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Abstract 

Oceanic lee-waves are generated in the deep stratified ocean by the flow of ocean currents over sea-floor 
topography, and when they break, can lead to mixing in the stably-stratified ocean interior. While the theory 
of linear lee-waves is well established, the nonlinear mechanisms leading to mixing are still under investigation. 
Tidally-driven lee-waves have long been observed in the ocean, along with associated mixing, but observations 
of lee-waves forced by geostrophic eddies are relatively sparse and largely indirect. Parameterizations of the 
mixing due to ocean lee-waves are now being developed and implemented in ocean climate models. This review 
summarizes current theory and observations of lee-wave generation, and mixing driven by lee-wave breaking, 
distinguishing between steady and tidally-oscillating forcing. The existing parameterizations of lee-wave-driven 
mixing informed by theory and observations are outlined, and the impacts of the parameterized lee-wave-driven 
mixing on simulations of large-scale ocean circulation are summarized. 
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1 INTRODUCTION 

Lee-waves are waves in a fluid which is stably stratified in buoyancy, forced by flow over an obstacle (e.g. a mountain 
range in the atmosphere, sea-floor topography in the ocean) (Bell Jr., 1975, Long, 1955, Scorer, 1949) (Figure 1). 
The waves generated by a steady flow are stationary from the perspective of a stationary observer, but associated with 
a finite Doppler shifted frequency in the frame of reference moving with the flow. In the atmosphere, lee-waves are 
most easily observed in the form of lenticular clouds over their crests in the lee (i.e. downstream) of the topography 
(Conover, 1964); hence the name lee-waves. Lee-waves have a long history of study in the atmosphere (Wurtele et al., 
1996), leading to local effects such as downslope windstorms (Peltier & Clark, 1979) and distributed effects such as 
impacts on large-scale flow (McFarlane, 1987). Locally, the mean flow exerts a drag on the topography, transferring 
momentum and energy to the vertically propagating waves which deposit that momentum and energy when they 
break higher in the atmosphere (Broad, 1995, Teixeira, 2014). Parameterizations of orographic gravity-wave drag 
are a key component of large-scale atmospheric models (Palmer et al., 1986). 
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Figure 1: Schematic of lee-wave generation, showing key parameters, for (top) linear regime where Nh0/U0 < 1 and 
f < U0k < N ; (bottom) nonlinear regime, where Nh0/U0 > 1. Isopycnals are indicated in blue. 

In the ocean, lee-wave generation also leads to drag on the larger-scale flow (Trossman et al., 2016), but the role 
of lee-waves in driving mixing in the otherwise largely adiabatic ocean interior is potentially more important than in 
the atmosphere (MacKinnon et al., 2017). Lee-waves provide a mechanism for extracting energy from the geostrophic 
flow, and transferring that energy to small-scale turbulence when the waves break. The turbulence in turn leads to 
a dissipative loss of mechanical energy, as well as an irreversible transfer from kinetic energy to potential energy, 
as parcels of fluid of different density are stirred and mixed together (Winters et al., 1995). Hence, lee-waves can 
play an important role in both the global energy budget (Trossman et al., 2013, Nikurashin & Ferrari, 2011) and in 
mixing of tracers across density surfaces in the stably stratified ocean interior (Melet et al., 2014). 
Whereas in the atmosphere, lee waves are often generated by large-scale jets flowing over mountain ranges 

(Alexander & Teitelbaum, 2011), in the ocean significant bottom velocities, necessary to generate finite-amplitude 
lee-waves, are often associated with mesoscale eddies (Ferrari & Wunsch, 2009), with spatial scales of order 5-100km, 
and timescales varying from weeks to months. Tidal flow can also generate transient lee-waves (Alford et al., 2014). 
Recent research into ocean lee-waves has focused on both those generated by geostrophic flow, and tidal flow, 

with a over-riding goal of developing parameterizations of the drag on the large-scale flow and the mixing induced 
by the breaking lee-waves (MacKinnon et al., 2017). While the drag and mixing are connected, here I will largely 
focus on the mixing, its prediction, observation, and parameterization, as well as the impacts of mixing on large-scale 
circulation. The focus is primarily on lee-waves driven by geostrophic flow; however, tidally-driven lee-waves will also 
be discussed since direct observations of breaking lee-waves are easier to obtain in the more predictable tidally-driven 
regime. 
I will begin with an outline of the linear theory for the generation of lee-waves by both steady and oscillating flows, 

followed by the important nonlinear regimes, and mechanisms which cause lee-waves to break, leading to mixing. 
These theoretical, numerical and laboratory predictions will be compared with observations of lee-waves and lee-
wave driven mixing in the ocean. I will explore some of the discrepancies between observations and predictions, and 
attempt to reconcile the two. I will then summarize the current efforts to parameterize mixing by ocean lee-waves, 
and the impact of these parameterizations on simulations of the large-scale ocean circulation and climate. Finally, I 
will outline the knowledge gaps which still remain. 
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2 THEORY AND LABORATORY AND NUMERICAL SIMULATION 
OF OCEANIC LEE WAVES 

2.1 Linear theory for lee wave generation: steady flow 

Lee-waves are quasi-steady waves generated by stratified flow over topography. Following Bell Jr. (1975) we will 
therefore begin by deriving the linear solutions for flow over topography, using the incompressible inviscid Boussinesq 
fluid equations in the presence of planetary rotation: 

Du −rp
+ 2Ω × u = + bẑ (1)

Dt ρ0 

r.u = 0 (2) 

Db 
= 0 (3)

Dt 
where u = ux̂+ vŷ + wẑ is the velocity vector, and x̂, ŷ, and ẑ are the unit vectors in the x, y and z directions 

respectively. The z direction is aligned with the gravitational vector. D is the material derivative: Dt 

D ∂ 
= + u.r (4)

Dt ∂t 

Ω is the planetary rotation vector, p is the pressure, ρ0 is a reference density, and b is the buoyancy: 

b = −gρ/ρ0 (5) 

where g is the gravitational acceleration and ρ is the fluid density, and ρ0 is a reference density. By assuming b is a 
conserved quantity, we are ignoring any fluxes of buoyancy in or out of the fluid, as well as assuming a linear equation 
of state, relating density to the conserved quantities, temperature and salinity. We make the f-plane approximation: 
2Ω = f ẑ, where f is a constant Coriolis parameter. Now we specify a basic state with buoyancy dependent on 
vertical coordinate only, b = b0(z) and flow u = U0x̂, where U0 is a constant. For convenience we orientate our axes 
so that U0 > 0 throughout. This steady basic state satisfies: 

∂p0 
= ρ0b0(z) (6)

∂z 

and 
∂p0

fρ0U0 = − (7)
∂y 

Defining the buoyancy frequency N : 
db0

N2 = (8)
dz 

where we will assume that N is a function only of z, we linearize about this basic state, identifying the perturbation 
quantities by the superscript 0: � � � � � � 

∂ ∂ 0 0 1 ∂p0 ∂ ∂ 1 ∂p0 0 0 ∂ ∂  

    0 1 ∂p0
           0 + U0 u − fv = − ; + U0 v + fu = − ; + U

 0 w = − + b (9)
∂t ∂x ρ0 ∂x ∂t ∂x ρ0 ∂y ∂t ∂x ρ0 ∂z � � 

∂ ∂ 
b0 0N2 + U + w = 0 (10) 

∂t 0 
∂x 

along with the incompressibility equation. Looking for steady solutions, we obtain the wave equation: 

∂2 ∂22 w
U0 r 2 0   w + f2 + N2r2 w 0 = 0 (11)

∂x2 ∂z2 H 

We will find solutions to this equation in a semi-infinite domain, subject to no normal flow at the bottom 
boundary (w = u.rh), with upward wave energy flux. For simplicity, we will first examine waves generated by flow 
over monochromatic sinusoidal topography (Figure 1a) of the form: 

h = h0sin(kx), (12) 
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where for convenience, we assume k > 0. The linearized bottom boundary condition becomes: 

∂h 
w = U0 = h0U0kcos(kx) (13)

∂x 

We assume the amplitude of the topography is small (the weak topography assumption), so this boundary condition 
is applied at z = 0. 
Now assuming constant N , we choose a solution to satisfy the lower boundary condition of the form 

w = h0U0kcos(kx + mz) (14) 

which on substitution into eqn 11 gives the dispersion relation: 

(N2 − ω22 )
=   m k2 d (15)

(ω2 − f2d )

where ωd is the Doppler shifted or intrinsic frequency, ωd = ωs − U0k, and ωs is the frequency in the resting frame. 
When ωs = 0, then ωd = −U0k. The vertical wave number m is real (i.e. a vertically propagating wave solution) 
only if 

f < U0k < N (16) 

Outside these limits, the perturbation will be evanescent, and decay away from the topography. In the ocean, with 
relatively small bottom velocities compared to the atmosphere, this restricts lee-wave generation to topography with 
small horizontal length-scales: λ ≤ U0/f ∼ O(1km) for typical bottom flow speeds in a high latitude ocean. 
In the limit of f << U0k << N 

N 
m ≈ (17)

U0 

and the vertical length-scale is (Klymak et al., 2010a) 

λ0 = 2π/m = 2πU0/N (18) 

The positive root for m (eqn 15) gives an upward energy flux, equal to the rate of energy conversion per unit 
area, 

p0  C =< w 0
1 k  >= ρ h20U0(N

2
0 − U20 k

2) (19)
2 m 

as required for energy propagation away from the topography. Substituting for m we have q q 
1 

 2 C = ρ U0h (U2k2 − f20 0 0 ) (N2 − U2k20 ) (20)
2 

In the linear limit, outside of the range f < U0k < N the perturbations will lead to zero net energy flux. 
Generalizing to topography characterized by a 2D height spectrum P (k), where k = (k, l) is the topographic 

wavenumber, we obtain (Bell Jr., 1975, Nikurashin & Ferrari, 2010a): Z
ρ +∞ Z +∞ U .k p p

C = 0 0
P (k) ((U0.k)2 − f2) (N2 − (U0.k)2)dk (21)

4π2 
−∞ −∞ |k|

The linear wave solutions considered thus far propagate energy upward with a depth independent energy flux. 
Energy can only be used for mixing if there is divergence of the vertical energy flux, i.e. if the waves break. 
Understanding how lee-waves can lead to mixing therefore requires us to understand nonlinear waves. 
For linear theory to apply, the perturbation velocities must be small relative to the background flow, i.e. 

|u0/U0| << 1. For N >> U0k >> f , 
u0 Nh0| | ≈ (22)
U0 U0 

and so linear theory applies only if 
Nh0

FrL = << 1 (23)
U0 
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This parameter FrL has referred to as the inverse Froude number (Drazin, 1961) and the Long number (Aguilar 
& Sutherland, 2006). Since Mayer & Fringer (2017) showed that FrL is the ratio between the lee wave vertical 
fluid velocity and vertical group velocity, w0/Cgz , i.e. the vertical wave Froude number, and the magnitude of this 
parameter determines the nonlinearity of the lee-waves, we therefore refer to this parameter as the “lee wave Froude 
number” . This single parameter controls much of the behavior of the lee-wave problem, along with frequency ratios 
N/(U0k) and f/(U0k). FrL is also a measure of the steepness of the topography relative to the steepness of the wave 
characteristic (Nikurashin & Ferrari, 2010b): 

topographic steepness h0k h0k Nh0 
= = r ≈ (24) 

wave characteristic steepness k/m U2k2−f 2 U0
0 

N2−U 2k2 
0 

where the approximation applies if N >> U0k >> f . FrL is also proportional to the square root of the ratio 
between the potential energy change due to lifting a parcel of fluid the height of the topography and the kinetic 
energy available in the mean flow. When FrL > 1 the mean flow is energetically unable to move fluid parcels over 
the height of the topography, and blocking will occur on the upstream side of the topography (SMITH, 1989). The 
effective height of the topography over which the flow moves is then reduced so as to maintain a Froude number of 
1, i.e. Nheff /U0 ∼ 1 so that heff ∼ U0/N is the distance by which fluid is displaced below the topographic peak 
(Winters & Armi, 2012) (Figure 1b). The horizontal topographic lengthscale experienced by the flow is similarly 
reduced to heff /αt where αt is the topographic aspect ratio (height/width) at the top of the topography, and the 
intrinsic frequency of the wave then becomes U0keff ∼ Nαt, with U0keff < N required for propagating waves (E. 
Mayer and O. Fringer, unpublished manuscript). 

2.2 Linear theory for lee wave generation: oscillating flow 

Transient lee-waves can also be generated by time-dependent flow, with the oscillating flow of the barotropic tides 
being particularly relevant in the context of ocean mixing. The oscillating tidal flow also excites internal waves at 
the tidal forcing frequency (internal tides) (Bell, 1975), and our goal here is not to reproduce the vast literature on 
internal tide generation (see Garrett & Kunze (2007)). Instead, we will focus on when and how tidal flow can generate 
lee-waves (i.e. stationary waves with an intrinsic frequency ω = −U0k), in addition to or in place of propagating 
internal waves at the tidal frequency. 
For a background flow given by U = U0cos(ω0t) over a topography of the form h = h0sin(kx), the form of the 

linear perturbations depends on the tidal excursion parameter η = U0k/ω0, a non-dimensional ratio between the 
tidal advection distance and the topographic horizontal wavelength. When η << 1, then ∂w0/∂t >> U(t)∂w0/∂x, a 
limit known as the acoustic limit, (Bell, 1975) which applies for most tidal amplitudes and topographic lengthscales 
in the ocean. 
The full solution for w in the acoustic limit with constant N is w = U0h0kcos(kx)cos(mz + ω0t), giving upward 

energy flux, where the vertical mode number, m, satisfies the dispersion relation, s 
N2 − ω2 

m = k (25)
ω2 − f2 

with ω = ω0, and k given by the length-scale of the topography. The positive root ensures upward energy flux. 
These propagating internal tides (i.e. internal waves at the tidal frequency) are possible only if f < ω0 < N . In this 
η << 1 limit, there are no lee-waves. 
Quasi-steady lee-wave solutions occur if η >> 1 when the perturbation equations reduce to the steady-state 

equations. If ω0 < f (i.e. at latitudes above the critical latitude where f = ω0 for that tidal frequency) lee-waves 
will dominate the vertically propagating part of the solution if f < U0k < N . 
Internal tide solutions are linear if |u0/U0| << 1, which implies 

topographic steepness h0k h
 0k 

γ = = = q << 1 (26) 
wave characteristic steepness k/m ω2−f 2 

N 2−ω2 

The linearity of the internal tide solutions is therefore dependent on the parameter γ, the relative steepness of the 
topography. Note that γ is not the same as the relative steepness in the steady lee-wave problem FrL, since the 
internal wave frequency in the oscillating flow problem is set by the tidal frequency. 
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The lee-wave Froude number FrL is nonetheless an important parameter even in the oscillating flow problem, 
since if FrL > 1, there will be topographic blocking of the flow at the maximum flow-speed of the oscillating tide 
(Winters & Armi, 2013). Moreover, FrL ≈ γ/η, when f << ω0 << N , so large FrL implies steep topography 
and small relative excursion distance. This small η might suggest lee-waves are therefore not possible for large FrL. 
However, when there is blocking, both the effective height and width of the topography are modified: only the layer 
heff = U0/N below the top of the ridge moves over the topography, reducing the effective width of the topography 
to heff /αt = (U0/N)/αt, where αt is the aspect ratio (height/width) of the topography near the top. The resultant 
effective excursion parameter for the oscillating flow is then ηeff = αtN/ω0 ≈ γ. Hence for steep topography, large 
FrL will produce a large effective η response, putting the waves in the quasi-steady lee-wave regime with blocking. 
The relative steepness γ is also important in determining whether lee-waves will have time to develop in an 

oscillating flow (Klymak et al., 2010a). When a flow is initiated over topography, the lee-wave signal will take a time 
tL = λz/(cgz ), to propagate one vertical wavelength λz above the topography, where cgz is the vertical component 
of the group velocity. If tL >> π/ω0, then the lee-wave signal will not become established before the flow reverses 
direction. In the limit of f << U0keff << N , cgz ≈ Nkeff /m

2 , where keff is the effective horizontal wavenumber 
of the topography keff ∼ αtN/U0 for FrL > 1, and m ≈ N/U0 for a lee-wave. Hence tL ≈ 2π/(Nαt), and the 
tidally-driven lee-wave signal will only propagate at least one-vertical wavelength above the topography before the 
forcing flow switches direction if tL < π/ω0, or αt/(ω0/N) > 2. Since αt/(ω0/N ) ≈ γ, (assuming f << ω0 << N), 
the topography must be steep for tidally-driven lee-wave development if FrL > 1. For FrL < 1, a similar argument, 
but with k set by the topographic wave number gives η > 1 for lee-wave development during the oscillation period. 
For tidally-driven lee-waves, linear lee-waves with FrL < 1 occur when η > 1, while nonlinear lee-waves with 

FrL > 1 require both steep topography γ > 1 and large effective η. By comparison in steady flows nonlinear waves 
require only FrL > 1. 

2.3 Nonlinearity and lee wave breaking at the generation site 

While linear theory is helpful for understanding the mechanisms for lee-wave generation and the regimes in which 
lee-waves are possible, we must examine the nonlinear regimes to identify how lee-waves break and lead to mixing. 
When FrL is increased, the effective height of the topography is reduced to heff ∼ U0/N (Winters & Armi, 

2012). Increasing the topographic height therefore leads to a saturation of the energy flux at or near Nh0/U0 = 1 
(Nikurashin & Ferrari, 2010b). The saturation of the lee-wave energy flux occurs at lower values of Nh0/U0 for 
2-dimensional topography than for 1-dimensional topography, as flow is forced around topographic crests, rather 
than over them (Nikurashin et al., 2014). This modification of the lee-wave energy conversion can be quantified by 
(Nikurashin & Ferrari, 2011) � �2

(FrL)c 
C (27)= Clinear FrL 

where (FrL)c is the critical leewave Froude number (FrL)c = 0.7 for 2D flows and 0.4 for 3D simulations with 2D 
topography (Nikurashin et al., 2014)). This is equivalent to calculating the energy flux from eqn 20 or 21 based on 
the effective height, rather than the actual height. 
The existence of this saturation for Nh0/U0 > FrLc might suggest propagating waves of large enough amplitude 

to cause breaking (i.e. local Froude number > 1) cannot be generated, and breaking of waves will only occur if 
there is additional modification of the waves by the ambient conditions through which they propagate or instability 
mechanisms. 
However, this only considers the propagating wave component of the solution. When blocking occurs, the flow 

at the topography takes on the form of an internal hydraulically controlled flow, with a jet of height U0/N above 
the topography, which plunges below the crest of the topography on the lee-side, which may be the location of 
strong localized turbulence (Winters & Armi, 2012). Dependent on the downstream flow conditions (e.g. another 
topographic feature) the flow may be forced from this supercritical flow into a subcritical regime via an internal 
hydraulic jump, which again can be a location of strong turbulence (Winters, 2016). Lee-waves can still propagate 
above the hydraulic jump, provided the flow and stratification above this layer are conducive to their propagation. 
The fluctuations associated with the turbulent layer can themselves be the source of internal waves, often with 
frequencies greater than U0k, and closer to N (Aguilar & Sutherland, 2006). Understanding the mixing driven 
by stratified flow over topography requires examination of this hydraulic flow as well as the upwardly propagating 
lee-wave component. 
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are shown as snapshot images. The numbers for each regime are used in the descriptions in the text. 

We will now consider mixing as a function of the three nondimensional parameters, FrL, U0k/f , U0k/N (Figure 
2). When FrL < 1, f < U0k < N (Regime 1 in Figure 2), this regime is characterized by linear propagating 
lee-waves. Mixing only results if the wave-energy is transferred to smaller scales such that the wave Froude number 
is increased, and/or Richardson numbers are decreased. Nikurashin & Ferrari (2010b) shows that for 2D sinusoidal 
topography, in the presence of rotation, in the weakly nonlinear regime of 0.3 < FrL < 0.7 (Regime 1.a in Figure 
2) a parametric instability transfers energy between the mean flow, lee-waves, and inertial oscillations, and the 
strong vertical shear associated with the inertial oscillations leads to wave breaking and mixing. For parameters 
corresponding to the Southern Ocean, about 50% of the radiated wave energy is dissipated in the bottom 1km 
(Nikurashin & Ferrari, 2010a). For lower values of FrL, the weakly nonlinear interaction does not occur, so linear 
lee-waves radiate upwards without breaking, while for larger values of FrL, the lee-wave generation saturates as 
described above. The weakly nonlinear theory used to explain these simulations relies on the presence of wave-
damping due to the wave breaking. These numerical simulations may have excessive viscous damping, due to the 
limitations of the numerical resolution (Shakespeare & Hogg, 2017), in which case the wave-mean-flow interaction 
and bottom-enhanced dissipation may be over-emphasized. 
In the FrL < 1, U0k > N regime (Regime 2 in Figure 2), where flow is not blocked, but radiating wave solutions 

are not possible, mixing takes place through bottom boundary layer turbulence (Dossmann et al., 2016) downstream 
of the topography, with the maximum mixing concentrated at the level of the topography. This turbulent region 
excites upward propagating internal waves with frequencies close to N (Aguilar & Sutherland, 2006). 
When FrL ≥ 1, f < U0k < N , (Regime 3 in Figure 2) this regime is characterised by blocking, with generation 

of lee-waves of vertical lengthscale U0/N above the topography, hydraulic control of the jet above the topographic 
crest, and the possibility for a stagnant wedge downstream of the crest, with mixing occurring primarily in the 
hydraulic jump downstream if present (Winters & Armi, 2012, Winters, 2016, Klymak et al., 2010a). Dossmann 
et al. (2016) measures small total mixing in this regime relative to the FrL < 1 regimes; but this comparison does 
not normalize for the varied mean flow kinetic energy. The vertical profile of mixing shows most mixing concentrated 
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in a thin layer near the topography, with very little mixing away from the topography. Winters & Armi (2014) show 
strong dissipation occurring in the internal hydraulic jump downstream of the topographic crest, with substantial 
turbulent fluctuations. The internal hydraulic jump depends on the downstream conditions (e.g. presence and height 
of another topographic feature). No radiating lee-waves are present in these simulations because the flow is confined 
to the narrow jet above the topography. (Aguilar & Sutherland, 2006) shows that the boundary layer separation 
downstream of the topographic crest, strongly linked to the vorticity source for turbulence in Winters & Armi (2014), 
is highly dependent on the shape of the topography. 
The energy loss from the mean flow can be estimated from the work done by the form drag, where the form drag 

is given by Z +∞ dh 
Fd = Pb dx (28)

−∞ dx

where Pb is the pressure at the sea-floor and dh/dx is the topographic slope. When FrL > 1 and the flow is 
hydraulically controlled at the topography (Figure 1b), (Klymak et al., 2010a) suggests a simple hydrostatic model 
for the form drag . The stratified fluid is approximated by a 2.5 layer system, where the upper infinitely deep layer 
is the uncoupled flow a distance hu above the topography (Winters & Armi, 2012). The lower layer is blocked 
upstream of the topography (where it has a depth equal to the height of the topography h0), and the middle layer 
is the layer which is above the crest upstream, but displaced downwards downstream of the crest by a distance 
Δh. The density difference between the bottom and middle layers is related to the constant stratification N by 
Δρ = ρ0N2(h0 + hu)/2g. Assuming hydrostatic pressure, the form drag is then: Z −Δh Z 0 � �

ρN2 
2 hu 3 Δh 3 hu Δh 

Fh0 = gΔρΔhdh + gΔρhdh = Δhh0 1 + − − (29)
−h0 −Δh 2 h0 2 h0 2 h0 h0

Both Δh and hu are proportional to Um/N where Um is the flow speed at the crest. Based on numerical simulations, 
Klymak et al. (2010a) propose Δh = λ0/3, and hu = λ0 where λ0 = 2πUm/N . The form drag then becomes:  � � !2

π U
 m 

F = ρNU h2 1 + π − 2π2 Um
h0 m 0 (30)

2 Nh0 Nh0 

This hydrostatic prediction for the drag compares well with the drag diagnosed from 2D numerical simulations in the 
Nh0/U0 >> 1 regime (Klymak & Legg, 2010). For an infinitely deep fluid (where Um ≈ U0, the barotropic forcing 
velocity) the total work per unit width done by the drag is then:  � � !2

π U0 U
   2 2    2 0  2 2 π 

W = −Fh0 U0 = ρNU0h0 1 + π − 2π ≈ ρNU0h0 for large Nh0/U  (31)
2 0

Nh0 Nh0 2 

In steady state, this energy extracted from the mean flow can be transferred to dissipation and mixing, or to 
radiating internal waves (which may in turn lose energy to dissipation and mixing), or to larger scale flows (e.g. the 
flow opposing the mean flow which provides the blocking). Note that this is the total energy lost over a single bump. 
If we had a succession of bumps, separated by a distance 2π/k, then the average energy conversion per unit area 
would be 

ρNU2h2k 
C = W/(2π/k) = 0 0 for large Nh0/U0 (32)

4 
Note the similarities to the energy conversion eqn 20. In particular note that despite being in the high FrL regime, 
this total energy conversion does not saturate (i.e. E continues to increase as h0 increases), although it is half 
the magnitude of the linear prediction. This energy conversion includes both the energy conversion to the blocked 
upstream region and hydraulic jump, as well as the propagating lee-waves. The energy conversion from bottom flow 
to blocked flow does not necessarily contribute to mixing, so this energy conversion estimate does not tell us the 
energy which is available for mixing. Nonhydrostatic effects may further modify the bottom drag (Mayer in review). 
For an estimate of the energy available for mixing by breaking propagating waves in the blocking regime, we 

could apply the lee-wave energy conversion formula (eqn 20) to only the top part of the topography, above the level 
of blocking. Then we obtain: q q 1 

C = ρ0U0h
2 
eff (U2k2 − f20 eff ) (N2 − U2k2 

0 eff ) (33)
2 
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which for f << U0keff << N becomes 

C =
1 
ρ0U0

2keff h
2 (34)eff N 

2 
Note that this is not the same as the energy conversion estimate in eqn 27 because here both effective height and 
effective horizontal wavenumber are included, whereas 27 only uses the effective height, and assumes the topographic 
wavenumber determines the horizontal wavenumber, even after blocking. When blocking reduces the effective length 
scale of the topography sufficiently that U0keff > N , from Equation 33 propagating lee-waves are no longer possible 
and the lee wave energy conversion is zero, consistent with results of F. Mayer and O. Springer (in review). 
If we write heff keff = αt where αt is the topographic aspect ratio at the top of the topography, and use 

heff = 2πU0/N , then 
C = πρ0U0

3αt (35) 

If this component of the energy conversion is balanced by dissipation, then we would expect total dissipation to scale 
like U0

3 , as documented in Klymak & Legg (2010). 
The FrL < 1, U0k < f regime (Regime 4 in Figure 2) is characterized by geostrophic flow, and propagating 

lee-waves are not permitted. By contrast, if U0k < f and FrL > 1, (Regime 5 in Figure 2) blocking reduces 
the effective height of the topography heff = U0/N and effective width, so that lee-waves are indeed possible if 
keff = αt/heff > f/U0. Klymak (2018) estimates form drag using eqn 30 to estimate the energy loss for large-scale 
topography and compares with numerical simulations of rough, low-pass filtered topography (so U0k < f). The 
energy loss from the mean flow (and hence dissipation in steady state) scales like U2 for large FrL, in agreement 0 
with predictions such as eqn 31. These simulations use a doubly-periodic domain, with a forced barotropic flow. 
The energy input required to force the blocked flow back to a barotropic state is balanced by the topographic energy 
conversion. In steady state, this energy conversion from the barotropic to the blocked flow is balanced by dissipation, 
which therefore scales like U0

2 , not U3 as seen in simulations where the low modes can propagate out of the domain0 
without dissipating (e.g. Klymak & Legg (2010)). Interestingly, including both large and small-scales of topography 
leads to higher dissipation than the sum of large-scale and small-scale simulations, suggesting that the hydraulic 
flows induced by the large-scale topography can enhance the wave radiation at the small-scale topography. 
Tidally-driven transient lee-waves can be separated into two distinct regimes: when ω0 > f so that the fundamen-

tal frequency internal tides are freely propagating, and when ω0 < f , so that the fundamental frequency internal tides 
do not propagate. In the first regime, the transient lee-waves are the result of the superposition of tidal harmonics 
into a beam (Musgrave et al., 2016b). The total dissipation in 2D simulations (Klymak et al., 2010b) is well-captured 
by a model which assumes the flow at the topographic crest arrests all internal tides with phase speeds less than or 
equal to the flow speed, and all the arrested waves dissipate locally: 

∞X 
D = total dissipation = Cn (36) 

nc 

where Cn is the linear tidal energy conversion to internal tide vertical mode n, and nc is the critical vertical mode 
above which the horizontal phase speed cn < Um, the flow speed above the topography (where Um ≈ U0 for a 
deep ocean). This model gives a total dissipation which scales like U0

3 , since Cn scales like U2 and the number of0 
arrested modes scales like U0. Simulations show the dissipation is concentrated near the top of the topography, with 
a decay scale proportional to U0/N , implying that the transient arrested waves lead to local breaking (in contrast to 
the steady lee-wave problem, where lee-waves largely propagate upward without breaking). This implies that local 
breaking is greater in the time-dependent problem, perhaps a result of the temporal reversal of the barotropic flow. 
For the second regime where ω0 < f , i.e. diurnal tides more than ±30◦ away from the equator, or semidiurnal 

tides at very high latitudes, there are no propagating internal tides. However, transient lee-waves and internal 
hydraulic jumps can still occur, sometimes in the presence of bottom-trapped horizontally propagating disturbances 
(Musgrave et al., 2016a, Nakamura et al., 2000). Like the steady flow scenario, much of the mixing may occur in the 
region of the flow separation and hydraulic jump downstream of the topographic crest, but above the topography 
breaking propagating lee waves also contribute to mixing (Musgrave et al., 2016a). A simple estimate of energy 
conversion in this oscillating flow regime assumes that quasi-steady linear lee-waves exist at any instant in time with 
energy conversion from eqn 20: Z Z+∞ +∞ p pρ0 U0(t).k 

C(t) = P (k) (U0(t)k2 − f2) (N2 − U0(t)k2)dk (37)
4π2 |k|−∞ −∞ 
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with the time-averaged energy flux obtained from the integral of this instantaneous energy flux over a tidal cycle. For 
a sinusoidal 1-dimensional topography, and unidirectional oscillating flow U0cos(ω0t), in the limit of f << U0k << N 
this gives: 

C =
1 
ρ0U0

2h0
2Nk (38)

4 

or 1/2 the energy conversion from a steady flow of magnitude U0 in the same f << U0k << N limit. 

2.4 Propagation and lee wave breaking remote from the generation site 

Lee-waves can propagate both upward and downstream from the topographic generation site, and their ultimate 
breaking will lead to turbulent dissipation and mixing remote from the topography where they were generated. 
As lee-waves propagate away, they encounter changes in background conditions (flow and stratification) which can 
modify the wave properties such that an initially linear wave becomes nonlinear and breaks. 
To demonstrate the impact of advection by the mean flow on the distribution of mixing due to lee-waves, Zheng 

& Nikurashin (2019) conduct numerical simulations of lee waves generated over rough topography and advected 
over flat topography downstream. In their simulations, about 50% of the dissipation occurs in the downstream 
flat topography region, where much of the lee-wave energy derives from downward reflection of upward propagating 
lee-waves at the upper boundary. Variable shear and stratification would modify this downward reflection. 
We will now relax the assumption that N is constant, and instead examine the consequences of a stratification 

that varies with height. When lee-waves propagate into regions with variable flow and/or stratification, WKB theory 
can be used to estimate how the wave properties change along the wave characteristics, assuming the stratification 
and flow change slowly in the vertical relative to m−1 . From the dispersion relation s 

N2(z)(k2 + l2) + f2m2(z)
ωd(z) = ωs − U(z)k = (39)

k2 + l2 + m2(z) 

where ωs is the frequency in the stationary frame, and ωs − Uk is the Doppler shifted frequency ωd. (Here k is 
the wave-number component in the horizontal direction aligned with the mean flow, while l is the horizontal wave-
number component perpendicular to the mean flow). If we generate a stationary wave, so that ωs = 0, then as the 
wave radiates upward into a different region with different flow and stratification, the Doppler shifted frequency and 
vertical mode number will both change: 

(N2(z) − U2(z)k2) 
m 2(z) = k2 (40)

(U2(z)k2 − f2) 

If U(z) increases toward N/k (i.e. due to an increase in flow speed or a decrease in stratification), then m → 0, when 
the wave energy will be reflected downward from this turning level. Wave amplitude can be increased by trapping 
in a waveguide region below a turning level (Scorer, 1949). 
If U(z) reduces toward f/k, then m becomes very large, wavelengths become small, increasing shear in the wave, 

and reducing the vertical component of group velocity ∂ωd/∂m. At this critical layer (Booker & Bretherton, 1967), 
the wave energy can no longer propagate upward. For small Richardson numbers instability and wave breaking 
can occur (Winters & Riley, 1992), while for large Richardson numbers, the wave energy can be absorbed by the 
mean flow (Booker & Bretherton, 1967). Kunze & Lien (2019) shows that a fraction of the wave energy up to 
(kU0 − f)/kU0 can be reabsorbed by the mean flow, where U0 is the flow speed at the generation site. A greater 
fraction of high frequency lee-wave energy will be reabsorbed than near-inertial lee-wave energy. This reabsorption 
therefore influences the energy remaining for dissipation and mixing. 
Lee waves can also encounter turning latitudes when they propagate poleward such that f > ωd, refracting 

the wave-energy back toward the equator. The dependence of lee-wave properties on environmental properties 
(stratification, flow, coriolis) suggests that unlike low-mode internal tides, lee-waves do not propagate far away from 
their generation site. 

2.5 Summary of key predictions from theory, laboratory and numerical simulation 

Energy conversion from the mean-flow gives an upper bound for the energy which can be used for mixing. For linear 
waves (i.e. FrL < 1) eqns 20, 21 indicate the dependence of lee-wave energy input on bottom stratification, bottom 
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flow speed and topographic roughness. This energy conversion is expected to be reduced for steep topography (i.e. 
FrL ≥ 1) following eqns 27 or 33. For FrL > 1, more of the energy conversion may contribute to the upstream 
blocking and downstream hydraulic jump. While the former will not lead to local mixing, the latter is a site of local 
mixing. Separating the energy conversion to propagating lee-waves and non-propagating components is a complicated, 
incompletely understood problem. Linear theory suggests energy conversion only occurs for f < U0k < N . However, 
numerical simulations and laboratory experiments show that outside these limits, energy is still extracted from the 
mean flow and used for mixing, in hydraulic jumps or bottom boundary layers. Lee-waves can also be generated 
outside the f < U0k < N limit if the effective vertical and horizontal scales of the topography are reduced by 
blocking. 
The vertical wavenumber of lee-waves, eqn 15, is dependent on the intrinsic frequency, stratification and rotation. 

As waves move into regions of different flow and stratification, the vertical wave number is modified, leading to 
critical layers when vertical wave number approaches infinity. Critical layers are potential locations of enhanced 
mixing, or energy reabsorption by the subinertial flow. 

3 OBSERVATIONS OF OCEANIC LEE WAVES AND MIXING 

Lee-waves driven by slowly varying flow are difficult to observe in the ocean, since they are stationary in the frame 
of the topography, are generated at deep bottom topography where measurements are challenging, and are often 
generated by a chaotic time-evolving mesoscale eddy field. Much of the evidence for lee-wave driven mixing is 
therefore circumstantial: associating enhanced levels of mixing with the conditions predicted to give large energy 
input into the lee-wave field (i.e. rough topography at around the right length-scales, significant bottom velocities 
over that topography). Tidally-driven lee-waves are more readily accessible, given the greater predictability of the 
forcing flow, and the presence of strong tidal currents across relatively shallow topography such as in coastal regions 
and submarine ocean ridges. 

3.1 Observational diagnostics for lee-waves and mixing 

Three different methods are used to estimate mixing in the stratified ocean. (a) Tracer release experiments provide 
direct estimates of tracer diffusivity (Watson et al., 2013). (b) Velocity microstructure provides estimates of kinetic 
energy dissipation � �ν �� ∂u 

�2 

� = 15 (41)
2 ∂z 

(where ν is the molecular viscosity, u is the horizontal velocity and z is the vertical coordinate), which are related to 
diapycnal diffusivity κ through the Osborn (1980) relation: 

κ = Γ�/N2 (42) 

where Γ is the mixing efficiency, assumed to be a constant 0.2. (c) Dissipation is estimated from vertical profiles 
of density and velocity using a fine structure parameterization, (Henyey et al., 1986, Wijesekera et al., 1993, Gregg, 
1989, Gregg et al., 2003) : 

2 
< V 2 > /Nz� = �0 L(f, f0, N, N0)h(Rω) (43)
< Vz 

2 
GM 

> /N2 
0 

where N is an average stratification, �0 is the background turbulent dissipation of the Garrett-Munk (GM) spectrum, 
2 

f0 is the GM reference value of Coriolis, and N0 is the GM reference stratification. < V 2 > /N is the shear variance z 
(deduced from the fourier transform of the vertical profile and integrated over a wavenumber band appropriate for 
internal waves), normalized by the average stratification, and < V 2 > /N2 is the normalized shear variance for theGM 0 
GM spectrum at the reference stratification. The function L(f, f0, N, N0) accounts for latitude and stratification, 
and Rω is the shear-to-strain ratio: 

V 2 
zRω = (44) 

N 
2 
ζ2 
z 
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where ζ = (N2 −N2 )/N2 is the strain and N2 
z ref ref ref is the background stratification corresponding to an adiabatically

adjusted density profile. For a single wave, Rω is related to the Doppler shifted frequency ωd: 

(ω2 
d + f2)(N2 − ω2d) (ω2 

d + f2)
Rω = ≈ (45)

N2(ω2 − f2d ) (ω2 − f2d )

(Polzin 1995), so that the function h is therefore largely a function of wave frequency. Waterman et al. (2013), Meyer 
et al. (2015) provide more details of the use of the fine structure parameterization and shear variance in the context 
of Southern Ocean lee-waves. Figure 3 and Figure 4 show several examples of dissipation observations associated 
with lee-waves driven by geostrophic and tidal flow respectively. 
Whereas the microstructure estimate is a direct estimate of dissipation, assuming only isotropy and homogeneity, 

the fine-structure parameterization assumes that a Garrett-Munk-like internal wave spectrum leads to mixing through 
a cascade of energy to small-scales. These assumptions may not apply near internal wave generation sites, or in regions 
where internal wave energy is reabsorbed by the geostrophic flow. 
Internal wave energy can be estimated from vertical profiles of velocity and density: 

1 2 2 1 2 
E ( v  

 = < u > + < >) + N < η2 >= EIwave KE + EPE (46)
2 2 

u and v are the perturbation horizontal velocity components, and η is the vertical displacement. The perturbation 
quantities are deduced from the fourier transforms of the vertical profiles, integrated over the wavenumber band 
appropriate to internal waves (Waterman et al., 2014). 
The vertical direction of energy propagation can be deduced from the ratio of the counterclockwise to clockwise 

polarized shear variance, integrated over the internal wave vertical wavenumber band. In the Southern hemisphere, 
predominantly clockwise polarized shear indicates predominantly upward internal wave energy flux. (Waterman 
et al., 2013, Meyer et al., 2015, Gonella, 1972). 
The dominant intrinsic frequency of the perturbations is deduced from Rω, and the wavelength of perturbations 

is deduced from the separation between coherent maxima or from the peaks in vertical wavenumber spectra. 

3.2 Lee waves generated by subinertial flow 

Much of the observational evidence for mixing by lee-waves driven by geostrophic flow comes from the Southern 
ocean, where the strong bottom velocities associated with the Antarctic Circumpolar Current interact with abyssal 
topography on the small scales required for lee-wave generation (eqn 16). 
Enhanced dissipation associated with rough topography and strong near-bottom currents has been found from 

application of the fine-structure parameterization (eqn 43 or variants) to hydrographic profiles in the Southern ocean 
(Sloyan, 2005), including in the Drake Passage (St. Laurent et al., 2012, Sheen et al., 2013), a region of relatively 
steep topography (FrL ∼ 0.7) and strong ACC frontal velocities. A year-long record from moorings in a region of 
the Drake Passage where the SubAntarctic Front encounters rough topography (Brearley et al., 2013) shows that 
enhanced inferred dissipation is associated with strong subinertial bottom currents. Microstructure measurements 
(eqn 41) across Drake Passage St. Laurent et al. (2012), Sheen et al. (2013) (Figure 3a) confirm bottom-enhanced 
dissipation associated with the strong velocities of the ACC frontal regions at locations of rough topography such as 
the Phoenix Ridge, consistent with enhanced diffusivities measured in this region by tracer release (Watson et al., 
2013). 
Evidence for the role of bottom generated internal waves in generating this dissipation comes from the upward 

propagation of wave energy indicated from velocity rotary spectra (St. Laurent et al., 2012, Sheen et al., 2013, 
Brearley et al., 2013); vertical wavelengths deduced from shear spectra which are consistent with linear predictions 
of 300-1000m, given typical flow speeds, stratification, and topographic length-scales (St. Laurent et al., 2012, Sheen 
et al., 2013); and enhancement of internal wave kinetic energy (eqn 46) at both near-inertial and higher frequencies 
when bottom currents are strong (Brearley et al., 2013). 
There is however a mismatch between the measured dissipation and the lee-wave energy flux estimated from linear 

theory (e.g. eqn 21). Brearley et al. (2013) finds the total dissipation in the bottom 900m is only 21% of the predicted 
lee-wave energy flux. Sheen et al. (2013) shows a similar ratio (10 − 30%) between measured dissipation and linear 
theory predictions of radiated lee-wave energy, which might in part result from a loss of wave energy to the mean flow, 
suggested by an overestimate of turbulent dissipation rates by finescale parameterizations (eqn 43). The fraction 
of energy dissipated in the bottom 1-km increases with topographic steepness, in line with nonlinear predictions of 
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(a) (b) (c)

(d)
(e)

Figure 3: Observations of mixing by lee-waves generated by geostrophic flow. (a) Dissipation � as a function of 
bottom roughness height H and bottom flow speed U in the Drake Passage, from Sheen et al. (2013); (b) Mean 
dissipation profiles for regions with large and small predicted lee-wave energy (from linear theory) in Kerguelen 
Plateau region of the Southern Ocean, from Waterman et al. (2013); (c) Mean dissipation in the Deep Western 
Boundary Current, for periods of strong and weak bottom current, from Köhler et al. (2014); (d) Dissipation from 
profiling floats in a lee-wave in the Drake Passage from Cusack et al. (2017); (e) Dissipation in mesoscale eddies on 
the western boundary from Clément et al. (2016). 

Nikurashin & Ferrari (2010b). Direct measurements of vertical energy flux < w0p0 > in a topographic lee-wave were 
made by profiling floats crossing the Shackleton Fracture Zone in the Drake Passage (Cusack et al., 2017). In this 
case linear predictions suggest an evanescent response, in the U0k < f regime. However, if the reduction in effective 
height and wavelength of the topography by the effect of blocking FrL > 1 is taken into account, the upward energy 
flux magnitude is consistent with theoretical predictions (e.g. eqn 33). The depth-integrated dissipation (Figure 
3d) is about two orders of magnitude smaller than this energy flux. 
In addition to the Drake Passage region of the Southern Ocean, the region around the Kerguelen Plateau, 

in the South Indian Ocean, is another location where the main fronts of the ACC encounter rough topography. 
Whereas the Drake Passage topography reaches steepness of FrL = 0.7, the topography near the Kerguelen Plateau 
is less steep, at about 0.1. Observed signatures of lee-waves include enhanced near-bottom dissipation in some 
regions of large topographic roughness and large near-bottom flow speeds co-located with enhanced near-bottom 
internal wave energy and upward wave energy propagation (Waterman et al., 2013, Meyer et al., 2015, 2016). The 
dissipation measured in the bottom 1000m is found to be 2 − 20% of the internal wave energy radiation predicted 
from linear theory, a smaller percentage than in the Drake Passage, consistent with more linear waves generated in 
a region of less steep topography. Sinks for the internal wave energy include a possible critical layer suggested by 
enhanced dissipation about 1250-1500m above the bottom (Figure 3b); wave-mean flow interactions, indicated by 
a mismatch between finescale parameterization dissipation estimates and microstructure (Waterman et al., 2014); 
and downstream propagation implied by internal wave propagation speed deduced from profiling floats (Meyer et al., 
2016). 
Other significant regions of ocean lee-wave generation outside the Southern Ocean include the Deep Western 

Boundary Currents (DWBC), where strong bottom velocities encounter small-scale topographic variations. Two 
moorings at 16◦N on the western continental slope of the North Atlantic (Köhler et al., 2014) resolve variations in 
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the DWBC, as well as internal waves. Bottom enhanced mixing deduced from the fine-structure parameterization 
applied to CTD and LADCP profiles during the same period are correlated with the presence of the DWBC (Figure 
3c). While moored velocity spectra show a peak at the M2 tidal frequency, suggesting tidally-driven internal waves, 
an increase in near-inertial wave energy for strong DWBC may be evidence for the triad interaction mechanism 
described in Nikurashin & Ferrari (2010b). 
Higher up the continental slope, the Western Boundary Currents can generate lee-waves over small-scale topog-

raphy such as the Charleston Bump (de Marez et al., 2020). Mesoscale eddies generated by instability of the upper 
ocean western boundary currents can encounter topography as they propagate Westwards into shallower water. An-
ticyclonic eddies, with strong bottom velocities, identified from altimetry and moorings at 26.5◦N in the Western 
North Atlantic (Clément et al., 2016) are associated with enhanced high frequency shear and upward group velocity, 
whereas no clear energy propagation direction is seen associated with surface intensified cyclonic eddies. Bottom 
enhanced kinetic energy in high-frequency and near-inertial wavebands in anticyclones may be associated with the 
upstream presence of a 300m topographic rise. The characteristics of the topography suggest that the flow is partially 
blocked, with lee-wave generation at the top of the rise. Fine-structure estimates of dissipation rate are enhanced 
for larger bottom flow (Figure 3e). 
In addition to the Southern Ocean and western boundary currents, other locations where substantial subinertial 

bottom flow encounters variable bathymetry include flows over the rough topography of mid-ocean ridges, such 
as fracture-zone sills. Such flows may undergo mixing localized at canyon-spanning sills (Thurnherr et al., 2005, 
Thurnherr & St. Laurent, 2011, Liang & Thurnherr, 2012, Clément et al., 2017), associated with upward propagating 
internal wave energy. 
Observations of the eventual dissipation of lee-waves away from the topographic generation sites are sparse. 

(Sheen et al., 2015) examines both the internal wave field (from rotary spectra and shear-strain ratios, eqn 44) and 
the dissipation (from microstructure, eqn 41) in a region of the Drake Passage in the presence of a mid-depth eddy, 
and again when the eddy is absent. The eddy is found to modulate both the dissipation and the internal wave 
characteristics: dissipation is suppressed within the eddy core and enhanced around the top and bottom boundaries 
of the eddy; upward propagating internal wave energy is suppressed above the eddy, and downward propagating 
internal wave energy is enhanced below the eddy. Internal wave frequencies are highest in the eddy core, and near-
inertial on the eddy’s upper and lower boundaries. A simple WKB ray-tracing model, assuming a single initial wave 
frequency, shows that the weak stratification of the eddy core could lead to reflection of upward propagating internal 
waves, while critical layer dissipation may be present above and below the eddy core. The mid-depth dissipation 
maximum noted by Waterman et al. (2013) is further evidence for critical layer dissipation of internal waves. 

3.3 Lee waves generated by oscillating flow 

Lee-waves generated by oscillating tidal flow over topography have been observed in greater detail than lee-waves 
driven by geostrophic flow, in part due to the greater predictability of the tides, and the presence of strong tidal 
currents across relatively shallow topography such as in coastal regions and submarine ocean ridges (Klymak & Gregg, 
2003, Konyaev et al., 1995). In locations where the dominant tidal frequency is superinertial (e.g. equatorward of 
74.28◦ for the M2 tide and equatorward of 30◦ for the K1 tide) lee-waves may coexist with freely propagating waves 
at the forcing frequency. 
Tidal lee-wave observations complement observations of lee-waves driven by slowly-varying mesoscale flows by 

providing evidence for mixing in downstream hydraulic jumps when Nh0/U0 > 1, such as at Knight inlet (Klymak 
& Gregg, 2003, Farmer & Armi, 1999), the Mascarene ridge in the Indian Ocean (Konyaev et al., 1995, da Silva 
et al., 2011) and Mendocino escarpment (Musgrave et al., 2016a, 2017). The mode number of the internal hydraulic 
jump varies from location to location, with a mode 1 disturbance at Knight inlet, mode-2 at the Mascarene ridge, 
and higher mode at the Kaena ridge of the Hawaiian seamount chain. In these regions where lee-waves are generated 
by superinertial tides (i.e. ω > f where ω is the tidal frequency, and f is the coriolis frequency), the vertical mode 
number of the lee-wave can be interpreted in terms of the arrest of the internal tides, with increasing tidal flow 
leading to the arrest of progressively lower internal modes (Klymak et al., 2010b). 
Tidally-driven hydraulic jumps are locations of enhanced mixing. At Knight inlet acoustic backscatter indicates 

turbulent mixing at the interface between the strong flow above the topography and the stagnant layer above. At 
Kaena ridge, strong turbulent dissipation is observed near the bottom, near the ridge crest, associated with tidally-
driven overturns (Klymak et al., 2008) (Figure 4a). These overturns, of order 100m, are associated with high strain, 
rather than high shear, and so result from convective breaking of nonlinear tidal lee-waves (Klymak et al., 2008), 
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(a)
(b)

Figure 4: Observations of mixing by tidally-generated lee-waves. (a) Time-depth plot of dissipation and density 
(black contours) at Kaena ridge from Klymak et al. (2008); (b) Time-depth plot of dissipation and density (black 
contours) from Musgrave et al. (2016a). 

consistent with numerical simulations (Legg & Klymak, 2008). Repeated underway CTD sections (Alford et al., 
2014) show that at ebb tide, isopycnals are depressed to the lee of the topographic sill, and as the tide slackens, 
this lee-wave propagates up and over the sill. At Mendocino escarpment enhanced dissipation in the hydraulic jump 
and lee-wave occurs on a diurnal rather than semi-diurnal timescale (Musgrave et al., 2016a) (Figure 4b), as the 
subinertial diurnal tides generate a bottom-trapped wave which reinforces the flow through a channel in the ridge. 
Turbulence associated with the tidally-driven lee-wave extends along the lee-wave characteristic up to the surface, 
while turbulence associated with the hydraulic jump is confined to the ridge flanks. 
The relative fraction of the baroclinic energy dissipated in the transient lee-wave depends on the relative fraction 

of energy in the lee-wave compared to the propagating lower mode internal tides. At Kaena ridge dissipation in the 
lee-wave scales like U30 , and forms a small fraction of the total energy converted from the barotropic to baroclinic 
tide, with most of the internal tide energy radiated away in low-modes (Klymak et al., 2008), while at the Luzon 
Straits double ridge system (Alford et al., 2015) about 40% of the energy converted from the barotropic tide at the 
ridge system is dissipated and used for mixing locally. At Mendocino escarpment (Musgrave et al., 2017) the local 
dissipation is estimated to account for about 28% of the total energy converted from the baroclinic tide. Unlike the 
Kaena ridge, where local dissipation scales like U30 , (Klymak et al., 2008), at the Mendocino escarpment the local 
dissipation scales like U20 , perhaps a consequence of the multi-frequency tidal flow and three-dimensional topography. 
Enhanced dissipation associated with tidally-driven lee-waves is not confined to tall steep ridges, but also occurs 

at small-scale steep topographic features in the Mid-Atlantic Ridge (Dale & Inall, 2015). The relaxation of the 
tidal flow releases the arrested lee-waves and the internal hydraulic jumps propagate laterally as nonlinear dense 
bores associated with overturning and enhanced dissipation. While the net dissipation is only modestly larger than 
background levels, such small-scale tidal lee-waves may be more widespread than the large features seen over tall 
ridges. 
Above the critical latitude for the M2 tide (74.28◦), no propagating internal tides are possible, and so only 

transient lee-waves can be generated by the tidal flow. Rippeth et al. (2015) shows that dissipation in the Arctic 
is enhanced over sloping topography, and this enhanced dissipation correlates with energy loss from the barotropic 
tide. Rippeth et al. (2017) shows bottom enhanced dissipation is found correlated with the tidal cycle in a region of 
sloping topography above the critical latitude, suggesting tidally-driven lee-waves. 
In summary, observations of tidally-driven lee-waves complement those of lee-waves generated by subinertial flow 

by providing more detailed evidence for localized mixing in hydraulic jumps and near-bottom bores. 

3.4 Reconciling observations and theoretical predictions 

Observations of lee-waves driven by both subinertial and tidally-oscillating flow show many phenomena predicted from 
theory and numerical simulations. For tidally-driven lee-waves, particularly in regions equatorward of the critical 
latitude for the dominant barotropic tide, observations have revealed large dissipation associated with transient 
internal hydraulic jumps. The local dissipation at the topography is usually substantially less than the estimated 
energy conversion from the barotropic to baroclinic tide, but this is expected given the hydraulic jumps result from the 
arrest of high-mode waves, while the low-mode internal tides propagate away without breaking. The U30 dependence 
of dissipation predicted for these regions is confirmed by observations. 
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4 

By contrast to tidally-driven lee-waves, few direct observations exist of the details of nonlinear lee-waves and 
hydraulic jumps driven by mesoscale-eddy interaction with topography, due to the unpredictability of the driving 
flow. Observations confirm bottom-enhanced dissipation when bottom flows encounter rough topography, in both 
the Southern Ocean and on Western boundaries of ocean basins. Rotary shear spectra indicate upward energy 
fluxes, consistent with internal waves generated at topography. The net dissipation is however smaller than expected 
from the linear theory. This discrepancy may result from (a) the steepness of the topography (eqn 27); (b) the 
three-dimensionality of the topography, which reduces the predicted energy conversion (Nikurashin et al., 2014); (c) 
downstream advection of lee-waves, leading to dissipation far from the topography (Zheng & Nikurashin, 2019, Meyer 
et al., 2016); (d) the lack of observations near the bottom in the lee of large topographic features, where much of the 
energy converted from the barotropic flow may be dissipated in hydraulic jumps; (e) the transfer of lee-wave energy 
to the mean-flow through wave-mean flow interaction (Kunze & Lien, 2019); (f) the lack of sampling in critical layers 
associated with transient mesoscale eddies (Sheen et al., 2015). 

PARAMETERIZATION OF MIXING BY OCEANIC LEE WAVES 

If lee-waves break, they can contribute to irreversible mixing of the stably-stratified ocean interior, as shown numer-
ically, experimentally and observationally (Nikurashin & Ferrari, 2010b, Aguilar & Sutherland, 2006). The scales 
at which the irreversible changes in density occur are much smaller than the scales of the waves themselves, and 
hence some numerical models may resolve the waves, but need to parameterize the mixing that results from the 
wave breaking. For such a model, which resolves the topography and the vertical and horizontal scales of the lee-
waves, mixing can be parameterized by evaluating when the nonlinear lee-wave produces overturned isopycnals and 
convective instability. Klymak & Legg (2010) diagnoses the length scale of simulated buoyancy overturns associated 
with the breaking wave. The dissipation can be estimated by assuming this overturn length-scale is equivalent to the 
Ozmidov scale LO = (�/N

2)1/2 . The tracer diffusivity is then estimated from the Osborn (1980) model (eqn 42). 
In contrast to these wave-resolving models, the coarse resolution models used for climate simulations do not 

resolve the lee-waves, or the topography on the small-scales at which lee-waves are generated. Parameterizations 
of lee-wave mixing suitable for climate models connect the estimated energy conversion from subinertial flow over 
unresolved topography to the dissipation and mixing in the water column above. These parameterizations begin 
with an estimate of the energy conversion, such as the linear prediction in eqn 21, which after a rotation of horizontal 
coordinates so that the U0 vector is aligned with the topographic wavenumber k becomes: Z 

ρ0|U0|
C = 

2π 

N/|U0| p p
P∗(k)dk |U0|2k2 − f2 N2 − |U0|2k2dk 

f/|U0| 
(47) 

where Z +∞1 |k|
P∗(k) = P (k)dl 

2π −∞ |k| 
(48) 

(Nikurashin & Ferrari, 2011). 
This linear prediction for the energy conversion can be estimated given suitable values for the topographic 

spectrum P (k), the bottom stratification N and the bottom velocity field U0. The estimate is complicated by the 
fact that the relevant velocity field, e.g. due to mesoscale eddies, may be poorly resolved at typical global model 
resolution, and the topography is not accurately known at the relevant small scales λ < 2πU0/f . Choices therefore 
have to be made for the estimate of bottom velocity and topographic spectrum. 
In Nikurashin & Ferrari (2011) the topographic spectrum is estimated by fitting an isotropic form of the Goff & 

Jordan (1988) spectrum 

P∗(k) = P0k
−µ+1 B[1/2, (µ − 1)/2] 

(49)
B[1/2, µ/2] 

(where B is the beta function) to single beam bathymetry soundings to determine P0 and µ. The bottom stratification 
N is computed from the WOCE hydrographic atlas (Gouretski & Koltermann, 2004), and the bottom velocity is 
taken from a global ocean simulation at 1/8◦ using the GFDL isopycnal model (Adcroft et al., 2010), averaging over 
3 years of 5 day snapshots. The saturation of energy conversion at steep topography is accounted for by scaling E 
by a factor (FrL/(FrL)c)

2 for FrL > (FrL)c, where FrL is the lee-wave Froude number Nh0/U0, and (FrL)c = 0.7. 
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(a) (b)

Figure 5: Global parameterization of lee-wave driven mixing and its impact: (a) Estimate of lee-wave energy conver-
sion applied in a global climate simulation by Melet et al. (2014) after Nikurashin & Ferrari (2011); (b) The change in 
the overturning circulation in density space (Svedrups) resulting from including this lee-wave driven mixing estimate, 
from Melet et al. (2014). 

The total global energy conversion rate to lee-waves is 0.2TW , of which about half occurs in the Southern Ocean 
(Figure 5a). 
A similar global estimate by Scott et al. (2011) used two independent topographic data sets, both following the 

Goff & Jordan (1988) stochastic model, (Goff & Arbic, 2010, Goff, 2010). The buoyancy frequency was derived 
from the WOA2009, and annually averaged, while bottom velocity estimates are taken from 1/12◦ simulations of 
the HYCOM model. The saturation of energy conversion at large steepness is included by scaling by a factorp
1 (FrL/F rLc )(arccos(1 − 2FrL/F rLc ) − 2(1 − 2FrL/F rLc ) FrL/F rLc (1 − FrL/F rLc )) for FrL > FrLc (Welch π 
et al., 2001), where FrLc = 0.75 (in practice very similar to the saturation effect assumed in Nikurashin & Ferrari 
(2011)). In contrast to Nikurashin & Ferrari (2011), topography is not assumed to be isotropic. The resulting 
global energy conversion to lee-waves is about 0.44TW using the G2010 topographic dataset, and 0.34TW using the 
GA2010 dataset, somewhat greater that the (Nikurashin & Ferrari, 2011) estimate. The effect of steep topography 
was shown to be relatively small, accounting for only about 10% reduction in the global estimate. These energy 
conversion estimates from Scott et al. (2011) are considerably greater than the 0.22TW estimate of eddy energy loss 
(which could be attribted to energy conversion to lee-waves) made by Zhai et al. (2010) from altimetry and WOCE 
climatology. 
Wright et al. (2014) perform a similar global estimate to Scott et al. (2011), using the G2010 topographic dataset 

and WOA2009-derived climatological bottom stratification, but with different bottom current estimates. Here values 
from the global 1/12◦ HYCOM simulation are combined with current meter observations using a model-assisted 
hierarchical clustering methodology. No correction for saturation at steep topography is included. The global 
estimate for energy conversion to lee-waves is 0.75TW , considerably larger than Scott et al. (2011), and in agreement 
with the suggestion from Scott et al. (2011) that HYCOM underestimates bottom velocites by a factor of 2. 
Most recently, Yang et al. (2018) uses all three previously used topographic data sets (e.g. GA2010, G2010, 

Nikurashin & Ferrari (2011)) and the output from the 1/10◦ GFDL CM2.6 global ocean simulation for the bottom 
velocities and bottom stratification to calculate the energy conversion to lee waves in the Southern Ocean only. 
The energy conversion is assumed to saturate for relative steepness greater than FrLc = 0.4, consistent with 3D 
simulations from Nikurashin et al. (2014), and less than the saturation steepness values used in Nikurashin & Ferrari 
(2011) and Scott et al. (2011). The total energy conversion rates range from 0.10 → 0.16TW for the different 
topography datasets, of which between 24 − 30% is due to the time-mean flow and the reminder due to the eddy 
component of the flow. Increasing the value of steepness for saturation to 0.75 as in Scott et al. (2011) leads to a 
1.5× increase in energy conversion. Anisotropic topography is also shown to have a substantial (i.e. up to ±100%) 
impact on the local rate of conversion. 
All of these estimates of the energy conversion into lee-waves produce 2-dimensional spatial maps, which are 

constant in time. A full parameterization, enabling examination of the changes in lee-wave driven mixing in a 
changing climate, needs to include temporal variability due to changing bottom velocities and stratification. For 
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an eddy-resolving climate model, the instantaneous bottom velocity and stratification could be used. For non-eddy 
resolving models, the model’s mesoscale eddy parameterization can provide estimates of eddy-velocities. Melet et al. 
(2015) uses the Mesoscale Eddy Kinetic Energy (MEKE) parameterization (Marshall & Adcroft, 2010, Eden & 
Greatbatch, 2008) to estimate the bottom velocity U = αUE , where α = 0.1, and the mesoscale eddy velocity √ 
UE = 2E, where E is the mesoscale eddy kinetic energy. Simulations of the GFDL CM2G model with the CMIP5 
anthropogenic radiative forcing scenarios are used to obtain predictions of changing resolved and eddy velocities, 
and bottom stratification, while the topography and choice of saturation steepness follow the choices of Nikurashin 
& Ferrari (2011). Whereas in the present climate, energy conversion to lee waves is between 0.24 − 0.32TW , 
under anthropogenic radiative forcing scenarios this is reduced by up to 26%. Possible feedbacks of this change in 
energy conversion on dependent parameters such as mixing and subsequent impacts on the climate model-simulated 
stratification and velocities are not however considered. 
Estimating the energy conversion from subinertial flow to lee-waves is only the first step in parameterizing mixing, 

for which we want a temporally varying 3D spatial map of diffusivity. A common approach has been to follow the 
lead of tidal mixing parameterizations (e.g. St. Laurent et al. (2002)) and assume some fixed fraction of the energy 
conversion is dissipated ”locally” (i.e. in the same horizontal location) and assume a particular vertical profile for 
that dissipation. Dissipation is then related to diffusivity using the Osborn (1980) model. i.e. 

Γ qLC(x, y)
κd = F (z) (50)

N2 ρ0 

where κd is the diapycnal diffusivity, Γ is the mixing efficiency, N is the local stratification, qL is the fraction of 
the lee-wave energy dissipated locally, F (z) is the vertical structure function, and C(x, y) is the lee wave energy 
conversion (e.g. eqn 47). 
Currently, estimates of qL range from 0.5 in 2D numerical simulations (Nikurashin & Ferrari, 2010b) to 0.1 in 

observations (Waterman et al., 2013), but there is little understanding of the factors that influence this variability. We 
have very little guidance for choice of the vertical distribution F (z). Studies such as (Melet et al., 2014), (de Lavergne 
et al., 2016) and (Saenko et al., 2012) have therefore usually prescribed the same values of qL between 0.3 and 1.0, 
and exponential form of F (z) as used in tidal mixing parameterizations: 

−z/ζ e 
F (z) = (51)−H/ζ )ζ(1 − e 

where z is the height above bottom, H is the total depth and ζ is a fixed decay scale. The justification for constant 
qL and exponential decay with a fixed decay scale is even weaker for the lee-wave problem than for the tidally-driven 
mixing problem. 
Given this assumed relationship between diffusivity and lee-wave energy conversion (eqn 50), the impact of mixing 

by ocean lee waves has been examined in two ways. The first method uses the observed hydrography and the 3D map 
of diffusivity which results to determine the role of lee-waves in driving water mass transformations. Nikurashin & 
Ferrari (2013) used the energy conversion estimate from Nikurashin & Ferrari (2011), the WOCE ocean atlas density 
distribution to determine the stratification, local mixing fraction qL = 30%, and decay scale ζ = 500m (as used 
for the tidally-driven component of mixing). They conclude that lee-wave driven mixing dominates in the Southern 
Ocean, and accounts for about 1/3 of the global water mass transformation. Their calculation however, ignored 
the convergence of buoyancy flux in the bottom boundary layer. de Lavergne et al. (2016) uses the Scott et al. 
(2011) map for energy conversion, the WOCE hydrographic data, and again qL = 1/3 and ζ = 500m, to show that 
lee-wave driven mixing dominates south of 30◦S, and with bottom boundary layer buoyancy flux convergence, leads 
to a lightening of the densest waters, while densifying the overlying water, with about 4 Sv of both upwelling and 
downwelling. Lee-wave driven mixing therefore mixes away the densest Antarctic Bottom Water in the Antarctic 
Circumpolar Current, while also converting some overlying Circumpolar Deep Water into AABW. 
The second method to explore the impact of lee-wave driven mixing is to include a parameterization of this 

process directly in an ocean-climate model, and explore the response of the model stratification and circulation to 
the parameterized mixing. Melet et al. (2014) imposes the static energy conversion map from Nikurashin & Ferrari 
(2011), with qL = 1 and 1/3 and ζ = 300m and 900m, to explore the sensitivity to these parameters. By comparison 
the tidally-driven mixing parameterization has qT = 1/3 and ζ = 300m. As in de Lavergne et al. (2016), the lee-wave 
driven mixing has a large impact on the diffusivity in the deep Southern Ocean, leading to a warming of the Antarctic 
Bottom Water, and making the Southern sinking cell of the meridional overturning circulation lighter and about 
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10% stronger (Figure 5b) , and reducing the extension of this cell into the northern hemisphere. The impact of 
the lee-wave driven mixing is reduced if the local fraction of dissipation is reduced from qL = 1 to qL = 1/3 (not 
accounting for the fraction of energy which does not dissipate locally), but is less sensitive to changes in the decay 
scale ζ. An earlier study (Saenko et al., 2012) used the eddy-energy sink map of (Zhai et al., 2010) (not directly 
an estimate of lee-wave energy conversion), with qL = 1 and ζ = 300 − 1000m, to show a similar increase in the 
strength of the lower overturning cell when diapycnal mixing associated with loss of energy from mesoscale eddies 
in included. These studies, with static energy conversion maps, cannot account for feedbacks between the mesoscale 
eddies and mixing. By contrast, Stanley & Saenko (2014) employs a fully temporally-varying estimate of the energy 
flux from the parameterized eddy field to diapycnal mixing, and explores the range of feedbacks which result in 
a coarse resolution ocean-climate model. However, as in the energetically-consistent sub-grid-scale model of Eden 
et al. (2014) the energy-conversion parameterization is based only on the mesoscale eddy energy, and includes no 
topographic information. A fully temporally-varying estimate of energy conversion from geostrophic flow to lee-waves 
has yet to be included as a component of the mixing parameterization in a realistic ocean climate model. 
The idealized eddy-resolving channel model of Broadbridge et al. (2016), a representation of the Southern Ocean, 

does include a temporally and spatially varying parameterization of lee-wave driven mixing. The diapycnal mixing is 
calculated using eqn 50, with qL = 1, a linear function for F (z), and a time-dependent estimate of EL(x, y, t), using a 
(Goff & Arbic, 2010) spectral representation of topography and the instantaneous model near-bottom velocities. The 
sensitivity of solutions to the rms height of the topography and the magnitude of the surface wind-stress are explored. 
The strength of the lower overturning cell is strongly dependent on the bottom topography amplitude (consistent 
with (Saenko et al., 2012, Melet et al., 2014)). The mixing is sensitive to wind-stress and the lower overturning cell is 
therefore also sensitive to the wind-stress. This study does not apply any topographic bottom drag parameterization 
to the resolved flow. Trossman et al. (2013) and Trossman et al. (2016) show that the bottom drag associated with 
lee-waves can significantly influence the circulation, but ignore the effect of lee-waves on mixing. Future work needs 
to apply consistent parameterizations of lee-wave driven mixing and bottom-drag. 
In summary, existing parameterizations of lee-wave driven mixing are all based on linear theory for energy 

conversion, perhaps with saturation at steep topography. Given that observed dissipation is much less than this 
linear energy conversion estimate, the mixing due to lee-waves is likely overestimated unless a small value for qL 

is used. The vertical profile of this mixing in current applications is not physically based; near-bottom hydraulic 
jumps, as well as critical layer wave breaking and/or reabsorption are not currently represented. 

KNOWLEDGE GAPS 

We are a long way from having a full understanding of mixing by oceanic lee waves suitable for parameterizations of 
mixing in coarse resolution general circulation models. Particular areas of uncertainty incude: 

At steep topography, how much energy is converted from the mean flow to perturbations?: While 
we have theoretical predictions for the energy conversion from mean flow to lee-waves for linear scenarios when 
FrL = Nh0/U0 << 1, the behavior for FrL > 1 is less clear. The flow is blocked for large FrL, and so the effective 
height of the topography over which the flow moves is reduced. The implied saturation of the energy conversion is 
captured by eqn 27. However, the energy input from the mean flow into the hydraulically controlled jet above the 
topography and the low-mode adjustment contributing to the upstream blocking are not captured by this saturation 
assumption. Eqn 30 attempts to capture the hydraulic effects on form drag, but ignores nonhydrostatic effects. What 
is the partition of energy extracted from the mean flow into vertically propagating waves versus the hydraulic flow? 

How much dissipation and mixing occurs locally at the topography?: Particularly when FrL > 1, 
and there is blocking, what fraction of the energy converted from the mean flow is then lost to dissipation in a 
hydraulic jump? By contrast, how much energy is lost from the hydraulic flow to internal waves radiating upward 
from the hydraulic jump? How do the external parameters (e.g. topography, stratification, flow speed) influence the 
energy lost in the hydraulic jump? What role do boundary-layer frictional processes play in determining the relative 
importance of local dissipation? 

Where do propagating lee waves break or otherwise lose their energy?: Possible candidates, in addition 
to near the topography, include: energy transfer to near-inertial waves which dissipate locally due to their high 
vertical wavenumbers (Nikurashin & Ferrari, 2010b); critical layer processes associated with changes in stratification 
and background flow (Kunze & Lien, 2019); breaking downstream of the topography (Zheng & Nikurashin, 2019). 
No parameterization as yet attempts to account for these physical mechanisms of lee-wave breaking or reabsorption, 
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modulated by mesoscale and larger variations in stratification and circulation, and the way in which they influence 
the spatial distribution of the lee-wave induced diffusivity relative to the distribution of the energy source for the 
waves. 

What feedbacks occur between the stratification, mesoscale eddies and lee-wave driven mixing in 
a realistic climate model?: While some large-scale circulation models have connected the mesoscale eddy energy 
loss to mixing, and examined the impact on the large-scale flow (Stanley & Saenko, 2014), these models have not 
incorporated lee-wave theory to tie this energy transfer to topography. Lee-wave parameterizations have only been 
implemented in static form in global circulation models (Melet et al., 2014), or in a fully time-evolving form in an 
idealized model (Broadbridge et al., 2016), and the associated bottom drag has not been included. We have not yet 
fully explored the influence of lee wave–driven mixing in a realistic global model where the energy conversion varies 
spatially and temporally as a function of changing mesoscale eddy velocities and stratification. Such a model will 
allow lee wave–driven changes in mixing to influence the stratification, in turn influencing the mesoscale eddy field 
and creating a feedback loop with lee wave generation. 
[SUMMARY POINTS] 

1. Ocean lee-waves are generated by both geostrophic and oscillating tidal flow over sea-floor topography. 

2. Ocean lee-waves are a mechanism for transferring mechanical energy from the larger scales of geostrophic 
motion or barotropic tides to smaller vertical scales where turbulent mixing can occur. 

3. For small amplitude topography, the rate at which energy is converted from geostrophic flow to lee-waves is 
well understood. 

4. For larger amplitude topography, blocking of the flow occurs, the energy conversion rate to propagating waves 
may saturate, and some energy is converted to a hydraulically controlled jet and dissipated in a hydraulic jump. 

5. The eventual fate of propagating lee-wave energy may include wave breaking, mixing, and dissipation in critical 
layers, or reabsorption by the large-scale flow. 

6. Parameterizations of mixing by ocean lee-waves employ linear theory of energy conversion, modified to include 
saturation, but do not include the localization of energy dissipation and mixing in hydraulic jumps and critical 
layers, or the reabsorption of wave energy by the large-scale flow. 
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