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Abstract Greenland ice sheet melt is a large contributor to rising global sea level and melt is dependent
on surface air temperature. Arctic temperatures are strongly coupled to clouds but spatial connections
between clouds and temperature have yet to be established across Greenland. By mapping spaceborne lidar
measurements and surface observations, it is shown that radiatively opaque clouds generally coincide with
anomalously warm near-surface temperatures at Greenland sites. These results indicate that both
temperatures over 0 °C as well as positive daily temperature anomalies relate to spatially extensive opaque
cloud cover. While prior studies indicate that clouds enhance extreme melt events, this research shows
that opaque cloud cover and surface warming are closely related across the Greenland ice sheet, particularly
in the ablation region. These findings establish broadly the spatial relationships between opaque clouds
and temperatures and demonstrate the importance of direct observations across Greenland.

Plain Language Summary Greenland ice sheet melt linked to temperatures is a large contributor
to rising global sea level. Arctic temperatures are related to cloud cover but spatial changes in clouds and
temperature for Greenland have yet to be quantified. Here we show that a specific type of clouds, determined
by a measurement signature, coincide with warm temperatures at the Greenland surface. These results
indicate that unusual occurrences of temperatures above 0 °C relate closely to cloud cover. While prior work
has shown that clouds enhance extreme melt events, this research shows that cloud cover and surface
warming are closely tied across the Greenland ice sheet, particularly in the regions of high mass loss. These
findings establish the variability in clouds and demonstrate the importance of direct observations

across Greenland.

1. Introduction

The Greenland ice sheet (GrIS) is losing approximately 181 gigatonnes of mass per year, contributing 1.32
mm to sea level rise annually, and is currently the fastest melting ice sheet in the cryosphere (Bamber
et al., 2018; Shepherd et al., 2012). As Arctic warming continues, the GrIS is projected to add 5-10 cm to glo-
bal sea level by the year 2100 (Fettweis et al., 2013). This increasing GrIS mass loss is primarily caused by
surface melt, and atmospheric conditions are the main determinants of melt volume and extent
(Andersen et al., 2015; Enderlin et al., 2014). More specifically, near-surface temperatures and radiation
are the primary contributors to surface melt and thus the shrinking GrIS (Box et al., 2012).

Ground-based observations show that near-surface temperatures on the central GrIS are impacted by
changes in cloud optical properties (Shupe & Intrieri, 2004). Although this influence is determined by a
range of cloud properties (Miller et al., 2017), clouds with the largest effect on temperatures are typically opa-
que to longwave radiation, as has been observed across the Arctic (Sedlar et al., 2011; Shupe & Intrieri, 2004).
As a result, radiatively opaque cloud cover enhances melt of the GrIS (Bennartz et al., 2013; Van Tricht et al.,
2016). Despite the importance of radiatively opaque clouds, detailed cloud measurements are limited and
opaque clouds have not been studied across the broader GrIS.

Due to the limited observations, regional models are typically used to quantify the spatial impact of opaque
clouds on the GrIS (Franco et al., 2013; Solomon et al., 2017). However, model results for the GrIS are highly
uncertain and satellite observations indicate that models poorly represent the variability of clouds in the
Arctic and their surface impact (Cesana et al., 2012; Lacour et al., 2018; Lenaerts et al., 2017). Thus, present
models alone are not sufficient to assess the spatial role of clouds in GrIS surface melt.
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To address this pressing gap in our understanding, this study combines multiple targeted observational data
sets with a unique set of analytical methods. Because previous research demonstrates that the daily variabil-
ity of opaque clouds at Summit Station is linked to regional atmospheric circulation (Gallagher et al., 2018),
the analysis presented here assesses regional circulation patterns for their impact on the spatial distribution
of opaque cloud cover and the related variability of near-surface temperatures. This study is the first of its
kind to observationally evaluate the impact of daily opaque cloud variability across the GrIS.

2. Methods and Data

The spatial variability in opaque clouds and their impact on the GrIS is the focus of this paper. Satellite
observations of cloud opacity, near-surface temperature observations from automatic weather stations
(AWS), and the daily variability of atmospheric circulation are combined together to connect these processes
across the GrlS. Using self-organizing maps cloud observations are aggregated for days with similar atmo-
spheric conditions, quantified here by regional sea level pressure (SLP) patterns. By aggregating satellite
cloud measurements in this way, spatially complete maps of daily variability are constructed. Finally,
near-surface temperature observations are also utilized to link this daily variability in cloud cover to the
GrIS surface energy budget. Altogether, these observations and methodologies provide insight into the evo-
lution of the atmosphere and its impact on clouds and temperatures of the GrIS.

Satellite cloud observations, provided by the CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder
Satellite Observations) spaceborne lidar, are used here due to their extensive temporal and spatial coverage
of Arctic clouds (Cesana et al., 2012; Chepfer et al., 2018; Kay et al., 2016; Kay & L'Ecuyer, 2013). Because this
research is concerned with the impact of clouds on the GrIS surface, cloud opacity observations from
CALIPSO from 2008 to 2016 are utilized here. First presented in Guzman et al. (2017) and Vaillant de
Guelis et al. (2017), these observations are part of the GCM-Oriented CALIPSO Cloud Product (CALIPSO-
GOCCP; Chepfer et al., 2010; Cesana & Chepfer, 2013) and have been used in other similar polar cloud stu-
dies (Morrison et al., 2018). These data are optimal for use in this analysis because of a high correlation with
the longwave cloud radiative effect (Guzman et al., 2017), making CALIPSO-GOCCP opaque cloud cover
data a robust measure of cloud impacts on the GrIS.

In these data, radiatively opaque clouds are identified by the CALIPSO lidar surface echo caused from the
reflection of the lidar beam at the surface. When no surface echo is detected, the measurement of the atmo-
spheric profile is marked as opaque as the beam was scattered before reaching the Earth's surface. Thus, the
cloud is opaque when the lidar signal is fully attenuated, which typically corresponds to a cloud LW emis-
sivity of 0.8 to 0.9 (Vaillant de Guelis et al., 2017). In this analysis, opaque cloud percentages are calculated
across 1° X 1° grid cells. The opaque cloud cover percentage is derived by comparing the number of profiles
without a surface echo in a grid cell to the total number of profiles in that cell. This gridded opaque cloud
cover percentage is used here to quantify the daily variability in optically thick clouds across the GrIS. A
detailed description of the retrieval methodologies for opaque cloud cover data is available in Guzman
et al. (2017).

AWS observe a multitude of parameters to constrain the surface energy budget, including broadband radia-
tion and temperature. Due to the difficulty of obtaining accurate radiation measurements at unmanned sites
in the harsh Arctic environment, this study focuses on the robust near-surface temperature observations
from AWS overlapping the time period of CALIPSO measurements. A map of the stations used is included
in Figure la. In this 2008-2016 time period two AWS networks were in operation on the GrIS. Nine AWS
from the Greenland Climate Network were used in this analysis, for which site details and methodologies
can be found in Steffen et al. (1996). Seven AWS from the Program for Monitoring the Greenland Ice
Sheet maintained by the Geological Survey of Denmark and Greenland were also used, for which site details
and methodologies can be found in Van As (2011). From these networks, only sites with greater than 75%
coverage for the time period 2008-2016 were used for their sufficient temporal coverage. Temperature data
were averaged daily for days with 80% or greater observational coverage.

To quantify regional atmospheric circulation, reanalysis data from the National Centers for Environmental
Prediction and National Center for Atmospheric Research (Kalnay et al., 1996) were used. To categorize
regional atmospheric circulation, gridded National Centers for Environmental Prediction and National
Center for Atmospheric Research reanalysis daily SLP fields, beginning 1 January 1948 and ending 31
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Figure 1. (a) Colored clusters indicate regions where observed daily opaque cloud cover is relatively homogeneous. Dots indicate surface site locations of tempera-
ture observations. (b and c¢) The annual cycle of opaque cloud cover derived using Fourier decomposition, for north and south cluster regions. The region near
central Greenland, colored gray, is included on both plots to aid comparison.

December 2016, were used to construct a self-organizing map (SOM; Sheridan & Lee, 2011; Kohonen, 2013)
following the methodology in Gallagher et al. (2018). This method, similar to work presented in
Schuenemann and Cassano (2009) and Mioduszewski et al. (2016), allows for the grouping and analysis of
processes by the regional atmospheric circulation state.

Due to the interannual variability of atmospheric circulation states, daily anomalies of cloud and tempera-
ture observations must be calculated with respect to the annual cycle. As a result of the brief observational
record, this cannot be accomplished by constructing a traditional mean daily climatology. Instead, Fourier
decomposition was used to identify time series components having variability on time scales greater than
two weeks to produce annual cycles of observations. Anomalies were calculated by subtracting daily obser-
vations from this derived annual cycle, leaving variability that can be attributed to high-frequency changes
in atmospheric circulation (Gallagher et al., 2018). Anomalies in this study refer to the difference between an
observation and its expected annual background state, calculated using this method. For near-surface tem-
perature observations at AWSs, an annual cycle can be derived using Fourier decomposition and available
continuous time series temperature data.

Because satellite observations are made in narrow swaths across the GrIS on any given day, a more detailed
approach is necessary to produce continuous time series of opaque cloud observations. In order to derive the
necessary annual cycles, observations must be aggregated across regions where cloud cover can be identified
as similar. Here nine unique regions of cloud variability across Greenland were identified using a machine
learning clustering algorithm. To calculate opaque cloud anomalies, CALIPSO observations are aggregated
for these regions, with the chosen number of nine balancing the identification of spatial features in opaque
cloud cover with adequate spatial and temporal coverage of observations for each region. Simpler divisions
into geographic regions such as “east” and “central” were tested and insufficiently captured the spatial varia-
bility of opaque clouds across the GrIS. Thus, this analysis would not be possible without this regional
clustering methodology.

To identify these regions with machine learning algorithms, the covariance matrix of each 1° X 1° pixel was
calculated and this matrix was weighted by the mean seasonal values for the associated pixel. A clustering
algorithm was then applied to the weighted covariance matrices for the identification of regional clusters
of pixels with similar variability. Effectively, this is the upscaling and grouping of 1° x 1° CALIPSO pixels,
a methodology comparable to that described in Crane and Hewitson (2003). Spectral, self-organizing maps,
k-means, and DBSCAN, clustering algorithms were tested, with spectral clustering chosen here due to its
low internal cluster variance for identified regions. The regions, shown in Figure 1a, were identified using
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the spectral clustering code available from the open source and freely available scikit-learn machine learning
library (Pedregosa et al., 2011).

3. Results
3.1. Opaque Cloud Variability

Figure 1 presents the identified regions of similar opaque cloud variability and the opaque cloud annual
cycles for each region. Anomalies for opaque cloud observations are calculated with respect to these
annual cycles. The annual cycle of opaque clouds for the four regions north of 75° latitude is similar
to that of the region over central Greenland surrounding Summit Station. Opaque cloud cover in these
northern regions is maximum in late summer, with typically less than 10% occurrence of opaque clouds
in winter. Regions south of 75° latitude differ from this significantly, with more opaque cloud cover dur-
ing winter than for northerly regions. The most southerly coastal region has a distinct annual cycle, with
approximately 30% opaque cloud cover year-round and maxima in both late January and
early September.

Each of the regions in Figure 1a represents an area where sparse satellite observations can be aggregated to
provide sufficient statistics for identifying characteristic annual cycles and thus calculate daily opaque cloud
cover anomalies for the region. A particular CALIPSO opaque cloud observation is considered anomalously
high or low according to its difference from that day in the annual cycle for the region of the observation. All
uses of the word anomaly refer to values calculated relative to the annual cycles shown for opaque cloud
cover in Figure 1.

This anomalous variability in observations of opaque cloud cover is attributed to regional circulation pat-
terns identified by the SOM algorithm. The SOM classification of the common regional circulation patterns
is presented in Figure 2a, and the associated anomalous opaque cloud cover attributed to each circulation
pattern in the SOM is presented in Figure 2b. In Figure 2a the monthly distribution of pattern occurrences
from 2008 to 2016 is given at the bottom of each panel, showing the important seasonal variability of each
regional circulation state. Attributing opaque cloud cover anomalies to circulation state reveals a strong rela-
tionship between atmospheric circulation and the daily spatial variability of opaque cloud cover across the
GrIS. The daily variability of opaque cloud cover is closely aligned with the location and strength of onshore
atmospheric flow, where anomalies in opaque cloud cover are linked to the position and strength of cyclone
centers around Greenland.

Three broad transport modes are identified within the SOM matrix. Circulation patterns surrounding pat-
tern [a,3] represent cyclones to the east of the subcontinent with large SLP gradients, causing strong north-
erly meridional transport across the GrIS. These are known as “Icelandic Low” cyclones, a prominent
feature of North Atlantic atmospheric circulation (Berdahl et al., 2018). Circulation patterns centered
around [c,1] depict cyclones to the west of Greenland, causing strong southerly transport across the GrIS.
Zonal transport patterns are centered around [d,4], with cyclones to the south of the subcontinent. In parti-
cular, the patterns causing more northerly transport over the GrIS occur most often in winter, while the
southerly patterns are most frequent in summer. The patterns causing zonal transport over the GrIS occur
in all seasons.

Strong connections are observed between southerly and northerly meridional transport and large anomalies
in the corresponding spatial opaque cloud cover. For daily occurrences of southerly circulation patterns [c,1]
and [d,1], large positive opaque cloud cover anomalies occur across southern and western Greenland,
extending into the central GrIS, with negative anomalies on the north coast. Conversely, daily occurrences
of strong northerly circulation patterns [a,3] and [a,4] relate to positive opaque cloud cover anomalies in the
north and east with significant negative anomalies over the southern GrIS.

While meridional flow relates to large and consistent opaque cloud cover anomalies, zonal patterns sur-
rounding circulation pattern [d,4] have a less clear relationship to opaque cloud cover. Zonal flow patterns,
with low-pressure systems to the south of the subcontinent, relate to a relatively neutral opaque cloud cover
state and thus minimize opaque cloud anomalies for occurrences of these patterns. Average opaque cloud
anomalies for zonal patterns rarely exceed positive or negative 10% anywhere on the GrIS and have less
spatial coherence.
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Figure 2. (a) Prevalent regional circulation patterns identified in sea level pressure reanalysis data, along with corresponding streamlines (arrows). Histograms on
the bottom of each pattern in black indicate the total daily occurrences of each month throughout the year for the period of overlapping observations from

2008 to 2016. (b) Average observed daily opaque cloud cover anomaly from 2008 to 2016 at every 1° X 1° pixel for each circulation pattern in (a). Daily anomaly
is defined relative to the annual cycle for each cluster shown in Figure 1. The cross gives the location of the in situ site at Summit Station to provide a
geographical reference for comparison between plots.
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More broadly, the results presented here highlight how regional atmospheric circulation interfaces with the
topography of the GrIS. In regions of steep topography, onshore flow is shown to enhance cloud cover on the
windward side of the orography and these enhanced opaque clouds are most prominent for circulation pat-
terns causing southerly moisture transport. This is most clear when comparing positive opaque cloud
anomalies occurring in western and eastern Greenland. On the eastern side of the GrIS, where the topogra-
phy is steepest, opaque cloud anomalies are largest very near to the steep coastline. In contrast, on the gen-
tler slope of the western side of the GrIS, positive opaque cloud anomalies extend significantly further
inland, often crossing the majority of the GrIS. Finally, on the leeward side of the subcontinent, cloud cover
is frequently anomalously negative for many of the circulation patterns with the larger negative anomalies
likely tied to clearing under downslope flow.

These maps are a unique new result, demonstrating that the average daily spatial variability in opaque
clouds caused by atmospheric circulation can be derived from sparse lidar satellite tracks. Because these
results show that spatial opaque cloud cover variability is tied closely to atmospheric circulation, and prior
detailed in situ studies indicate that opaque cloud cover impacts temperatures via radiative effects
(Gallagher et al., 2018), the remainder of this paper examines spatial observations of temperature and their
relationship to opaque clouds. Specifically, by mapping near-surface temperatures from AWS, we aim to
show that daily synoptic atmospheric state, opaque cloud cover, and temperature variability are closely tied
across the GrIS.

3.2. Clouds and Temperatures

Previous research has connected variability in opaque cloud cover on the central GrIS to near-surface tem-
perature variability (Miller et al., 2017). Here observations of daily near-surface temperatures across the GrIS
demonstrate that both extreme temperatures above 0 °C and large warm anomalies in general relate to cir-
culation patterns with extensive opaque cloud cover anomalies (Figure 3a). Southerly atmospheric circula-
tion patterns surrounding [c,1] lead to both extensive positive opaque cloud cover anomalies and positive
temperature anomalies across the south and west GrIS, with daily temperature anomalies averaging 3 °C
for pattern [c,1].

Temperature results in Figure 3a show that southerly circulation, as in [c,1] and [d,1], corresponds to large
anomalies in both opaque cloud cover and temperatures. Consequently, annual occurrence distributions
indicate that southerly patterns are most frequent during peak melt months of June, July, and August.
Thus, circulation patterns leading to the largest positive temperature and opaque cloud cover anomalies
occur when the GrIS is the most responsive to increased melt.

This enhanced effect occurs with considerable spatial variability. Coastal regions of the GrIS in the south
and west are the primary zones of surface mass loss (van den Broeke et al., 2009). Circulation patterns
surrounding [c,1] relate to large anomalies across this coastal ablation region, with an average opaque
cloud cover anomaly of approximately 20%. Correspondingly, southerly circulation patterns also relate
to the largest positive temperature anomalies across AWS sites in this coastal ablation region. In juxtapo-
sition, for these southerly circulation patterns, negative opaque cloud anomalies in northern and north-
eastern Greenland relate to positive temperature anomalies for [c,1] and [c,2], and negative
temperature anomalies for [e,1]. This spatial variability is inherently tied to interactions between atmo-
spheric circulation, moisture transport, and the topography of the GrIS. In this way, Figures 2 and 3 pro-
vide a complete picture of the spatial relationship between clouds, temperatures, and the daily variability
of atmospheric circulation.

Compared to southerly atmospheric circulation patterns, zonal transport patterns around [d,4] relate less
clearly to the daily variability of opaque clouds and temperatures. Pattern [d,3], a zonal transport pattern
occurring primarily in summer, averages minor decreases in spatial opaque cloud cover. Although opaque
cloud cover anomalies are negative, a large number of [d,3] occurrences relate to temperatures above 0 °
C, suggesting a circulation regime where clouds are not the primary contributor to warming. Conversely,
the predominantly winter zonal pattern [e,4] relates to increased anomalous temperatures but with few
occurrences of temperatures above 0 °C at observation sites. These subtle characteristics of zonal atmo-
spheric circulation and resulting cloud and temperature impacts align closely with the results from prior
in situ studies at Summit Station (Gallagher et al., 2018).
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Figure 3. (a) Average daily near-surface temperature anomaly from 2008 to 2016 for each circulation pattern. Daily anomaly is defined relative to the annual tem-
perature cycle for each individual station. The size of the station dot corresponds to the number of days the station was above 0 °C during the occurrences
of each pattern. (b) The total number of days where 50% or more of GrIS surface stations in (a) averaged above 0 °C, indicating which circulation patterns are related

to broad and extreme warming.
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Because this framework forms a complete description of the regional circulation, decreases in opaque cloud
cover and temperatures can also be studied. Northerly transport circulation patterns surrounding [a,4] relate
to large negative anomalies in opaque cloud cover and temperatures over much of the GrIS. For these north-
erly patterns, the spatial homogeneity and magnitude of opaque cloud cover and temperature anomalies is
dependent on the strength and location of the cyclone east of the GrIS, with patterns showing positive opa-
que cloud cover anomalies at the coast near onshore atmospheric flow. Because of the generally cold tem-
peratures in the north, these northerly patterns do not contribute significantly to melt. However,
occurrences of circulation patterns causing anomalously cold temperatures over much of the GrIS can serve
to inhibit melt by decreasing the subsurface temperatures (Miller et al., 2017).

Motivated by the spatial and temporal relationships between opaque cloud cover and temperatures revealed
here, days with spatially extensive temperature extremes were investigated. Days where 8 or more of the 16
surface stations were above 0 °C are categorized to signify broad extreme warming events, similar to the
recent extreme melt event seen in July 2012 (Nghiem et al., 2012). A total of 21 days from 2008 to 2016
reached this 50% threshold and these days are attributed to their corresponding atmospheric circulation
(Figure 3b). The results show that for 16 of these 21 events, atmospheric circulation over the GrIS was in
a southerly state with increased opaque cloud cover, represented by circulation patterns [b,1], [c,1], [d,1],
and [e,1]. Zonal circulation pattern [d,3] related to only one such event. The 21 extreme days identified indi-
cate that southerly transport frequently relates to broad opaque cloud cover as well as temperatures above 0 ©
C. While previous studies have shown that southerly transport favors melt over the GrIS (Mattingly et al.,
2018; Oltmanns et al., 2019), these results show the detailed spatial correspondence between extreme warm-
ing events and cloud opacity for the first time.

4. Discussion and Conclusions

While these results provide novel insight into the spatial relationships between opaque clouds and
near-surface temperatures, detailed spatial observations of clouds and their impact on the surface energy
budget are not readily available to further investigate the processes that link cloud and surface conditions.
Southerly transport brings enhanced opaque cloud cover over much of the GrIS, but also warm air advection
and the transport of water vapor. Near-surface temperatures are impacted by all of these factors, as tempera-
ture advection, humidity, and cloud cover together alter the Arctic surface energy budget (Cox et al., 2015;
Miller et al., 2017). The research presented here cannot analyze these process-based factors spatially across
the GrIS using currently available observations. However, previous Arctic cloud studies at Summit Station in
central Greenland (Miller et al., 2017), the Arctic Ocean (Sedlar et al., 2011; Shupe & Intrieri, 2004), and at
other Arctic field sites (Shupe et al., 2015; Stone, 1997) have shown how opaque cloud cover over bright sur-
faces increases surface radiation and therefore near-surface temperatures. Additionally, specific case studies
have shown a strong link between moisture advection, cloud formation, radiation, and GrIS melt (Bennartz
et al., 2013; Neff et al., 2014). These detailed studies provide a foundation for understanding Arctic cloud
impacts, and thus, results from this paper should be regarded in the context of these previous
process-oriented studies relating opaque clouds to their surface impacts.

By studying cloud observations through the lens of regional SLP patterns, conclusions about clouds and tem-
perature are made in the broader context of atmospheric circulation. Although opaque cloud cover is not
observed for years outside 2008-2016, it is reasonable to assume that the relative spatial relationships
described here between daily atmospheric circulation, opaque clouds, and temperatures remain true in
the recent past and the near future. However, in decades to come, cloud cover and its impact may change
due to the Arctic amplification of global warming and the future warmer, wetter Arctic (Serreze & Barry,
2011). On longer temporal scales, trends in atmospheric circulation and changes to the circulation patterns
themselves have the possibility to modify conclusions presented here (Young et al., 2012).

Although the limited available in situ observations indicate that clouds contribute to increased energy trans-
mission to the GrIS surface, some recent model studies have produced conflicting results (Riiheld et al.,
2019). Van Tricht et al. (2016) used satellite observations of radiation integrated into the regional climate
model RACMO2.3 to demonstrate that cloud impacts possibly reduce meltwater refreezing, and thus
increase surface runoff. Conversely, Hofer et al. (2017) used trends in passive satellite observations of clouds
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along with MAR to show that an observed trend in the reduction of clouds relates to a model trend in
increased shortwave absorption for ablation regions of the GrIS, thus increasing melt production.

These dissonant conclusions highlight the challenge in modeling the spatially heterogeneous GrIS melt and
the difficulty in validating model results with sparse observations. The research presented in this paper
describes the correspondence between the daily variability of spatial opaque cloud cover and near-surface
temperatures using high-quality, spatial cloud observations, but adequate observations to further describe
the detailed processes do not exist. As a research community, further steps should be taken to understand
and align these potentially conflicting results. To accomplish this, the most effective approach is to begin
detailed long-term cloud studies in the ablation region of the GrIS. Results here highlight the unique spatial
variability of opaque cloud cover across the GrIS, showing the ablation region to be a unique location to
investigate processes impacted by opaque cloud cover.

Ultimately, to understand the long-term fate of the GrIS and its impact on sea level change, models must be
improved to include accurate representation of clouds and their radiative effects. Alignment of regional
Arctic models such as MAR with sophisticated observations is critical for supporting the improvement of
global models and their predictive power. Data sets like these presented here are essential building blocks,
providing the insight needed to improve and validate these models. This analysis highlights the spatial varia-
bility of GrIS cloud processes, demonstrates the importance of diverse and robust observations, and provides
a proof-of-concept foundation for future analyses of sparse satellite observations over the GrIS and other
similar domains.
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