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ABSTRACT: Various methods have been developed to characterize cloud type, otherwise referred to as cloud regime.

These include manual sky observations, combining radiative and cloud vertical properties observed from satellite, surface-

based remote sensing, and digital processing of sky imagers.While eachmethod has inherent advantages and disadvantages,

none of these cloud-typing methods actually includes measurements of surface shortwave or longwave radiative fluxes.

Here, a method that relies upon detailed, surface-based radiation and cloud measurements and derived data products to

train a random-forest machine-learning cloud classificationmodel is introduced.Measurements from five years of data from

the ARM Southern Great Plains site were compiled to train and independently evaluate the model classification perfor-

mance. A cloud-type accuracy of approximately 80% using the random-forest classifier reveals that the model is well suited

to predict climatological cloud properties. Furthermore, an analysis of the cloud-typemisclassifications is performed.While

physical cloud types may be misreported, the shortwave radiative signatures are similar between misclassified cloud types.

From this, we assert that the cloud-regime model has the capacity to successfully differentiate clouds with comparable

cloud–radiative interactions. Therefore, we conclude that the model can provide useful cloud-property information for

fundamental cloud studies, inform renewable energy studies, and be a tool for numerical model evaluation and parame-

terization improvement, among many other applications.
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1. Introduction

Clouds are a crucial aspect of the climate system via their

direct connection to the hydrological cycle and their influence

on Earth’s energy balance. Because clouds significantly inter-

act with solar (shortwave) and infrared (longwave) fluxes, their

influence on the surface and top-of-atmosphere radiation

budgets drive weather and climate across a wide range of

temporal and spatial scales (e.g., Peixoto and Oort 1992;

Trenberth et al. 2009; Ahrens 2012). Cloud–radiative interac-

tions depend upon a range of physical characteristics of the

cloud layer(s), including the vertical distribution of the layers,

and each layer’s cloud phase (ice, liquid, mixed), cloud particle

size, and integrated water content. These properties determine

scattering and absorption characteristics of the cloud, which

also depend onwavelength. Clouds of a similar regime, or type,

typically have comparable microphysical and macrophysical

properties. As such, classifying clouds into a limited set of re-

gimes can be useful in understanding and characterizing their

role in the weather and climate system.

The development of cloud classification regimes provides

important observationally based information that serves as a

metric for fundamental understanding of cloud processes and

the evaluation and improvement of cloud representation in

weather prediction and global circulation models (GCMs; e.g.,

Chen andDel Genio 2009; Jin et al. 2017; VanWeverberg et al.

2018). In general, three primary methods that have been de-

veloped to create cloud-regime datasets based on observations:

1) employing multivariable distributions of radiative and

cloud-top properties retrieved from satellite (e.g., Rossow and

Schiffer 1991, 1999); 2) digital processing of camera imagery

viewing the sky to classify cloud texture (coverage) and

structure from the surface (e.g., Long et al. 2006; Kazantzidis

et al. 2012); and 3) combining of zenith-viewing active and

passive remote sensing instrumentation capable of resolving

cloud hydrometeors in the vertical (Kollias et al. 2007a;

Tselioudis and Kollias 2007).

These methods have their inherent advantages and disad-

vantages. Cloud types based on joint histogram distributions

of cloud optical thickness and cloud-top pressure from pas-

sive satellite observations can provide cloud-regime datasets

across a wide temporal and spatial range. For example, the

ISCCP (Rossow and Schiffer 1999) and Cloud, Albedo, and

Surface Radiation dataset (CLARA), version A2 (CLARA-

A2; Karlsson et al. 2017), joint distributions provide cloud-

regime observations globally for 301 years starting from the

early 1980s. Often, these joint distributions are subjected to

clustering techniques in order to categorize their dominant

organization patterns, either regionally (e.g., Jakob andTselioudis

2003) or globally (e.g., Pincus et al. 2012; Tselioudis et al. 2013;

McDonald et al. 2016). The advantage of satellite-based cloud

regimes is the wide spatial and temporal coverage, permitting

study of the dominant cloud structures and how these have

evolved in a changing climate. Clustering of global cloud
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regimes could also be analyzed jointly with the background

weather state, indicating a linkage between synoptic weather

forcing and cloud type (Tselioudis et al. 2013; McDonald and

Parsons 2018). However, 2D radiative–cloud-top distributions

are created by combining satellite footprints, causing a coarser

spatial resolution than the actual pixel resolution; such a

‘‘coarse graining’’ process is necessary to get robust, mean-

ingful cloud-regime statistics (Rossow and Schiffer 1991;

Karlsson et al. 2017). Moreover, infrequent temporal sampling

resulting from the polar orbit of the satellites presents another

disadvantage of this method, especially when high-frequency

changes in cloud type and radiative fluxes are an application of

interest. Global coverage on long, 301-yr data records makes

this method useful for studying climate time scales and for

evaluating GCMs. However, cloud regimes from satellite

joint histograms potentially wash out the small-scale vari-

ability into the regional distribution/characteristics of the

clouds (Leinonen et al. 2016) and these regimes may actually

not be unique clouds but rather integrative features from

multiple cloud types simultaneously (Mace andWrenn 2013).

Directed camera images of the sky and from whole-sky-

viewing hemispheric domes have been processed to develop

automated estimates of total cloud cover and cloud structure

(e.g., Martins et al. 2003; Long et al. 2006; Kazantzidis et al.

2012; Zhuo et al. 2014), and further use clustering algorithms to

distinguish cloud types through digital image processing (e.g.,

Heinle et al. 2010; Wang et al. 2018). A primary advantage of

using cloud typing of this method is the relatively high-

frequency temporal sampling and the ability to capture the

high-frequency variability common with cloud evolution and

life cycle. In comparison to satellite cloud regimes, spatial in-

formation is limited to the viewing geometry of the camera or

the hemispheric dome reflecting the sky conditions. Generally,

the classification of clouds using digital image processing are

reported with relatively high accuracy, although discrepancies

are reported when a single, unique cloud class is not observed,

such as during multilayer cloud scenes (Heinle et al. 2010). An

additional disadvantage is the use of manually observed

‘‘truth’’ cloud types in order to train the classification clustering

algorithms; these truth observations are often classified sub-

jectively by human detection, potentially incorporating biased

decisions (Heinle et al. 2010).

Active sensing of cloud layers from surface or spaceborne

cloud radar and lidar provide the most robust vertically re-

solved description of cloud properties. Backscattered energy

from cloud particles in the atmospheric column within the in-

strument field of view is used to identify cloud layers by dis-

tinguishing and partitioning individual cloud layers from

precipitation signals (e.g., Moran et al. 1998; Kollias et al.

2007b). Physical geometric thresholds are applied to the cloud-

base and cloud-top heights and layer thicknesses are then

calculated, and the cloud layers are classified into regimes

based on their physical characteristics (Kollias et al. 2007a;

Tselioudis and Kollias 2007; Lim et al. 2019). The high tem-

poral and vertical resolution of the active sensors are ad-

vantageous for capturing high-frequency cloud variability;

however, these instruments are costly and require significant

infrastructure and personnel to maintain operation. Their

deployments are generally limited spatially to long-term ob-

servatories such as the Atmospheric Radiation Measurement

(ARM) program (Mather and Voyles 2013; Turner and

Ellingson 2016) or short-term field experiments.

Their zenith-viewing orientation limits the effective field of

view to the sky conditions as they advect over the instruments.

The high level of vertical detail in cloud properties derived

from these instruments has been exploited to understand

biases in numerical modeling of cloud fields. Tselioudis and

Kollias (2007) used their cloud regimes to identify biases in

the European Centre for Medium-Range Weather Forecasts

(ECMWF) model forecasts, reporting a major gap in the

model’s ability to represent multilayered clouds over the

southern United States. Ahlgrimm and Forbes (2012) applied

the cloud regimes developed by Kollias et al. (2007a) and

found critical errors in the ECMWF forecasts of shortwave

irradiance were connected to biases in both shallow cumulus

and overcast stratiform clouds. These vertically resolved

cloud regimes have also been used to evaluate suites of

model runs to identify which cloud types led to radiative and

temperature biases over the southern Great Plains (Van

Weverberg et al. 2018).

Characterizing different cloud regimes and exploring how

surface radiative fluxes vary by these regimes provides an

effective and critical tool to improve our understanding of

cloud–radiative interactions and translate fundamental un-

derstanding into improvements in numerical modeling. In this

regard, classifying cloud regimes based on actual surface ra-

diation measurements seems a logical choice. While the three

cloud-regime methods described above have demonstrated

success in classifying cloud types, none of the three were de-

veloped based on actual surface radiation measurements. The

sky cameras make use of visible imagery but not broadband

radiative fluxes. Satellite histograms incorporate the retrievals

of cloud optical thickness, but this cloud radiative property is

valid for top of atmosphere radiance and does not equate to

radiative fluxmeasurements actually penetrating the cloud and

reaching the surface.

This paper describes the development of a machine-learning

cloud-regime classification model designed using surface

broadband radiation measurements and cloud products.

The observations used as independent input variables are

based on measurements and derived data products origi-

nating from the SURFRAD surface radiation network

across the United States (Augustine et al. 2005). However,

the cloud-regime classification model can be applied to any

observatory where similar broadband radiation and cloud

measurements are made. In fact, observations identical to

those made at SURFRAD are available from the ARM

Southern Great Plains (SGP) Central Facility in Oklahoma;

these observations at SGP, together with a fully indepen-

dent cloud classification product, serve as the basis for the

training and evaluation processes of the machine-learning

classification model. Careful attention to the choice of input

measurements has been made such that the classifier can

also be run on readily available numerical model output.

In this study, the development of a novel cloud-regime

method is presented using a machine-learning framework.

478 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 60

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 04:32 PM UTC



Various machine-learning methods have a long history in

meteor. McGovern et al. (2019) documents a number of

machine-learning frameworks and their applications in the

literature designed to improve weather forecasting, such as

precipitation type forecasts and severe storm probability.

Here, detailed yet generally disparate surface-based mea-

surements are combined within a random-forest classifier

framework to predict the overlying cloud regime. Following

the input measurements, a description is given of the inde-

pendent observational cloud-type data product needed for

training the machine-learning model and how this cloud type

was extended for our needs. Results from multiple evaluations

of the cloud-regime classifier are presented, focusing on the

prediction accuracy and the advantage of using surface radia-

tion and cloud measurements as classifier input variables. The

results are discussed with an emphasis on the advantages of our

regime classifier method and its relatively high accuracy.

2. Methods and data

This study describes a machine-learning technique to clas-

sify cloud type based onmeasurements of surface radiation and

cloud properties. The random-forest classification machine-

learning algorithm requires training and optimization of input

values (features) against independent truth (labels) (e.g.,

Breiman 2001). For our application, the input features are

surface radiation, cloud-property observations, and enhanced

cloud data products. The labels are the true cloud types observed

that have influenced the surface radiation measurements.

In the following sections, a description of the input measure-

ments and the observed (truth) cloud regimes are presented,

followed by a description of the random-forest classifier

training process.

a. Input feature measurements

Collocated measurements of surface radiation and cloud

properties are generally abundant and have the ability to

provide a wealth of information about cloud–radiative inter-

actions. But these measurements are often disparate and as

such make it difficult to determine how different cloud regimes

influence the radiative fluxes at the surface. Combining these

separate but interconnected measurements into data vectors

for input into a machine-learning model is one way of

providing a unified linkage between them. The major con-

straint is that measurements and subsequent data products

must be consistent. The U.S. Department of Energy’s (DOE)

ARM User Facility sites satisfy the need for consistent, high-

quality radiation and cloud measurements.

The ARM SGP observatory (see Fig. 1) in Oklahoma has

been measuring high-quality surface radiation and producing

radiation and cloud data products since 1992 (Sisterson et al.

2016). Strict quality assurance and quality control measures on

datasets and data products have been the ethos of ARM since

its inception. In addition to broadband downwelling and up-

welling shortwave and longwave irradiances, ARM facilities

measure direct normal and diffuse solar irradiance components

using pyrheliometers and shaded radiometers mounted on

automated solar trackers. Beyond the high-quality surface ra-

diation measurements, clear-sky irradiances and cloud proper-

ties are estimated from broadband irradiance measurements

through the Radiative Flux Analysis (RadFlux) processing

and analysis algorithms (Long and Ackerman 2000; Long

et al. 2006; Long and Turner 2008). Such products include

clear-sky downwelling shortwave and longwave irradiances,

cloud fractional sky coverage (hemispherical) based on

shortwave and longwave radiation, respectively, and effective

shortwave cloud transmissivity. Active remote sensors for

measuring cloud vertical distributions and properties were

installed at SGP, including zenith-viewing millimeter wave-

length cloud radar (MMCR; Moran et al. 1998; Kollias et al.

2016) and lidar systems (Campbell et al. 2002).

Only a subset of all available radiation and cloud products

are used as input features for our cloud classifier. Table 1 lists

the specific measurements and/or data products used as input

FIG. 1. Geographic distribution of the seven SURFRADobservatories. Included is the location

of the ARM SGP Central Facility observatory.
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features for our cloud-regime classification model. These fea-

tures vary in complexity from straightforward broadband and

solar component measurements, lowest cloud-base height and

cloud presence from ceilometer profile measurements, to more

advanced derived features such as shortwave/longwave cloud

radiative effect (all-sky minus clear-sky downwelling radia-

tion), fractional sky coverage from shortwave measurements,

and 15-min temporal variability of shortwave transmissivity.

These features have been chosen on the basis of relatively high

data recovery and their ability to provide useful cloud-property

information, which leads to distinguishing between different

cloud regimes. The variables were specifically chosen because

the same high-quality instruments, measurements, and data

products are routinely observed by the NOAA Global

Monitoring Laboratory’s surface radiation budget SURFRAD

(Augustine et al. 2005) network across the United States (see

Fig. 1). SURFRAD observatories have been operational since

1995, measuring surface radiation and producing derived ra-

diative and cloud products through the RadFlux processing

and analysis algorithms. Beginning in 2018, Vaisala CL51

ceilometers (https://www.vaisala.com/sites/default/files/documents/

CL51-Datasheet-B210861EN.pdf)were added to eachSURFRAD

observatory to provide active sensor measurements of clouds

and aerosol properties across the atmospheric column; ceil-

ometers were installed and operational at each observatory by

late 2019. These zenith-viewing lidars measure attenuated

backscatter across the troposphere, producing time–height

retrievals of aerosol and cloud backscatter. From these re-

trievals, cloud fraction and cloud-base height are provided and

can be used as input to the random-forest classifier (Table 1).

Unlike ARM SGP, no additional active sensing instruments

are deployed at SURFRAD. Because of this, SGP observa-

tions and an independently derived cloud-type data product

developed at SGP (Lim et al. 2019) serve as the central

TABLE 1. Random-forest input feature (observation or derived product) name, a description of the observation or derived data product,

and the instrument(s) used to measure/derive the feature.

Feature Description (units) Instrument(s)

swd direct Direct downwelling shortwave irradiance (Wm22),

normalized by cosine of solar zenith angle (SZA)

Eppley Normal Incidence Pyrheliometer installed on a

solar tracker

swd diffuse Diffuse downwelling shortwave irradiance (Wm22),

normalized by cosine of SZA

Shaded Eppley Black and White 8–48 Pyranometer

installed on a solar tracker

lwd Downwelling longwave radiation (Wm22) Shaded Eppley Precision Infrared Pyrgeometer installed

on a solar tracker

lwd clear Clear-sky downwelling longwave radiation (Wm22) Derived quantity based on lwd measurements (produced

by RadFlux)

diffuse/total Ratio of downwelling shortwave diffuse irradiance to

total (direct 1 diffuse) downwelling shortwave

irradiance (unitless)

Shaded Eppley Black and White 8–48 Pyranometer and

Eppley Normal Incidence Pyrheliometer

diffuse – diffuse clear Downwelling shortwave diffuse irradiance minus

clear-sky downwelling shortwave diffuse irradiance

(Wm22), normalized by cosine of SZA

Shaded Eppley Black and White 8–48 Pyranometer (for

diffuse measurement); diffuse clear is a derived

quantity that is based on all-sky diffuse measurements

(produced by RadFlux)

cre sw Shortwave cloud radiative effect, computed as total

downwelling shortwave irradiance minus clear-sky

total downwelling shortwave irradiance (Wm22),

normalized by cosine of SZA

Eppley Normal Incidence Pyrheliometer and Shaded

Eppley Precision Spectral Pyranometer, combined

with clear-sky downwelling shortwave flux (produced

by RadFlux)

cre lw Longwave cloud radiative effect; computed as

downwelling longwave radiation minus clear-sky

downwelling longwave radiation (Wm22)

Shaded Eppley Precision Infrared Pyrgeometer; clear-

sky downwelling longwave is a derived quantity based

on lwd measurements (produced by RadFlux)

shortwave cfrac Fractional sky covered by clouds; computed by

combining all-sky downwelling shortwave radiation

with clear-sky downwelling shortwave radiation (%)

Derived quantity produced by RadFlux; this feature

combines measurements from Eppley Normal

Incidence Pyrheliometer with shaded Eppley Black

and White 8–48 Pyranometer and compares the

shortwave components with their clear-sky values

(from RadFlux)

15-min std(swtran) The 15-min running std dev of shortwave

transmissivity (swtrans); swtrans is the ratio of

downwelling shortwave radiation to clear-sky

downwelling shortwave radiation (unitless)

Derived quantity produced by RadFlux; this feature

combines measurements from Eppley Normal

Incidence Pyrheliometer with shaded Eppley Black

and White 8–48 Pyranometer and compares the

shortwave components with their clear-sky values

(from RadFlux)

num ceilo layers No. of ceilometer-detected cloud layers, up to amax of

three (integer)

Vaisala CL51

cloud base height Height above ground level to the ceilometer first-

detected cloud-base height (m)

Vaisala CL51
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measurements for the training and evaluation process of the

random-forest classifier.

b. Independent cloud-type observations

The cloud-type product produced by Lim et al. (2019) is

based on zenith-viewing lidar and radar retrievals of cloud

properties. The Active Remote Sensing of Cloud Layers

(ARSCL) retrievals algorithm (e.g., Kollias et al. 2016) pro-

vides 2D time–height data products of cloud-base height,

cloud-top height, and cloud thickness. Lim et al. (2019) de-

veloped thresholds based on the 2D cloud boundaries that

type the cloud layer(s) into categories based on physical

characteristics of seven different cloud types: 1) low clouds,

2) congestus, 3) deep convection, 4) altocumulus, 5) altostratus,

6) cirrostratus/anvil, and 7) cirrus. Criteria used to generate

these cloud types, including a description on the thresholding of

cloud boundaries and cloud-layer thickness, is found in Limet al.

(2019) and Flynn et al. (2017).

The cloud types are relatively comprehensive, covering

the majority of cloud regimes present at any geographic lo-

cation any time of the year. However, the ‘‘low cloud’’ cat-

egory proposed by Lim et al. (2019) is too broad and

categorizes low stratiform (stratus, stratocumulus) cloud

types together with shallow cumulus. While a broad cloud

type may be sufficient for specific applications, such as esti-

mating ceiling height, stratiform and shallow cumulus clouds

exert very different signatures in surface shortwave radiative

fluxes, both in absolute magnitude of the flux and its tem-

poral variability (L. D. Riihimaki et al. 2021, unpublished

manuscript). A frequency density of single-layer cloud types

from Lim et al. (2019) from 2014 through 2017 at ARM SGP

shows that low clouds and cirrus were the dominant daytime

cloud regimes (Fig. 2a); since our cloud-type classifier de-

velopment is dependent upon solar radiation, only observa-

tions when the solar zenith angle was less than 808 (more than

108 above the horizon) are examined.

As a consequence of the distinct solar transmission proper-

ties associated with these different cloud types, it is imperative

to separate the low clouds into two distinct cloud types: 1) low

stratiform and 2) low cumulus. The relationship between cloud

fraction and the ratio of diffuse to total solar irradiance is used

to distinguish these cloud types. Stratiform clouds are generally

associated with large fractional sky coverage (cloud fraction).

Because of their overcast nature, the direct-beam solar radi-

ance undergoes significant scattering and therefore diffuse

radiation is the dominant contributor (often 100% diffuse) to

the total surface broadband irradiance (Fig. 2b). Analogously,

shallow cumulus are broken clouds, and in a spatial context,

each cloud structure is small compared to stratiform clouds.

These small cloud elements advect through the hemispheric

footprint of a surface observatory, causing a cloud fraction

frequently ranging from 10% to 70% sky coverage (Fig. 2b).

Because of this, the ratio of diffuse to total shortwave radiation

is notably reduced, typically ranging between 10% and 40%

under shallow cumulus conditions. The separation of these two

modes in the probability distribution frequency is used to dif-

ferentiate low clouds into low stratiform and shallow cumulus

cloud types. Cases to the left of the red line in the cloud

fraction—solar diffuse/total phase space are classified as

shallow cumulus and those to the right as low stratiform. To

confirm a successful separation of low stratiform from low

cumulus clouds, Fig. 3 illustrates the different behavior in

shortwave transmissivity associated with the two separated

cloud types, where shortwave transmissivity is the ratio of

observed downwelling shortwave irradiance to the clear-sky

downwelling irradiance. Shortwave transmissivity observa-

tions for consecutive (at least 2 h of persistent cloud type) low

stratiform and low cumulus periods at SGP during 2014–18

were compiled. The density distributions for 5-min standard

deviation of shortwave transmissivity capture the different

solar variability characteristics associated with the two cloud

types (Fig. 3a). While the low stratiform clouds are relatively

invariant in shortwave transmissivity, more variability in the

shortwave irradiance is found when low cumulus periods are

observed. The variability occurs due to the broken sky cov-

erage associated with shallow cumulus, resulting in periods

FIG. 2. (a) Relative density distribution of cloud types at ARM SGP for 2014–17 from Lim et al. (2019). (b) Frequency distribution

(counts N; shading) of SWDdiffuse/SWDtotal ratio vs shortwave cloud fraction (%). The red line indicates the separability threshold

between low shallow cumulus (to the left of the red line) and low stratiform (to the right of the red line) clouds in the two-parameter phase

space. All observations are on a 1-min time scale.
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that oscillate between unimpeded direct solar radiation and

more fully obscured direct radiation (Fig. 2b). 2D histograms

of the autocorrelation of shortwave transmissivity for dif-

ferent lag periods ranging from 1 to 60min highlight the ra-

diative separation of these cloud regimes. Low stratiform

clouds have an autocorrelation that remains positive on lag

periods well above 30min (Fig. 3b), consistent with the small

variability in transmissivity resulting from more homoge-

neous overcast sky conditions. Oppositely, autocorrelations

for the low cumulus drop off rapidly and after 5min there is

effectively no correlation in the solar transmissivity (Fig. 3c)

as a result of the broken nature of these clouds. This time

scale is consistent with the order of the decorrelation time

scale reported in Kassianov et al. (2005).

The other cloud regimes in Fig. 2a are much less frequent

than low clouds and cirrus. To improve separability of cloud

regimes during the training phase of the machine-learning

classifier, congestus clouds are combined with deep convec-

tion, and altocumulus clouds are combined with altostratus

cases; this is motivated by these cloud regimes having similar

geometric thresholds in their original classification (Flynn et al.

2017; Lim et al. 2019).

The measurement principles of the lidar/radar sensors and

the ARSCL retrievals of cloud boundaries effectively screen

the atmosphere for separation between vertically displaced

cloud layers (e.g., Kollias et al. 2007b). Exploiting the strengths

of the active remote sensors, Lim et al. (2019) classified up to 10

cloud layers into the seven regimes described in Fig. 2a.

However, for multiple cloud layers, this level of detail is far

more advanced than is anticipated that broadband radiation

measurements may provide. The cloud classification regimes

developed here include multiple cloud layers, but instead of

multiple vertical cloud types, multilayered cloud scenes are

classified as 1) low–high clouds, 2) low–midclouds, or 3) mid–

high clouds. It is anticipated the radiative signatures of multi-

ple cloud layers will introduce ambiguity in the separation

process during the training phase of the random-forest

classifier. The level of separability of multilayer clouds in

terms of solar radiation impacts is discussed in section 3a.

A total of eight cloud regimes, plus an additional clear-sky

regime, have been created from the observations at ARM

SGP. These classifications are 0) clear sky, 1) low stratiform,

2) low cumulus, 3) congestus/deep convection, 4) midlevel

altocumulus/altostratus, 5) high-level cirrostratus/anvil, 6) high

cirrus, 7) multilayer low–high, 8) multilayer low–mid, and 9)

multilayer mid–high.

c. Training the random-forest classifier

This study utilizes the machine-learning random-forest

open-source software kit ‘‘Scikit-learn’’ (Pedregosa et al. 2011)

for Python. For its application here, the random-forest classi-

fier involves developing statistical relationships between the

extended cloud classifications, surface radiation, and cloud

observations (features) through a supervised learning process

(Breiman 2001). The supervision portion comes from training

the model against truth labels, which are the independent

cloud-type labels for this particular random-forest classifier.

The different input features are statistically tested and optimized

following a true–false decision tree logic to determine the

feature’s importance in splitting branches of a decision tree

such that the combination of features converges to an observed

cloud classification (label). The 12 features (Table 1) and cloud

labels are randomly sampled from the population using a

bootstrap with replacement sampling strategy for training each

node, or branch, within the decision tree. Random sampling

from the population reduces the risk of overfitting the classi-

fication as each node within tree is built upon a different col-

lection of inputs and labels (Breiman 2001).

Our forest consists of 100 decision trees, where each node of

every tree is presented the 12 input features from which a

random sampling of a subset of these features occurs in order

to develop the decision tree logic. Sensitivity tests were made

with as few as 5 trees up to as many as 500 trees; increasing the

number of trees up to 100 nominally increased the accuracy.

FIG. 3. Statistical properties of shortwave transmissivity during observed, consecutive low stratiform or low cumulus cloud events.

(a) Relative frequency distribution of 5-min standard deviation of shortwave transmissivity for low stratiform (blue) and low cumulus (red)

events. Also shown are frequency density (counts; shading) of the autocorrelation for shortwave transmissivity per lag time (in minutes) for

(b) low stratiform and (c) low cumulus periods. At least 120min of a consecutive cloud event must have been observed to be included in the

analysis. For low stratiform, there were 311 events; for low cumulus, there were 124. Data are from 2014 to 2018 at ARM SGP.
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However, continual increases above 100 trees increased the

model’s data storage (the full decision tree logic for each

tree in the forest must be saved) with very modest to in-

significant increases in classifier accuracy (not shown). It

was therefore determined that 100 trees making up the

forest was appropriate for the model. The classifier thus

produces 100 equally plausible classifications based on the

same input features vector. Using a majority rule, the clas-

sification that occurs most frequently of these 100 estimates

is deemed the modeled classification for a particular series

of measurement inputs.

Other parameter options and settings of Scikit-learn’s random-

forest classifier software were specified to control the physical

setup of the training process. Of the 12 input features available

at each node, 3 (approximating the square root of 12) were

randomly chosen for determining the true–false logic; this is a

recommended default setting of the Scikit-learn random-forest

classifier software. A requirement was placed on the minimum

number of samples necessary to determine a split at a node to

10 samples to avoid overfitting toward undersampled events;

limiting the depth of the tree branches was detrimental to the

accuracy and therefore a limit was not specified. Ultimately,

the model parameters were determined through cross valida-

tion of model accuracy and minimization of computational

resources and model data size/storage.

Development of the classifier was based on daytime-only

(solar zenith angle , 808) input features and classification la-

bels fromARMSGP over a 4-yr period, 2014–17. Observations

are made on a 1-min frequency and therefore the random-

forest model was trained to classify clouds using features at

the same temporal frequency. In total nearly 620 000min

(10 300 h) of daytime features and classifications were utilized.

These data were split randomly at 70%–30%, for classifier

training and validation, respectively. Observational data from

2018 was reserved for independent algorithm testing.

3. Results

a. Validation and independent evaluation of cloud classifier

Following the completion of training the forest, a feature

importance metric can be determined based on the 70%

training data subset. Feature importance quantifies how

important a specific feature is in determining a decision tree’s

logic structure and ultimately the feature’s impact on im-

proving the prediction. Calculation of this ‘‘impurity,’’ or

reduction in mean standard error, identifies the effectiveness

of an input predictor to cause a relatively large decrease in the

impurity (McGovern et al. 2019). The Scikit-learn random-

forest classifier software computes the Gini impurity score

for each predictor feature for the training data subset. Of

the 12 features included in the model, those most critical for

improving prediction accuracy are ceilometer cloud-base

height and shortwave cloud fractional coverage (Fig. 4).

The remaining features have smaller importance scores and

can be divided into two groups with nearly equivalent

scores. The group with the lowest importance scores in-

cludes features based only on radiation measurements and

not derived cloud products [with the exception of shortwave

cloud radiative effect (cre sw)], indicating the RadFlux

products, as well as direct cloud measurements from the

ceilometer, contribute valuable signals specific to different

cloud regimes.

Relative frequency distributions (RFDs) of the observed

cloud-regime classifications for the validation subset of ob-

servations at SGP during 2014–17 are shown in Fig. 5 (black).

Clear-sky and high cirrus dominate the daytime sky conditions,

followed by low stratiform clouds; these distributions are

qualitatively similar to the single-layer distributions of Lim

et al. (2019) in Fig. 2a. When multiple cloud layers were ob-

served they were most frequently of the low–high cloud vari-

ety; the other multilayered cloud types were distinctly less

common. Cloud-type distributions predicted by the random-

forest classifier for the same period are shown in blue. The

classification model successfully captures the climatological

regime distributions at SGP. Themodel is well suited to predict

the clear-sky and high cirrus clouds. Slight overestimation of

low stratiform and low/shallow cumulus is present, generally

compensated by an underestimation of multilayered clouds. In

light of these small differences, the accuracy of the predicted

cloud classifier on the 2014–17 validation subset is a remark-

able 90%.

The full observational period of 2018 at SGP was withheld

from the training-evaluation phase to have a completely

independent year to test the robustness of the training-

evaluation efforts developed from observations of the four

previous years. The motivation for a fully independent year

was to test whether the classifier could predict the annual

cycle of daytime cloud regimes without any influence from

quasi-persistent sky conditions and surface measurements

that could potentially bias the predictions. As a hypothetical

example, consider two days: one with homogeneous low

stratiform clouds and the other experiencing high cirrus. It is

plausible that the surface radiation and cloud-property mea-

surements would be relatively consistent (homogeneous) during

the respective cloud regimes. Therefore, subsampling 70% of

these days to train the classifier and evaluating the other 30%

FIG. 4. Feature importance scores determined from the subset of

training data at ARM SGP during 2014–17.

APRIL 2021 S EDLAR ET AL . 483

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 04:32 PM UTC



that consider relatively consistent radiative and cloud-property

signatures as the training subsample, the accuracy of the model

would be expected to be high.

A reduction in accuracy of the cloud predictions by ap-

proximately 10% during 2018 (Fig. 5, red) supports the original

concerns that evaluating the classifier using a subsample of the

same period that was used to train themodel artificially inflates

the accuracy estimate, that is, slight overfitting to homoge-

neous cloud scenes. Despite the accuracy reduction, this model

predicts the correct cloud type 8 of 10 times based entirely on

surface-based measurements and is likely well within any un-

certainty propagation due to the radar and lidar measure-

ments, ARSCL retrievals, and cloud boundary threshold

categories used to create the observed cloud type (Lim et al.

2019). This suggests that 80% (68% without the clear-sky re-

gime) is the maximum achievable, yet respectable, accuracy

for the cloud-regime classifier. It is encouraging that the

2018 annual climatology of cloud regimes remains well

predicted by the cloud classifier. The most obvious biases

include a nearly 4% overprediction in the amount of low

stratiform clouds, while the multilayer cloud categories are

always underpredicted.

To better determine how predicted cloud regimes are

misclassified, a confusion matrix relating observed and pre-

dicted regimes during the fully independent year 2018 is cre-

ated. The matrix in Fig. 6 shows the RFD (%) of the observed

cloud classifications (ordinate) against the predicted classifications

(abscissa); distributions sum to 100% along the abscissa and

therefore the confusion matrix is an ideal tool to visualize

misclassification behavior. The distributions are highest

along the diagonal of the matrix, highlighting the classifier is

well suited for classifying clear skies and single-layer cloud

regimes (regimes 0–6); the dominant sky regimes from

Fig. 5, namely clear skies, low stratiform and low cumulus,

and high cirrus clouds reveal an accuracy greater than 80%.

The remaining single-layer regimes 3–5 have RFDs that are

more dispersed around the diagonal, a sign of reduced ac-

curacy for these types.

While the classifier is largely able to separate single-layer

cloud types, especially for those most frequently occurring, its

ability to distinguish among multiple cloud layers (regimes

7–9) is less accurate. The accuracy of these cloud regimes along

the diagonal is at best 35% for the low–high multilayer clouds;

low–midmultilayered clouds (regime 8) are completely absent,

while predictions of mid–high multilayers (regime 9) are fre-

quently misclassified as a single-layer regime. While the model

does include active-sensor ceilometer profiling measurements

of the number of cloud layers identified, these measurements

are zenith viewing and therefore only observe multiple layers

when they are overlapping above the laser and before the

ceilometer beam is fully attenuated; the ceilometer will miss

higher cloud layers if an optically thick cloud layer is sampled

below. The other radiative measurements are primarily flux

quantities that are integrated across the full hemispheric view,

and as such provide limited information to characterize mul-

tiple cloud layers.

In addition to observing limitations of the instrumentation,

multilayer cloud regimes are relatively infrequent (Fig. 5); as

such, the training process of the random-forest classifier is

imbalanced. However, multilayered low–high (type 7) clouds

do occur relatively frequently, approximately 10% (Fig. 5), and

it is apparent that the predictions of multilayered low–high

clouds are frequently mistyped as single-layer low stratiform

clouds (Fig. 6).

In Fig. 7, statistical daytime shortwave cloud transmissivity

ranges at SGP for 2014–17 are presented for each observed

(truth) cloud regime. Overlap in the percentile ranges of

shortwave transmissivity is found among the cloud regimes,

indicating that transmissivity is not an exclusively separable

parameter between the nine different cloud regimes. However,

the distributions do show intriguing physical properties related

to cloud type and associated cloud–shortwave radiation

FIG. 5. RFDs (%) of observed and predicted cloud regimes (0–9) for the evaluation subset of

2014–17 (black: observed; blue: predicted) and the independent full year of 2018 at ARM SGP

(gray: observed; red: predicted). Model-predicted accuracies for the periods are included.
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interactions. The two low cloud types (low stratiform and low

cumulus) exert a different influence on surface shortwave

radiation, with solar transmission frequently as large or larger

than clear skies (shortwave transmissivity at or above unity)

during the shallow cumulus regime; nearly 50% of shortwave

transmissivity was larger than unity and this positive short-

wave cloud forcing is a result of partially cloudy skies causing

significant 3D radiative transfer effects combined with

FIG. 7. The median (stars) and 25th–75th, 10th–90th, and 5th–95th percentile ranges of ob-

served shortwave cloud transmissivity per cloud type at ARM SGP for 2014–17.

FIG. 6. Confusion matrix for observed cloud classification (ordinate) vs predicted cloud

classification (abscissa) fromARM SGP 2018. Colors represent the frequency of occurrence of

each predicted cloud regime (frequencies sum to 100% along the abscissa).
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frequent, unabated direct solar irradiance (L. D. Riihimaki

et al. 2021, unpublished manuscript). Midlevel altocumulus

and altostratus (type 4) and high cirrus (type 6) regimes have

similar transmissivity ranges as the low cumulus but are still

separable from low stratiform. However, the more spatially

homogeneous nature of these cloud types reduces the impact

of 3D radiative transfer, leading to a reduction in the positive

shortwave radiative forcing of these cloud types relative to low

cumulus. Shortwave transmissivity distributions further reveal

that multilayered cloud regimes (type 7–9) show a very sim-

ilar distribution to that of low stratiform clouds; this is espe-

cially true for the low–high and low–midcloud regimes, while

the transmissivity range was shifted marginally higher for the

mid–high multilayered cloud regime.

The similarities in shortwave transmissivity between low

stratiform and multilayered clouds with one low-level

cloud layer indicate the lowest cloud layer is largely re-

sponsible for modulating cloud transmissivity. This is an

important result since the cloud classifier frequently mis-

classified low–high multilayered clouds as low stratiform

clouds (Fig. 6).

In terms of shortwave radiation, these results indicate there

is little information lost in misclassifying a low–high multilay-

ered cloud scene as a low stratiform scene; the impact on

shortwave fluxes is approximately similar. The skewness to-

ward higher transmissivity of the 90th and 95th percentiles for

the low–high and low–midmultilayered regimes compared to

the low stratiform is likely related to the type of low cloud

present. If the lowest cloud type is shallow cumulus, it would be

expected that shortwave transmissivity should be larger than

for an overcast stratiform cloud in a similar manner as shown in

Fig. 7 for regimes 1 and 2. To test the multilayer cloud pre-

dictions, observations were limited to only single-layer cases

and an increase in accuracy of the cloud predictions from ap-

proximately 80% (Fig. 5) to 88% (not shown) was found.

Based on this increased accuracy, we assert that the model

classifier is well poised to separate cloud regimes based on their

surface radiative impact, even if the physical cloud typemay be

mislabeled.

b. Evaluation of cloud classifier at Darwin, Australia

Even though the cloud classifier was trained on observations

from the continental United States, the multiyear model

training process is expected to sample a widespread array of

cloud types. In this regard, it is anticipated that the cloud

classification model can be applied to observatories within

climate regimes that differ from the southern Great Plains.

To test the validity of the classifier, an independent examina-

tion was performed using radiation and ceilometer measure-

ments, together with collocated zenith-viewing radar and lidar

instruments from DOE’s ARM Tropical Western Pacific

(TWP) site at Darwin (Long et al. 2016). Measurements from

2008 to 2013 at TWP were processed and an observed, ex-

tended cloud-type dataset (as in section 2b) was produced for

evaluation purposes. When compared to SGP (Fig. 5),

marginal differences are found in the observed cloud-

regime climatologies at TWP (Fig. 8); the main difference

is a reversal in the frequencies of low stratiform and low

cumulus between the two observatories. The classifier suc-

cessfully predicts this shift in cloud regimes. Furthermore,

the accuracy is just over 75% (63% without clear-sky re-

gime), indicating less than a 4% decrease in accuracy than

was reported at SGP for 2018. This relatively high accuracy

is encouraging since the classifier was trained on measure-

ments from the southern Great Plains in the continental

United States. Additionally, the evaluation at TWP oc-

curred for a 6-yr period, and as such interdecadal trends and

forcings should also manifest during this time period.

Like at SGP, the confusion matrix for TWP cloud predic-

tions (Fig. 9) reveals the best agreement to the single-layer

observed clouds. Based on the increased dispersion from the

diagonal, the single-layer cloud predictions at TWP are slightly

more variable than at SGP. This is likely a caveat of the

training process that relied upon continental measurements at

FIG. 8. Observed (black) and predicted (orange) cloud-regime climatology for 2008–13 at

ARM TWP in Darwin.

486 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 60

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/12/21 04:32 PM UTC



SGP, where systematic differences in cloud microphysical and

macrophysical properties at the subtropical TWP observatory

may cause cloud–radiative interaction differences between

locations. For example, the high cirrostratus/anvil cloud type

(type 5) is most frequently classed as a high cirrus (type 5), a

misclassification not found at SGP (Fig. 6). Nevertheless, the

frequencies of these single-layer cloud misclassifications are

primarily below 5% and whenmisclassified, they often become

predicted as a cloud regime having a similar shortwave trans-

missivity range (Fig. 7) as observed.

Multiple cloud layers continue to prove a challenge for the

random-forest classifier. Recall the accuracy of the low–

midmultilayered clouds, the most frequently observed multi-

layer cloud type, for SGP was ;35% (Fig. 6, cloud type 7).

Figure 9 shows an unexpected improvement in the accuracy of

this classification at Darwin. The improvement is connected

to a reduction in misclassification as single-layer low strati-

form (type 1) at TWP compared to SGP. In fact, whereas at

SGP the low–high clouds were most frequently misclassified

as low stratiform, at TWP these low–high clouds are more

frequently misclassified as low cumulus (type 2). The shift is

reflective of the differences in cloud-type climatologies ob-

served between the continental SGP and subtropical TWP

observatories. Multilayer low–midclouds (type 8) fail to be

predicted by our classifier, just like at SGP (Fig. 6). The

observed occurrence of these clouds was below 3% at SGP

and TWP. Based on the similarity in observed shortwave

transmissivity (Fig. 7), the low–midmultilayered regime

could be removed and instead low–midclouds could be re-

classified as the low–high cloud regime, which was the regime

that low–midclouds were predominantly being misclassified

(Figs. 6 and 9).

c. Example application of cloud-regime predictions at
SURFRAD observatories

Observations from the SURFRAD observatories were used

as input to predict cloud classification climatologies at selected

stations. Since there are no available independent cloud-type

measurements at the SURFRAD observatories, cloud types

are explored in terms of the relative occurrence at each loca-

tion. Frequency distributions for six of the SURFRAD ob-

servatories are shown in Fig. 10. Beginning in spring 2018 and

continuing through autumn 2019, a Vaisala CL51 ceilometer

was installed at each SURFRAD station. The cloud climatol-

ogies in Fig. 10 are only representative of the past 6 months to

nearly 2 yr; (Fig. 10a–c) include at least one full annual cycle

(from spring/summer 2018 to early winter 2020) of observations,

and (Fig. 10d–f) are valid for less than one full year. Daytime sky

conditions at stations with a full year of observations are dom-

inated by clear skies, followed by high cirrus. Table Mountain,

Colorado, experiences more clear-sky conditions than Fort

Peck, Montana, and Goodwin Creek, Mississippi, which both

have a greater presence of lower-level and multilevel clouds.

These distinctions in cloud regime may be connected with the

topographic influence of the Front Range of the Rocky

Mountains on cloud formation and cloud life cycle.

FIG. 9. Confusion matrix from 2008 to 2013 at ARM TWP at Darwin.
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The classification climatologies for Desert Rock, Nevada

(Fig. 10d), and Bondville, Illinois (Fig. 10e), represent less than

one full year, from early and late spring 2019, respectively,

through January 2020. The distributions clearly indicate the

behavior of different climate zones on the cloud regimes

influencing the stations. At Desert Rock, clear skies dominate

as the warm and arid desert climate inhibits low level, surface

driven cloud formation (Fig. 10d). The cloud regimes at

Bondville (Fig. 10e) are similar to those at Goodwin Creek,

with the primary difference being a shift toward more cloudi-

ness at Bondville. The increase in cloudiness is driven by an

enhancement in the relative occurrence of high cirrus. The

ceilometer at Sioux Falls, South Dakota, was not installed until

August 2019, and therefore the cloud climatology is repre-

sentative of only two seasons: autumn and winter. These two

seasons show a marked shift in cloud regimes, where low

stratiform cloud frequency surpasses the cirrus frequency.

Because of the lack of at least one annual cycle, it is not pos-

sible to conclude whether these regime occurrences are sys-

tematic of the annual cycle or simply a caveat of the limited

seasons represented.

4. Discussion and summary

This study reports on the method of a new cloud-regime

classification tool that relies upon surface-based radiation

and cloud measurements to predict cloud type. Independent

evaluation efforts from different climate regions and time

scales reveal our random-forest cloud classifier predicts cloud

type with accuracy of 75%–80%.

Independent evaluations of the random-forest cloud-regime

classification model prove the model is capable of accurately

predicting cloud type for a wide variety of applications.

Independent evaluations of the cloud classification accuracy

were as high as 80%. Such accuracy is well within the stated

accuracies of cloud classification methods based on clustering

of visible sky images (Heinle et al. 2010; Zhuo et al. 2014).

However, the accuracy testing in those studies was based on

orders of magnitude fewer independent observations, which

may result in biased accuracies. Here, seven years of 1-min

frequency observational data were used across full annual cy-

cles from two very different geographic regions to evaluate our

classification model, which resulted in climatological accura-

cies greater than 75%. We anticipate the accuracy of future

cloud-type predictions using input features from NOAA’s

SURFRAD observatory network will be closer to the 80%

level considering the model was trained on measurements of

radiation and clouds from the continental United States.

The largest errors in predicted regimes emerge when mul-

tiple cloud layers are observed. An inability to sufficiently

sample the hemispherical vertical structure of cloud layers,

together with ambiguity in radiative signatures between

single-layer and multilayered cloud structures, contributed

to the prediction errors.

FIG. 10. Predicted cloud-regime climatologies from the following SURFRADobservatories: (a) Fort Peck (March 2018–January 2020),

(b) Table Mountain (March 2018–January 2020), (c) Goodwin Creek (June 2018–January 2020), (d) Desert Rock (March 2019–February

2020), (e) Bondville (May 2019–January 2020), and (f) Sioux Falls (August 2019–January 2020). See Fig. 1 for the spatial distribution of the

SURFRAD observatories. Note the differing scales of the distributions on the y axis.
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To quantify the error introduced by misclassification of

multilayered clouds, an additional classifier training process

was performed, where observations of multilayered clouds

were ignored and thus only single-layer clouds regimes 0

through 6 were used for training the model (not shown).

From this test, the climatological accuracy for the indepen-

dent evaluation for 2018 at SGP increased to 88%, an in-

crease of 9%. From this accuracy increase, it is concluded

that misclassification of the multilayered clouds account for

nearly 45% of the accuracy error. Depending upon the ap-

plication, it may be sufficient to exclude the multilayer

cloud-regime predictions altogether or otherwise combine

all the three multilayered classes into a single multilayered

clouds regime.

Of the multilayered clouds, the low–high regime 7 was the

most frequently occurring type. When they were misclassified,

they were typically designated as single-layer low stratiform

cloud regime 1 by the classifier. From Fig. 7, the shortwave

transmissivity has a similar range for both of these cloud types.

Therefore, while the model may be penalized in accuracy for

the common misclassification, the radiative signatures it was

trained upon to determine the classification are, in general,

consistent among the two cloud regimes. And because of the

methods applied to develop a separation between low strati-

form and low cumulus clouds (Figs. 2 and 3), the radiative

signatures of low–high multilayered and low stratiform single-

layer clouds are physically consistent and are not being falsely

identified as shallow cumulus. Depending on the application,

the misclassification of the low–high regime as low stratiform

cloud may give reasonable results, for example in determining

the radiative impacts of different cloud types. With respect to

cloud–radiative interactions, results reveal the cloud classifier

has success in distinguishing cloud regimes based on their

separability in shortwave radiation characteristics. In this

respect, one can justify a model classification tool whose in-

accuracy in physical cloud type is ;20%, knowing that the

misclassifications are frequently within a similar surface

shortwave radiation flux regime.

The input measurements were also chosen such that any

measurement station recording similar, high-quality measure-

ments could run this cloud classification model on those data; a

direct example of this is that measurements from ARM SGP

were used to develop the model framework but applied the

same framework to SURFRAD observatories where similar

measurements are routinely made around the continental

United States. It is critical to measure the direct and diffuse

irradiance components of solar radiation as these components

are needed for the predictions. Essentially, the radiative

measurements should be of utmost quality and contain the

necessary components needed in order to run the Radiative

Flux Analysis processing software (Long and Ackerman 2000;

Long et al. 2006; Long and Turner 2008). Among a wide array

of products, Radiative Flux Analysis produces the shortwave

cloud fractional coverage, shortwave transmissivity, and clear-

sky radiative flux products needed as inputs.

Using surface radiation measurements as input features for

the classification model was a strategic development choice

because these measurements are either the same or similar

to the types of measurements required for solar energy appli-

cations. Fluxes of direct and diffuse shortwave radiation, crit-

ical parameters necessary for optimization of plane of array

photovoltaic solar panels, are dependent upon the cloud type

and cloud properties overhead. Having an accurate under-

standing of how the cloud-type variability translates to vari-

ability in the surface solar measurements is paramount for a

number of reasons. As an example, climatologies of cloud re-

gimes at different geographical locations can be created in

order to assist in optimizing where solar energy farms should

be deployed to maximize solar energy production. Knowing

how different cloud regimes impact the variability in surface

solar fluxes can provide a level of understanding that even

if a certain cloudy regime is frequently observed in a specific

region, the shortwave transmissivity associated with that

regime may still result in a large solar energy production

(e.g., L. D. Riihimaki et al. 2021, unpublished manuscript).

For example, at Table Mountain (Fig. 10b), the relatively

high occurrence of cirrus clouds that typically exert short-

wave transmissivity greater than 70% (Fig. 7), and the rel-

atively low frequency of low stratiform clouds presents

this location as a well-suited candidate for solar energy

operations.

Characterizing variability in surface radiative fluxes as a

function of cloud-regime classification provides a tool to im-

prove fundamental understanding of cloud–radiative interac-

tions. This is especially true in terms of numerical model

evaluation and development. The input features show in

Table 1 are either standard model output parameters, or they

can be extracted from numerical weather models. Therefore,

the random-forest classifier can be used to predict cloud type

using numerical model output, which can serve as a one-to-one

comparison of predicted cloud regimes from surface radiation

measurements. Traditionally, surface radiation fromnumerical

models is compared to detailed observations using statistical

measures such as mean bias error and root mean squared error.

The statistics provide a baseline of model performance in a

bulk sense. However, having knowledge of the type of cloud

and potentially how the biases may change under different

cloud types would be extremely useful formodel developers. In

this respect, the cloud-regime classifier could facilitate these

model evaluation efforts. Furthermore, the observed cloud

regimes can be used to test and evaluate the performance of

the life cycle of individual events. For example, the cloud

regimes could be used to identify periods of persistent

stratiform clouds, and observations such as the timing of

cloud breakup could be used to evaluate whether numerical

weather models capture the same cloud regime and how well

they represent the life cycle and model processes leading to

stratiform breakup.
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