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A Spliced Numerical Grid Having

Applications to Storm Surge

W. C. Thacker

ABSTRACT

A spliced numerical grid, such as might be used
to calculate storm surges simultaneously within bays
and along the open coast, is used to obtain solu-
tions to the shallow water wave equations. Spuri-
ous, numerically induced flow is generated at the
splice, but the amplitude of this noise is small so
long as there are no variations of the solution on
the scale of the grid spacings. Analytical solu-
tions are obtained for a two-depth basin, and the
agreement with numerical solutions is excellent for
both trapped waves and seiche waves. Such a spliced
grid with the finer portion in shallow water has ad-
vantages over a uniform grid in that it resolves the
waves better over the entire basin and in that the
time step can be larger for the same resolution in

shallow water.

1. INTRODUCTION

Work on a spliced grid has been motivated by the need for
mathematical models capable of predicting hurricane storm sur-

ges in bays and estuaries. The National Weather Service 1is
using the SPLASH models of Jelesnianski (1970) to predict sur-
ges along the open coast. These models have a grid spacing of

4 nmi, which is sufficient to resolve the hurricane and the
flow on the continental shelf but i1s too large to resolve the
flow within bays and estuaries. Other models (Overland, 1975;
Reid and Bodine, 1968) with smaller grid spacing have been
used to calculate the surge within bays. They require the re-
sults of a model such as SPLASH to provide seaward boundary
conditions for bay calculations. Since there is strong



coupling between the bay and the shelf regions, it is neces-
sary to use a model that is appropriate to both regions.

One possibility is to use a fine grid, appropriate for
the bay, throughout the extended region consisting of both the
bay and the shelf. However, this is undesirable for two rea-
sons. First, more computations than necessary must be made in
the shelf region iIn each time step because of the excess num-
ber of grid points there. More importantly, because the maxi-
mum size of the time step is inversely proportional to the

square root of the greatest depth, an undesirably large num-
ber of time steps is needed.

Another possibility is to use a fine computational grid
for the bay spliced to a coarse grid for the shelf. This
avoids an excess of computations in the shelf region and al-
lows for a larger time step.

As a test of such a spliced grid, normal modes of a
square basin were computed and compared with analytic solu-

tions. In particular, the important case corresponding to
shallow water with a fine grid and deep water with a coarse
grid was considered. Agreement between numerical and analy-

tic solutions for both the trapped waves (edge waves) and the
seiche waves was excellent.
2. ANALYTIC SOLUTION FOR A TWO-DEPTH BASIN

Storm surge calculations are based on the shallow water
wave €quations
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where U and V are the x- and y-components of transport, H 1is
the elevation of water above mean sea level, D is the depth of
the basin, and g is the acceleration of gravity. These equa-
tions are solved for the variable depth basin, illustrated in



Figure 1, having depths Di for O<x<L/2 and D2 for
The boundary conditions are U=0 for x=xL/2,

-L/2<x<0.

and V=0 for y=0

and y=L. At x=0, U and H must be continuous; the y-component
of the velocity V/D, not the transport, must also be continu-

ous.

In solving for the normal mode solutions, Ui,

Vi, and

Hi, which are solutions for the region with depth Di are
matched to corresponding solutions U2, V2, and H2, for the
region with depth D2. These solutions are given by

Hi=m cos ki(x-L/2) cos k y cos wt

u2=n2

V2-ri2

H2=n2 cos k2 (x+tL/2) cos k”™y cos cot

sin ki1(x-L/2) cos k y sin cot

cos ki (x-L/2) sin k y sin cot

sin k2 (x+L/2) cos k y sin cot

cos k2 (x+tL/2) sin k y sin cot



X=-1/2 X=0

Figure 1. Variable depth basin.



To maintain continuity at x=0, u) and ky must be the same for
the two regions. The boundary conditions, Vi=V2=0 at y=0,L,
require that ky="IL, where n is an integer. The wave numbers
ki and k2 must be determined by the continuity conditions at
x=0,

. kiL k2L
Hi cos 2 n2 cCoOs 2
NE)
i gDi ki sin = he gD K2 sin k22L
and by the dispersion equations,
w2=gDi (ki2+ky2)=gD2 (k2 2+ky?2). (0))

The solutions for k2 can be displayed graphically as the
intersections of the curves T=fi(0) and T=Ff2(0), where

-\ 1 -(%HX)2WW §T [
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A negative argument of the square root in the expression
for fi, corresponding to Ki2<0, corresponds to waves trapped

in the shallow regions of the basin. For those modes, the
factors cos kj(x-k) and sin kj(x-L/2) in (2) should be replaced



with cosh &i(x-j) and sinh &iI(x-L/2), where &i12=-Ki2<0. Like-
wise in (3), cos and sin become cosh ™"~ and -sinh

and in (4), ki2 becomes -Zi2. Then

tanh

Note that this is never the case for n=0, 1.e., for motion that
is uniform in the direction parallel to the interface; and fur-
ther note that the modes with most variation in the direction
parallel to the interface are most likely to be trapped in
shallow water; the greater the difference in depth, the larger
the number of trapped modes. Meyer (1971) has recently re-
viewed waves trapped by depth variations.

The graphical solutions for k2 for a constant depth basin,
Di=D2, are shown in Figure 2. These solutions are the same for

all values of n since, for a constant depth basin, k2 and ki
are independent of ky. The solutions are k2=ki=EIL. Thus the

normal modes can be identified by the two integers, m and n,
corresponding to the x- and y-variations

The corresponding solutions for the case Di=4D2 are shown
in Figure 3. For unequal depths, k2 and ki are no longer inde-
pendent of ky. The solutions of Figure 3 correspond to

ky=E (n=01)+ Again, the x-variation can be identified by a non-

negative integer, m, which can be chosen to be the same as that
used In the limit Di->-)2. The lowest mode, m=0, which corre-
sponded to no Xx-variation when Di=D2, now has Xx-variation for
Di=4D? and is a trapped wave.

The solutions for the same case, Di=4D2, but for the next
higher y-variations (n=2), are shown in Figure 4. Now the two
modes, m=0 and m=1, are trapped waves.

Table 1 contains the values of k? and ki or Zi for modes
with nj<4 and m£4. For this case Di=4D2. These values were
obtained by numerical solution of (5) and (6).



k2L

any n

Figure 2. Solid curves represent fi; dashed curves, f\. Solutions for
ki =~- are represented by (m™ . For odd (m”~ , the curves intersect

at infinity.



Di=4D2

Figure 3. Solid curves represent fzi dashed curves, fi. The modes are

labeled (M t0 correspond to Figure 2. The zeroth mode is a trapped

wave.



Di=4D

Figure 4. Intersection of solid ourve (fi) with, the dashed curves (fi)

give the solutions for shallow-water wavenumber, k2. Again, the modes
are labeled (fff) to correspond to Figure 2. Modes m=0 and m=1 are

trapped waves.
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Table 1.
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k2L

0
1.910633
4.372552
8.193819

10.655737

1.265841
2.859502
4.551944
6.561891
8.331865

1.433659
4.152616
5.696660
7.200379
8.879242

1.478877
4.401891
7.110300
8.495382
9.850168

1.501266

4.489681

7.417831
10.088569
11.2

K!'L

0
0.955317
2.186276
4.096909
5.327869

0.440041
1.824691
2.985641
3.937568

0.843077
2.357787
3.508280

1.178101
2.757081

1.435974

The integer,

il

2.624568
1.758166

4.013503
3.436684
2.003962

5.389375
4.956764
3.981553
2.040590

10

Values of wavenumbers and frequencies for normal modes of
basin with Di=4D2.

m, which indexes
the x-variation corresponds to

kZ1=kZ2mrmx /I if D1-D2.

oNeoNoNo N

1.570796
1.570796
1.570796
1.570796
1.570796

3.141593
3.141593
3.141593
3.141593
3.141593

4.712389
4.712389
4.712389
4.712389
4.712389

6.283185
6.283185
6.283185
6.283185
6.283185

u) L
2 gD2

0
1.910633
4_.372552
8.193819

10.655737

2.017363
3.262537
4.815350
6.747282
8.478642

3.453257
5.207094
6.505500
7.855893
9.418627

4.938997
6.448508
8.530122
9.714841
10.919360

6.460048
7.722412
9.721246
11.885186
12.890374



3. NUMERICAL SOLUTIONS USING A SPLICED GRID

The spliced grid used to calculate the normal modes of
the two-depth basin is illustrated in Figure 5 for a simple
case with very few grid points. Calculations were made with
the grid spacing of Axi=Ayi=L/30 in the deep region, and
Ax2=Ay2=1L./60 in the shallow region. The spliced grid is
staggered, with U, V, and H calculated at different points.
The coordinates of the variables are given in Table 2.

The Tfinite difference equations that approximate (1)
follow.

ALi+t~Ult"T-gD IT~(H1t'+l t hlt ©);1=1/---,29;J=1,...,60 ~

173 1,3 ~ Axi 1+1,J 1/J
?,+i“hls_j)'i=1____ 30;J=1 59
"1/ 1,J Ay | ’
», (7a)
hit+tl=hit —-ANQuit+b uittl5 )-At (V|Tu5 VITU5 ).
1/73 Hil,J Axi(Uil,J Ull-1, J Ayt1'vVxl,J vxl1,J-1,f

1=1,...,30;3=1,...,60
Yy

V2173 0833 gesoAYi (H21+1,3-8#20,7)51=1,...,59;3=1,...,120

V2n=v23+n-gDan-(H2T ||, DV
L3 1. Ay] |~ H2 [t=1/ +++, 119

>, (7b)
H23+11=H2T | At /u2™+ii-U2n"+ii ) V2T+is-V2R,+4  )e

1,37 “°1,J+AXI(U 1,J 1-1,J; Ayi 1,3 VvZ1,3-1;

1=1,...,60;3=1,...,120

11
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Table 2. Coordinates of variables on spliced grid. Note that the
variables U1(0,J) and U2(0,J) are situated on the
splice. Further note that the x-coordinates
for H1, U2, and V2 are negative for
positive values of I.

Variable X-coordinate y-coordinate Index Ranges

H1(1,J) 1=1,...,30:;J=1,...,60

1=0,...,29;3=1,...,60

uidr,jd

vi(l,Jd) 1=1,...,30;J=1,...,59
H2(1,J) 1=1,...,60;J=1,...,120
u2(1,J) 1=0, ...,59;3=1,...,120
v2(1,d) 1-1,...,60;J3—1,..=,119

13



ulo!'j-uloN-9(D.+>1)S57Fe7(H1L_g A4 (H21,2+H2"™N2J_.1));

*J=1, ...,60
—_— s Ik} ... >>
u23+
BJ I 4u|"d P06t Y123 27%, "6° . (70)
U2n+h  =ifuiT+)s —-1uiT+35
0,120 4uU10,60 4U10,59
2T+35=1uiT+i5 1tnT+
U2Gr3p=2u15 13457603
and
\
T+5j
UL 5=059=1 ,60;T=0,1, ...
T+%
U2M2 J—O J=1,...,120;T7T=0,1,
« (7d)
T+H . T+H B o
V11,07Vhy Ny =05171 30;T=0,1----
T+H T+h o
V21’0 V2I NZ_O’l_l’ ,60;T=0,1, ... v

The superscripts refer to the time step, and the subscripts re-
fer to the grid points. Equations (7a) and (7b) are very much
alike. The notable difference is the sign of terms in (7b) in-
volving Ax2 differ from those in (7a) involving Axi. This is
because the origin of the x-axis is taken at the splice, so |
increases iIn the positive x-direction in (7a) and in the nega-
tive x-direction in (7b). Equations (7c) govern the perpendicu-

14



lar transports at the splice. Only the values appropriate to
the coarse grid are evaluated from values at previous time

steps. Values at points on the fine grid are obtained by in-
terpolation and extrapolation. This is done in the spirit of
the approximation involved in replacing derivatives with fin-
ite differences, i.e., a linear variation between grid points
must be a good approximation. For completeness, the boundary

conditions are given in equations (7d)

solutions fTor normal modes were obtained TfTirst
uniform depth, where Di=D2. The numerical solu-
ifT the sinusoidal functions are well resolved

on the coarse grid. Two cases are notable. The Tfirst cor-
responds to no variations in the solutions iIn the direction
parallel to the splice, corresponding to ky=0 in equations

(3). For this case, V=0 both in the analytical solution and
the numerical solution. The second case corresponds to no
variations in the solutions in the direction perpendicular to
the splice, corresponding to kx=0 in (3). For this case, U=0
for all time in the analytical solution, but UM0 in the numeri-
cal solution. This is due to the interpolation in (7c) neces-
sary to join the two grids. The source of this noise in the U
field is illustrated in Figure 6. The level of the noise can
be controlled by controlling the number of grid points per
wavelength, since linear interpolation involves the same ap-
proximation as replacing derivatives by finite differences.
Although the noise is most apparent in the U field, there is
also noise in the H and V Ffields that is less noticeable since
it may be only one percent of the calculated value, rather than
the entire value, which must be the case when comparing to U=0.
Even the noise in the U Tfield would not be apparent if only the
First two digits of the numerical solutions were displayed.
This noise due to interpolation might appear in any attempt to
use a non-uniform grid. So long as there is little energy in
the shortest wavelengths, this noise is not expected to be a

problem.

Numerical
for a basin of
tions are good

The spliced grid shown in Figure 5 is ideally suited for
the case Di=4D? because it resolves the normal modes equally in
the two regions. This_can be seen from equation (4&1 The wave-
lengths in the two regions are given by Ai=2t/ (ky2+ki2)”™ or
AiI=2Tr/(ky2-£1 2)j5 and A2=2ir/ (ky2+k22) % so from (4), AI=2A2.
Because the grid spacing is twice as large in region 1 as 1in
region 2, the number of grid points per wavelength is given by

15



Figure 6. The sinusoid curve represents an H field along the splice.
The value H2 represents an interpolated value of the H2 field that
should compare with the value Hl directly across the splice. Al-
though there is no change in the elevation of the H field in the
analytical solutions, there is an induced sloped across the splice
due to the interpolation. It is this slope which leads to non-
zero values of the U field in the numerical solution. When the
finite difference approximation is good, linear interpolation is
a good approximation, and the level of the noise in the U field
is low.

16



6ors (UW)L/2\/gD) , which is greater than 10 for all of the modes
listed in Table 1. Thus, all of these modes are fairly well
resolved on the grid, and numerical results should be good to

a few percent. The maximum _time step determined by the stabil-
ity conditions, At=Axi1/(2gDi)" and t=Ax2/(2gD2)h, is the same
for both regions of the grid. For a uniform grid, the time
step would be determined by the deep region.

Table 3 compares the dimensionless frequencies, wL/2VgD
obtained by counting the number of sign changes of the height
field at each computational point iIn one thousand time steps
with the analytical results listed in Table 1. The frequen-
cies were fTound to be the same at all grid points in both re-
gions, except for modes with n=4. For those cases, the number
of sign changes was not accurately counted iIn regions where the
height field was essentially zero at all times. For most of
the points, however, the frequency was found to be constant,
even for n=4. The agreement shown in Table 2 is quite good,
with differences between computed and analytical results of
less than a few percent as expected from the resolution of the

grid.

4. DISCUSSION

The excellent results of this test suggest that a similar
spliced grid can be used in numerical models of storm surges
for bays and estuaries. The principal restriction is that
there be no wave components of the solutions that can be repre-
sented on the fine grid but not on the coarse grid. Since
wave lengths increase from shallow to deep water, this restric-
tion is not severe. Another way of stating this restriction is
that the solutions must be sufficiently smooth that the inter-
polations necessary at the grid splice be a good approxima-
tion. But that is exactly the usual requirement that a Tinite
difference must be a good approximation of a derivative for
the numerical solution to be valid.

17



Table 3. A Comparison of values for wlL/2gD obtained numerically
and analytically for normal modes (m,n)

Mode Dimensionless Frequency
m n Computed Analytical
1 0 1.87 1.91
2 0 4.40 4.37
3 0 8.13 8.19
4 0 10.66 10.66
0 1 2.00 2.02
1 1 3.20 3.26
2 1 4.80 4.82
3 1 6.80 6.75
4 1 8.53 8.48
0 2 3.47 3.45
1 2 5.27 5.21
2 2 6.63 6.51
3 2 7.97 7.86
4 2 9.60 9.42
0 3 5.00 4.94
1 3 6.49 6.45
2 3 8.55 8.53
3 3 9.86 9.71
4 3 11.11 10.92
0 4 6.42 6.46
1 4 7.73 7.72
2 4 9.73 9.72
3 4 11.90 11.89
4 4 12.83 12.89

18
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