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Abstract 

Multispecies models are widely used to evaluate management trade-offs arising from species 

interactions.  However, identifying climate impacts and sensitive habitats requires integrating 

spatial heterogeneity and environmental impacts into multispecies models at fine spatial scales.  

We therefore develop a spatio-temporal model of intermediate complexity for ecosystem 

assessments (a “MICE-in-space”), which is fitted to survey sampling data and time-series of 

fishing mortality using maximum likelihood techniques.  The model is implemented in the VAST 

R package, and it can be configured to range from purely descriptive to including ratio-

dependent interactions among species.  We demonstrate this model using data for four 

groundfishes in the Gulf of Alaska using data from 1982-2015.  Model selection for this case 

study shows that models with species interactions are parsimonious, although a model specifying 

separate density dependence without interactions also has substantial support.  The AIC-selected 

model estimates a significant, negative impact of Alaska pollock (Gadus chalcogrammus, 

Gadidae) on productivity of other species and suggests that recent fishing mortality for Pacific 

cod (G. microcephalus, Gadidae) is above the biological reference point (BRP) resulting in 40% 

of unfished biomass; other models show similar trends but different scales due to different BRP 

estimates.  A simulation experiment shows that fitting a model with fewer species at a coarse 

spatial resolution degrades estimation performance, but that interactions and biological reference 

points can still be estimated accurately.  We conclude that MICE-in-space models can 

simultaneously estimate fishing impacts, species-tradeoffs, biological reference points, and 

habitat quality.  They are therefore suitable to forecast short-term climate impacts, optimize 

survey designs, and designate protected habitats.   
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1.  Introduction 

 Fisheries managers use a mix of different management instruments to regulate fishing and 

other marine impacts (Walther and Möllmann 2014; Dolan et al. 2016).  Scientific advice to 

support fisheries management typically includes (but is not limited to): limits on fishery landings 

and incidental catch for individual species; spatial regulation of activities occurring near 

sensitive habitats or species; ecosystem-based limits on total landings and fishing gears; and 

allocation of species quotas to different ports or fleets based on forecasted changes in species 

distribution or productivity.  These four examples are informed, respectively, by analysis of 

stock status, habitat quality, ecosystem function, and climate linkages, and fisheries science is 

developing tools to implement these four types of analysis rapidly, transparently, and at low cost.  

Fisheries managers have benefited from tools that can be used for multiple types of analysis, e.g., 

by using “models of intermediate complexity for ecosystem assessments” (MICE; Plagányi et al. 

2014) to simultaneously analyze stock status and multispecies tradeoffs.   

 The dynamics of marine species is regulated by biological interactions such as predation and 

competition, and also impacted by technical interactions arising from shared impacts of fishing 

activities (Gaichas et al. 2010; Pikitch et al. 2014; Spencer et al. 2016). As a result, harvesting 

can impact target species directly, and also impact interdependent species indirectly through 

changes in natural mortality and resource availability (Reum et al. 2019; Collie and Gislason 

2001). The indirect impact of harvesting on non-target species may be counterintuitive, and 

fisheries management requires information regarding these impacts both to mitigate fishing 

impacts on unproductive species as well as to identify management strategies that are expected to 

perform well for a variety of stakeholders (Plagányi et al. 2011; Marshall et al. 2019).  
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 Fisheries managers therefore use ecosystem models to identify potential trade-offs of 

management decisions that arise from biological and technical interactions (Hollowed 2000; 

Lassen et al. 2013; Plagányi et al. 2014).  Ecosystem models can vary in complexity from 

models of intermediate complexity for ecosystem assessments (MICE), which estimate 

population parameters for a subset of key interacting species from time-series of data, to end-to-

end whole ecosystem models that simulate the interactions of multiple oceanographic, 

ecological, and anthropogenic processes (Plagányi et al. 2011; Collie et al. 2016; Ortiz et al. 

2016). However, a key aspect of ecosystem models is that they incorporate processes such as 

predation, competition, and fishing (Plagányi and Butterworth 2012; Ortiz et al. 2016; 

Mackinson et al. 2018).  These models are typically used to forecast changes in population 

density, productivity, and fishery catch under alternative management procedures and 

environmental conditions, and forecasts will likely be improved via explicit inclusion of 

biological and technical interactions (Howell and Filin 2014; Tommasi et al. 2017).   

 Global climate change is causing rapid shifts in the spatial distribution of physical habitat, 

nutrients, forage species, and predators.  These shifts can cause rapid changes in structure and 

productivity for the ecosystem managed by a given jurisdiction.  Models that fail to account for 

ecosystem changes resulting from spatial shifts are less likely to accurately forecast performance 

of alternative management procedures, and in some cases will have degraded performance when 

informing fisheries management (Kempf et al. 2010; Spencer et al. 2016; Fu et al. 2017).  One 

avenue to account for ecosystem changes resulting from spatial distribution shifts is to develop 

ecosystem models that estimate variation in species density and/or productivity at fine-spatial 

scales while also accounting for species interactions (see review in Hunsicker et al. 2011)  
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 Spatially-explicit ecosystem models are currently used to inform spatial planning, identify 

tradeoffs for alternative management strategies, and provide annual advice regarding limits on 

fishery harvest.  Spatially-explicit ecosystem models that are widely used include Atlantis 

(Fulton et al. 2011), OSMOSE (Shin and Cury 2001), EwE (Christensen and Walters 2004), and 

Gadget (Begley and Howell 2004), and these existing models vary in the extent to which users 

must “tune them by hand” prior to further model usage.  Ideally, spatially-explicit ecosystem 

models would have good statistical properties (e.g., statistical consistency and well-defined 

forecast intervals; (Magnusson et al. 2013)), would assimilate available data (e.g., resource 

surveys) through probabilistic estimation methods, and could provide biological reference points 

for harvest recommendations. In parallel, there is a growing literature developing multispecies 

spatio-temporal models to predict variation in density at fine spatial scales while estimating 

spatial correlation functions that are used to interpolate and extrapolate population density to 

unsampled locations (Ovaskainen et al. 2017; Thorson et al. 2017; Schliep et al. 2018).  

However, these previous approaches have not explicitly included fishing mortality, and therefore 

have not been capable of estimating biological reference points for regulating fishery catches.    

 We therefore develop a spatio-temporal multispecies model including species interactions, 

fishing mortality, and estimating fishing mortality and biomass relative to biological reference 

points that are commonly used in stock assessment.  This spatio-temporal model has structural 

complexity intermediate between single-species and end-to-end ecosystem models while 

accounting for spatial variation, so we call it a “Spatial model of intermediate complexity for 

Ecosystem assessments” (MICE-in-space).  It fits directly to survey data using maximum-

likelihood techniques, and assumes that biological interactions depend upon local densities of 

modeled species.  To do so, we extend an existing vector-autoregressive spatio-temporal 
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modelling framework, implemented using package VAST (Thorson and Barnett 2017), which has 

been used previously for stock assessments, ecosystem status reports, and journal articles in 

many regions worldwide (see Thorson (2019b) for examples).  We then demonstrate this MICE-

in-space model by application to survey data for four species in the Gulf of Alaska, and use a 

simulation experiment conditioned on this case study to explore the statistical properties of the 

model.  Through development of generic software, we envision that MICE-in-space models will 

help further align stock, ecosystem, and habitat assessments, and improve future ecosystem-

based management advice.   

2.  Methods 

 We seek to develop an approach that combines features of three existing types of models 

used in marine ecosystems: 

1. Spatially explicit models can be broadly categorized as “spatially stratified” or “spatio-

temporal” models (Berger et al. 2017).  Spatially stratified models have a long history in 

population and ecosystem modelling (Beverton and Holt 1957; Goethel et al. 2011), but 

typically cannot be fitted to data representing dynamics occurring at fine spatial scales 

because the amount of data per stratum decreases as the number of spatial strata is increased.  

By contrast, we develop a spatio-temporal model that incorporates a spatial correlation 

function to approximate dynamics occurring continuously across space (Cressie and Wikle 

2011; Kristensen et al. 2014), such that the spatial resolution of the model can be 

manipulated with relatively small changes in model performance.  Although there have been 

previous “spatio-temporal multispecies models” (e.g., Walters and Bonfil 1999), they 

typically have not been fitted statistically using techniques that estimate uncertainty.   
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2. Models of Intermediate Complexity (MICE), which represent dynamics for 2-10 species; 

explicitly consider environmental, ecological, anthropogenic, and management trade-offs;  

and fit to available data in a probabilistic framework that allows for model validation similar 

to conventional single-species models (Plagányi 2007).  Specifically, our MICE-in-space 

model can fit a similar number of species while estimating parameters and generating 

probabilistic forecasts of spatio-temporal dynamics.   

3. Joint dynamic species distribution models (JDSDM), which estimate population density 

including the degree of spatial autocorrelation; account for covariation in density and 

productivity among multiple species; and incorporate changes in spatial distribution for 

multiple species over time (Thorson et al. 2016).  Specifically, the MICE-in-space model 

identifies the predicted mix of species encountered at any given location, thereby providing 

an estimate of likely technical interactions (e.g., Dolder et al. 2018).   

Finally, we seek to combine these elements in a manner that allows ecologists to explore nested 

changes in model structure that scale in structural complexity from descriptive (i.e., without 

explicit models for species dynamics and interactions) through stacked single-species models 

(i.e., independent dynamics for each species) to multi-species models (i.e., explicitly considering 

species interactions).  To accomplish these goals, we develop a model as follows. 

2.1 Index-standardization model as starting point 

We start by modelling biomass-density 𝑑𝑑(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) for each category 𝑐𝑐 (in this case representing 

different species), location 𝑠𝑠, and year 𝑡𝑡 while fitting to samples of biomass, where 𝑏𝑏𝑖𝑖 is the 𝑖𝑖-th 

sample (of 𝐼𝐼 total samples), and this sample records biomass at location 𝑠𝑠𝑖𝑖 for category 𝑐𝑐𝑖𝑖 and 

year 𝑡𝑡𝑖𝑖 (of 𝑆𝑆 locations, 𝐶𝐶 categories, and 𝑇𝑇 years total).  We first describe the simplest 
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multispecies spatio-temporal model configuration, which we call an “index standardization” 

model, and then describe how it is modified to approximate species interactions.   

 First, we adapt an existing Poisson-link delta model (Thorson 2018) that specifies the 

probability Pr(𝑏𝑏𝑖𝑖 = 𝐵𝐵) that the 𝑖𝑖-th sample 𝑏𝑏𝑖𝑖 would yield a biomass of 𝐵𝐵.  This model specifies 

this probability using numbers-density 𝑛𝑛(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) and biomass-per-individual 𝑤𝑤(𝑠𝑠, 𝑐𝑐, 𝑡𝑡), where 

𝑑𝑑(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) = 𝑛𝑛(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) × 𝑤𝑤(𝑠𝑠, 𝑐𝑐, 𝑡𝑡):   

1 − 𝑝𝑝
Pr(𝑏𝑏𝑖𝑖 = 𝐵𝐵) 𝑖𝑖 𝑖𝑖𝑖𝑖 𝐵𝐵 = 0 (1) 

= �  𝑝𝑝𝑖𝑖 × 𝑔𝑔�𝐵𝐵�𝑟𝑟 2
𝑖𝑖 ,𝜎𝜎 (𝑐𝑐)� 𝑖𝑖𝑖𝑖 𝐵𝐵 > 0

where encounter probability 𝑝𝑝𝑖𝑖 = exp�−𝑎𝑎𝑖𝑖 × 𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖)� follows a Poisson process given 

numbers density and the area swept 𝑎𝑎𝑖𝑖 by the 𝑖𝑖-th sample. Similarly, the expected biomass given 

that a sample encounters the species, 𝑟𝑟𝑖𝑖, is defined such expected biomass 𝔼𝔼(𝐵𝐵) = 𝑝𝑝𝑖𝑖 × 𝑟𝑟𝑖𝑖, which 

yields 𝑟𝑟𝑖𝑖 = 𝑎𝑎𝑖𝑖 × 𝑛𝑛(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖) × 𝑤𝑤(𝑠𝑠𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑡𝑡𝑖𝑖)⁄𝑝𝑝(𝑖𝑖), such that 𝑟𝑟𝑖𝑖 is affected by both numbers density 

and biomass-per-individual.  Finally, 𝑔𝑔�𝐵𝐵�𝑟𝑟𝑖𝑖 ,𝜎𝜎2(𝑐𝑐𝑖𝑖)� is a probability density function for 

unexplained variation in positive catch rates given residual sampling variance 𝜎𝜎2(𝑐𝑐𝑖𝑖).  This 

Poisson-link delta model is numerically efficient approximation to the compound Poisson-

gamma distribution (Foster and Bravington 2013).  We use it in the following because we will 

later approximate species interactions as a linear model for log-density, and the Poisson-link 

delta model allows us to predict biomass-sampling data while accounting for spatial and 

temporal variation in log-density.   

 Each component of the index-standardization model then has a separate intercept for each 

species and year (𝛽𝛽𝑛𝑛(𝑐𝑐, 𝑡𝑡) and 𝛽𝛽𝑤𝑤(𝑐𝑐, 𝑡𝑡)), where these intercepts account for differences in 

average density among species (e.g., due to different equilibrium densities in the community, 

corresponding to different 𝛽𝛽𝑛𝑛(𝑐𝑐, 𝑡𝑡) for each species 𝑐𝑐) and over time (e.g., due to different levels 
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of spatial aggregation, captured via differences in 𝛽𝛽𝑤𝑤(𝑐𝑐, 𝑡𝑡) among years 𝑡𝑡).  Each component also 

includes “spatial variation,” which is constant over time (𝜔𝜔𝑛𝑛(𝑠𝑠, 𝑐𝑐) and 𝜔𝜔𝑤𝑤(𝑠𝑠, 𝑐𝑐)), as well as 

“spatio-temporal variation,” which varies over time (𝜀𝜀𝑛𝑛(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) and 𝜀𝜀𝑤𝑤(𝑠𝑠, 𝑐𝑐, 𝑡𝑡)): 

log�𝑛𝑛(𝑠𝑠, 𝑐𝑐, 𝑡𝑡)� = 𝛽𝛽𝑛𝑛(𝑐𝑐, 𝑡𝑡) + 𝜔𝜔𝑛𝑛(𝑠𝑠, 𝑐𝑐) + 𝜀𝜀𝑛𝑛(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) (2) 

log�𝑤𝑤(𝑠𝑠, 𝑐𝑐, 𝑡𝑡)� = 𝛽𝛽𝑤𝑤(𝑐𝑐, 𝑡𝑡) + 𝜔𝜔𝑤𝑤(𝑠𝑠, 𝑐𝑐) + 𝜀𝜀𝑤𝑤(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) 

where spatial variation is estimated while specifying a multivariate probability distribution for 

𝜔𝜔𝑛𝑛(𝑠𝑠, 𝑐𝑐) and 𝜔𝜔𝑤𝑤(𝑠𝑠, 𝑐𝑐): 

𝛀𝛀𝑛𝑛~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝐑𝐑(𝜅𝜅𝑛𝑛,𝐇𝐇) ⊗𝐋𝐋𝜔𝜔𝑛𝑛𝐋𝐋𝑇𝑇𝜔𝜔𝑛𝑛) (3) 

where 𝛀𝛀𝑛𝑛 is the matrix of spatial variation 𝜔𝜔𝑛𝑛(𝑠𝑠, 𝑐𝑐), and 𝐑𝐑(𝜅𝜅𝑛𝑛,𝐇𝐇) is a matrix of spatial 

correlations among locations 𝑠𝑠 given estimated decorrelation rate 𝜅𝜅𝑛𝑛 and a transformation matrix 

𝐇𝐇.  Estimated matrix 𝐇𝐇 represents the tendency for spatial correlations to decline faster in some 

directions than others, e.g., where ecosystems with a large variation in depth may tend to have to 

have spatial correlations that decline faster moving perpendicular to depth gradients than along 

those gradients.  We model spatial correlations using a stationary Matérn correlation function 

although future studies could explore alternative spatial processes, e.g., where correlations vary 

as a function of local environmental conditions (e.g., Fuglstad et al., 2015).  Meanwhile, 𝐋𝐋𝜔𝜔𝑛𝑛 is a 

triangular matrix representing species associations with one or more estimated “spatial factors,” 

such that 𝐋𝐋 𝐋𝐋𝑇𝑇𝜔𝜔𝑛𝑛 𝜔𝜔𝑛𝑛 is the estimated covariance in spatial distribution (e.g., Pollock et al. 2014), 

and we define an identical distribution for 𝛀𝛀𝑤𝑤, except involving a separate estimate of 𝜅𝜅𝑤𝑤 and 

𝐋𝐋𝜔𝜔𝑤𝑤.   

 The index-standardization model specifies that spatio-temporal variation is independent in 

each year: 
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𝑣𝑣𝑣𝑣𝑐𝑐�𝚬𝚬𝑛𝑛(𝑡𝑡)�~𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝐑𝐑(𝜅𝜅𝑛𝑛) ⊗𝐋𝐋𝜀𝜀𝑛𝑛𝐋𝐋𝑇𝑇𝜀𝜀𝑛𝑛) (4) 

where 𝑣𝑣𝑣𝑣𝑐𝑐�𝚬𝚬𝑛𝑛(𝑡𝑡)� is a vector of spatio-temporal variation 𝜀𝜀𝑛𝑛(𝑠𝑠, 𝑐𝑐, 𝑡𝑡) for all sites 𝑠𝑠 and species 𝑐𝑐 

in a given year 𝑡𝑡, 𝐋𝐋𝜀𝜀𝑛𝑛𝐋𝐋𝑇𝑇𝜀𝜀𝑛𝑛 represents the covariance in spatio-temporal variation in numbers 

density, and we again define an identical distribution for 𝚬𝚬𝑤𝑤(𝑡𝑡), involving a separate estimate of 

𝐋𝐋𝜀𝜀𝑤𝑤.  This spatio-temporal index standardization is useful for generating an index of abundance 

for each species that has little estimation covariance among years (Thorson 2019b).  However, it 

does not define a probability distribution for a year with no available data (due to no information 

for intercepts in that year). 

2.2 Extending the model to account for species interactions 

 We next extend this model by defining a probability distribution for population density in 

year 𝑡𝑡 given estimates in the previous years.  To do so, we approximate nonlinear dynamics for 

species interactions via a first-order Taylor series expansion around its equilibrium, which results 

in a first-order vector autoregressive model (Ives et al. 2003; Thorson et al. 2017; Certain et al. 

2018): 

log�𝐝𝐝(𝑠𝑠, 𝑡𝑡)� = 𝛂𝛂(𝑠𝑠) + 𝐁𝐁 log�𝐝𝐝(𝑠𝑠, 𝑡𝑡 − 1)� + ⋯ (5) 

where 𝛂𝛂(𝑠𝑠) is a vector of spatially varying and time-invariant intercepts, composed of 𝛼𝛼(𝑠𝑠, 𝑐𝑐) for 

each species 𝑐𝑐, which represents spatial variation in carrying capacity.  𝐁𝐁 is the species 

interactions matrix where 𝑏𝑏𝑐𝑐,𝑐𝑐∗ indicates that a 1% change in density for species 𝑐𝑐∗ causes a 

change of 𝑏𝑏𝑐𝑐,𝑐𝑐∗ in per-capita productivity for species 𝑐𝑐.  We parameterize the species-interactions 

matrix as: 

𝐁𝐁 = 𝚸𝚸 + 𝛘𝛘𝛙𝛙T (6) 

where 𝚸𝚸 is a diagonal matrix where diagonal element 𝜌𝜌(𝑐𝑐, 𝑐𝑐) − 1 represents intra-specific 

density dependence (the degree that population density for species 𝑐𝑐 decreases per-capita 
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productivity for that species), and 𝛘𝛘𝛙𝛙T represents inter-species density dependence.  𝛘𝛘 and 𝛙𝛙 are 

both 𝐶𝐶 by 𝑅𝑅 matrices, where the user specifies rank 𝑅𝑅 and this controls the number of interaction 

parameters that must be estimated; other identifiability restrictions must be imposed as 𝑅𝑅 

approaches the number of species 𝐶𝐶, and this parameterization is common in cointegration 

models used in econometrics (Engle and Granger 1987; Thorson et al. 2017).  Importantly, the 

user-specified rank of species interactions 𝑅𝑅 can range from 0 to 𝐶𝐶 (i.e., 0 ≤ 𝑅𝑅 ≤ 𝐶𝐶), where the 

rank represents the number of ratio-dependent axes of community regulation arising from species 

interactions, and where 𝛘𝛘𝛙𝛙T can be defined to have either complex or real eigenvalues 

(representing dynamics with or without population cycles) depending upon the quality of 

available data (Thorson et al. 2017). 

 In addition to approximating species interactions via an autoregressive model, we again 

include spatial variation (e.g., 𝜔𝜔𝑛𝑛(𝑠𝑠, 𝑐𝑐))and spatio-temporal variation (e.g., 𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡)) and also 

incorporate the impact of an instantaneous fishing mortality rate 𝐟𝐟(𝑡𝑡) on population density: 

log�𝐝𝐝(𝑠𝑠, 𝑡𝑡)� = 𝛂𝛂 + 𝛚𝛚(𝑠𝑠) + 𝐁𝐁 log�𝐝𝐝(𝑠𝑠, 𝑡𝑡 − 1)� + 𝛆𝛆(𝑠𝑠, 𝑡𝑡) − 𝐟𝐟(𝑡𝑡) (7) 

Solving for log�𝐝𝐝(𝑠𝑠, 𝑡𝑡)� and re-writing as a delta-model then yields: 

𝑡𝑡 𝑡𝑡 (8a) 
log�𝐧𝐧(𝑠𝑠, 𝑡𝑡)� = 𝛃𝛃𝑛𝑛 + 𝛚𝛚𝑛𝑛(𝑠𝑠) + �𝐁𝐁Δ𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡 − Δ) − 𝜉𝜉�𝐁𝐁Δ𝐟𝐟(𝑡𝑡 − Δ) 

Δ=0 Δ=0

𝑡𝑡 𝑡𝑡 (8b) 
log�𝐰𝐰(𝑠𝑠, 𝑡𝑡)� = 𝛃𝛃𝑤𝑤 + 𝛚𝛚 ( Δ

𝑤𝑤 𝑠𝑠) + �𝐁𝐁Δ𝛆𝛆𝑤𝑤(𝑠𝑠, 𝑡𝑡 − Δ) − (1 − 𝜉𝜉)�𝐁𝐁 𝐟𝐟(𝑡𝑡 − Δ) 
Δ=0 Δ=0

where species interactions 𝐁𝐁 are identical between the two components of the delta model, and 

where 𝜉𝜉 determines the degree to which fishing mortality decreases numbers density or biomass-

per-individual (we assume 𝜉𝜉 = 1 in the following, but future research could explore the topic 

further).  Terms summing across lag Δ, ∑𝑡𝑡 Δ 𝑡𝑡 Δ
Δ=0𝐁𝐁 𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡 − Δ) and ∑Δ=0𝐁𝐁 𝐟𝐟(𝑡𝑡 − Δ), represent the 
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decaying effect of spatio-temporal variation and fishing mortality, respectively, occurring Δ 

years previous to year 𝑡𝑡; the contribution of previous spatio-temporal variation and fishing 

mortality is additive due to our model specification, and this specification results in fast 

computation relative to other model structures.  Fishing mortality rate 𝐟𝐟(𝑡𝑡) must be specified as 

data for every species, although future research could extend the model to estimate this as a 

parameter by fitting to fishery catches.  The model can also be extended to include catchability 

covariates, density covariates, and vessel effects that can be incorporated into VAST (see 

Thorson (2019b) for a description).  Although we do not explore these features here (and they 

would require further software development to be used in conjunction with estimates of species 

interactions), we recommend future research to incorporate covariates so that, e.g., dynamics 

could be driven by downscaled climate projections (Hollowed et al. 2013).   

 Finally, we calculate biological reference points (BRP) for population abundance and fishing 

intensity.  As BRP for population abundance, we calculate average unfished biomass 𝑏𝑏0(𝑐𝑐) for 

each species 𝑐𝑐 and envision a scenario in which fisheries managers seek to maintain a population 

biomass near a proxy for maximum sustainable yield, 𝑏𝑏(𝑐𝑐) ≈ 0.4𝑏𝑏0(𝑐𝑐), corresponding to 40% of 

unfished biomass.  We use 𝑏𝑏40% as it is used as a proxy biomass target for in other US 

management regions, e.g., for US West Coast rockfishes (Wetzel et al. 2017), and future studies 

could specify a different target or expand the model to accommodate other proxy reference 

points (e.g., Gabriel and Mace 1999).  As BRP for fishing intensity, we calculate the 

corresponding fishing mortality rate 𝑖𝑖0.4(𝑐𝑐) that would result in 40% of unfished biomass if 

𝑖𝑖0.4(𝑐𝑐) were continued indefinitely (sensu Holsman et al. 2016b).  Given these BRPs, we then 

calculate stock status as the ratio of fishing mortality or expected biomass in a given year with 

the associated BRP; see Appendix A for more details regarding computation.   
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2.3  Parameter estimation 

 We fit this model using a publicly available package VAST (Thorson and Barnett 2017), 

release number 3.1.0 (https://github.com/James-Thorson/VAST) within the R statistical 

environment (R Core Team 2017).  This R package has been used in a variety of different stock 

and ecosystem assessment reports in several marine regions worldwide (Thorson 2019b) but has 

not previously included features for estimating species interactions 𝐁𝐁, the impact of fishing 

mortality 𝐟𝐟(𝑡𝑡), or biological reference points.  Species interactions had previously been explored 

in several recent spatio-temporal models (Ovaskainen et al. 2017; Thorson et al. 2017; Schliep et 

al. 2018), but this study is the first to our knowledge to incorporate both species interactions and 

fishing mortality in a multispecies spatio-temporal model.  We argue that this combination of 

features represents the minimum necessary for a MICE-in-space model.   

 VAST estimates spatial variation 𝛚𝛚(𝑠𝑠) and spatio-temporal variation 𝛆𝛆(𝑠𝑠, 𝑡𝑡) for all species, 

locations, and times as random effects.  Users of VAST specify a number of knots 𝑛𝑛𝑥𝑥, and VAST 

then uses R package R-INLA (Lindgren and Rue 2013) to generate a triangulated mesh, with 

vertices at these 𝑛𝑛𝑥𝑥 knots as well as additional boundary vertices, where the total number of 

knots and boundary vertices is 𝑛𝑛𝑠𝑠.  VAST then estimates spatial variables at all 𝑛𝑛𝑠𝑠 locations, 

while associating every survey record 𝑖𝑖 with the knot 𝑠𝑠𝑖𝑖 closest to it.  Similarly, VAST associates 

every location in a user-specified extrapolation grid with the knot 𝑠𝑠𝑔𝑔 closest to it.  It then uses 

these predicted values within the extrapolation grid for all plotting and when calculating derived 

quantities (see the VAST user manual for more details: https://github.com/James-Thorson-

NOAA/VAST/blob/master/manual/VAST_model_structure.pdf).     

 VAST estimates parameters by identifying the values that maximize a log-likelihood 

function.  It estimates several fixed effects as defined previously:  species interactions matrix 𝐁𝐁, 
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spatial correlations 𝐋𝐋𝜔𝜔𝑛𝑛, spatio-temporal correlations 𝐋𝐋𝜀𝜀𝑛𝑛, spatial decorrelation rate 𝜅𝜅𝑛𝑛, 

geometric anisotropy 𝐇𝐇, residual sampling variation 𝜎𝜎2(𝑐𝑐), numbers-density intercepts 𝛽𝛽𝑛𝑛(𝑐𝑐) 

and average-weight 𝛽𝛽𝑤𝑤(𝑐𝑐) for each species 𝑐𝑐.  To calculate the marginal log-likelihood, it 

approximates the integral across all random effects using the Laplace approximation (Skaug and 

Fournier 2006), and specifically integrates across random effects representing spatial variation 

𝛚𝛚(𝑠𝑠) and spatio-temporal variation 𝛆𝛆(𝑠𝑠, 𝑡𝑡) for all species, locations, and times.  The Laplace 

approximation is implemented using package TMB (Kristensen et al. 2016), which uses 

automatic differentiation to efficiently calculate the matrix of second derivatives (used in the 

Laplace approximation) and the gradient of the Laplace approximation (used when maximizing 

fixed effects).  TMB predicts all random effects by maximizing the joint likelihood function 

given maximum likelihood estimates of fixed effects, and we use the epsilon bias-correction 

estimator to correct for “retransformation bias” when predicting any derived quantity (e.g., 

biomass biological reference point 𝑏𝑏𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡(𝑐𝑐, 𝑡𝑡)) that involves a nonlinear transformation of 

predicted random effects (Thorson and Kristensen 2016).  TMB also applies a generalization of 

the delta-method to calculate standard errors for all fixed and random effects, as well as all 

derived quantities (Kass and Steffey 1989).   

 We note that this MICE-in-space model involves the assumption that the expected survey 

catches are proportional to local abundance and sample the entire stock.  This assumption is 

analogous to assuming that the catchability coefficient 𝑞𝑞 = 1, and this assumption (or variants 

involving a tight prior) are common in stock assessments in the Gulf of Alaska.  Future 

developments of the MICE-in-space model may involve estimating a catchability coefficient, 

presumably by treating the fishery history as a depletion experiment as this is the primary source 

of information in biomass-dynamic models (Magnusson and Hilborn 2007).  We leave this as a 
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topic of future development and exploration, but note that our assumptions about catchability 

result in precise estimates of population scale relative to other model assumptions.    

2.4  Case study application 

 We demonstrate this model via application to data for four commercially important species in 

the US Gulf of Alaska: Alaska pollock, Pacific cod, Pacific halibut (Hippoglossus stenolepis), 

arrowtooth flounder (Atheresthes stomias).  We fit the model to biomass-sampling data obtained 

from a bottom trawl survey data from 1982-2015, conducted every 3rd year from 1982-1999 and 

every 2nd year from 1999 to present day (Von Szalay and Raring 2016).  For fishing mortality, 

we extract the ratio of fishery catches and stock assessment estimates of total biomass, and 

define 𝑖𝑖(𝑐𝑐, 𝑡𝑡) = − log(1 − 𝑐𝑐(𝑐𝑐, 𝑡𝑡)⁄𝑏𝑏(𝑐𝑐, 𝑡𝑡)).   

 We compare model performance for one descriptive model, and four nested models that 

incorporate density dependence: 

1. Index standardization model:  As a descriptive model, we fit a standard “index 

standardization model” (Eq. 2).  We include this model to show estimates of abundance 

patterns for a “saturated” model that lacks the mechanistic detail of other models. 

2. Complete density dependence:  As a simplified model that includes density dependence and 

fishing mortality, we specify a model with “complete” density dependence where spatio-

temporal variation and fishing mortality in year 𝑡𝑡 has no impact on values in subsequent 

years.   

3. Same density dependence:  Next, we include a model estimating the same degree of density 

dependence for all species while including fishing mortality, but without estimating 

interactions.   
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4. Different density dependence:  We also include a more complex version of model #3 but 

where density-dependence varies among species, while including fishing mortality but still 

ignoring interactions.   

5. Species interactions:  Finally, we include a model with community-level regulation (𝐁𝐁 =

𝚸𝚸 + 𝛘𝛘𝛙𝛙T, where rank(𝛘𝛘) = 1 and intra-specific density dependence is identical across 

species) and fishing mortality.  This model is useful to show whether species interactions 

improves model fit relative to ignoring interactions among species.   

Models 2-5 are nested and all are intended to bridge continuously from description (model #1) to 

mechanistic (model #5); see Appendix B for more details.   

 To visualize results, we show log-biomass density at each modeled location and each species: 

log �𝐝̂𝐝(𝑠𝑠, 𝑡𝑡)� = {𝛃𝛃𝑛𝑛 + 𝛚𝛚𝑛𝑛(𝑠𝑠) + 𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡)} + {𝛃𝛃𝑤𝑤 + 𝛚𝛚𝑤𝑤(𝑠𝑠) + 𝛆𝛆𝑤𝑤(𝑠𝑠, 𝑡𝑡)} (12) 

𝑡𝑡

− ��𝐁𝐁Δ𝐟𝐟(𝑡𝑡 − Δ)� 
𝛥𝛥=0

and where we calculate unfished biomass density 𝐝̂𝐝(𝑠𝑠, 𝑡𝑡0) by fixing 𝑖𝑖(𝑐𝑐, 𝑡𝑡0) = 0.  We 

recommend future research incorporating dynamic habitat variables (e.g., bottom temperature) as 

physical drivers of changing productivity, as well as skill-testing for models with and without 

covariates (Tommasi et al. 2017; Thorson 2019b) but do not address the topic further here.   

2.5  Simulation experiment 

We also explore model performance using a simulation experiment conditioned upon the most 

parsimonious model fitted to data for these four species in the Gulf of Alaska.  To do so, we (1) 

generate 100 simulated data sets using a “bootstrap simulator” available within the VAST R 

package, (2) fit a modified model to each simulated data set, and compare estimates from step #2 

with known values from step #1.  The bootstrap simulator uses the specified model structure and 
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estimated values for all fixed effects, but generates new values for all random effects (𝛚𝛚𝑛𝑛(𝑠𝑠), 

𝛆𝛆𝑛𝑛(𝑠𝑠, 𝑡𝑡), 𝛚𝛚𝑤𝑤(𝑠𝑠), and 𝛆𝛆𝑤𝑤(𝑠𝑠, 𝑡𝑡)) and then generates new values for biomass-sampling data (𝐛𝐛) 

given those simulated values for random effects.  In doing so, it generates new data from the 

same locations, with the same samples sizes and timing as the original data set, and therefore 

conditions upon both the estimated parameters (fixed effects) and true sample sizes (timing and 

frequency of sampling) that is available in the real world while generating new spatial 

configurations (random effects) for the interacting species.   

 For each simulation replicate, we fit a reduced model comprised of data for only two species 

(arrowtooth and Alaska pollock) and operating at a coarse spatial resolution (50 knots) relative to 

the resolution used in the bootstrap simulator (100 knots).  We do this for two reasons.  First, 

empirical studies in the real-world will always involve fewer interacting species than the “true” 

number of interacting species operating in nature, and will also involve a reduced spatial 

resolution relative to the spatial scale operating in nature.  Therefore, reducing the number of 

species and spatial resolution in the estimation model relative to the operating model ensures that 

both of these potential sources of bias are present in our simulation experiment, although both 

sources of bias may be stronger or weaker for other data-generating processes.  Second, reducing 

the spatial resolution and number of species increases the speed of parameter estimation, thereby 

allowing for an efficient simulation experiment.  We choose arrowtooth and Alaska pollock 

because diet analysis has demonstrated strong predation of arrowtooth upon juvenile Alaska 

pollock (Gaichas et al. 2015; Spies et al. 2017; Livingston et al. 2017). We then evaluate model 

fit by comparing estimated and true values for the species interaction matrix 𝐁𝐁 as well as 

estimates of the fishing mortality biological reference point 𝐟𝐟0.4.  Based on previous research, we 
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expect that the sign of species interactions should be correctly estimated in the majority of 

simulation replicates (Thorson et al. 2017; Certain et al. 2018).   

3.  Results 

 Fitting five spatio-temporal models with varying structural complexity to data for four 

commercial species in the Gulf of Alaska shows that these models estimate similar patterns of 

biomass (Fig. 1).  Specifically, pollock has its highest biomass in 1989 before declining to low 

biomass in 2001/2007 when fishing mortality rates are relatively high, and Pacific cod similarly 

reaches its lowest biomass in 2001 before recovering somewhat despite elevated fishing 

mortality rates.  By contrast, arrowtooth flounder attains high biomass in 1989-1992 and again in 

2003-2005 before declining in recent years.  The index-standardization and “perfect density 

dependence” models only provides estimates of biomass in years with available data, while the 

other models interpolate biomass between years with sampling data, although uncertainty 

intervals are wider for years without sampling data (e.g., see the width of uncertainty intervals 

for arrowtooth flounder in unsampled years 1990/1991 relative to sampled years 1989/1992).   

 Three MICE-in-space models estimate biological reference points, while “index-

standardization” and “complete density dependence” models do not. Despite estimating similar 

patterns in population biomass, these three MICE-in-space models provide different estimates of 

the fishing mortality rate expected to attain 40% of unfished biomass (𝐟𝐟0.4, left column in Fig. 2).  

The “same density dependence” model by design estimates the same 𝐟𝐟0.4 for all species, while 

the “species interactions” model estimates a relatively high 𝐟𝐟0.4 for pollock and lower 𝐟𝐟0.4 for 

other species.  The “different density dependence” model also estimates relatively large standard 

errors for 𝐟𝐟0.4 (broad distributions in left column Fig. 2).  Differences in 𝐛𝐛target estimates for 

each species are much smaller than differences in 𝐟𝐟0.4 among models (right column of Fig. 2).   

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

401 

402 

403 

404 

405 

406 

407 



 Model selection using the Akaike Information Criterion (AIC) suggests that “species 

interactions” model is the most parsimonious model (Table 1), although the “different density 

dependence” model also has strong support (∆𝐴𝐴𝐼𝐼𝐶𝐶 = 1.0).  The AIC-selected “species 

interactions” model includes four interactions among species that are significant based on a two-

sided Wald test at 𝑝𝑝 < 0.05, representing a negative impact of pollock on per-capita productivity 

of all other species as well as a positive impact of Pacific halibut on productivity of arrowtooth 

flounder (see Appendix C for these results for the “different density dependence model”).  

Inspecting estimates of population density from the AIC-selected model with species interactions 

(Fig. 3), we see, e.g., that arrowtooth flounder has increased in density primarily inshore from 

Kodiak Island.  Similarly, biomass of pollock in 1984 and 1995 is concentrated offshore from 

Kodiak Island, and the low biomass in 2005 is due in part to decreased density southwest of 

Kodiak in that period.  All three MICE-in-space models that estimate biological reference points 

show similar trends in stock status, but differ in scale particularly for Pacific halibut and walleye 

Pollock, due primarily to differences in estimated biological reference points (Fig. 4).  The AIC-

selected “species interactions” model shows that fishing mortality is above the estimate of 𝑖𝑖0.4 

for Pacific cod from 2011-2015, while the “different density dependence” model (which also has 

substantial support) shows fishing mortality slightly below 𝑖𝑖0.4 for those same years; both 

models estimate that Pacific cod biomass was below 40% of 𝑏𝑏0 in 2001 and was approaching 

that level again by 2015 (Fig. 4).  However, stock status is not perfectly correlated between 

fishing mortality and biomass reference points due to short-term environmental variation, 

interactions, and other effects that can, e.g., allow biomass to remain above 40% of 𝑏𝑏0 despite 

fishing above 𝑖𝑖0.4.  These same factors can cause biomass to exceed average unfished biomass 
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𝐛𝐛0 for several years, and arrowtooth flounder spends nearly half of the modeled years above this 

biomass due to process errors and a close-to-zero fishing mortality rate (Fig. 4 top-left panel).   

 Last, we include results from a simulation experiment exploring the ability of a MICE-in-

space model to correctly estimate species interactions given plausible forms of model mis-

specification, i.e., (1) ignoring species that have non-negligible interactions with modeled 

species, and (2) modeling dynamics at a coarser spatial resolution than the resolution of 

biological interactions.  To visualize this simulation design, we compare true and estimated 

population density for a single replicates of the simulation experiment (Fig. 5).  This shows that 

the model can accurately capture spatial variation in unfished population density (i.e., comparing 

1st and 2nd rows of Fig. 5), as well as density in the final year (3rd and 4th rows of Fig. 5), despite 

only fitting biomass for two of the four simulated species and fitting density at a coarser spatial 

scale than is used when simulating data.  When summarizing across all simulation replicates, the 

MICE-in-space model is able to estimate the negative impact of pollock on arrowtooth 

productivity (Fig. 6A, top-right panel) and the negative impact of arrowtooth on pollock 

productivity (Fig. 6A, bottom-left panel) in nearly all simulation replicates, although these 

estimates appear to be biased towards more negative numbers (stronger interactions).  Similarly, 

the majority of simulation replicates estimate a negative impact of arrowtooth on pollock 

productivity (Fig. 6A, bottom-left panel), and density-dependence (Fig. 6A diagonal panels) are 

approximately unbiased.  The bias in interactions translates to some bias in estimates of fishing 

mortality reference point for arrowtooth flounder (Fig. 6B top panel), where the MICE-in-space 

model exhibits a positive bias in 𝑖𝑖0.4 for arrowtooth flounder. However, the majority of 

simulation replicates correctly identify that arrowtooth has a lower 𝑖𝑖0.4 than pollock.  We 

therefore conclude that, given the quantity and frequency of available data and conditioning the 
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simulation experiment upon estimates from the “species interactions” model, the MICE-in-space 

model is able to estimate broad qualitative differences in productivity among species as well as 

the likely sign of species interactions.  However, caution should be exercised when interpreting 

the exact value for fishing mortality targets based on this multispecies model.   

4.  Discussion 

 In this paper, we have developed the first multispecies spatio-temporal model that includes 

species interactions, fishing mortality, and statistical estimates of species-specific biological 

reference points commonly used for fisheries management.  We have showed that a MICE-in-

space can function as an operating model within a simulation study, and this simulation 

experiment suggests that the model can accurately estimate species interactions even in the 

presence of likely forms of model mis-specification (i.e., missing fine-scale dynamics and 

modeling only a subset of interacting species).  Finally, a case-study demonstration involving 

four species in the Gulf of Alaska has showed that incorporating species interactions is more 

parsimonious than assuming independent dynamics among species, although an alternative 

model with separate density dependence for each species but no interactions had similar support 

(∆𝐴𝐴𝐼𝐼𝐶𝐶 = 1.0).  Various configurations of the model estimated similar trends in biomass and 

biomass reference points but differed more in estimated fishing mortality reference points, and 

this is in-line with other previous multi-species model comparisons (Kinzey and Punt 2009; 

Holsman et al. 2016b).   

 The species interactions estimated from MICE-in-space contrast with previous analyses of 

trophic relationships based on diet analyses in the Gulf of Alaska. Models that include diet data 

suggest that arrowtooth flounder, cod, and halibut account for the majority of predation upon 

pollock (Gaichas et al. 2015) and therefore predict that these stocks have a negative impact on 
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pollock productivity (A’mar et al. 2010; Van Kirk et al. 2010). However, the MICE-in-space 

developed here estimated no significant impact of either arrowtooth flounder, cod, or halibut on 

pollock productivity.  Previous ecosystem models have also suggested that increased pollock 

production would lead to increased halibut production (Gaichas et al. 2015), in contrast with the 

negative impact of pollock on halibut estimated here.   

 Diet data represent the integrated outcome of behavioral and spatial processes that underlie 

variation in consumption across habitats, years, species, and individuals.  Diet studies therefore 

provide valuable information regarding trophic interactions that structure marine ecosystems 

(e.g., Livingston et al. 2017).  However, estimates of predation impacts on species productivity 

will typically depend upon structural modelling assumptions, such that models may differ about 

the magnitude or sign of species interactions even when fitting to diet data (Kaplan et al. 2018; 

Reum et al. 2019).  Finally, non-consumptive processes may cause diet analyses to misrepresent 

the cumulative impact of changing biomass for one species on per-capita productivity for other 

species.  For example, behavioral plasticity can reduce foraging rates in many species (e.g., 

Heithaus et al. 2007), resulting in a decrease in productivity (due to decreased weight-at-age) 

that exceeds that predicted due to a direct change in natural mortality measured by predator 

stomach contents.  Comparing results from multiple ecosystem models can help to evaluate the 

sensitivity of estimated ecosystem properties to structural assumptions and multiple data sources. 

We therefore support ongoing comparative research using multiple ecological models when 

evaluating climate or human-mediated changes on marine ecosystems (Olsen et al. 2016; Kaplan 

et al. 2018; Spence et al. 2018; Tittensor et al. 2018; Pope et al. 2019), and note that the MICE-

in-space model could fill a useful niche in these model portfolios. 
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 Given the differences in estimated interactions between the MICE-in-space model and 

previous ecosystem models using diet-data, we do not recommend using the MICE-in-space 

model for analyzing harvest trade-offs between species in the Gulf of Alaska (e.g., Walters et al. 

2005; Moffitt et al. 2016) until these differences have been explained and addressed.  However, 

we note that the MICE-in-space model estimates fine-scaled variation in multispecies density, 

and also discriminates species interactions from the covariance caused by different responses to 

shared but unmeasured environmental drivers.  We therefore believe that the MICE-in-space 

model is ready for use for several real-world fisheries management activities including projection 

of localized climate impacts, optimization of survey designs, designation of essential fish habitat, 

and multi-model inference regarding fishery status and productivity.  We discuss each of these in 

detail below. 

4.1 Projecting climate impacts 

 Globally, marine heatwaves of anomalously warm conditions are increasing in frequency and 

strength (Hobday et al. 2016a). Climate-driven changes to the survival and distribution of 

species are have also been well documented (Pinsky et al. 2013; Alabia et al. 2018; Morley et al. 

2018). Rapid reorganization of food webs, novel interactions, and shifting spatial distributions 

confound traditional assessment methods that do not consider unidirectional change or non-

stationarity in environmental drivers of mortality, selectivity, and growth (Skern-Mauritzen et al. 

2015; Pinsky et al. 2018). As such, future short-term forecasts and long-term projections of 

many fish stocks will likely require models that include climate-driven changes to spatial 

distributions and species interactions (Deyle et al. 2016; Hobday et al. 2016b, 2018; Tommasi et 

al. 2017). Spatially-explicit MICE models such as the one presented here represent a potential 

tool for managing fisheries under changing conditions, as they can be used to forecast changes in 
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spatial distribution while accounting for species interactions (Howell and Filin 2014).  

Presumably, skillful forecasting over longer time-horizons (e.g., >10 years) will require 

including incorporating physiological and other mechanistic processes (Hollowed et al. 2009; 

Payne et al. 2017); we recommend future research to explore including density covariates 

representing changes in thermal niche, as well as the effect of regional oceanographic variables 

(Thorson 2019) within MICE-in-space models.  

4.2 Optimizing survey designs 

 In addition to potential conflict between governments (Pinsky et al. 2018), changing spatial 

distributions due to climate change complicates fisheries management because historical survey 

operations and methods may no longer cover the range of important fish populations (Karp et al. 

In press).  For example, walleye pollock and Pacific cod in the Bering Sea are enormously 

productive and valuable fisheries, and both shifted northward out of the historically surveyed 

area between 2010 and 2017 (Stevenson and Lauth 2019).  Fisheries science and management 

agencies therefore face a difficult task of funding existing resource surveys versus developing 

new surveys in response to changes in resource distribution and productivity.  Existing fishery-

independent surveys are often very expensive (e.g., approximately $1 million US for vessel time 

alone for the 130 bottom trawl stations in the northern Bering Sea in 2017) and agencies face 

trade-offs between decreased survey sample sizes or frequency in existing surveys vs. extending 

surveys to new areas.  The trade-off between maintaining existing surveys and developing new 

ones would ideally be informed by scientific methods that condition upon available data and 

incorporate known and/or hypothesized forms of spatial, temporal, and sampling variation (e.g., 

Reich et al. 2018).  Similarly, changing ocean use (e.g., offshore energy development) can 

impact survey design, and it would be helpful to understand likely impacts of these 
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developments on existing survey performance.  We therefore recommend future research using a 

MICE-in-space model for survey evaluation and optimization, whereby a MICE-in-space 

operating model is fitted to available historical data for interacting species (given their historical 

fishing mortality rates) to generate simulated sampling data under alternative potential sampling 

designs.  Each simulated data set could then be fitted by each sampling design, and the average 

performance (e.g., standard error when estimating an index of abundance, or the strength of 

species interactions) could be calculated across all simulation replicates.  This method would 

represent an objective process to evaluate alternative configurations of limited sampling effort, 

and could presumably result in more efficient use of limited agency sampling, although it would 

be unlikely to capture the additional value of sampling data under environmental conditions that 

have not previously been observed.   

4.3 Designation of essential fish habitat  

 Fisheries managers use a wide array of spatial management tools in addition to regulations on 

fishery catch, effort, timing, and gear.  In the US, fisheries management councils are required to 

update designations of essential fish habitat (EFH) and habitat areas of particular concern 

(HAPC) every five years.  These designations can be done using species distribution models, 

SDMs (Rooper et al. 2016), and the MICE-in-space is a generalization of these models that 

additionally includes fishery harvest, species co-occurrence, and biological interactions.  We 

note that the US national EFH program defines four levels of EFH model (NMFS 2010; 

Lederhouse et al. 2017), ranging from low (Levels 1-2: population distribution and density) to 

high (Levels 3-4:  spatial variation in demographic rates and overall productivity).  Within this 

classification, a MICE-in-space reconstructs spatial variation in productivity from survey 

biomass and fishery removals, and therefore represents the highest-level basis for designating 
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EFH.  Unlike previous EFH models, however, the MICE-in-space estimates temporal variability 

in species distribution, density, and productivity, driven by both species interactions, fishing, and 

residual spatio-temporal variation.  Temporal variability has not been extensively addressed in 

EFH models or processes in the US, although we note that EFH-designations are already updated 

every 5 years and could be designated using five-year forecasts of productivity given forecasted 

environmental conditions.  However, whether this time-varying designation of EFH and HAPC 

is acceptable to stakeholders and fisheries managers will of course depend upon many local and 

non-technical considerations including: available human resources; management priorities; and 

previous regional approaches to EFH designation (Copps et al. 2007).   

4.4 Multi-model inference regarding status and productivity 

 Non-spatial climate-enhanced multispecies models (Holsman et al. 2016b), and climate-

enhanced single-species models (Spencer et al. 2016; Barbeaux et al. 2017) are increasingly 

evaluated for Alaskan stocks impacted by anomalously warm conditions in the North Pacific. 

Balancing model complexity and mechanistic detail with computational demand, data 

compilation, and ease of interpretation of results is an ongoing challenge, especially for models 

that require multiple data sources and types (Plagányi et al. 2011). Stepwise hierarchical 

selection approaches for narrowing the focal components for forecasting risk can help balance 

demands and costs in computing, and identify key attributes to be evaluated in MICE models, 

which are intermediate in complexity but represent highly quantitative approaches (Hobday et al. 

2011; Holsman et al. 2017).  Shifting spatial distributions and changing mortality rates (e.g., 

through predation or starvation) are often confounded in ecosystem models, and simultaneously 

addressing these two issues is a key goal in current ecosystem models in regions including the 

Bering Sea (e.g., Spencer et al. 2016).  Underlying model structure and implicit versus explicit 
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treatment of environmental or trophic changes to a population becomes extremely important 

when projecting models for management advice, especially on longer timescales (Lotze et al. 

2019).  Forecasting distribution and productivity using a wide range of models with different 

structural assumptions (a.k.a. multi-model inference) can be used to identify sensitivities in 

model specification and propagation of error (Kaplan et al. 2018; Spence et al. 2018; Pope et al. 

2019). Examples of this multi-model approach to forecasting climate impacts include FISH-MIP 

(Hobday et al. 2016b; Tittensor et al. 2018) and the Alaska Climate Change Integrated Modeling 

project (ACLIM; Hollowed et al. submitted).  We recommend further research regarding MICE-

in-space models when used within an ensemble of other models that have less spatial resolution 

but more detailed submodels for population demography (e.g., age or size structure) or physical 

drivers (e.g., linked to regional biophysical models, e.g., Hermann et al. (In press)).   

4.5  Future research 

 We recommend several avenues for future research regarding MICE-in-space, including: (1) 

incorporating prior information regarding species interactions; (2) fitting to fishery catches; (3) 

incorporating density covariates; and (4) comparison with alternative ecosystem models.   

1. Prior information regarding species interactions:  In this paper, we have freely estimated 

species interactions given information in survey data.  However, analysts could seek to 

incorporate prior information (e.g., from diet data or assumptions about bioenergetics), and 

we envision two ways to do so.  First, analysts could “hardwire” the interaction matrix, either 

eliminating some interactions a priori (e.g., Rochet et al. 2011) or such that it matches 

specified values for single-species intrinsic growth rates and per-capita consumption rates.  

Alternatively, analysts might specify a Bayesian prior on these values while using available 
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data.  The latter would require additional statistical research, but would allow analysts to 

integrate diet analyses while retaining the computational flexibility of the current study.   

2. Fitting to fishery catches:  In this paper, we have pre-specified a fishing mortality rate for 

each species that varies among years but is constant across space, and this has driven 

interannual variation in status relative to estimated biological reference points.  We again see 

two ways to relax this assumption.  First, analysts could specify spatial variation in fishing 

mortality, such that forecasts incorporate historical data regarding the spatial distribution of 

fishing effort.  Alternatively, analysts could specify spatial variation in fishery catch or 

landings (obtained from fishery observers or other reporting).  Specifying fishery catch for 

each species, location, and year would require estimating fishing mortality rates as a model 

parameter, but this specification would still be “separable” and previous exploration suggests 

that this could be done while still being computationally feasible.  Neither of these options 

are currently available in the R package VAST used here, but both could be added during 

future developments.   

3. Incorporating density covariates:  Forecasting climate impacts is a growing concern for 

identifying suitable management strategies (Miller et al. 2010; Holsman et al. 2019a).  

Covariates explaining historical variation in density will improve predictive skill for short-

term forecasts in some cases and not others (Hobday et al. 2018; Thorson 2019a), so we 

encourage future skill-testing to measure the potential benefits of incorporating multi-species 

interactions, density covariates, and species associations for forecasting distribution shifts 

over short (<3 year) or longer time-horizons. 

4. Comparison with alternative ecosystem models:  Perhaps most importantly, we recommend 

detailed, side-by-side comparison of MICE-in-space and other ecosystem models.  These 
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comparisons are vital to identify the relative computational and human-resource costs of 

these different models, as well as identify when models provide different advice (Kaplan et 

al. 2018; Pope et al. 2019).  However, this topic would require substantial additional effort 

and is an obvious topic for future research.   

The MICE-in-space is publicly available in the R package VAST, which is already used for stock 

assessment and ecosystem status reports in the North Pacific (Thorson 2019b).  We anticipate 

that public access and ongoing documentation for this implementation of a “MICE-in-space” 

model will facilitate future model comparisons.  We hope that it will facilitate the use of 

multispecies models for spatial management including climate forecasts, survey optimization, 

and EFH designation.   

Data Availability Statement 

All data used are publicly available and hosted by the Alaska Fisheries Science Center.  Survey 

data can be accessed online at http://www.afsc.noaa.gov/RACE/groundfish/survey_data/data.htm 

and records of fishing mortality are online at 

https://www.afsc.noaa.gov/REFM/Stocks/SARA/sara_access.php. The R package VAST is 

available at https://github.com/James-Thorson/VAST/.  
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Table 1 – Model selection among candidate models, showing the model name (see Section 2.3 in 
main text for details), the marginal log-likelihood of the maximum likelihood estimate, the 
number of fixed effects, and the Akaike Information Criterion score for each model (where the 
most parsimonious model has ∆𝐴𝐴𝐼𝐼𝐶𝐶 = 0 and models with ∆𝐴𝐴𝐼𝐼𝐶𝐶 < 3 have some statistical 
support (Burnham and Anderson 2002) 
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928 
929 

Model Negative Number of ∆𝐴𝐴𝐼𝐼𝐶𝐶 
log- parameters 

likelihood 

Index standardization 142867.2 160 6.6 

Complete density dependence 143019.9 56 103.9 

Same density dependence 142971.6 57 9.3 

Different density dependence 142964.4 60 1 

Species interactions 142959.9 64 0 
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Table 2 – Estimated interactions from the “species interactions” model (listing standard errors in 
parentheses), specifically listing 𝐁𝐁 − 𝐈𝐈 such that the element in the “arrowtooth” column and 
“Alaska pollock” row shows that a 1% increase in density for arrowtooth is estimated to cause a 
-0.07 decrease in per-capita productivity for Alaska pollock.   
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Fig. 1 – Total biomass for each species in each of five models (see legend in top-left panel for 
color codes and Appendix B for detailed model descriptions), as well as fishing mortality rate 
(black dashed line with scale on right-hand y-axis) for each species.  Note that the “index 
standardization” (black dashed lines) and “complete density dependence” (grey solid lines) 
models predict biomass only in years with available data and are shown as lines with whiskers 
(+/- one standard error), while other models predict biomass in years without sampling and are 
shown as a shaded interval (+/- one standard error) 

 

Fig. 2 – Biological reference points estimated by three MICE-in-space models (i.e., excluding 
the “index-standardization” and “complete density dependence” models which cannot estimate 
biological reference points), where 𝑏𝑏𝑡𝑡𝑎𝑎𝑟𝑟𝑔𝑔 is 40% of estimated biomass in the absence of fishing, 
and 𝑖𝑖𝑡𝑡𝑎𝑎𝑟𝑟𝑔𝑔 is the fishing mortality estimated to result in biomass equal to 𝑏𝑏𝑡𝑡𝑎𝑎𝑟𝑟𝑔𝑔 on average.   

 

Fig. 3 – Estimates of the natural logarithm of biomass density from the AIC-selected “species 
interactions” model (red: high density; blue: low density) for each species (columns) in several 
years (rows), where the first year (top row) shows the estimate of unfished biomass.  Years are 
chosen for illustration to be approximately even spaced but only using years with available 
survey data, and where the density legend is identical among species and years and has units 
ln(𝑘𝑘𝑔𝑔 ∙ 𝑘𝑘𝑚𝑚−2) 

 

Fig. 4 – Estimated stock status (y-axis) for each year (x-axis), measured using a fishing intensity 
ratio (left column: 𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡(𝑐𝑐, 𝑡𝑡)) and biomass ratio (𝑏𝑏𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑡𝑡(𝑐𝑐, 𝑡𝑡), see Eq. 11) for each species 
(rows) and the three MICE-in-space models that estimate biological reference points (see legend 
in bottom-right panel for color codes).  Each panel shows the maximum likelihood estimate 
(central line) and ±1 standard error (shaded area and outer lines), as well as the corresponding 
target (horizontal dotted line); note that y-axes differ between panels.    

 

Fig. 5 – Illustration of simulation experiment, showing natural logarithm of unfished biomass 
density (1st and 2nd rows) and population density in 2015 (3rd and 4th rows) in units 
ln(𝑘𝑘𝑔𝑔 ∙ 𝑘𝑘𝑚𝑚−2) for the two species included in the estimation model (columns), where the 
colorbar is shown in the bottom-right panel (red is high density and blue is low density).  This 
illustration allows comparison of true simulated density (1st and 3rd rows) vs. estimated density 
(2nd and 4th rows) when simulating a new data set conditional on fixed effects estimated from 
real-world data.  Note that the simulation model simulates density for four species at a fine 
spatial scale (using 𝑛𝑛𝑥𝑥 = 100 knots), while the estimation model estimates density for only two 
species at a coarse spatial scale (using 𝑛𝑛𝑥𝑥 = 50 knots). For visual clarity, we do not show 
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simulated density for the two species that are not then included in the estimation model for each 
simulation replicate.   

 

Fig. 6 – Illustration of results from a simulation experiment where each panel shows the 
frequency distribution (y-axis) for different estimated values (x-axis), specifically showing 
estimates of the interaction matrix 𝐁𝐁 (Fig. 6A) or biological reference points including fishing 
mortality resulting in 40% of average unfished biomass, 𝐟𝐟0.4 (Fig. 6B left column) or the relative 
error in estimates of unfished biomass, 𝐛𝐛𝑡𝑡𝑎𝑎𝑟𝑟𝑔𝑔 (Fig. 6B, right column) from a simulation 
experiment generating data based on the AIC-selected “species interactions” model, and then 
restricting data to two species (arrowtooth and Alaska pollock) and fitting at a coarse spatial 
resolution (50 knots).  Each panel in the visualization of the interaction matrix (Fig. 6A) shows a 
histogram of estimates from each simulation replicate, where the true value is indicated by a 
vertical dashed line and the mean and standard deviation of estimates is listed (see Table 2 for 
true values).  The visualization of biological reference points (Fig. 6B) similarly shows a 
histogram of estimates and the true value, and again lists the mean and standard deviation of 
estimates.    
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