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A Spliced Numerical Grid Having 
Applications to Storm Surge

W. C. Thacker

ABSTRACT
A spliced numerical grid, such as might be used 

to calculate storm surges simultaneously within bays 
and along the open coast, is used to obtain solu­
tions to the shallow water wave equations. Spuri­
ous, numerically induced flow is generated at the 
splice, but the amplitude of this noise is small so 
long as there are no variations of the solution on 
the scale of the grid spacings. Analytical solu­
tions are obtained for a two-depth basin, and the 
agreement with numerical solutions is excellent for 
both trapped waves and seiche waves. Such a spliced 
grid with the finer portion in shallow water has ad­
vantages over a uniform grid in that it resolves the 
waves better over the entire basin and in that the 
time step can be larger for the same resolution in 
shallow water.

1. INTRODUCTION
Work on a spliced grid has been motivated by the need for 

mathematical models capable of predicting hurricane storm sur­
ges in bays and estuaries. The National Weather Service is 
using the SPLASH models of Jelesnianski (1970) to predict sur­
ges along the open coast. These models have a grid spacing of 
4 nmi, which is sufficient to resolve the hurricane and the 
flow on the continental shelf but is too large to resolve the 
flow within bays and estuaries. Other models (Overland, 1975; 
Reid and Bodine, 1968) with smaller grid spacing have been 
used to calculate the surge within bays. They require the re­
sults of a model such as SPLASH to provide seaward boundary 
conditions for bay calculations. Since there is strong



coupling between the bay and the shelf regions, it is neces­
sary to use a model that is appropriate to both regions.

One possibility is to use a fine grid, appropriate for 
the bay, throughout the extended region consisting of both the 
bay and the shelf. However, this is undesirable for two rea­
sons. First, more computations than necessary must be made in 
the shelf region in each time step because of the excess num­
ber of grid points there. More importantly, because the maxi­
mum size of the time step is inversely proportional to the 
square root of the greatest depth, an undesirably large num­
ber of time steps is needed.

Another possibility is to use a fine computational grid 
for the bay spliced to a coarse grid for the shelf. This 
avoids an excess of computations in the shelf region and al­
lows for a larger time step.

As a test of such a spliced grid, normal modes of a 
square basin were computed and compared with analytic solu­
tions. In particular, the important case corresponding to 
shallow water with a fine grid and deep water with a coarse 
grid was considered. Agreement between numerical and analy­
tic solutions for both the trapped waves (edge waves) and the 
seiche waves was excellent.

2. ANALYTIC SOLUTION FOR A TWO-DEPTH BASIN
Storm surge calculations are based on the shallow water 
equations,wave

9U , _ 9H __ + gD _ = °3x
3V
at +

9H 9U 9V
9t 9x 9y 0

►

/

(1)

where U and V are the x- and y-components of transport, H is 
the elevation of water above mean sea level, D is the depth of 
the basin, and g is the acceleration of gravity. These equa­
tions are solved for the variable depth basin, illustrated in
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Figure 1, having depths Di for 0<x<L/2 and D2 for -L/2<x<0. 
The boundary conditions are U=0 for x=±L/2, and V=0 for y=0 
and y=L. At x=0, U and H must be continuous; the y-component 
of the velocity V/D, not the transport, must also be continu­
ous .

In solving for the normal mode solutions, Ui, Vi, and 
Hi, which are solutions for the region with depth Di are 
matched to corresponding solutions U2, V2, and H2, for the 
region with depth D2. These solutions are given by

sin k1(x-L/2) cos k y sin cotUi=m

cos k x (x-L/2) sin k y sin cotVi=m

Hi=m cos ki(x-L/2) cos k y cos wt

• (2)

sin k2 (x+L/2) cos k y sin cotu2=n 2

cos k2 (x+L/2) sin k y sin cotV2-ri2

H2=n2 cos k2 (x+L/2) cos k^y cos cot

3



X=-l/2 X=0
Figure 1. Variable depth basin.
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To maintain continuity at x=0, u) and ky must be the same for 
the two regions. The boundary conditions, Vi=V2=0 at y=0,L, 
require that ky=^IL, where n is an integer. The wave numbers
ki and k2 must be determined by the continuity conditions at 
x=0,

Hi cos kiL
2 n 2 cos k2L

2

—r| i gDi ki sin = h2 gD2 k2 sin k2L
2

► (3)

and by the dispersion equations,

w2=gDi(ki2+ky2)=gD2(k2 2+ky2). (4)

The solutions for k2 can be displayed graphically as the 
intersections of the curves f=fi(0) and f=f2(0), where

*■ - V§7 02 -(%H(x)2W §7 02
f 2 = D 2 0 tan 0 ►. (5)

k2L 
~ 2

/
A negative argument of the square root in the expression 

for fi, corresponding to ki2<0, corresponds to waves trapped 
in the shallow regions of the basin. For those modes, the
factors cos kj(x-k) and sin kj(x-L/2) in (2) should be replaced
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with cosh &i(x-j) and sinh &i(x-L/2), where &i2=-ki2<0. Like­
wise in (3) , cos and sin become cosh ^4^- and -sinh
and in (4), ki2 becomes -Zi2. Then

tanh

Note that this is never the case for n=0, i.e., for motion that 
is uniform in the direction parallel to the interface; and fur­
ther note that the modes with most variation in the direction 
parallel to the interface are most likely to be trapped in 
shallow water; the greater the difference in depth, the larger 
the number of trapped modes. Meyer (1971) has recently re­
viewed waves trapped by depth variations.

The graphical solutions for k2 for a constant depth basin, 
Di=D2, are shown in Figure 2. These solutions are the same for 
all values of n since, for a constant depth basin, k2 and ki 
are independent of ky. The solutions are k2=ki=EIL. Thus the
normal modes can be identified by the two integers, m and n, 
corresponding to the x- and y-variations.

The corresponding solutions for the case Di=4D2 are shown 
in Figure 3. For unequal depths, k2 and ki are no longer inde­
pendent of ky. The solutions of Figure 3 correspond to
ky=E (n=l)• Again, the x-variation can be identified by a non­
negative integer, m, which can be chosen to be the same as that 
used in the limit Di->-D2. The lowest mode, m=0, which corre­
sponded to no x-variation when Di=D2, now has x-variation for 
Di=4D2 and is a trapped wave.

The solutions for the same case, Di=4D2, but for the next 
higher y-variations (n=2), are shown in Figure 4. Now the two 
modes, m=0 and m=l, are trapped waves.

Table 1 contains the values of k2 and ki or Zi for modes 
with nj<4 and m£4. For this case Di=4D2. These values were 
obtained by numerical solution of (5) and (6).
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any n

_k2L

Figure 2. Solid curves represent fi; dashed curves, f\. Solutions for 
ki = T^- are represented by (m^ . For odd (m^ , the curves intersect 

at infinity.

7



Di=4D2

Figure 3.

labeled 

wave.

Solid 
(m^ to

curves represent fzi dashed curves, 

correspond to Figure 2. The zeroth

f i. The modes are 
mode is a trapped
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F

Di = 4D

igure 4. Intersection of solid ourve (fi) with, the dashed curves (fi) 
give the solutions for shallow-water wavenumber, k2. Again, the modes 
are labeled (fff) to correspond to Figure 2. Modes m=0 and m=l are 

trapped waves.
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Table 1. Values of wavenumbers and frequencies for normal modes of
basin with D1=4D2. The integer, m, which indexes

the x-variation corresponds to 
k1=k2mπ/L if D1→D2.

m n k2L
2

k! L
2

l iL
2

k LJ:

2
u) L

2 gD2

0
1

0
0

0
1.910633

0
0.955317 —

0
0

0
1.910633

2 0 4.372552 2.186276 . ------ 0 4.372552
3 0 8.193819 4.096909 — 0 8.193819
4 0 10.655737 5.327869 — 0 10.655737
0 1 1.265841 — 1.204144 1.570796 2.017363
1 1 2.859502 0.440041 — 1.570796 3.262537
2
3
4

1
1
1

4.551944
6.561891
8.331865

1.824691
2.985641
3.937568

—-

—

—

1.570796
1.570796
1.570796

4.815350
6.747282
8.478642

0
1

2
2

1.433659
4.152616

——

—

2.624568
1.758166

3.141593
3.141593

3.453257
5.207094

2
3
4

2
2
2

5.696660
7.200379
8.879242

0.843077
2.357787
3.508280

—

—

—

3.141593
3.141593
3.141593

6.505500
7.855893
9.418627

0 3 1.478877 — 4.013503 4.712389 4.938997
1 3 4.401891 — 3.436684 4.712389 6.448508
2 3 7.110300 — 2.003962 4.712389 8.530122
3 3 8.495382 1.178101 — 4.712389 9.714841
4 3 9.850168 2.757081 — 4.712389 10.919360
0 4 1.501266 — 5.389375 6.283185 6.460048
1 4 4.489681 — 4.956764 6.283185 7.722412
2 4 7.417831 — 3.981553 6.283185 9.721246
3 4 10.088569 — 2.040590 6.283185 11.885186
4 4 11.2 1.435974 — 6.283185 12.890374
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3. NUMERICAL SOLUTIONS USING A SPLICED GRID
The spliced grid used to calculate the normal modes of 

the two-depth basin is illustrated in Figure 5 for a simple 
case with very few grid points. Calculations were made with 
the grid spacing of Axi=Ayi=L/30 in the deep region, and 
Ax2=Ay2=L/60 in the shallow region. The spliced grid is 
staggered, with U, V, and H calculated at different points. 
The coordinates of the variables are given in Table 2.

■

The finite difference equations that approximate (1) 
follow.

^1i+t~U1t""T-gD 1T~(H1t'+1 t_h1t t);I=1/---,29;J=1,...,60 ^ 
I/J I,J ^ Axi I+1,J I/J

'I/J I,J Ay ]
?,j+i‘h1i.j)!I=1.... 30;J=1' ,59

hit+1=hit -A^(uit+j5_uit+J5 )-At_(viT+j5-viT+j5 ).I/J HiI,J Axi(UiI,J U1I-1,J; Ayi'V±I,J vxI,J-l,f

1=1,...,30;J=1,...,60
y

►, (7a)

U2T+^r7oT-35, AtI/J U2I,J+gE>2Axi (H2I + 1,J **‘l,J-H2^ T);I=1,...,59;J=l,...,120

V2^=v23’+^-gD2^-(H2T
I,J I,J Ay ] j j-_|_ ^ H2 / tJ— 1/ • • • , 119

H23+!!=H2T_ | At /u2^’+ii-U2^'+ii ) (V2T+is-V2^,+^ )•I,J “‘I,J+AX!(U I,J I-1,J; Ayi V 1, J VZI,J-1;'

1=1,...,60;J=l,...,120

►,(7b)
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H U H U H U H U H U H U
V Y V V V Y U H U H U H
H U H U H U H U H u H U
V V V Y V V V V V
H U H U H u H U H u H U
V V V V V V U H U H U H
H u H U H u H U H u H U
V V V V V V V V V
H u H U H u H U H u H U
V V V V V V U H U H U H
H u H U H u H U H u H U
V V V Y V V V V V
H u H U H u H U H u H U
Y V V V V V u H U H u H
H u H U H u H u H u H u
V V V V V V V V Y
H u H U :: u H u H u H u

ItV V V V V V u H U H u H
H u H U H u H u H u II u
V V V V V V V • V V
H u H U H u H u H u H u
V V V V V . V u H u H u H
H u H U H u H u H u H u

x«-L/2 x=0 x=L/2

Figure. 5. Numerical grid. The H, U, and V fields are staggered. The 
U field is evaluated along the splice.
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Table 2. Coordinates of variables on spliced grid. Note that the
variables U1(0,J) and U2(0,J) are situated on the

splice. Further note that the x-coordinates
for H1, U2, and V2 are negative for

positive values of I.

Variable x-coordinate y-coordinate Index Ranges

H1(I,J)

U1(I,j)

1=1,...,30;J=l,...,60

1=0,...,29;J=l,...,60

V1(I,J) 1=1,...,30;J=1,...,59

H2(I,J) 1=1,...,60;J=1,...,120

U2(I,J) 1=0,...,59;J=l,...,120

V2(I,J) I—1,...,60;J—1,..•,119

13



-V

ulo!j-ulo^-9(D.+‘>!)S57fe7(H1Lj4(H2I,2j+H2^2J.1));

*J=1, . . . , 60

<x--i<:ha<Xv^.....»

u2?+h =hu^A^+h0,2J-l 4ul0,J+4U10,J-l?J 2'*,,'6°

U2Tn+h =iuiT+Js -iuiT+350,120 4Ui0,60 4U10,59

U2T+35=iuiT+i5 1tnT+j5 0,1 4U10,1"4U10,2

, (7c)

and

U1T+5j Ml, J=0;J=1 ,60;T=0,1,...
\

U2T+% M2, J=0;J=l,...,120;T=0,1,

VIT+H1,0=V1
T+H
I, N1=0;1=1 30;T=0,1----

• (7d)

V2T+H1,0=V2
T+h
I ,N2=0;1=1, ,60;T=0,1,... V

The superscripts refer to the time step, and the subscripts re­
fer to the grid points. Equations (7a) and (7b) are very much 
alike. The notable difference is the sign of terms in (7b) in­
volving Ax2 differ from those in (7a) involving Axi. This is 
because the origin of the x-axis is taken at the splice, so I 
increases in the positive x-direction in (7a) and in the nega­
tive x-direction in (7b). Equations (7c) govern the perpendicu-
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lar transports at the splice. Only the values appropriate to 
the coarse grid are evaluated from values at previous time 
steps. Values at points on the fine grid are obtained by in­
terpolation and extrapolation. This is done in the spirit of 
the approximation involved in replacing derivatives with fin­
ite differences, i.e., a linear variation between grid points 
must be a good approximation. For completeness, the boundary 
conditions are given in equations (7d).

Numerical solutions for normal modes were obtained first 
for a basin of uniform depth, where Di=D2. The numerical solu­
tions are good if the sinusoidal functions are well resolved 
on the coarse grid. Two cases are notable. The first cor­
responds to no variations in the solutions in the direction 
parallel to the splice, corresponding to ky=0 in equations 
(3). For this case, V=0 both in the analytical solution and 
the numerical solution. The second case corresponds to no 
variations in the solutions in the direction perpendicular to 
the splice, corresponding to kx=0 in (3). For this case, U=0 
for all time in the analytical solution, but U^O in the numeri­
cal solution. This is due to the interpolation in (7c) neces­
sary to join the two grids. The source of this noise in the U 
field is illustrated in Figure 6. The level of the noise can 
be controlled by controlling the number of grid points per 
wavelength, since linear interpolation involves the same ap­
proximation as replacing derivatives by finite differences. 
Although the noise is most apparent in the U field, there is 
also noise in the H and V fields that is less noticeable since 
it may be only one percent of the calculated value, rather than 
the entire value, which must be the case when comparing to U=0. 
Even the noise in the U field would not be apparent if only the 
first two digits of the numerical solutions were displayed.
This noise due to interpolation might appear in any attempt to 
use a non-uniform grid. So long as there is little energy in 
the shortest wavelengths, this noise is not expected to be a 
problem.

The spliced grid shown in Figure 5 is ideally suited for 
the case Di=4D2 because it resolves the normal modes equally in 
the two regions. This can be seen from equation (4). The wave­lengths in the two regions are given by A i = 2tt/ (ky 2+k i 2 ) ^ or 
Ai=2Tr/(ky2-£1 2)j5 and A2=2ir/ (ky 2+k2 2 ) % so from (4), A!=2A2. 
Because the grid spacing is twice as large in region 1 as in 
region 2, the number of grid points per wavelength is given by

15



Figure 6. The sinusoid curve represents an H field along the splice.
The value H2 represents an interpolated value of the H2 field that
should compare with the value HI directly across the splice. Al­
though there is no change in the elevation of the H field in the
analytical solutions, there is an induced sloped across the splice
due to the interpolation. It is this slope which leads to non­
zero values of the U field in the numerical solution. When the
finite difference approximation is good, linear interpolation is
a good approximation, and the level of the noise in the U field
is low.
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6Ott/ (u)L/2\/gD) , which is greater than 10 for all of the modes 
listed in Table 1. Thus, all of these modes are fairly well 
resolved on the grid, and numerical results should be good to 
a few percent. The maximum time step determined by the stabil­ity conditions, At=Axi/(2gDi)^ and t=Ax2/(2gD2)h, is the same 
for both regions of the grid. For a uniform grid, the time 
step would be determined by the deep region.

Table 3 compares the dimensionless frequencies, wL/2VgD 
obtained by counting the number of sign changes of the height 
field at each computational point in one thousand time steps 
with the analytical results listed in Table 1. The frequen­
cies were found to be the same at all grid points in both re­
gions, except for modes with n=4. For those cases, the number 
of sign changes was not accurately counted in regions where the 
height field was essentially zero at all times. For most of 
the points, however, the frequency was found to be constant, 
even for n=4. The agreement shown in Table 2 is quite good, 
with differences between computed and analytical results of 
less than a few percent as expected from the resolution of the 
grid.

4. DISCUSSION
The excellent results of this test suggest that a similar 

spliced grid can be used in numerical models of storm surges 
for bays and estuaries. The principal restriction is that 
there be no wave components of the solutions that can be repre­
sented on the fine grid but not on the coarse grid. Since 
wave lengths increase from shallow to deep water, this restric­
tion is not severe. Another way of stating this restriction is 
that the solutions must be sufficiently smooth that the inter­
polations necessary at the grid splice be a good approxima­
tion. But that is exactly the usual requirement that a finite 
difference must be a good approximation of a derivative for 
the numerical solution to be valid.
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Table 3. A Comparison of values for ωL/2gD obtained numerically 
and analytically for normal modes (m,n)

Mode Dimensionless Frequency

m n Computed Analytical

1 0 1.87 1.91
2 0 4.40 4.37
3 0 8.13 8.19
4 0 10.66 10.66
0 1 2.00 2.02
1 1 3.20 3.26
2 1 4.80 4.82
3 1 6.80 6.75
4 1 8.53 8.48
0 2 3.47 3.45
1 2 5.27 5.21
2 2 6.63 6.51
3 2 7.97 7.86
4 2 9.60 9.42
0 3 5.00 4.94
1 3 6.49 6.45
2 3 8.55 8.53
3 3 9.86 9.71
4 3 11.11 10.92
0 4 6.42 6.46
1 4 7.73 7.72
2 4 9.73 9.72
3 4 11.90 11.89
4 4 12.83 12.89
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