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THE RESPONSE OF THE SHELF
TO HURRICANE BELLE AUGUST 1976

Richard C. Patchen and Bernard W. Gottholm*

ASTRACT.—On 10 August 1976 Hurricane Belle passed through the New York
Bight; the data set included meteorological information from the National Weather
Service, water level information from the National Ocean Survey, and current meter
and Salinity/Temperature/Depth (STD) information from the Marine Ecosystem
Analysis Program. Hurricane Belle can be classified as a fast-moving storm translat-
ing over a two-layer density structure. The temporal and spatial responses to the
hurricane were determined by spectral and residual techniques. The STD informa-
tion and the temperature records obtained at the current meter locations indicate
that a cooling and mixing of the surface waters was observed at stations to the right
of the storm, and that only weak mixing was observed at stations directly in the path
of the storm. At current meter locations on deeper areas of the continental shelf
(greater than 55 m), the baroclinic response of a generation of internal inertia-gravity
waves in the lee of the hurricane can be seen in the two layers. For stations on the
shallower area of the she!;* (less than 55 m), a strong barotropic response indicated by
the generation of localized quasi-geostrophic barotropic Rosshy waves, 18 to 20 hours
after the hurricane entered the New York Bight, is observed. The data compared
favorably with the results of Chang and Anthes for a hurricane translating at 11 m s"1
The topographic restraint on the velocity field for stations located in the Hudson

Canyon is described.

INTRODUCTION

Understanding the response of the continental shelf to
the passage of a hurricane is important, because this
understanding leads to the realization of the possibili-
ty of prediction. The loss of life and money resulting
from the passage of a hurricane or other severe mete-
orological event is well documented. Hurricane Agnes in
1972 caused $20 million in property damage in the
Tampa-St. Petersburg area alone. Therefore, the pre-
diction of the path alone would have been of significant
benefit. The description of the response of the con-
tinental shelf is complicated by the various spatial and
temporal modes within one given region. The response
of the impulse to the meteorological event is dependent
on (1) the pre-event density regime, (2) the bathymet-
ric variability for a given region, and (3) the classifi-
cation of the impulse itself, including the wind profile
and translation speed. Theoretical investigations
have attempted to (1) fully describe the various atmo-
spheric impulses and (2) explain descriptively, analyt-
ically, and numerically the oceanographic response,
including the intensive mixing and upwelling which
accompanies the passage of a storm.

Numerous articles have been written describing the
barotropic and baroclinic response on the water col-
umn resulting from the passage of a hurricane. Initial
theoretical work by O’Brien and Reid (1967), and
O’Brien (1967), emphasized first the linear, then the
nonlinear response to a stationary axially symmetric
hurricane. Research was further conducted both by
O’Brien (1968) and Geisler (1970) on the dynamic
response to a translating hurricane. Recent analytical
and numerical papers emphasizing the baroclinic as
well as barotropic response to translating hurricanes
other than those that are axially symmetric include:
Geisler and Dickerson (1972), Kraus (1972), Elsberry
et al. (1976), Ichiye (1977), and Chang and Anthes
(1978).

For any theoretical models, either analytical or
numerical, the results must be verified by the data
collected. However, the data collected during the pas-
sage of a strong hurricane are extremely limited and
difficult to obtain. The data collected is mainly limit-
ed to quasi-stationary, slow-moving hurricanes: Hilda in
1964, reported by Leipper (1967), Betsy in 1965,
reported by Landis and Leipper (1968), and Ginger in

+Employed by the Office of Oceanography within the National Ocean Survey, National Oceanic and Atmospheric Administration,

U.S. Department of Commerce.



1971, reported by Black and Mallinger (1972). How-
ever, during Hurricane Belle in 1976, the New York
Bight was highly instrumented from various sources.
Data are available from the National Weather Ser-
vices (NWS) within the National Oceanic and Atmo-
spheric Administration (NOAA), NOAA’s Environ-
mental Research Laboratories (ERL), NOAA’s Marine
Ecosystems Analysis (MESA) New York Bight Proj-
ect, and NOAA’s National Ocean Survey (NOS) exten-
sive tide program. Using the data collected from those
sources of instrumentation, the opportunity existed
to perform a complete synthesis of the various physi-
cal parameters measured in the New York Bight.

DESCRIPTION OF THE DATA BASE

On 6 August 1976, Hurricane Belle formed about
250 nautical miles east-northeast of Nassau. The sys-
tem intensified to a central pressure of 957 mbs with a
sustained wind speed of 105 knots. It moved north-
east, parallel to the coast, and finally hit land on 10
August at 0500 hours GMT on the southern coast of
Long Island, N.Y. Figures | and 2 indicate the loca-
tions of the various parameters measured in the region,
and the path of Hurricane Belle is plotted on the charts.
NOAA'’s Environmental Buoy EB-41 (at 38.7°N,
73.6°W), and the NWS weather station at Kennedy
Airport are indicated on figure 1. Unfortunately, the
data set at EB-34 (at 40.1°N, 73.3°W) is questionable
because the buoy, which was located directly in the
path of Hurricane Belle, broke loose. The seven cur-
rent meter moorings and the STD casts were part of
the MESA New York Bight Project observational pro-
gram. The current meters on the seven moorings were
also equipped with temperature sensors. The water
level information was collected as part of the NOS
tide observational program.

Table ! indicates the station locations for the MESA
current meter locations, including geographic position,
depth of the station, observational depths, number of
days of recoverable data, and sensors in operation. The
observational level indicated by SPAR is a current
meter suspended from a surface buoy, approximately
3 m below the surface. Other observational depths
are referenced to the bottom. Data were collected using
a subsurface mooring configuration with Aanderaa
current meters attached at discrete depths to a wire
rope with an acoustic or explosive bolt release between
the bottom meter and the anchor.

Meteorological data were compiled from various
sources within NWS. The data from EB-41 were
obtained from Sallie P. Ward, of Sperry Support Serv-
ices, Bay St. Louis, Miss. Sperry Support Services was
responsible for the initial processing of the Environ-
mental Buoy tapes. The path of Hurricane Belle was

reported in Hurricane Belle, Climatological Data
National Summary, and the information at John F.
Kennedy Airport (JFK) was digitized from the Local
Climatological Data, Monthly Summary for June-
October 1976.

Deep sea tide data were collected as part of NOAA's
Delaware/Maryland/Virginia/North  Carolina
(DELMARVANC) Hydrographic Survey (June-
November 1976) and NOS Offshore Telemetering Tide
System (OTTS). Results from the OTTS | and OTTS
Il gages were reported by Gill and Porter (1978). Tide
information is also available for both Atlantic City
and Sandy Hook, N.J. Unfortunately, tide informa-
tion is not available along the southern coast of Long
Island, N.Y.

The STD data were collected as part of the MESA
New York Bight Project’s Extended Water Charac-
terization Cruises (XWCC) and were reported by Starr
et al. (1977), and Hazelworth et al. (1977). The data
preceding the hurricane were obtained during the
XWCC 10 cruise on 30 June-1 July 1976; and the data
after the hurricane passed through the New York Bight
were obtained during the XWCC 11 on 12-16 September
1976.

DATA ANALYSIS

The Office of Oceanography’s Circulatory Surveys
Branch within NOS was responsible for the processing
of the current meter information. After deployment
and recovery of the data tapes from the current meter
program, the tapes were transcribed or translated to a
computer-compatible format. Times were assigned to
all usable data files, and after all erroneous records
from instrument malfunctions were removed, the data
tapes were sent to the National Oceanographic Data
Center (NODC) of the Environmental Data and Infor-
mation Service (EDIS) for archival storage and to
NOAA’s Atlantic Oceanographic and Meteorological
Laboratory (AOML).

To isolate the response of the circulation to the pas-
sage of Hurricane Belle, a record was required with
the tidal signal removed (without filtering the response
to the hurricane). A residual time series record defined as
the original series minus the predicted series was derived.
Also, the residual series which best represents the
response to the storm was determined to be the com-
ponent series resolved both along and at a 90-degree
angle to Belle’s path. The predicted series was deter-
mined by performing a 15-day harmonic analysis up
to the time Belle entered the New York Bight. This
ensures the analysis will not be biased by the hurri-
cane. Spectral analyses were also performed on all origi-
nal series, using the method described by Cooley and
Tukey (1965).
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Figure 1. —A chart indicating the locations of current meter, STD, and meteorological observations collected
during the passage of Hurricane Belle. The path of the hurricane is also indicated on the chart.
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Figure 2. —A chart indicating the location of the water level observations collected during the passage of
Hurricane Belle. The path of the hurricane is also indicated on the chart.
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Table 1.—Current meter information (composite table containing information relating to
data observed).

OBSERVATION INFORMATION SENSORS IN OPERATION
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LT-1S 40*06.7'N  204-226 47.8 SPAR 0
72*54.7'W
LT-1A 40°06.7IN  204-226 47.8 37.7 0
72 °54.7°W
LT- 1B 40°06.7'N  204-226 47.8 28.2 22 XX X X
72°54.7°W
LT-1C 40°06.7'N  204-226  47.8 8.2 22 XX X X
72°54.7'N
LT-1D 40°06.7'N  204-226  47.8 1.0 22 X X X X
72°54.7" W
LT-2S 39°25.4"'N 202-227 32.0 SPAR 0
73°42.6'W
39°25.4°N 227-308 32.6 SPAR 81 X X X X X
73°43.5" W
LT-2A 39°23.7-N 202-227 32.0 18.8 25 X X X X X
73°42.9" W
39°25.2°N 227-308 32.6 18.8 81 X X X X X
73°43.5"W
LT-2B 39*23.7'N 202-227 32.0 9.3 25 X X X X X
73*42.9'W
LT-2C 39°23.7“N 202-227 32.0 1.0 25 X X X X X
73°42.9W
LT_3A 39°15.4°'N 209-227 71.6 60.9 18.5 X X X X
73°00.7"W
LT-38 39°15.4'N  209-227  71.6 51.3 18 X X X X
73°00.7"W
LT-3C 39*15.4°N  209-227  71.6 31.3 185 y ¥ X X X
73*00.7“W
LT-3D 39*15.4'N  209-227 71.6 11.3 18 X X X X
73*00.7'H



Table 1.—Current meter information (composite table containing information relating to
data observed). - Continued

OBSERVATION INFORMATION SENSORS IN OPERATION
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LT-4S 40°33.4°N  203-226  50.8 SPAR 23 XX X X
72°18.3'W

LT-4A 40°33 4IN  203-226  50.8 27.6 23 X X XXX
72°18.3"W
40°33.4'N  226-302 50.8 27.6 76 XX XXX
72°18.3'W

LT-4B 40°33.4'N  203-226  50.8 7.6 225 X X XXX
72°18.3'W
40°33.4'N  226-302  50.8 7.6 0
72°18.3'W

LT-4C 40°33.4'N  203-226  50.8 1.0 23 X X X X
72°18.3"
40°33.4'N  226-302 50.8 1.0 76 X X X X
72°18.3W

LT-5A 40°11.9IN  203-226 4.6 45.9 233  x X X XX
72°01.0"W

LT-5B 40° 11.9°N  203-226  64.6 25.9 233 X X X X X
72°01.0"W

LT-5C 40° 11.9'N  203-226  64.6 5.9 232 X X X X
72° 01. O'W

LT-5D 40°11.9'N  203-226  64.6 1.0 0
72°01.0" W

LT-6S 40°07.6°N  202-225  71.6 SPAR 24 X X X XX
73° 37.6'W

LT-6A 40°07.5'N  202-225  71.6 48.3 24 X X X X
73" 37.8'W

LT-6B 40° 07.5'N  202-225  71.6 28.3 24 X X X X X
73° 37.5"W

LT-6C 40° 07.5°N  202-225  71.6 18.3 0
73° 36.8'W



Table 1.—Current meter information (composite table containing information relating to
data observed). — Continued

OBSERVATION INFORMATION SENSORS IN OPERATION
co
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LT-6D 40° O7.5" N 202-225 71.6 B. 3 0
73° 36.8"W
LT-6E 40° O7.5"°N 202-225 71.6 1.0 0
73°36.8" W
LT-7S 39°55.5"N 202-225 66.2 SPAR 24 X X X X X
73°05.2"W
LT-7A 39°55.5°N 202-225 66.2 48.3 24 X X X X X
73°05.2"'W
39°55.5"N 226-301 66.2 48.3 76 X X X X X
73°05.3"W
LT-7B 39°55.5"N 202-225 66.2 28.2 24 X X X X X
73°05.2"W
39°55.5°N 226-301 66.2 28.2 76 X X X X
73°05.3°W
LT-7C 39°55.5"N 202-225 55.2 18.3 24 X X X X
73°05.2"W
39°55.5"N 226-301 66.2 18.3 76 X X X X X
73°05.3'W
LT-7D 39°55.5°N 202-225 66.2 8.3, 24 X X X X X
73°05.2*W
39°55.5°N 226-301 66.2 8.3 76 X X X X X
73°05.3'W
LT-7E 39°55.5"N 202-222 66.2 1.0 21 X X X X
73°05.2"W
39°55.5"N 226-301 66.2 1.0 76 X X X X
73°05.3"'W



WIND DATA AT EB-41 (REFERENCED TO THE PATH OF HURRICANE BELLE)
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Figure 3. —A plot of the wind and pressure observation at EB-41 where the positive component along the path
is 5 degrees (True) and a positive component at a 90-degree angle to the path is 95 degrees (True).

The raw meteorological data at hourly intervals for
EB-41 were obtained from Sperry Rand Corporation,
and the information at 3-hour intervals for the mete-
orological stations at JFK Airport was digitized from
NWS summaries. For both records, the wind veloci-
ties were resolved both along and at a 90-degree angle
to the path of the hurricane. The results from EB-41
and JFK were almost identical, with slightly higher
velocities at JFK' Figure 3 represents the wind and
pressure response at EB-41 to the passage of the hur-
ricane. A positive component along the path is 5 degrees
(true) and a positive component at a 90-degree angle
to the path is 95 degrees (true).

Processed tide data were obtained from NOS for
the Deep Sea Tide Gage (DSTG), OTTS gages, and
the land-based tide stations. Residual series of the tide
records for Atlantic City and Sandy Hook, N.J., were
also determined. The STD data were obtained direct-
ly from the XWCC reports, and residual records for
the observed temperature data from the Aanderaa cur-
rent meters were calculated.

WATER COLUMN RESPONSE

Leipper (1967), Hazelworth (1968), and other reports
on the response of the water column to the passage of
a hurricane were mainly limited to sea surface tem-
peratures, bathythermographs (BT), and a few hydro-
graphic casts. Their results are applicable mainly to
slow-moving storms. Observations indicate upwelling
along the path of the storm, advection of the surface
layer, cooling and mixing of the surface layer, and
convergence and downwelling around the hurricane
area. The data collected during the passage of Hurri-
cane Belle are shown in figure 4. Temperature versus
depth information at the seven current meter locations is
plotted. The solid trace is the information from XWCC

10 at the closest available STD cast (or casts for sta-
tions LT2, LT4, and LT5), and the dashed trace is
from XWCC 11. The current meter stations and
observational depth are indicated on the right axis for
each plot. The squares are the residual temperatures
directly before, and the triangles are the residual temper-
atures after the passage of Hurricane Belle. The response
of the hurricane is seen vertically from surface to the
bottom, at all meters; however, mixing is more intense
for observations in and above the thermocline. At sta-
tions LT3, LT4, and LT7, where near surface obser-
vations are available, a strong mixing of surface waters is
indicated. At stations LT6 and LT2, directly in the
path of Belle, the surface temperatures decrease only
slightly, which indicates either weak mixing or possi-
ble advection along the path of the hurricane.

BAROCLINIC RESPONSE

The excitation of internal inertia-gravity waves after
the passage of a severe storm has been well documented.
Geisler (1970) states that the steady-state response to
a storm translating at a rate greater than the baroclinic
long wave speed is inertia-gravity waves in the lee of
the storm. Ichiye (1977), in describing the response of
a simple two-layer ocean to the passage of a slow-
moving storm, neglects the generation of the inertia-
gravity waves if the impulse of the storm has a time
scale of longer than the inertial period. The transla-
tion speed of Belle, as it passed through the New York
Bight, was approximately 11 m s"L The inertial peri-
od at 40°N latitude is approximately 18.6 hours. Table 2
represents the calculations of the baroclinic wave, Cg.
The calculations for the baroclinic radius of deforma-
tion, Cg/f, were based on the STD cast from XWCC
11 that best represents the density structure at the loca-
tions of the current meters.
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Figure 4. —Temperature vs. depth plots at the seven current meter locations. The solid trace represents
information from XWCC 10. The dashed trace represents information from XWCC 11. The
current meter stations at the appropriate depth are indicated on the right axis for each plot. The
squares are the temperatures before, and the triangles are the temperatures after the passage of
Hurricane Belle—Continued.
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Table 2.—The calculations of the baroclinic wave
speed, Cg, and the baroclinic radius of
deformation, Cg/f.

Current
Co/f
Meter €9 g
Station (m secl) (km)
LT1 .84 8.9
112 .68 7.3
113 .76 8.1
LT4 .92 9.8
LT5 .85 9.0
LT6 .82 8.8
LT7 .87 9.2
Cg = (egHO!*
and
P2—Pi
£ = =mmmemmmeemeee-

H! is the depth of the surface layer, and P, and P? are
the densities in the surface and bottom layer, respec-
tively. In the calculation of the baroclinic radius of
deformation, f = 9.37 x 10% s"l at 40°N latitude.

Using the classification given by Chang ana Anthes
(1978), where the translation speed of a fast-moving
storm is 10 times Cg, Hurricane Belle can be consid-
ered as a fast-moving storm. The National Hurricane
Center (in personal communication) approximated for
Hurricane Belle the radius of hurricane-force winds
at 45 km and the radius of maximum winds at 36 km.
Therefore, the ratio of storm scale to the ratio of the
baroclinic radius of deformation is approximately 5.
According to Geisler (1970), this ratio indicates a baro-
clinic response for the entire region.

Time series plots

To determine the temporal response at each current
meter to the passage of Hurricane Belle, the residual
currents resolved both along and at a 90-degree angle
to the path of the hurricane were plotted in figure 5.
Using the STD cast and the temperature records on
the current meters, the current meter station locations
were classified by bathymetry, distance from the path
of the hurricane, and observational level respective to
the depth of the thermocline. Bathymetry categories
are relative to the 55 m contour; category 1 is less
than 55 m, and category 2 is greater than 55 m. An
additional bathymetric feature for stations LT6 and
LT7 is that these stations are located in the Hudson
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Canyon. Respective to distance from the path, cate-
gory 1 is directly in the path, and category 2 is to the
right of the path. For observational levels, category 1
is above or within the thermocline; and category 2 is
below the thermocline. To further illustrate the baro-
clinic response at LT3 and LTS5, the time plots have
been expanded in figure 6. These plots illustrate the
striking example of an excitation of inertia-gravity waves
for a two-layer density regime. Using table 3, obser-
vations above or within the thermocline are 180 degrees
out of phase with those below the thermocline, with
velocities approaching 90 cm s’L. Using a similar set
of current meter observations in the North Sea, Schott
(1971) observed that the dominant factor in determining
the response of the velocity field to strong meteoro-
logical forcing was the location of the measurement
respective to the thermocline depth. His results are
consistent with the measurements collected during the
passage of Hurricane Belle. A high coherence can be
seen between LT3A and LT5A for both components
and between LT3C and LT5B for both components.
The phase lag between LT3 and LT5 at the near-inertial
frequency is approximately 2 to 3 hours. The calcula-
tion of the observed oscillation is approximately 18.5
hours, or slightly less than the theoretical inertial period
of 18.6 hours. Roberts (1975), in describing the results of
Schott (1971) and others, states that the observed peri-
ods for inertial waves seems to be | percent to 3 per-
cent less than the true inertial period.

For the other stations, the striking excitation of inter-
nal inertial-gravity waves is not as evident. For some
stations (i.e., stations LT2 and LT4), hints of near-
inertial oscillations can be seen. This is not surpris-
ing, since the depths are shallower, closer to the path
of the hurricane, or in the Hudson Canyon. An explana-
tion for the translation above and below the x-axes
for various plots after the passage will be described in
the following section. Roberts (1975) describes how
shallow depths might have the effect of resonant internal
wave-wave interactions which could distribute the ener-
gy to nearby frequencies.

Spectral analysis

To determine if the near-inertial waves were gener-
ated at the other station locations, spectra were calcu-
lated for each observational depth for two time periods:
(1) the series up to and including the hurricane, and
(2) the series up to the hurricane. A 39-hour Doodson
filter was applied to the original smoothed hourly data,
and spectra for the residual series for both components
along and at a 90-degree angle to the path of the hur-
ricane were calculated. Using the categories in table
3, characteristic spectra are shown in figure 7. Station
LT3 again illustrates the striking example of the
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Figure 5. — Plots showing the residual currents resolved both along and at a 90-degree angle to the path of
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Figure 6. —Expanded time plots illustrating the baroclinic response at LT3 and LT5.

i8



Table 3.—A classification of station locations according to bathymetry, distance from the path
of the hurricane and observational levels. Respective to bathymetry, category ! is less
than 55 m; and category 2 is greater than 55 m. Respective to distance from the path,
category 1 is directly in the path; and category 2 is to the right of the path. For
observational levels, category ! is above or within the thermocline; and category 2 is

below the thermocline.

Current
Meter Path of the
Stations Bathymetry Hurricane Observational Levels
S A B C D E
LT1 1 2 - - 1 2 2 -
LT2 | 1 - 1 2 2 - -
LT3 2 2 -1t 2 2
LT4 1 2 1 1 2 2 - -
LTS5 2 2 - 1 2 2 - -
LT6 2* 1 1 2 2 2 - -
LT7 1 1 2 2 2 2

2. 2

* Indicates that these stations are in Hudson Canyon

excitation of near-inertial waves; however, except for the
semidiurnal frequency, energy is enriched in the entire
spectrum. For all other stations above or within the
thermocline, except for station LT7S, the components
resolved along the path of the hurricane indicate almost
no enrichment of the near-inertial frequencies. How-
ever, for those stations, the component resolved at a
90-degree angle to the path of the hurricane indicates
an order-of-magnitude increase at near-inertial frequen-
cies. This agrees with all previous theoretical investi-
gations, both analytically and numerically, which state,
assuming a two-layer density regime, that in the upper
layer the energy propagates tangentially to the mete-
orological disturbance. It is interesting to note that
for all observational levels above or within the therm-
ocline, except for LT6, an order-of-magnitude enrich-
ment of the energy level for at least one component in
the near-inertial frequency range is seen. At station
LT6, no response to the passage of the hurricane is
indicated. This is consistent with the conclusions in
the water column response section which stated that
mixing does not seem to occur at LT6.

Horizontal velocity field analysis

To resolve the spatial baroclinic response of the hori-
zontal velocity field as Hurricane Belle passed through
the New York Bight, a series of vector time splices
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was constructed. Using the categories in table 3, fig-
ure 8a represents time splices of the horizontal veloci-
ty field for the upper layer (above and within the
thermocline), and figure 8b represents the horizontal
velocity field for the lower layer (below the thermocline).
The vectors represent the velocity of the residual cur-
rent at the instantaneous time shown. The station loca-
tion is at the end of the arrow, and the length of all
arrows are linearly scaled to the maximum velocity
observed. The maximum value of 87 cm s'l occurred
at LT3 at 0300 GMT 10 August 1976. At times the
scaled vectors are longer than the boundary of the
chart (i.e., at Station LT5); for these times, arrows are
plotted without heads. The location of the hurricane
(if it occurred during that given time splice) is indi-
cated by a dot, and the progress of the hurricane is
indicated by a dashed line.

In the upper layer before the passage of the hurri-
cane, a weak southwestward flow is shown for stations
on the shelf. Three hours after the hurricane enters
the New York Bight, maximum current speeds up to
87 cm s"l are attained, mainly in a direction tangen-
tial to the path of the hurricane. After 6 hours, an
anti-cyclonic pattern in the southern region and a
cyclonic pattern in the northern region develops. This
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Figure 7. —After using a 39-hour Doodson filter, a calculated spectra for (1) the series up to and including
the hurricane, and (2) the series up to the hurricane.
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Figure 7. Calculated spectra after using a 39-hour Doodson filter—Continued.
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Calculated spectra after using a 39-hour Doodson filter—Continued.
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Calculated spectra after using a 39-hour Doodson filter—Continued.
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Figure 7. Calculated spectra after using a 39-hour Doodson filter—Continued.
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Figure 8a.—Time splices of the horizontal velocity field for the upper layer.
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Figure 8a.—Time splices of the horizontal velocity field for the upper layer—Continued.
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Figure 8a.—Time splices of the horizontal velocity field for the upper layer—Continued.
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pattern begins to break down after 12 to 15 hours,
and the inertial clockwise rotation through 360 degrees
at LT3 and LT5 becomes pronounced. For LT1, LT2,
and LT4, an oscillation at the inertial period through
180 degrees appears superimposed on a northeastward
flow. At station LT6, after the passage of the hurri-
cane, the velocity field rotates clockwise through 360
degrees at the inertial frequency. This behavior can
also be seen in the spectra for LT6S where both before
and after the hurricane passes the energy is confined
to the near-inertial frequency band.

Chang and Anthes (1978) modeled the nonlinear,
baroclinic response of the upper layer to hurricanes
translating at 2.5, 5.0, and 10.0 m s"L. For Cg = 1.0 ms",
a hurricane moving at 10.0 m s’ is classified as a
fast-moving hurricane. Hurricane Belle has previ-
ously been classified as a fast-moving hurricane. Their
results are consistent with the observations. The results
of their model after 20 hours is a response to the right
of the storm with a strong tangential component. An
anti-cyclonic pattern in the southern region and a
cyclonic pattern in the northern region develops in
the model area.

In the lower layer at stations LT3 and LTS5, the
velocity fields respond to the hurricane by rotating

OTTS 1 ,

clockwise at the inertial frequency. For the other sta-
tions on the shelf, the vector plots indicate a weak
baroclinic response. At LT1, LT2, and LT4, an inertial
oscillation can be seen superimposed on a prevailing
northeastward flow.

BAROTROPIC RESPONSE

Geisler (1970) describes the barotropic response to
a moving hurricane as an “initial deformation in the
free surface height produced by the pressure anomaly
and moving with the storm,” which is followed by a
“barotropic divergence forced by the wind stress curl.
This leads to a geostrophically balanced trough in the
free surface height” and finally a “dissolution by plane-
tary wave radiation takes place.” According to Geisler
(1970) and Longuet-Higgins (1965), this dissolution
into the planetary waves occurs in about ! day. Kraus
(1972) describes the barotropic response of the ocean
to storms as a breakdown of the surface trough into
localized quasi-geostrophic barotropic Rossby waves.

To fully describe the barotropic response of the shelf
to the passage of Hurricane Belle, the response of the
sea surface is required. Figure 9 represents the response
of the OTTS | gage (from Gill and Porter, 1978) to
the passage of Hurricane Belle. The results at
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AT ATLANTIC CITY, NEW JERSEY

Figure 9. — Plot of the observed and predicted series at the OTTS [ gage. Wind data at Atlantic City, N.J.,

are also illustrated.



OTTS Il are almost identical. However, at the
DELMARVANC DSTG, the sea surface measurements
do not indicate a response to the passage of the hurri-
cane. Figure 10 illustrates the'response to the hurri-
cane at the tide gages located at Sandy Hook and
Atlantic City, N.J. The residuals are calculated in the
same manner as the current meter residuals. Both figures
illustrate the classical initial surge at the coast, then a
trough developing relative to the level before the pas-
sage of the hurricane.

Response to the upper layer

Analytical and numerical investigations to describe
the response of the ocean to the passage of a storm
usually consider a two-layer ocean where the upper
layer is well mixed and a flat bottom layer is assumed
to be deep and motionless. These assumptions filter
the barotropic response. A wind profile is imposed on
the surface, and a storm translation speed is specified.
Observations shown in figure 8a indicate the impor-
tance of the barotropic response for the station on the
shallow shelf. Initially, the baroclinic response is domi-
nant; then after 20 hours, the barotropic response domi-
nates the horizontal velocity field. Both the residual
time plots and the time splices indicate a northeast-
ward flow. Thirty-two hours after the passage of the
storm, this northeastward flow becomes weaker; howev-
er, it still can be seen for 2 days after the passage of
the hurricane.

Response of the lower layer

The initial conditions before the passage of Hurri-
cane Belle include a weak southwest flow for the sta-
tions located on the shelf, as shown in figure 8b. An
initial barotropic response to the surge at the coast is
a flow off the shelf. When the setdown occurs in the
sea surface, all stations rotate clockwise at what appears
to be the inertial frequency. For the stations located
on the shelf at less than 55 m (LT1, LT2, and LT4),
the velocity field sets northeast after 18 hours with
speeds up to 50 cm s-l and continues to set northeast
for the duration of the current meter record (at 10 cm su
after approximately 3 days). Therefore, the domi-
nant response for the stations on the shallower shelf
is a quasi-geostrophic barotropic flow.

LOCAL DOMINANCE OF
THE HUDSON CANYON

The results from stations LT6 and LT7 indicate that
the local dominance of the topographic restraint of
the Hudson Canyon controls the velocity response.
Before the passage of the hurricane, the water flows
up the canyon in the upper layer and flows down the
canyon in the lower layer. The up-channel flow in the
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Figure 10. — Plots of the residual tide series at the
tide gages located at Sandy Hook and
Atlantic City, N.J.

upper layer, together with a down-channel flow in the
lower layer, is typical of the current response to sur-
face winds in the Hudson Canyon, as described by
Lavelle et al. (1975). In the lower layer, 9 hours after
the hurricane enters the New York Bight, an up-channel
flow is seen for the duration of the record which is the
response to an offshore wind component at Kennedy
Airport and EB- 41. The extensive data set collected
throughout the MESA New York Bight Project is being
investigated to further correlate the current response
(for various density profiles) in the Hudson Shelf Can-
yon to various wind regimes.

CONCLUSIONS

The extensive data collected during the passage of
Hurricane Belle in the New York Bight allowed for a
complete description of the response of the shelf to be



performed. The results generally agree with the extensive
theoretical frame previously developed. The observa-
tions at stations LT3 and LT5 indicate a baroclinic
response for a two-layered density regime (the gener-
ation of internal inertia-gravity waves) to a fast-moving
storm as the dominant feature. For these stations, the
barotropic response was of a secondary significance.
However, for the other station locations, the results
indicate the importance of the barotropic response.
At stations LT1, LT2, and LT4, the baroclinic response
is masked by the barotropic response and can be seen
mainly in the velocity component resolved at a 90-degree
angle to the path of the hurricane. The result can be
quite important in further hurricane model develop-
ment. The initial condition usually specified by modelers
filters out the barotropic response. These data verify
the results of the existing models in describing the
baroclinic response; however, these data also indicate
the significance of the barotropic response. At stations
LT6 and LT7, the local effect of the Hudson Canyon
is seen, especially in the lower layer.
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