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Abstract— The bistatic radar equation currently used
for simulating surface-reflected waveforms or delay-Doppler
maps (DDMs), produced by signals of opportunity from global
navigation satellites system (GNSS) or communication satellites,
was previously derived under some limiting assumptions. One of
them was the use of the Kirchhoff approximation in a geometric
optics limit that assumes strong diffuse (noncoherent) scattering
typical for very rough surfaces. This equation would produce an
incorrect result for the case of weak diffuse scattering, or in the
presence of coherent reflection. In this paper, it is shown that
the assumption of strong diffuse scattering is not necessary in
deriving such an equation. The derivation of a generalized bistatic
radar equation is now based only on the assumption of roughness
statistics being spatially homogeneous, and thus this equation is
applicable for a much wider range of surface conditions and
scattering geometries. This approach allows to correctly describe
the transition from partially coherent scattering to completely
noncoherent, strong diffuse scattering. It is demonstrated for the
case of the GNSS-R DDMs simulated for a wide range of surface
winds, and their transitional behavior is discussed.

Index Terms— Electromagnetic scattering by rough surfaces,
global positioning system (GPS), radar cross section, radar
measurements, wind.

I. INTRODUCTION

S IGNALS of opportunity, such as those generated by global
navigation satellite system (GNSS) or by communication

satellites, can be used for the Earth remote sensing pur-
poses [1]–[8]. In [1], a bistatic radar equation was derived
for simulating waveforms or delay-Doppler maps (DDMs)
produced by the signals of global positioning system (GPS)
reflected off the wind-roughened ocean surface. This equation
was widely used for modeling of such GNSS reflections [5].
In deriving the bistatic radar equation, the authors followed
the standard procedure based on a geometric optics limit of
the Kirchhoff approximation. Besides that, it was assumed in
that derivation that the regime of strong diffuse (noncoher-
ent) scattering typical for rough surfaces takes place, which
requires a large Rayleigh number, Ra � 1.

The radar equation would produce an incorrect result for the
case of weak diffuse scattering or in the presence of coherent
reflection. In this paper, we show that the assumption of strong
diffuse scattering is not necessary in deriving such an equation.
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A generalized bistatic radar equation is systematically derived
here from first principles. It consists of a sum of two terms, one
for the coherent component and another for the noncoherent,
diffuse component. The derivation of the generalized bistatic
radar equation assumes only that surface roughness is statisti-
cally homogeneous and does not rely on any specific scattering
model, and thus it is applicable for a wide range of surface
conditions and scattering geometries. The part of the equation,
which is responsible for noncoherent scattering, has the same
structure as the old bistatic radar equation from [1]. The
bistatic radar cross section (BRCS) entering the generalized
radar equation does not necessarily obey the geometric optics
approximation, and one can use any suitable scattering model
for calculating the BRCS such as in [9]–[14].

Having the revisited bistatic radar equation in hand, one can
correctly describe a transition from strong diffuse scattering to
partially coherent scattering where the coherent component is
present. This will be demonstrated here for the case of the
ocean surface covered by wind-driven waves. If the rough
ocean surface is such that Ra � 1, the scattered field will be
due to the summation of a large number of uncorrelated quasi-
specular surface reflections within a, so-called, glistening zone
on the scattering surface. This regime is called strong diffuse
scattering. However, if Ra � 1, a coherent component exists in
a nominal specular direction superimposed with a weak diffuse
“halo.” This case is not accounted for by the radar equation
in [1].

Partially coherent scattering in the near-forward bistatic
geometry drew the attention of researchers long ago, and
various scattering models were proposed [4], [15], [16]. The
importance of the accounting for the coherent component
in near-nadir scattering for ice altimetry was first stressed
in [17]. The presence of the coherent component was reported
both in ice altimetry data [18] and ocean altimetry data [19].
The numerical model for partially coherent bistatic scattering
of GNSS-type signals from the land with vegetation was
developed in [20]–[22]. Frequently, it is found convenient
incorporating the specular, coherent component into the bista-
tic radar equation in the form of a so-called coherent BRCS
added to a diffuse BRCS and placed under the integral over
a scattering surface [4]. This type of BRCS is known in
the literature as a near-field radar cross section [23], [24].
Generally, the coherent BRCS includes a sharp finite-support
function having a peak in a specular direction and describing
an EM wave diffraction on a finite area of interest, multiplied
by the factor that accounts for a reflection coefficient, an
antenna pattern, and distance. In contrast to the coherent
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Fig. 1. Example of the DDMs obtained during the UK TDS-1 satellite
mission [26]. (Left) DDM showing the presence of coherent (specular)
reflection. (Right) DDM obtained under the conditions of strong noncoherent
(diffuse) scattering. Color bar is in decibels.

BRCS, the diffuse BRCS represents a traditional far-field radar
cross section being a characteristic of the scattering object
alone, and not a function of the radar system or the distance
between radar and the scattering object [25].

To the best of our knowledge, the first coherent GNSS
reflected signals observed from space, along with more com-
mon diffusive scattered GNSS signals, were recorded during
the mission of the U.K. TDS-1 satellite. These two regimes
can be clearly seen while analyzing DDMs obtained with the
TDS-1 satellite.

Fig. 1 gives the examples of such DDMs [26]. Fig. 1 (right)
shows the DDM at a fully diffuse scattering regime from
a rough ocean surface with a large Ra . The DDM has a
characteristic horseshoe shape. Fig. 1 (left) shows the DDM
obtained in the presence of the first-year ice in the antenna
footprint. Because the first-year ice is significantly lesser rough
than the ocean surface with wind waves, an additional feature
emerges in the DDM, which is located at a specular delay and
stretched horizontally, along the Doppler frequency axis. This
feature corresponds to a coherent reflection event. The rest is
due to diffuse scattering, possibly from both rough ice and the
wavy ocean surface.

Additionally, we present one more modification to the
bistatic radar equation. It pertains to the Doppler effect due
to the motion of both the GNSS transmitter and the receiver
with respect to the envelope of the signal. Recently, a similar
kinematic effect on the envelope of the direct GNSS signal
was discussed in [27] and [28]. In [1], only the Doppler
effect of changing the carrier frequency of the reflected
signal was considered. While the Doppler effect on the sig-
nal envelope is not significant when using airborne GNSS
bistatic radars, potentially it can be noticeable in altimetric
measurements from low-Earth orbit platforms at incidence

Fig. 2. Scattering geometry of the problem.

angles significantly deviating from nadir. Such a geometry
was proposed for prospective GNSS space-borne wide-swath
altimetry [29]–[31]. The corresponding kinematic effect could
diminish the accuracy of such altimetric measurements at inci-
dence angles significantly deviating from nadir. The improved
version of the bistatic radar equation presented here allows
accounting for such an effect.

II. PROBLEM FORMULATION

In [1], the theoretical model for calculation of the DDMs for
GPS signals reflected/scattered from a rough sea surface was
proposed. Let us summarize the basic concept of the technique
and scattering geometry (see Fig. 2) to be considered. The
DDM follows after squaring and averaging the processed sig-
nal, which is a cross correlation of the received signal envelope
�̃sc with the replica of the transmitted signal envelope a(t)

Y (t, τ, ωD) = 1

Ti

∫ Ti

0
�̃sc(t + t �)a∗(t + t � − τ )eiωDt �dt �

(1)

where t is a running time, τ and ωD are, respectively, a time
delay and a frequency offset aimed to compensate a possible
Doppler shift of the signal, and Ti is a coherent integration
time. By changing both τ and ωD , one can create a 2-D DDM.
By fixing one of those two parameters and varying another, the
DDM turns into a 1-D delay, or Doppler frequency, waveform.
Historically, the first measurements of GPS reflected signals
were performed by obtaining the delay waveforms [32]. In the
general case, processed signal Y (t, τ, ωD) includes both coher-
ent and noncoherent components. In [1], the coherent compo-
nent was not included into consideration, since in the typical
cases of moderate or strong winds it is negligible. However,
in certain situations associated with low wind or scattering
from relatively flat areas such as young sea ice or lakes, it
may become significant. Here, the general case is considered
where both components may be present simultaneously.

A detailed derivation of the generalized version of the DDM
bistatic radar equation is presented in the Appendix. For the
purpose of current consideration, we summarize the results by
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referring to (A34) and (A45), which are the two terms of the
DDM general expression. It reads

|Y (τ, ωD)|2 = |Y (τ, ωD)|2c + |Y (τ, ωD)|2nc. (2)

Here, the contribution from the coherent component is as
follows:
|Y (τ, ωD)|2c = Ptr|Dtr(�n∗, ω0)Drec( �m∗, ω0)|2

×
〈∣∣∣∣χ (τ − R∗

c
, δω∗, β∗

)∣∣∣∣2
〉

|V (�n∗⊥, ω0)|2
R2∗

(3)

where

δω∗ = �ω∗ − ωD; �ω∗ = ω0

c
( �m∗ �U0 − �n∗ �U) (4)

β∗ = 1 − �ω∗
ω0

. (5)

The following notations are used here and in the following:
the subscript (*) indicates that the corresponding parameters
are associated with the coherent component, ω0 is a central
frequency of the transmitted signal, which is supposed to be
narrow band, Ptr is a transmitter power, (�r0, z0) and (�r , z) are
the horizontal and vertical coordinates of the transmitter and
the receiver, correspondingly (the z-axis is directed upward),
Dtr and Drec are, respectively, the transmitter and receiver
antenna directivity factors (voltage units), R∗ is a distance
between the transmitter and the specular image of the receiver:

R∗ =
√
(�r − �r0)2 + (z + z0)2 (6)

�m∗ is a unit vector directed from the transmitter toward the
specular image of the receiver

�m∗ = ( �m∗⊥,m∗z) = 1

R∗
(�r − �r0,−z − z0) (7)

�n∗ is a unit vector directed from the specular image of the
transmitter toward the receiver

�n∗ = (�n∗⊥, n∗z) = 1

R∗
(�r − �r0, z + z0) (8)

�U0 = (�u0, u0
z ) and �U = (�u, uz) are the velocity vectors

of the transmitter and the receiver, correspondingly, and
χ(δτ, δω∗, β∗) is the so-called Woodward ambiguity func-
tion (WAF), which is a modification of the WAF used in [1]
due to an extra parameter β∗ describing the Doppler effect
with respect to the signal envelope

χ(t, δτ, δω∗, β∗) = 1

Ti

∫ Ti+t

t
a(β∗t � + δτ )a∗(t �)e−iδω∗t �dt �.

(9)

The details of related derivations can be found in the
Appendix. The function χ in (9), generally, depends on time t .
In practice, the ensemble averaging referred in (2) by the over-
bar is performed as an averaging over the observation time T ,
which is much larger than the coherent integration time Ti .
In this case, averaging with respect to statistically independent
realizations of both roughness and transmitted pulses is, in

fact, made simultaneously. For this reason, the expression in
angular brackets in (3) has the following meaning:

�|χ(δτ, δω∗, β∗)|2� = lim
T →∞

1

2T

∫ T

−T
|χ(t, δτ, δω∗, β∗)|2dt .

(10)

Assuming that ωD is selected such that the Doppler shift is
exactly compensated in the carrier so that δω∗ in (4) turns to
zero, then WAF in (3) turns into autocorrelation function of
the transmitted signal, and the coherent part of the waveform
|Y (τ, ωD)|2c becomes equal to this autocorrelation function
multiplied by the corresponding spherical spread and reflection
factors, 1/R2∗ and |V (�n∗⊥, ω0)|2, where V (�n∗⊥, ω0) is an
average reflection coefficient calculated in a direction �n∗⊥.
One can see that (3) corresponds to the case of a perfectly flat
surface if one replaces average reflection coefficient V by the
corresponding Fresnel reflection coefficient.

In the case of Gaussian statistics of roughness fac-
tor, |V (�n∗⊥, ω0)|2 with a good accuracy can be expressed
via the Fresnel reflection coefficient VF of the underlying
medium [14]

|V (�n∗⊥, ω0)|2 = exp
(− 4R2

a

)|VF (�n∗⊥, ω0)|2 (11)

where

Ra = ω0

c
n∗z�h2�1/2 (12)

is a Rayleigh roughness parameter, and n∗z is the vertical
component of vector �n∗ defined in (8).

Now, we turn to the expression for the noncoherent com-
ponent of the waveform in (2)

|Y (τ, ω0)|2nc

= Ptr

4π

∫ ∫ |Dtr( �m⊥, ω0)Drec(�n⊥, ω0)|2
R2

0 R2

×
〈∣∣∣∣χ (βτ − R0 + R

c
, δω, β

)∣∣∣∣2
〉
σ0(�n⊥, �m⊥;ω0)d �ρ.

(13)

Here, the integration proceeds over the scattering plane surface
with �ρ being a position of the scattering element on this
surface; �m and �n are, respectively, the 3-D vectors pointing
from the transmitter to the scattering element on the surface

�m = ( �m⊥,mz) = 1

R0
( �ρ − �r0,−z0) (14)

and from the scattering element on the surface to the receiver

�n = (�n⊥, nz) = 1

R
(�r − �ρ, z) (15)

R0 and R are the distances between the scattering element and
the transmitter and the receiver, correspondingly

R0 =
√
( �ρ − �r0)2 + z2

0, R =
√
(�r − �ρ)2 + z2 (16)

δω is a corresponding Doppler shift similar to (4); however,
now it is associated with an arbitrary scattering element on
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the rough surface rather than with a nominal specular point
on the mean-level surface

δω = �ω − ωD; �ω = ω0

c
( �m �U0 − �n �U) (17)

and

β = 1 − �ω

ω0
. (18)

It is clear that parameter �ω describes both a Doppler effect
pertaining to the carrier of the scattered signal and a Doppler
effect with respect to the envelope of the signal. It is deter-
mined by the difference between radial components of the
transmitter and receiver velocities.

In (13), σ0(�n⊥, �m⊥, ω0) is a bistatic scattering cross section
per unit area (a dimensionless value) with �m⊥ = ( �ρ− �r0)/R0,
�n⊥ = (�r − �ρ)/R being horizontal components of the incident
and scattered wave vectors, respectively. Physical meaning
of (13) is quite straightforward: each surface scattering ele-
ment contributes to the average waveform with time delay
δτ and Doppler shift δω and with weight proportional to
the bistatic scattering cross section σ0. Factors R−2

0 and R−2

account for spherical propagation to and from the scattering
element. All these parameters depend on the location �ρ of the
scattering element.

In a strong diffuse regime, when Ra � 1 and the geometric
optics approximation can be applied for calculations of σ0,
one obtains an explicit analytical expression for the bistatic
scattering cross section

σ0(�n⊥, �m⊥;ω0) = π

∣∣∣∣VF

( �n⊥+ �m⊥
2

, ω0

)∣∣∣∣2
×
(
1+
∣∣∣∣ �n⊥− �m⊥

nz + mz

∣∣∣∣2
)

P

(
− �n⊥− �m⊥

nz + mz

)
(19)

where P is a probability density function of surface slopes [1].
In the previous model [1], only the Doppler effect of

changing the carrier frequency of the reflected signal due to
the motion of both the GNSS transmitter and the receiver
was accounted, whereas a similar effect with respect to the
envelope of the signal was deemed negligible. The proposed
model for the WAF accounts for this effect by introducing the
parameter β.

Let us consider the correction to the WAF associated with β∗
which with good accuracy also applies for the case of β.
It should be stressed here that the analogous Doppler effect
influences also the WAF of the direct signal due to a relative
motion of both the transmitter and the receiver [27], [28].
According to (9) and (18), over the time period Ti , the
correction term will produce a negligible shift in the argument
of the envelope function a provided

Ti� f
Ur

c
� 1 (20)

where � f is the signal bandwidth, and �Ur = �m∗ �U0 − �n∗ �U
is a difference of the radial velocities of the transmitter and
the receiver. In the case of GPS (C/A-code) signals, � f ≈
106 Hz, and usually Ti ∼ 10−3 s. For incidence close to
nadir, Ur/c is negligibly small, but at grazing angles and

for the low-Earth orbit receiving satellite, Ur/c ≈ 2 · 10−5,
which gives for Ti� f U/c ≈ 2 · 10−2. Therefore, for all
range of incidence angles, one can consider the condition (20)
fulfilled and approximation β = 1 justified. This condition
would work for current GNSS-R applications. In this case,
with high accuracy, β can be set to 1, and (9) reduces to
the standard definition of the WAF. However, in the case
of GPS [P(Y)-code, or similar] signals with � f ≈ 107 Hz,
the left-hand side of (20) increases to 0.2, which might
require using a more accurate expression for the WAF with
β �= 1. Recently, GNSS-R altimetric technique was proposed,
which is using large incidence angles to provide wide-swath
performance [29]–[31]. The above-discussed Doppler effect
with respect to the WAF could degrade the anticipated 5-cm
accuracy of altimetric measurements with a proposed instru-
ment, which should provide multifrequency observations to
correct for the ionospheric delay [33].

Equations (3) and (13) were derived assuming a plane (on
average) scattering surface. If, however, the mean curvature
of this surface needs to be taken into account, one can still
use these equations. In this case, in (3), one has to use the
values �m∗⊥ and �n∗⊥ that correspond to the nominal specular
point, and in (13), one has to integrate over a curved surface,
substituting �m⊥, �n⊥, and so on for values that lie in the plane
tangent to the surface at the integration point �ρ.

The formulation considered in this section may be applied
not only to GNSS signals but also to any point-like source of
opportunity (e.g., communication satellites or satellite radio)
with the only difference being that the envelope a(t) is not
known in advance. In this case, the reflected signal can be cross
correlated with the direct signal itself after proper Doppler
frequency and delay adjustments similar to what was suggested
in the so-called interferometric GNSS-R processing [33]. The
Doppler effect associated with the envelope of the signal can
be of some significance for sources of opportunity with larger
then considered above bandwidths � f or integration times Ti .

III. SIMULATION OF DELAY-DOPPLER MAPS

In what follows, (2), (3), and (13) and the scatter-
ing models based on the small-slope approximation (SSA)
from [14] and [35] for calculating σ0 were incorporated
into the code that generated DDMs for a range of winds
and the specific geometry and receiver parameters, so the
transition from weak to moderate winds can be studied.
In these calculations, we assume β = 1.

To perform calculations, one has to specify an expression for
the WAF, which enters (3) and (13). Here, we use the following
approximate expression for the absolute-value squared WAF,
which was suggested in [1] for GPS application:

�|χ(δτ, δω)|2� = �2(δτ )

(
sin(δωTi/2)

δωTi/2

)2

(21)

with

�(δτ) =
{

1 − |δτ |/τc, |δτ | ≤ τc

0, |δτ | > τc
(22)

where τc is the chip length. This factorization of the WAF
appeared to work quite well. Our calculations of the exact
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Fig. 3. Simulated coherent component of the DDM in the regime of weak diffuse scattering at U = 2 m/s. (Left) Linear scale. (Right) To make sidelobes
more visible (in decibels).

Fig. 4. Simulated DDM (linear scale) that combines coherent and diffusive components for (Left) U = 2 m/s (the same regime as in Fig. 2) and
(Right) U = 3 m/s (coherent component diminishes significantly).

and approximate expressions for WAF demonstrate up to
10−4 relative accuracy for the factorization. In the case of
β �= 1, it is not possible to obtain an analytical expression
similar to (21), but the numerical simulations show that the
factorization of the WAF also holds with high enough accuracy
in the following form:
�|χ(δτ, δω; β)|2� = �|χ(δτ, 0; β)|2� · �|χ(0, δω; β)|2�. (23)

First, we would like to show how the simulated DDM
behaves for the case of weak winds when a strong coherent
component manifests itself. Fig. 3 shows a simulation of the
DDM originated from a reflected GPS L1 signal seen at
the incidence angle of 30° for the receiver altitude of 5 km with
the circular antenna having 14-dB directivity, which translates
into ∼40° wide main lobe pointed into a specular direction.
For calculation of the Rayleigh parameter Ra , the ocean sur-
face roughness was assumed obeying the Elfouhaily et al. [36]
wave spectral model. For this case, wind speed was chosen
U10 = 2 m/s, which yields Ra = 0.71. The coherent DDM
has a strong central lobe and much weaker sidelobes mirroring
the structure of the WAF of the GPS signal [1], [2]. These
sidelobes are barely seen in Fig. 3 (left) because of the linear
scale for the DDM power chosen here. To better see the
sidelobes of the coherent DDM, we plot the same image in
the dB scale in Fig. 3 (right).

Fig. 4 (left) shows a DDM, which combines together
both the coherent and diffuse components for the case of
U10 = 2 m/s. The geometry and receiver parameters were
chosen the same as for the case shown in Fig. 3. It is seen
that the coherent component dominates the DDM. The case
of U10 = 3 m/s is shown in Fig. 4 (right). The coherent
component is less pronounced, while the diffuse component
is relatively stronger, although both components reduce in a
magnitude due to the increased surface roughness.

To compare DDMs for a wider range of winds (between
2 and 5 m/s), we plotted a set of waveforms or 1-D cuts of
the DDMs at the zero Doppler frequency. They are shown in
Fig. 5. One can see that a significant reduction of the peak of
the waveforms takes place between 2 and 3 m/s. It happens
mostly because of the fast decay of the coherent component
due to its exponential dependence on R2

a [see (11)]. Note that
the waveforms at U10 > 3 m/s produced by the weak diffuse
scattering are vanishing at about three-chip delay. This is a
result of the limited footprint created by the 40° wide beam
of the antenna located at H = 5 km. Such set of parameters
was chosen to reduce the computation time of the DDMs.

In addition, simulations of the DDM were performed using
the geometric optics model [1] based on a large Ra assumption
(fully diffuse scattering) for a large range of winds from
2 to 25 m/s. A comparison between these results and those
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Fig. 5. Transition from coherent reflection at U = 2 m/s to weak diffuse
noncoherent scattering at U = 2.5–5 m/s.

Fig. 6. DDM peak SNR as a function of wind speed. Comparison between
coherent + weak diffuse and strong diffuse scattering.

obtained with the partially coherent model [14] shows that a
smooth transition from one to another takes place at U10 ≈ 5
m/s. At U10 < 5 m/s, the model [1] inaccurately predicts
the behavior of DDM giving lower values compared to the
results following from the more accurate model [14] based on
a partially coherent, weakly diffuse scattering process. This is
shown in Fig. 6.

IV. CONCLUSION

The bistatic radar equation that was derived in [1] for
simulating DDMs, or waveforms produced by GPS signals
reflected off the rough ocean surface cannot be applied to the
case of weak diffuse scattering or in a presence of coherent
reflection. In deriving that equation, a geometric optics limit
of the Kirchhoff approximation under the regime of strong
diffuse (noncoherent) scattering with Ra � 1 was used.

Sometimes, however, a weak diffuse scattering scenario
takes place. It might be seen in bistatic scattering from calm
seas, lakes, relatively flat land, or sea ice characterized by
small Ra . In this paper, it was shown that the assumption of
strong diffuse scattering is not necessary in deriving such an
equation. The generalized bistatic radar equation was derived
here using a formalism of scattering amplitudes. Now, this
equation consists of a sum of two terms, one for the coherent

component and another for the noncoherent, diffuse compo-
nent. This bistatic radar equation is applicable for a much
wider range of surface conditions and scattering geometries.
The part of the equation, which describes noncoherent diffuse
scattering, has the same structure as the old bistatic radar
equation from [1]. However, the BRCS σ0 entering this new,
generalized equation does not necessarily need to obey the
geometric optics approximation (19). It can originate from an
arbitrary scattering model.

Using the generalized bistatic radar equation, we simulated
a set of DDMs in order to illustrate a transition from strong dif-
fuse scattering to partially coherent scattering, and then, to the
emergence of the coherent component. This was demonstrated
for the case of the ocean surface covered by wind-driven
waves. The DDMs at the regime of weak winds, when Ra < 1,
were simulated using the SSA1 approximation for calculating
σ0, which cannot be correctly described by the probability den-
sity function of surface slopes according to (19). It is shown
that for scattering from surfaces with a small enough Rayleigh
parameter, a coherent component which manifests itself only at
a nominal specular direction might contribute noticeably to the
peak value of the DDM. It is accompanied by a relatively weak
diffuse scattering away from the DDM peak. Because coherent
and noncoherent scattering components have a different nature
and obey different dependences on the problem geometry, the
relative weight of corresponding components in DDMs varies
depending on a problem specific setup.

The presence of the coherent component in the DDM
needs special attention when using it for both altimetry and
scatterometry purposes. The leading slope and peak positions
of the reflected waveform for the diffuse incoherent com-
ponent are somewhat delayed with respect to those for the
coherent component. If the coherent scattering is mistakenly
interpreted as incoherent diffuse scattering, the modeling result
will produce a positive bias in the surface level prediction.
This bias can be estimated using our revisited radar equation
if information about surface roughness (Rayleigh parameter
and mean square slope) is available. The new bistatic radar
model also addresses the issue of kinematic effects influencing
the WAF that becomes important for GNSS-R altimetry at
incidence angles significantly deviating from nadir.

Eight microsatellites have been launched on
December 15, 2016 as a part of the NASA mission called
the Cyclone Global Navigation Satellite System (CYGNSS).
This is the first mission dedicated to retrieve ocean winds
and waves in tropical cyclones using GNSS signals [7].
To simulate the performance of the onboard DDM receiver
under these conditions, an end-to-end simulator (E2ES)
was designed [37], which employs the DDM bistatic radar
equation based on the strongly diffuse scattering model
from [1]. This simulator was used for an assessment of
both the diffuse BRCS and wind retrieval algorithms for
the CYGNSS mission [38]–[40]. The generalized bistatic
radar equation presented here can be used to augment
the E2ES simulator with an ability to correctly predict
the DDM behavior also for the ocean surface under weak
winds characterized by relatively low values of the Rayleigh
parameter Ra.
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APPENDIX

DERIVATION OF THE BISTATIC RADAR EQUATION

Let us first outline seven principal steps of the derivation
of the bistatic radar equation. Those are: 1) representation of
the incident field in (A5) as a superposition of plane waves
with different frequencies and projections of the horizontal
wave vectors (i.e., incidence angles); 2) expressing the scat-
tered field for each incident plane wave using a scattering
amplitude [see (A6)]; 3) obtaining expression (A7) for the
scattered field using the principle of superposition, and writing
it down for the case of a moving transmitter and receiver
[see (A10)]; 4) integrating (A10) over the frequency and
producing expression (A14) for the waveform; 5) obtaining
simplified expression (A21) for the average square of the
waveform using a far-field assumption (A20); 6) averaging
an absolute-value square of the waveform with respect to
realizations of statistically spatially homogeneous roughness
using (A22), which leads to appearance of both coherent and
noncoherent components of the waveform [see (A24)]; and
7) obtaining the expressions (A34) and (A45) in a final form
for, respectively, coherent and noncoherent components.

All derivations in the following are performed for a scalar
field assuming that we are dealing with the waves of a
certain polarization. The general case would only require
the introduction of corresponding polarization indices into
the scattering amplitude S(�k, �k0) [34]. To simplify notations
without loss of generality, we omit polarization indexes in
S(�k, �k0) in what follows.

A well-known plane-wave representation of the field radi-
ated by an omnidirectional point source located at a point with
horizontal and vertical coordinates, �r0 and z0 > 0, respectively,
reads

ei(ω/c)R

R
= i

2π

∫
d �k
qk

ei�k(�r−�r0)+iqk (z0−z) (A1)

where

R =
√
(�r − �r0)2 + (z − z0)2 (A2)

and

qk =
√
ω2

c2 − k2 (A3)

is a vertical component of the wave vector with horizontal
component �k. It is assumed in (A1) that z0 > z (the receiving
point is below the source). If we want to describe a directional
source, the integral in (A1) can be modified by including
a directivity factor Dtr(�k) under its sign. In the far field,
R → ∞, such an integral can be evaluated by the steepest
descent method and the result reads

i

2π

∫
d �k
qk

Dtr(�k)ei�k(�r−�r0)+iqk (z0−z)

≈ Dtr

(
ω

c

�r − �r0

R

)
ei(ω/c)R

R
. (A4)

Thus, the field �in incident upon the sea surface due to a
source with a transmitter power Ptr and an antenna directivity

Dtr(�k) can be represented as follows:
�in(�r, z) = i

2π

√
Ptr

∫
d �k0 Dtr(�k0)

1

q1/2
k0

e−i�k0 �r0+iqk0 z0

× 1

q1/2
k0

ei�k0�r−iqk0 z (A5)

where we replaced integration variable �k by �k0. The last
factor in (A5) represents an individual plane wave propagating
downward. In the general case, the scattered field due to such
a single incident plane wave can be expressed in terms of
scattering amplitude S(�k, �k0) [34]

ψsc(�r, z) =
∫

d �k 1

q1/2
k

ei�k�r+iqk z S(�k, �k0) (A6)

(the scattered waves propagate upward). Using a superposition
principle, one can express the scattered field due to �in in (A5)

�sc(�r , z) = i

2π

√
Ptr

∫
d �k0 Dtr(�k0)

1

q1/2
k0

e−i�k0 �r0+iqk0 z0

×
∫

d �k Drec(�k) 1

q1/2
k

ei�k�r+iqk z S(�k, �k0). (A7)

Here, similar to (A4), we also introduced an antenna directivity
factor for the receiver Drec(�k).

Let the transmitter radiate a narrow-band signal with enve-
lope a(t) and central frequency ω0

a(t)e−iω0 t =
∫

â(ω)e−iωt dω (A8)

where signal spectrum â(ω) is concentrated in the vicinity
of ω0. The temporal dependence of the scattered signal can
be derived from (A7) after additional integration with respect
to frequency ω. Note that both qk0 and qk are the functions of
the frequency [see (A3)]; although to simplify the notations in
the following, we will not indicate this dependence explicitly.
If, besides that, both the transmitter and the receiver move
with nonrelativistic velocities, this motion can be accounted
for by making a substitution

�r0 → �r0 + �u(0)t, z0 → z0 + u(0)z t (A9)

in (A7), and, similarly, for (�r , z). Now, �r0, �r , z0, and z stand
for the coordinates of the transmitter and the receiver at t = 0;
�u(0) and �u stand for horizontal and u(0)z and uz for the vertical
components of the transmitter and receiver velocity vectors,
respectively. The resulting expression for the envelope of the
received field �̃sc as a function of time reads

�̃sc(t) = �sc(t)e
−iω0 t

= i
√

Ptr

2π

∫
â(ω)dω

∫
d �k0

q1/2
k0

Dtr(�k0)

∫
d �k

q1/2
k

Drec(�k)

× S(�k, �k0)e
i�k�r−i�k0 �r0+iqk z+iqk0 z0−i�t (A10)

where

� = ω − ω0 + �k0 �u0 − qk0 u(0)z − �k�u − qkuz .

The next step is to perform integration in (A10) over frequency
ω. To be able to do this, we consolidate the frequency
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dependence in the exponent in the form of a linear function
of ω by rescaling our integration variables �k and �k0 by ω.
Functions Dtr, Drec, and S are the slow functions of ω as
compared to the fast oscillating phase term. For this reason,
we can set ω = ω0 in those functions. Now, using (A8), we
can integrate over frequency and obtain

�̃sc(t) = i
√

Ptr

2π

∫
Dtr(�k)Drec(�k0)S(�k, �k0)

× exp [iω0τ0(�k, �k0)+ i�ω(�k, �k0)t]
× a[(1 −�ω(�k, �k0)/ω0)t − τ0(�k, �k0)] d �kd �k0√

qkqk0

(A11)

where

�ω(�k, �k0) = �k �u + qkuz − �k0�u(0) + qk0 u(0)z (A12)

τ0(�k, �k0) = �k�r + qkz − �k0�r0 + qk0 z0

ω0
(A13)

and qk and qk0 are calculated at ω = ω0.
Substituting (A11) into (1) and using (9) for the WAF,

we obtain

Y (t, τ, ωD) = i
√

Ptr

2π
e−iωD t−iδωτ

∫ ∫
Dtr(�k0)Drec(�k)

× S(�k, �k0) exp[iω0τ0(�k, �k0)]
×χ(t − τ, δτ, δω, β)

d �k0d �k√
qkqk0

(A14)

where

δτ = βτ − τ0 (A15)

δω = −�ω − ωD (A16)

β = 1 − �ω

ω0
. (A17)

Parameter β takes into account Doppler effect with respect to
the envelope of the transmitted signal. Note that parameters δτ ,
δω, and β depend on �k and �k0; to simplify the notation, we
do not indicate this in (A14) explicitly.

Now, let us consider |Y (τ, ωD)|2 and average this value with
respect to statistical ensemble of roughness assuming the latter
being statistically homogeneous with respect to horizontal
coordinates. To do this, we square (A14) denoting integration
variables �k0 and �k as �κ �

0 and �κ � and �κ ��
0 and �κ ��, respectively,

and then introduce new integration variables �k0, �k, �b, and �b0
as follows:
�κ �

0 = �k0 − �b0

2
, �κ ��

0 = �k0 + �b0

2
, �κ � = �k − �b

2
, �κ �� = �k + �b

2
.

(A18)

Statistics of roughness enters (A14) through scattering ampli-
tude S. The resulting correlator due to assumed statistical spa-
tial homogeneity of roughness can be represented as follows
(see [34, p. 35]):

S

(
�k − �b

2
, �k0 − �b0

2

)
S∗
(

�k + �b
2
, �k0 + �b0

2

)
= E(�k, �k0; �b)δ(�b − �b0). (A19)

Taking into account that χ is relatively a slow function of
�k and �k0, one can evaluate the resulting integral in the far
field. To do this, one expands the exponent into powers of �b
retaining the lowest order O(�b) terms

�κ ��r − �κ �
0�r0 + qκ �

0
z0 + qκ � z − (�κ ���r − �κ ��

0 �r0 + qκ ��
0
z0 + qκ �� z

)
≈
(

�r0 − �r + �kz

qk
+ �k0z0

qk0

)
�b (A20)

and set �b = 0 in all other terms. Note that this assumption
imposes certain restrictions on the smoothness of the depen-
dence of function χ on its parameters. Precise conditions of
the validity of this approximation require special investigation.

Due to approximation (A20), the integration over �b produces
a δ-function and one finds

|Y (τ, ωD)|2 = Ptr

∫ ∫
|Dtr(�k0)Drec(�k)|2 E(�k, �k0; 0)

× �|χ(δτ, δω, β)|2�δ
(

�r0 − �r + �kz

qk
+ �k0z0

qk0

)

× d �k0d �k
qk0 qk

.

(A21)

In the general case, correlator E contains contribution from
both coherent and noncoherent components [34]

E(�k, �k0; 0) = |V �k |2δ(�k − �k0)+ 1

4π

σ0(�k, �k0)

qkqk0

(A22)

where V k is an average reflection coefficient and σ0(�k, �k0) is
a standard far-field bistatic scattering cross section per unit
area (dimensionless values). The average reflection coefficient
is associated with the first statistical moment of the scattering
amplitude

S(�k, �k0) = V �kδ(�k − �k0). (A23)

After substituting (A22) into (A21), one finds

|Y (τ, ωD)|2 = |Y (τ, ωD)|2c + |Y (τ, ωD)|2nc (A24)

where contributions from the coherent and noncoherent com-
ponents are as follows:
|Y (τ, ωD)|2c = Ptr

∫
|Dtr(�k)Drec(�k)|2�χ(δτ, δω, β)|2�

×|V �k |2 δ
(

�r0 − �r + �k
qk
(z + z0)

)
d �k
q2

k

(A25)

where δτ , δω, and β are calculated at �k = �k0, and

|Y (τ, ωD)|2nc = Ptr

4π

∫ ∫
|Dtr(�k0)Drec(�k)|2�|χ(δτ,δω,β)|2�

×σ0(�k, �k0)δ

(
�r0 − �r + �kz

qk
+ �k0z0

qk0

)
d �k0d �k
q2

k0
q2

k

.

(A26)

Let us first perform integration over �k in the expression
for the coherent component. The δ-function results in the
following expressions for �k and qk :

�k = ω0

c

�r − �r0

R∗
, qk = ω0

c

z + z0

R∗
(A27)
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where R∗ is given by (6). Calculation of a corresponding
Jacobian gives

det
∂
(�r0 − �r + �k

qk
(z + z0)

)
∂�k = ω2

0

c2

(z + z0)
2

q4
k

= R2∗
q2

k

. (A28)

Then, the following expressions for δτ , δω∗, and β∗ can be
obtained after substituting (A27) into (A15)–(A17):

δτ = β∗τ − ω0

c2

z + z0

qk
= β∗τ − R∗

c
(A29)

�ω∗ = ω0

c

(�r − �r0)(�u(0) − �u)− (z + z0)
(
u(0)z + uz

)
R∗

(A30)

δω∗ = �ω∗ − ωD (A31)

β∗ = 1 − �ω∗
ω0

. (A32)

Using unit vector notations �m∗ and �n∗ from (7) and (8),
the expression for �ω∗ in (A30) can be rewritten in a more
compact form

�ω∗ = ω0

c
( �m∗ �U0 − �n∗ �U). (A33)

Taking into account (A27), the same unit vector notations can
be used for arguments of antenna directivities.

Finally

|Y (τ, ωD)|2c = Ptr|Dtr( �m∗⊥, ω0)Drec(�n∗⊥, ω0)|2

×|χ(δτ, δω∗, β∗)|2 |V (�n∗⊥, ω0)|2
R2∗

. (A34)

Now, let us consider the noncoherent component (A26).
Introducing the integration variable

�ρ0 = �r0 + �k0z0

qk0

(A35)

instead of �k0, one finds

�k0 = ω0

c

�ρ0−�r0

R0
, qk0 = ω0

c

z0

R0
, R0 =

√
( �ρ0 − �r0)2 + z2

0.

(A36)

Similarly, we introduce the integration variable

�ρ = �r − �kz

qk
(A37)

instead of �k, which leads to

�k = ω0

c

�r − �ρ
R

, qk = ω0

c

z

R
, R =

√
(�r − �ρ)2 + z2.

(A38)

Now, the corresponding Jacobians read

det
∂ �ρ0

∂�k0
= R2

0

q2
k0

, det
∂ �ρ
∂�k = R2

q2
k

. (A39)

The δ-function in (A21) turns into δ( �ρ− �ρ0) so that �ρ0 in (A36)
will be replaced by �ρ. Similar to the above, from (A15)–(A17),

one finds

δτ = βτ − R0 + R

c
(A40)

�ω = ω0

c

( �ρ − �r0)�u(0) − z0u(0)z

R0
− ω0

c

(�r − �ρ)�u + zuz

R
(A41)

δω = �ω − ωD (A42)

β = 1 − �ω

ω0
. (A43)

Using (17) and (18), we obtain the expression for �ω in (A41)
in more compact form

�ω = ω0

c
( �m �U0 − �n �U ). (A44)

Taking into account (A38), the same unit vector notations can
be used for the arguments of antenna directivity functions and
σ0. As a result, one finds

|Y (τ, ωD)|2nc = Ptr

4π

∫ ∫ |Dtr( �m⊥, ω0)Drec(�n⊥, ω0)|2
R2

0 R2

×�|χ(δτ,δω,β)|2�σ0(�n⊥, �m⊥;ω0)d �ρ. (A45)

It can be shown that introduced here antenna directivities
Dtr and Drec are related to the standard antenna gain patterns
Gtr and Grec through the following relationships [4]:

|Dtr|2 = η0

4π
Gtr (A46)

|Drec|2 = λ2

4π
Grec (A47)

where η0 ≈ 120π Ohms, and λ is a wavelength of the
radiation. Taking into account (A46) and (A47), the bistatic
radar equation (A45) takes a standard form analogous to
[4, eq. (11.185)].
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