUBROUTINES FOR 
INCREASING FILTER 

LENGTH N)

Figure 1. Simplified flow chart for the program BRGPC1
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2.3.2 Subroutine DETREND

This subroutine detrends the time-series data in three possible ways. 

If the control cards ISKIP=1 and IF(ISKIP.EQ.1)G0 TO 30 are placed between 

the COMMENT cards marked with repeated l’s, the data will not be detrended; 

if these control cards are placed between the 2's, the data will be reduced 

by subtracting the mean vector; finally, if these control cards are placed 

between the 3's a least-squares linear trend will be removed from the data. 

These options are also indicated by COMMENT cards in the source deck. The 

printouts of this subroutine are self explanatory.

2.3.3 Subroutine CALFIL

This subroutine initializes all quantities required for the recursion 

of the multichannel Burg process and calls the recursion in a DO loop on N. 

In this subroutine N is called 19 and N+l is called IFP1. For orientation 

we define some of the variables used in CALFIL and elsewhere as follows:

(((CF(I,J,K),1=1,NP),J=1,NP),K=1,N+1)
Forward reflection coefficients F^, comPlex

(((CB(I,J,K),1=1,NP),J=1,NP),K=1,N+1)
Backward reflection coefficients B^, complex

SS(I,J)
Sum of squares Pq as given by (2.13), complex 

BT (I, K) , ET (I, K)
Forward and backward residuals, complex 

P(I,J)

Forward power matrix PN> complex 

PP(I,J)
»

Backward power matrix P^, complex 

AEIG(I,J)
Buffer matrix used for eigenvalue routines

13



ELP (N+l,1)

Maximum eigenvalue of P , real 

ELP(N+l,2)

Minimum eigenvalue of P , real 

ELPP(N+l,1)
?

Maximum eigenvalue of P , real 

ELPP(N+l,2)
»

Minimum eigenvalue of P , real 

DETP(N+l)

Determinant of P^, real 

FPE(N+l)

Akaike FPE criterion, FPE(N) , as defined by (1.20), real. 

Calls to the two IMSL subroutines typically appear in the forms 

CALL VCVTCH(AEIG,NP,4,AE1G)

and

CALL EIGCH(AEIG,NP,0,EL,VI,4,WK,IER).

If one changes the DIMENSION NPMAX describing the maximum number of channels 

for the time series y(t), then the constant 4 in all such calls must be 

changed to equal NPMAX. Such modifications must also be made in SPECAL and 

CPRINT. The printout of CALFIL consists of the matrix SS(I,J) and its trace.

2.3.4 Subroutine SPECAL

This subroutine computes the spectrum by (1.16), (1.17) and (1.18).

The computation of F(l/z) is accomplished by fast Fourier transform (FFT), 

(Cooley and Tukey, 1965). The parameters N2 and M2 appearing in the 

statement COMMON/FFDATA/A(256),M2,N2,W(10), as well as N3 = N2/2 must be 

set (as the first executable statement) to correspond to the DIMENSION of A. 

We require N2=DIMENSI0N of A and 2**M2=N2. Because of peculiarities in 

the subroutine CMINV, described below, the same DIMENSION must be used for

14



every matrix to be inverted. This DIMENSION is determined by the Kronecker 

product computed in subroutine KRONPR described below. Thus whenever a 

matrix is to be inverted, it is first stored as a buffer matrix EINV whose 
dimension is (NPMAX)2X(NPMAX)2, where NPMAX is the DIMENSION describing 

the maximum number of channels in y(t); in the present case NPMAX=4 and 

EINV has dimension 16x16.

All printouts of the spectrum and the corresponding microfilm plots 

are generated in SPECAL. Other outputs generated by SPECAL are maximal 
and minimal eigenvalues of the spectrum, determinants of P , and Akaike's 

FPE criteria as given by (1.20). Figures 2-11 present the graphical micro­

film output for the signal

Re(YT(I, K)) = cos(y^r—■ +(I-l)rad.)+.25(Ranf-.5)

?7T"K'Im(YT(I,K) = sin(yg— +(1-1)rad.)+.25(Ranf-.5)

I = 1,2; NP = 2; K = 1,2, ..., 128; NDAT E Nd = 128; 

DT = 1 sec; NSPE = NC = 7.

(2.15)

The quantities Ranf are independent samples from a random number generator 

having a uniform distribution between 0 and 1.

2.3.5 Subroutine CPRINT

The main function of this subroutine is to print most quantities

relevant to the multichannel Burg recursion. It also calculates and

prints out eigenvalues of the matrices E, B, P„ and P.,, defined by (2.3),
IjJ N ,

(1.8) and (1.11), and determinants of P„, and P... If either PM or PKI is
N N N N

found not to be positive semi-definite, the program stops with a diagnostic 

printout. As has been mentioned, this can only happen by computation error 

if and are assigned as inverse power matrices as in (2.4). If other 

choices of and are made and the program runs satisfactorily, it can 

be concluded (because of the tests made) that all power matrices encountered
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are positive definite.

Because of the large amount of printout involved, especially for 
NP > 2, a control integer NPRS is input in the main program (see fig. 1) 

such that all printout of CPRINT is suppressed for N < NPRS. In this case, 

all eigenvalue calculations are made, and the tests for positive definiteness 

are performed.

2.3.6 Subroutine UPDAT

This subroutine performs the recursion of the multichannel Burg 
reflection-coefficient method, as described earlier in this section. Most 

variables for this routine are as defined under CALFIL above. COMMENT cards 
indicate how to implement weight matrices and other than those defined 

by (2.4). The proper steps to calculate

Qj1= Q1I(I,J), Qx = Q1(I,J), and Q2 = Q2(I,J) 

should be placed between the dashed lines.

Before calling GETCN(AA,BB,CC,NP,CN), (see below) for the solution 

of (2.1), subroutine UPDAT first calculates AA = T^, BB = T2 and CC = by 

(2.2).

2.3.7 Subroutine GETCN(A,B,C,N,CN)

This subroutine solves the matrix equation AX+XB=C, and outputs the 

solution X=CN for given NxN matrices A, B and C. The method is essentially 

that given by Bellman (1960), p. 231, in which we generate a Kronecker 

product matrix AB using subroutine KR0NPR(A,B,AB,N), and then invert AB 

by subroutine CMINV. Note that if NPMAX is the DIMENSION describing the 

maximum number of channels for the time series YT, then A,B,C and CN should 

have DIMENSION (NPMAX,NPMAX),BB requires DIMENSION (NPMAX**2) and AB 

requires DIMENSION (NPMAX**2,NPMAX**2).
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2.3.8 Subroutine KRONPR(A, B, AB, N)

2 2This subroutine generates the N x N complex matrix AB defined by
AB=A8I+I8BT, where T denotes the ordinary transpose and 8 denotes the 

Kronecker product. The matrix AB is the coefficient matrix for the elements 

of CN in the equation ACN+CNB=C. For further clarification, consult 

Bellman (1960) and Strand (1977).

2.3.9 Subroutine CMINV(A,N,B)

This subroutine inverts the complex N x N matrix A and replaces the 
matrix argument A by A-*. If desired, it also simultaneously solves the 

complex vector equation AX=B and replaces the argument B by the solution 
vector X. In its present form, the matrix to be inverted must have DIMENSION 

consistent with that given here; this is achieved by using a buffer matrix 

of the proper DIMENSION whenever CMINV is called from various other sub­

routines. In the present version, we should have DIMENSIONS

IPIV0T(N2),A(N2,N2),B(N2),INDEX(N2,2) and PIV0T(N2),

where N2 is the square of the DIMENSION describing the maximum number of 

channels for the given time series YT.

2.3.10 Subroutines FFT,INIFFT,REVBIT

This is a fast Fourier transform package which uses the well-known 

Cooley-Tukey (1965) algorithm. It calls FORTRAN subroutines INIFFT and 

REVBIT, both of which are included in the source deck. If it is desired to 

change the DIMENSIONS of the variables in FFT, one should change the 

COMMON/FFDATA/ statements appearing in SPECAL, FFT, INIFFT and REVBIT to 

give A( ) a DIMENSION equal to the desired power of 2. Note that in sub­

routine SPECAL the statements N2=256$ M2=8$ N3 = 128 should be changed 

such that N2 is the DIMENSION of A( ), 2**M2=N2, and N3=N2/2. In the 

multichannel Burg programs the FFT routines are used only to compute F(z)

20



by (1.17) as needed to obtain the spectrum by (1.16). In the R-method 

programs of section 3 they are also used to obtain covariance estimates 

such as (1.19).

2.4 Other Multichannel Burg Programs

In addition to BRGPC1, various other closely related multichannel Burg 

programs are available. Program BRGPC2 is similar to BRGPC1 except that no 

graphics are provided. Programs BRGPR1 and BRGPR2 are similar, respectively 

to BRGPC1 and BRGPC2, except that the signal YT is assumed real; the 

computation is simpler and less core storage is required. Programs 
BRG2C1, BRG2C2, BRG2C3 and BRG2C4 are pilot programs written earlier than 

the others. They are only valid for NP=2; however this may suffice for 

many applications, for example, obtaining the coherence between two 
single-channel real or complex signals. These subroutines use no external 

subroutines except graphics for BRG2C1 and BRG2C2. General weight matrices 

and may be used; the eigenvalue subroutine EIG implements a simple solution 

to a quadratic equation in X. The test for positive definiteness is simply a 

test for the positiveness of the 1,1-element and the determinant. Program 

BRG2C1 provides full printout and 6600 graphics; BRG2C2 provides full 6600 

graphics but prints only the original time series data before and after 

detrending; BRG2C3 has no graphics and prints only the original time-series 

data and the spectral data; and BRG2C4 has no graphics but gives a rather 

complete printout. Program BRG2C4 has the main advantage that it is self 

contained and requires no attached systems routines.

3. R-METHOD (YULE-WALKER) PROGRAMS

3.1 Theoretical Considerations and Computing Methods

A rather simple and efficient recursive solution of (1.5) and (1.10) 

can be constructed by using the modern Levinson algorithm, (Levinson, 1947), 

as has been pointed out by Burg (1975); however, the R-method solution 

presented here was based on earlier analysis, and employs the simultaneous
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triangular decomposition of the R and R matrices (Rissanen, 1973), as 

presented below. Our method does not differ substantially in efficiency 

from the modern Levinson algorithm and, as the solutions of (1.5) and (1.10) 

are unique, is necessarily equivalent to it. No loss of computing accuracy 

has ever been observed, although the method has not been severely tested 

by using many lags and a large number of channels.

Rissanen (1973) has developed an algorithm giving the recursive 
simultaneous decomposition of the matrices R and R into the block-diagonal 

forms

TRT*=D (3.1)
and

• i i * iT R (T ) =D (3.2)
where

T = (3.3)

T =

N+1,1 T.N+1,2 N+1,N

(3.4)

D = block diag[D1,D2, ... DN+J] (3.5)
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D = block diag[D1,D2, ... DN+J] (3.6)

and, as before, the stars denote Hermitian conjugation. Substitute (3.3)

and (3.5) into (3.1) and consider the last block row of (3.1). Because of
*

the form of D and the last factor T , taking note of the (N+1,1) block element 

of TRT shows that

N
I T, 

k=0
N+l,k+l R-k “ °’ (3.7)

where we let Txt .. XT - = I. Now taking account of (3.7) and considering the 
N+l,N+l * °

(N+l,2)-element of TRT shows that

N
I T.

k=0
N+l,k+1 R-k+l °* (3.8)

Taking account of (3.7) and (3.8) and examining the (N+l,3)-element of TRT , 

and continuing in this manner gives

J0 TN+1,k+1 R-k+j - °’ j - °*1’ ***’ (N_1) (3.9)

and finally,

TN+1, k+1 ^-k °N+1' (3.10)

However, equations (3.9) and (3.10) may be written in the equivalent form

t^N+l.N^N+l.N-ll lTN+l,ll Ro R-i

Ri Ro
-N

. R-N+l

% rn-i ro

[Dj^+j | 0 | ... 10], (3.11)

Comparison of the Hermitian conjugate of (3.11) with (1.10), which has a 

unique solution, shows that
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I i
* bintn+i,n

*TN+1,1
bnn

_ — — —

(3.12)

and that
» (3.13)

In order to obtain a formula like (3.12) for the forward filter coefficients, 

we apply the same analysis as above to (3.2) and compare with (1.5) to 

obtain

I I
f *T FN+1,N IN

. •
• = •
. •* *TN+1,1

_ —

FNN
— —

(3.14)

or equivalently

FjN (TN+l,N-j + l) ’ -* = 1, 2, ... N, (3.15)

and

°N+1 pn N = 0, 1, (3.16)

It follows from (3.1), (3.5) and (3.13) and (3.2), (3.6) and (3.16) that

N
det R = IT det P, 

k=0
(3.17)

and , N
det R = n det P, 

k=0
(3.18)
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It is easily shown by direct block multiplication that

r' = URU* (3.19)

where

0 ... 0 0 I 

0 ... 0 I 0
U = .................

0 I 0 ... 0

1 0 0 ... 0

Since det U = ± 1, it follows from (3.19) that

»det R = det R (3.20)

Because det P det = det R , (3.17), (3.18) and (3.20) imply that
o

fdet P^ = det P^, k = 0, 1, ... (3.21)

Finally, note that if y(t) is a single-channel time series, i.e., p = 1, then 

P^ = P^, k = 0, 1, ..., that is corresponding forward and backward powers 

are the same.

The computation of T and T is accomplished by a complex version of

the Rissanen (1973) algorithm, for which the modification of the original

algorithm was slight. It was found that storage of only two rows of the

T and T -matrices was required, a "current" row and a "previous" row.
Because of differences between Rissanen's notation and ours, notably his

use of the star as indicating an interchange of R^ and R(i.e., his star

is the same as our prime) and the fact that he denotes our T and T matrices 
* « by B and B , respectively, we denote the current rows of T and T by

(((B(I,J,K),BS(I,J,K),I=1,NP),J=1,NP),K=1,N+1) and the previous rows by

B1(I,J,K) and BS1(I,J,K). Similarly, we denote by D(k+1) and by

DS(k+l). Finally, we note that the Rissanen decomposition was checked

out by direct multiplication and comparison with the R matrix, and the

solutions were checked by substitution into (3.5) and (3.10).
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3.2 Program RYWPC1

This program provides an R-method solution in which the estimates ft of
k

the autocovariances (see (1.19)) are calculated by FFT for all k up to 

the DIMENSION of R(I,J,K), after which the solution is initialized and pro­

ceeds recursively by the Rissanen algorithm. It assumes a complex time series 

YT, and will accommodate an arbitrary number, NP, of channels, provided that- 

all variables are properly dimensioned, and sufficient storage exists. The 

present version assumes NP < 4. It uses the same IMSL (1975) eigenvalue 

raoutines as BRGPC1 (see section 2) and also uses the same DDLIB 6600 micro­

film plotting routines. We begin the specific description of program RYWPC1 

with a simplified flow chart, presented as fig. 12, and follow this with a 

detailed description of the function of each subroutine.

3.2.1 Subroutine RYWPC1

This is the main program. It reads in the data and calls subroutines 

DETREND and INIT. All other calls to the various subroutines are made 

in subroutine INIT. The inputs have the same meaning as those described 

in section 2 under BRGPC1.

3.2.2 Subroutine DETREND

This subroutine detrends the data, and is identical to subroutine 

DETREND as described in detail in section 2.

3.2.3 Subroutine RCALC(R)

This subroutine calculates autocovariances by (1.19), using the fast 

Fourier transform (FFT). Because FORTRAN cannot use zero subscripts, 
ft^ is denoted by R(I,J,K+l). The DIMENSION NMAX, of R( , ,NMAX) should 

exceed that of the filter coefficients by at least 1. The integer NN 
should be set equal to NMAX. This subroutine then computes R(I,J,K) for 

K = 1, 2, ... NMAX in one loop of FFT calls. The constants M2 and N2
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Figure 12. Simplified flow chart for the program RYWPC1
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should be set as indicated under SPECAL in section 2. An unbiased 

estimator of can be obtained by modifying statement 12.

3.2.4 Subroutine INIT

This subroutine initializes all quantities needed to get the 

Rissanen (1973) algorithm started. The integer NMAX should be set equal 

to the last DIMENSION of B( , ,NMAX). This subroutine calls two IMSL (1975) 

subroutines, VCVTCH and EIGCH. The discussion of these subroutines in 

section 2.3.2 also applies here.

3.2.5 Subroutine RECUR

This subroutine implements the Rissanen (1973) recursive algorithm 

for the decompositions (3.1) and (3.2). It also provides checks for the 
positive-definiteness of P , in case an estimator of R other than ft is 

used. COMMENT cards indicate what quantities are being updated. The 

notation described is that of Rissanen's paper. Although Rissanen does 

not indicate the use of his algorithm for complex matrices, the current 

program has made his algorithm complex. This subroutine calls FILCAL for the 

(relatively trivial) calculation of the filter coefficients by (3.15) and 

the printout of relevant quantities. Note also that the IMSL (1975) 

eigenvalue routines are used here to test for positive definiteness and 

to obtain determinants for use in calculating the Akaike criterion (1.20)

3.2.6 Subroutine FILCAL

This subroutine computes the filter coefficients (solutions of the

Hermitian conjugate system to (1.5)) by using (3.15). It was defined

as a separate subroutine at an earlier time when (3.15) was unknown, and

a more complicated procedure was used to find filter coefficients. Two

conventions used in FILCAL should be noted here to avoid confusion. First,
*the Hermitian conjugate system to (1.5) is solved to obtain the F^N

instead of F.M. Furthermore, we use a sign convention occasionally
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seen in the literature in which all filter coefficients after the first 

are negated. Thus H2, the solution obtained in FILCAL, is related to 
the F_.^ given by (1.5) by

H2(I,J,1)=I

H2(I, J,K)=-CONJG(F (J, I, K) ) , K> 1,

(3.22)

where F(I,J,K) is the corresponding solution of (1.5).

The main function of FILCAL is to provide printouts of the filter 
coefficients and related quantites. The integer NPRS controls the 

printout; the printout is suppressed if N<NPRS. Thus the amount of relatively 

uninteresting printout can be kept small even for solutions involving 

large numbers of lags.

3.2.7 Subroutine SPECAL

This subroutine is identical to that described under BRGPC1 in section 2. 

Figures 13-22 present the graphical microfilm output of FYWPC1 for a signal 

identical to that described by (2.15), for which the results of BRGPC1 

were presented in figs. 2-11. The frontispiece of this report is a direct 

comparison of the squared coherences obtained by the two methods and given 

in figs. 6 and 17.

3.2.8 Subroutine CMINV

This complex matrix inversion subroutine is identical to that described 

under BRGPC1 in section 2.3.8.

3.2.9 Subroutines FFT,INIFFT,REVBIT

This fast Fourier transform package is identical to that described 
under BRGPC1 in section 2.3.9. If FFT DIMENSION changes are made, they must 
be made in RCALC(R) and SPECAL, as well as here.
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3.3 Program RYWPC2

This program is identical to RYWPC1 except that all 6600 DDLIB 
microfilm plotting has been eliminated. In its present form it still 

requires the IMSL eigenvalue subroutines VCVTCH and EIGCH.

4. SUMMARY

All computer programs described in this report are summarized in 
table 1 below. These programs have names consisting of 6 alphanumeric 

characters; the significance of these is as follows. The first three 

characters indicate the method. BRG denotes the multichannel Burg 

process (Strand, 1977), and RYW indicates the R-(Yule-Walker) method.
The fourth character indicates whether the program is valid for general 

p(P) (currently 1 p £ 4) or only for p = 2 (2). The fifth character 

indicates whether the time-series data is assumed real (R) or complex (C).

The last character is a number indicating different options. Thus RYWPC2 uses 

the R-method for general p on complex data and is the second possible 

option. In the checkout of all programs we implemented eq. (2.15), 

punched out the values (YT(I,K),1=1,2),K=1,128), with a format ix.xxx, and 
then modified all programs to accept the resulting cards as input. Thus 

the inputs can be considered to be exact to the single-precision accuracy 

of the CDC 6600, about 11 decimal places. Complete computer source decks 

with this checkout data and graphical and/or printed output will be 

provided. If it is desired to implement one of these programs on a 
limited-accuracy computer, comparisons with the numerical printout supplied 

should give some indication of the accuracy of the results. All programs 

listed in table 1 are available from the author on request.
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