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THE EFFECT OF QUANTITATIVE PRECIPITATION FORECASTS
ON RIVER FORECASTS

Noreen O. Schwein 
National Weather Service 

Central Region Headquarters 
Regional Hydrology

1. INTRODUCTION

Quantitative Precipitation Forecasting (QPF), the forecasting of the 
amount of rain or water equivalent of frozen precipitation that will fall over a 
particular area over a given period, is of great interest to the National Weather 
Service in relation to river and flash flood prediction. A "good" QPF would be 
when the amount predicted would translate to a forecast of a river rise earlier 
than the river forecast without a QPF, and verifying. Therefore, a good QPF 
could provide better lead time, resulting in a flash flood warning being issued 
hours ahead of time, or a river flood warning being issued days ahead of time.

Successfully producing a good QPF is no simple task. Using 
meteorological models and national scale QPFs from the National Meteorological 
Center (NCEP) as guidance, considering local effects, and assessing such 
parameters as available moisture, instability and lifting mechanisms, the 
forecaster must attempt to learn where, when and how much precipitation will 
fall.

The NCEP Heavy Precipitation Branch has been producing QPF since 
1960, and according to their verification statistics, has shown a marked 
improvement over time. To date, QPF operations at NCEP and in Weather 
Service Forecasts Offices (WSFO) in the U.S. vary a bit. However, verification 
statistics, although dissimilar, show a common trend that the QPFs improve as 
forecasters gain experience, and that forecasters seem to under forecast heavy 
rain events and over forecast light events. The reader should understand that 
the terms, heavy and light are subjective but generally, heavy can be considered 
an inch or more and light would be less than a half inch, over a 24-hour period. 
NCEP further defines excessive amounts as those that exceed flash flood 
guidance anchor are greater than five inches within 24 hours.

The purpose of this paper is to present an analysis of the impact, if any, 
QPF had on forecasts for six different locations over a period from June 15, 1993 
to October 31, 1993, and attempt to determine whether that impact was 
beneficial or detrimental to the river forecast. A comparison will also be made 
to results of a 1992 QPF risk reduction exercise (described in Section 2).



2. BACKGROUND

During 1992 and 1993, QPF risk reduction exercises were conducted to 
detect the benefit, if any, QPF had on river forecasts. In 1992, the exercise 
went from April 1 through November 15 for several basins in Wisconsin, and 
resulting data was sparse due to a relatively dry period. Additionally, QPFs 
were only produced for amounts of at least half an inch in a 24-hour period, 
which was deemed to show a significant change to the river forecast, given 
normal conditions. This resulted not only in a small data base, but did not give 
WSFO forecasters the day-to-day experience helpful in gaining expertise. The 
1992 study did not show that QPF improved the river forecast. It did show that 
the heavy events were under forecast, and that the first 12 hours of the 24-hour 
forecast period verified much better than the latter 12 hours. Therefore, the 
exercise in 1993 utilized only the first 12 hours of forecasted precipitation.

In 1993, the Great Midwest Flood occurred, affecting portions of the risk 
reduction area and supplying a larger database than in 1992. As discussed later 
in this text, although the two exercises were different, there was some 
compatibility in certain respects.

3. DESCRIPTION OF RIVER BASINS AND FORECAST POINTS

The six locations chosen for the 1993 exercise are described in Table 1 and 
displayed in Figure 1. The basins were chosen such that one drainage area did 
not affect another, and that river gage height readings and forecasts were 
received in six-hourly intervals. The National Weather Service River Forecast 
System (NWSRFS) models used were run twice, once without the addition of 
QPF and once with QPF. All other variables or modifications made for the river 
forecast were the same in both instances, allowing for QPF alone to affect a 
difference in the output forecasts.

The response time (time for river to crest after the onset of rainfall) varied 
for each basin. Some responded within 24 hours, others from three to five days. 
Therefore, the time of verification for individual basin statistics was taken at 
1200 UTC for either the 1, 3 or 5 day forecast (Table 1).

4. METHODOLOGY

Meteorologists at WSFOs Minneapolis, Minnesota (MSP) and Milwaukee, 
Wisconsin (MKX), prepared a QPF around 1000 or 1100 UTC, valid from 1200 - 
0000 UTC that day, and transmitted it to the North Central River Forecast 
Center (NCRFC) in Minneapolis (Figures 2a and 2b). The digital QPF product 
automatically was stored in a local database at NCRFC. The initial operational 
river forecast was prepared without QPF. The hydrologists, after assessing the
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TABLE 1
DESCRIPTION OF STATION

Local

Basin
Station Name/ 

River
Valid 12Z 
forecast

Drainage
AreaCmi2)

Flood
Topography Stage

JDNM5 Jordan, MN/ 
Minnesota

3-day 1300 Flat 20 ft

NEWW3 New London, Wl/ 
Wolf

5-day 1060 Rolling - 9 ft
to flat

LNEM5 Lanesboro, MN/
N. Fork Root

1-day 615 Hilly 12 ft

RAYW3 Raymond, W1/
Root River Canal

1-day 57.2 Flat 8 ft

DARW3 Darlington, WI 
Pecatonica

1-day 273 Flat 11 ft

GRDM5 Garden City, MN 
Watonwan

3-day 812 Flat not
available

Figure 1. Basins used in 1993 Risk Reduction Exercise (southeast Minnesota, northern Iowa, 
and centra] Wisconsin are shown).
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<ZCZC MKEQPSMKE 
ETTAAOO KMKE 161208

ROUTINE QPF FOR WISCONSIN
NATIONAL WEATHER SERVICE MILWAUKEEySULLIVAN WI 
1204 UTC 0016/93

B MKE 930616 Z DH12 /DC9306161204 
B1 /DRH+06/PPQFZ /DRH+12/PPQFZ /DRH+18/PPQFZ 
B2 /DRH+24/PPQFZ /PPXFZ

6-HR 6-HR 6-HR 6-HR TOTAL
PCPN PCPN PCPN PCPN PCPN
ENDG ENDG ENDG ENDG
18Z OOZ 06Z 12Z
06/16 06/17 06/17 06/11

WIB01 0.1fi/ 0.22/ 0.00/ 0.00/ 0.42/ :BASIN ONE
DARW3 0.42/ 0.25/ 0.00/ 0.00/ 0.68/ :D ARLINGTON
RAYW3 0.01/ 0.01/ 0.00/ 0.00/ 0.02/ iRAYMOND
RACW3 0.01/ 0.01/ 0.00/ 0.00/ 0.02/ :RACINE
.END

Figure 2a. A reduced version of Milwaukee's QPF product.

<ZCZC MSPQPSMSP 
ETTAAOO KMSP 161204

Routine QPF for Minnesota
National Weather Service Minneapolis/St. Paul Minnesota 
1200 UTC 06/16/93

B MSP 930616 Z DH12 /DC9306161200 
B1 /DRH+06/PPQFZ /DRH+l^/PPQFZ /PPXFZ

6-HR 6-HR TOTAL
PCPN PCPN PCPN
ENDG ENDG
18Z OOZ
06/16 06/17

SPFM5 0.01/ 0.05/ 0.06/ COTTONWOOD R SPRINGFIELD
JDNM5 0.04/ 0.05/ 0.09/ MINN R JORDAN
APPM5 0.00/ 0.18/ 0.18/ POMME DT APPLETON
HKHM5 0.18/ 0.00/ 0.18/ ROOT R HOKAH MN
.END

Figure 2b. A reduced version of Minneapolis' QPF product.
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hydrologic situation concerning such details as the location and movement of 
precipitation over the basin, and the intensity and duration of the precipitation, 
then made subjective changes to the model output river forecasts for the final 
non-QPF forecast product. The river forecasts were then rerun to include the 
QPF.

Both forecasts, with and without QPF, for the basins listed in Table 1, 
were stored in a database for verification, broken into 6-hourly increments 
according to the NWS RFS models. Each forecast covered a period of five days.

Mean Areal Precipitation (MAP) was computed daily by NCRFC through 
the NWS RFS as described by Larson (1975), for verification of the QPFs for 
each basin. This data was deemed quite important by the WSFOs as response 
to the meteorologists, but will not be addressed in depth in this study. We are 
mainly concerned with verification of the river forecasts with and without QPF, 
and not the verification of the QPF itself. However, examples of verified QPF 
will be used to illustrate the effects on the river forecasts.

Using PARADOX database software, verification statistics such as mean 
error, mean absolute error, standard deviation, and bias, was calculated for the 
individual basins and all basins combined. It was decided to forego using 
correlation coefficients since a large portion of the QPF and non-QPF forecasts 
were equal, leaving the remaining portion of those samples too small to show a 
true significant correlation. The verification time for the combined basins was 
chosen to be 1200 UTC Day 1 (a 24-hour forecast). The verification time for the 
individual basins was chosen as specified in Table 1.

5. RESULTS FOR ALL BASINS COMBINED

For a first look at the data, all basins combined were considered. The 
data were separated by months, as some months were abnormally wet. Figures 
3 and 4 display results of positive and negative errors, for each month of the 
exercise. It can be easily seen that those forecasts with QPF tend to over 
forecast more than those without QPF, and that those forecasts without QPF 
tend to under forecast more than those with QPF. Additionally, the river 
forecast with QPF, monthly positive error, was quite high in July. This may be 
attributed to the scenario that when there were repeated heavy rain events over 
an area, the meteorologists either over forecasted the amount or did not forecast 
the proper location. Furthermore, the data showed 13% of the time, when 
rainfall was predicted (i.e., QPF > 0), it occurred in the 12-24 hour period (after 
0000 UTC), instead of the forecast period targeted, the 1200-0000 UTC period.
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Looking also at Figure 5, which shows the actual 12-hour amounts of QPF 
versus MAP by month, some improvement can be seen in August. Both July and 
August were wet months with 22.31 inches and 14.10 inches of MAP, respectively. 
However, the percent of QPF that actually verified as MAP slightly increased from 
65% in July to 68% in August. This may reflect the increased experience of the 
forecasters. September was even better with the 12.16 inches of MAP verifying as 
99% of the forecasted precipitation.

for all 5 basins combined

Mcnth, 1993

Figure 5. Monthly Summation of QPF and MAP for all basins June 15-October 31, 1993.
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A further breakdown of 12-hour QPF versus 12-hour MAP can be seen in 
Table 2. A few items to note would be that about one third of the time a QPF was 
forecasted to be greater than zero, it did not verify, and about one fifth of the time 
where QPF equaled zero, precipitation did occur. Using a half inch of rainfall to 
be a significant amount as in the 1992 risk reduction, the table also shows a 
summary concerning QPF and MAP of £ 0.50 inch. Note, it is interesting that 
there were only six out of 47 episodes of forecasting a half inch or more where no 
precipitation occurred and two cases out of 40 where > 0.50 inch of precipitation 
occurred but none was forecast. Also, there were 23 cases where a half inch or 
more was forecast and verified. These 23 cases were about half the total number 
of cases where QPF £ 0.50 inch.

TABLE 2
QPF AND MAP COMPARISONS

QPF & MAP (inches) Number of Records % of Occurren

All cases 828 100%
QPF = 0
MAP = 0

497
545

60%
66%

QPF = 0 & MAP = 0
QPF > 0
MAP > 0

439
331
283

53%
40%
34%

QPF > 0 & MAP = 0
QPF = 0 & MAP > 0
QPF a 0.50
MAP 2 0.50

106
58
47
40

32%2
20%3
14%2
14%3

QPF 2 0.50 & MAP = 0
QPF 2 0.50, 0 < MAP < 0.50
QPF = 0 & MAP 2 0.50
QPF 2 0.50 & MAP 2 0.50

6
18
2

23

13%4
38%4

5%
49%4, 56%5

1. for all records unless otherwise stated
2. for all records where QPF > 0
3. for all records where MAP > 0
4. for all records where QPF 2 0.50

The bar graphs in Figures 6a and 6b show the total absolute values of the 
positive and negative errors of the river forecasts for all six basins combined, and 
the total arithmetic error. The arithmetic error, or bias, is the sum of all errors, 
positive and negative. One can see that both QPF and non-QPF forecasts tend to 
under forecast more than over forecast. Also in Figure 6a, the total absolute error 
for 24-hour river forecasts with QPF was 5% greater than the error for non-QPF 
forecasts. For those graphs in 6b, where the errors were taken at the verification 
response times of 1, 3, or 5 days as shown in Table 1, the total absolute error for 
forecasts with QPF was slightly less but still 3% greater than the non-QPF forecast 
errors. With the 1-day responses being equal, this difference would lead to the

9



conclusion that there was some improvement in the QPF versus non-QPF forecasts 
in the 3- and 5-day range. The range of error narrowed. Table 3 (which will be 
discussed in more detail later) shows how these forecasts compare to those that do 
not use QPF.

The total arithmetic error is shown as the last set of bars in Figures 6a and 
6b. As stated earlier, it can be seen that these biases are definitely on the negative 
side (under forecasting) for both types of forecasts. The reason for this is obvious 
concerning the river stage forecasts without QPF as they only account for 
precipitation that has already occurred, and not future precipitation. The reason 
that river stage forecasts with QPF also tends to under forecast is probably due to 
the conservative nature of the meteorologist producing the QPF.

Note also that the biases are less for forecasts with QPF. This could be 
attributed to those river forecasts fluctuating more around the observed value, as 
opposed to the "stair-stepping" effect with the non-QPF forecasts. (This will be 
discussed further in the next section.) Additionally, the bias is less with the 24- 
hour forecast verifications in 6a as compared to 6b, because the slower responding 
streams show much less of a change over a 24-hour period.

TABLE 3
STATISTICAL SUMMARY OF RIVER FORECASTS - ALL CASES

Basin w/o QPF2
w/ QPF1 

ABSERR3 RMSE4 MEAN5 STD DEV6 H:m=n27

JDNM5 136 0.65 ±1.00 -0.28 ±0.96 Y
136 0.65 ±0.99 -0.31 ±0.94 Y

NEWW3 134 0.61 ±0.78 -0.12 ±0.77 Y
134 0.62 ±0.79 -0.15 ±0.77 Y

LNEM5 137 0.32 ±1.21 0.09 ±1.19 Y
138 0.19 ±0.87 -0.19 ±0.83 Y

RAYW3 138 0.27 ±0.35 0.17 ±0.30 Y
138 0.27 ±0.36 0.14 ±0.33 Y

DARW3 138 0.84 ±1.56 -0.67 ±1.41 Y
138 0.87 ±1.65 -0.73 ±1.48 Y

GRDM5 135 0.84 ±1.68 -0.43 ±1.63 Y
134 0.83 ±1.71 -0.55 ±1.62 Y

1. Total number of river forecasts including QPF 
7. Total number of river forecasts without QPF
2. Average Absolute Error (ft)
3. Root Mean Square Error (ft)
4. Arithmetic Mean Error (ft)
5. Standard Deviation of Errors(ft)
6. Null hypothesis that data sets the same, rejected (Y=Ye^N=No)
7. Total number of river forecasts without QPF

10
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Pages 13-14 and 19-20

CHANGES:
Equation (2) incorrectly written.

The explanation of equations (6) and (11) were incorrectly written.



6. FURTHER STATISTICAL ANALYSIS

Additional statistical analyses were conducted on the data to determine if the 
QPF had a significant impact on the river stage forecasts, and if so, did that impact 
show improved results (i.e., better lead time). To accomplish this, it was decided 
to look at each basin separately. This would provide the opportunity to verify the 
data at different times according to the individual basin response times, and to 
show the effect on 1, 3, and 5 day forecasts.

Again, looking at positive and negative errors (over and under forecasting, 
respectively), the average absolute error (ABSERR) and root mean square error 
(RMSE) can be defined as:

ABSERR- (£ (PERR) ♦£ (NERR) ) /N ^

RMSE - V( (£ (PERR) 2 + £ (NERR) 2) /N) (2)

where

PERR the positive error (forecast - observed) value 
NERR the absolute value of the negative error value and 
N the total number of cases.

Table 3 shows' the outcome of the analysis for each basin over the entire 
time period for all cases (including QPF = 0). For all basins but one, Lanesboro 
(LNEM5), the values of the ABSERRs and RMSEs were quite close for both 
types of forecasts, differing by less than 0.10 ft. At Lanesboro, the difference in 
the RMSEs was 0.34 feet. (This greater difference is largely due to a particular 
forecast and is discussed further in Section 7.) The question then arose, were 
these values significantly different? Were the results showing that there was no 
significant difference in the forecasts, with or without QPF?

To answer this question, a "Student's" t-test was conducted to test the null 
hypothesis (H) that had there been an infinite number of forecasts, the 
difference (D) would be zero (i.e., the mean of the hypothetical population of D's 
would equal zero). As suggested by Panofsky and Brier (1965), the limiting 
probability for this test was chosen to be 5% (i.e., a = 0.05). In other words, if 
the t-test showed a probability of 5% or less that the two samples came from the 
same population, the hypothesis would be rejected. As specified by Ostle (1963), 
two normal populations would be assumed with means px and \i2, and the null 
hypothesis would be expressed as:

13



tf:pl - ji2 - 0 - C (3)

The value of t would be expressed as:

t - I>/sD (4)

where
D - £ D/N D - F - Q

sD - A (X^2 - (W2/n) / (W-1)) (5)

Sb - y/((SD)2/N) (6)

and

D is the mean of differences, D 
F is the river stage forecast without QPF
Q is the river stage forecast with QPF
sD is the standard deviation of the differences, D (for positive root of 

the variance, Sq2)
sD is the standard deviation of the mean difference 
N is the number of pairs of forecasts

For this two-tailed t-test, one would reject H for values of t where

-t(l-a/2) <n - 1)^ t ^ + £(i_ a/2) (n - 1) (7)

and
(1 - a/2)- 0.975

The resulting values of t for each basin showed less than a 5% chance 
that the two data sets were from the same population (i.e., the test of the 
hypothesis failed). The t values follow:
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Basin ID - _U - ct/2Mn_-_l)__ t

LNEM5 -2.009 -2.70
RAYW3 -2.003 -2.43
DARW3 -1.999 -2.55
GRDM5 -2.006 -2.75
JDNM5 -2.007 -3.33
NEWW3 -2.005 -3.33

We decided to make further use of the "Student's" t-test as follows:

Test Hypothesis, H: QERR < FERR

where

FERR = Mean Forecast error without QPF 
QERR = Mean Forecast error with QPF

This would require a one-tailed test assuming normal populations and « = 0.05.
H would be rejected for:

t ;> t (i a) (ni • n2 - 2)
(10)

where

nx = number of QERRs 
n2 = number of FERRs

The value for t would be computed using

t - (* i - »2) / (s2/m ♦ s2/n2) (ID

where

= the arithmetic mean of QPF error 
*2 = the arithmetic mean of non-QPF error

s2 - ( (nx- l)s2 + (n2- l)s2)/(n1* n2- 2) (12)

Sj = the standard deviation of the stage forecast with QPF
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and

s2 = the standard deviation of the stage forecast without QPF

For all forecasts and for cases where QPF > 0, by basin, the statistical 
"Student's" t-test of the null hypothesis that the mean forecast error was signif­
icantly less for forecasts with QPF, was not rejected for JDNM5, NEWW3, 
DARW3, GRDM5 and RAYW3, but was rejected for LNEM5.

The test was not conducted for cases where all QPF and non-QPF 
forecasts were different since there was less than 30 cases to consider in all but 
one basin (the suggested minimum (30) acceptable sample for the t-test 
(Panofsky and Brier 1965)). The calculated t values follow:

For all cases

Basin ID ^ (1 - a) (n., . n, - 2) t

LNEM5 1.651 2.24
RAYW3 1.651 0.75
DARW3 1.651 0.35
GRDM5 1.651 0.60
JDNM5 1.651 0.25
NEWW3 1.651 0.33

where QPF > 0

Basin ID ^(1 - a) (HJ * n2 - 2) t

LNEM5 1.661 2.24
RAYW3 1.660 1.29
DARW3 1.659 0.47
GRDM5 1.661 0.58
JDNM5 1.661 0.32
NEWW3 1.660 0.40

7. EFFECT OF QPF ON INDIVIDUAL FORECASTS

Next to consider was the effect on the individual forecasts. What were 
some of the best and worst cases involving river forecasts with and without 
QPF? Did QPF add significant lead time? Figures 8-13 show some examples of 
forecasts from individual NWS RFS model runs for each forecast point, taken 
through their respective response times. The QPF that was forecast and the 
MAP that occurred is shown in the lower right-hand comer of the individual
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6. FURTHER STATISTICAL ANALYSIS

Additional statistical analyses were conducted on the data to determine if the 
QPF had a significant impact on the river stage forecasts, and if so, did that impact 
show improved results (i.e., better lead time). To accomplish this, it was decided 
to look at each basin separately. This would provide the opportunity to verify the 
data at different times according to the individual basin response times, and to 
show the effect on 1, 3, and 5 day forecasts.

Again, looking at positive and negative errors (over and under forecasting, 
respectively), the average absolute error (ABSERR) and root mean square error 
(RMSE) can be defined as:

ABSERR- (I (PERR) *£ (NERR) ) /N ^

RMSE-J ( (I (PERR) 2*£ (NERR) 2) /N) (2)

where

PERR the positive error (forecast - observed) value 
NERR the absolute value of the negative error value and 
N the total number of cases.

Table 3 shows' the outcome of the analysis for each basin over the entire 
time period for all cases (including QPF = 0). For all basins but one, Lanesboro 
(LNEM5), the values of the ABSERRs and RMSEs were quite close for both 
types of forecasts, differing by less than 0.10 ft. At Lanesboro, the difference in 
the RMSEs was 0.34 feet. (This greater difference is largely due to a particular 
forecast and is discussed further in Section 7.) The question then arose, were 
these values significantly different? Were the results showing that there was no 
significant difference in the forecasts, with or without QPF?

To answer this question, a "Student's" t-test was conducted to test the null 
hypothesis (H) that had there been an infinite number of forecasts, the 
difference (D) would be zero (i.e., the mean of the hypothetical population of D's 
would equal zero). As suggested by Panofsky and Brier (1965), the limiting 
probability for this test was chosen to be 5% (i.e., a = 0.05). In other words, if 
the t-test showed a probability of 5% or less that the two samples came from the 
same population, the hypothesis would be rejected. As specified by Ostle (1963), 
two normal populations would be assumed with means ^ and \i.2, and the null 
hypothesis would be expressed as:
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if: pi - ji2 - 0 - D (3)

The value of t would be expressed as:

t - D/sb (4)

where
£> - £ D/N D - F - Q

sD - Va^D2 - (Zd)2/n) / (N-1)) (5)

Sb - V( (sD)2/N> (6) .

and

D is the mean of differences, D 
F is the river stage forecast without QPF
Q is the river stage forecast with QPF
Sj) is the standard deviation of the differences, D (for positive root of 

the variance, s^
sD is the standard deviation of the mean difference 
N is the number of pairs of forecasts

For this two-tailed t-test, one would reject H for values of t where

"*•(1- a/2) (n - 1)^ t £ ’(I- a/2) (n - 1) (7)

and
(1 - a/2)- 0.975

The resulting values of t for each basin showed less than a 5% chance 
that the two data sets were from the same population (i.e., the test of the 
hypothesis failed). The t values follow:
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Basin ID -t (1 - a/2) (n - 1) t

LNEM5 -1.980 -2.50
RAYW3 -1.980 -2.25
DARW3 -1.980 -2.40
GRDM5 -1.980 -2.39
JDNM5 -1.980 -3.38
NEWW3 -1.980 -3.33

We then considered the arithmetic means and standard deviations of those 
means as they could show some significance about "stair-stepping" versus 
"fluctuating" forecasts. A stair-stepping forecast is one that generally lags 
behind the rising trend of the river and is common with non-QPF river forecasts. 
This is due to the fact that observed precipitation is incorporated into the river 
forecasting model after it has fallen, sometimes as much as 24 hours later. For 
example, if 0.50 inches of rain fell in the past 24 hours ending at 1200 UTC, but 
continued for several hours totaling 1.00 inches for the event, the river stage 
forecast without QPF would only consider the 0.50 inch amount. The river 
forecast the following day at 1200 UTC would then utilize the additional 0.50 
inch amount.

The result of this would be that the first forecast stage would be lower 
than the second forecast stage, and the upward trend from one forecast to the 
next would be one-step. If a similar rainfall episode happened again on the 
second day, you would have another step, and so on. If the river had a response 
time of less than 24 hours, then the second forecast would finally "catch up" to 
the observed value on the second day. This gradual rising of the river forecast 
to the eventual observed river stage is known as stair-stepping.

Fluctuating forecasts, more common with QPF input, are those that may 
have too high (low) a value with one forecast and too low (high) a value with 
the next due to the difference between the forecast amount of precipitation 
versus the amount that actually falls.

Figure 7 shows an example of stair-stepping and fluctuating forecasts. 
Notice how the forecast values without QPF on 6/19 and 6/20 are about one foot 
lower than what was observed. On 6/21, the non-QPF forecast "catches up" to 
the observed value. This demonstrates the stair-stepping effect. The fluctuating 
effect can be seen in the forecast values that utilized QPF where on 6/19, the 
forecast was about half a foot higher than observed and 6/20 the forecast was a 
few tenths of a foot lower than observed.
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The mean and standard deviation was computed according to Spiegel 
(1961), as follows:

* - (Xx/W) (8)

and

3 - AEU - *)2/w) (9)

where

X represents actual forecast errors (with or without QPF) 
x the mean forecast error (with or without QPF)
N is the number of forecasts 
s is the standard deviation

The standard deviations of the mean errors as shown in Table 3, proved 
to be slightly less in magnitude than the RMSEs of the absolute value errors. 
Still, the difference was only by a few hundredths except Lanesboro, which 
differed by 0.36 ft. One could conclude at this point that:

1) there was little difference in the forecast errors concerning 
stair-stepping or fluctuating forecasts, and

2) that the error deviated less around the arithmetic mean as 
opposed to the absolute mean.

At this point, we decided to delve a bit deeper and run similar analyses 
on a data set excluding values where QPF = 0 inches, and on an even smaller 
data set where QPF made a definite difference in every forecast. To further 
explain the latter sample, there were times when a small amount of QPF 
resulted in both QPF and non-QPF forecasts being equal. Therefore, the latter 
case only considers those forecasts which were different at the selected 
verification times referred to in Table 1.

Tables 4 and 5 show the results of these analyses. The errors become 
gradually larger as the data set becomes smaller. What is interesting is that 
the absolute errors are all quite close in every example, except Lanesboro, and 
the mean errors are less for forecasts with QPF in most cases including 
Lanesboro.
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TABLE 4
STATISTICAL SUMMARY OF RIVER FORECASTS FOR QPF > 0

Basin
w/ QPF

w/o QPF ABSERR RMSE MEAN STD DEV H:p!=p2

JDNM5 52 0.76 ±1.22 -0.38 ±1.15 Y
52 0.77 ±1.20 -0.45 ±1.11 Y

NEWW3 55 0.63 ±0.79 -0.04 ±0.79 Y
55 0.64 ±0.81 -0.10 ±0.81 Y

LNEM5 50 0.84 ±1.99 0.29 ±1.97 Y
50 0.47 ±1.44 -0.47 ±1.36 Y

RAYW3 57 0.34 ±0.44 0.22 ±0.38 Y
57 0.34 ±0.45 0.13 ±0.43 Y

DARW3 62 1.16 ±1.89 -0.96 ±1.63 Y
62 1.23 ±2.06 -1.10 ±1.74 Y

GRDM5 54 1.37 ±2.37 -0.82 ±2.23 Y
54 1.36 ±2.41 -1.07 ±2.16 Y

TABLE 5
STATISTICAL SUMMARY OF RIVER FORECASTS 

"where QPF effected a change" (N/A = Not applicable)

Basin
w/ QPF

w/o QPF ABSERR RMSE MEAN STD DEV H:p,=p2

JDNM5 45 0.70 ±1.15 -2.09 ±2.19 N/A
45 0.69 ±1.12 -2.93 ±2.85 N/A

NEWW3 26
26

0.60
0.63

±0.78
±0.83

-0.31
-0.42

±0.72
±0.72

N/A
WA

LNEM5 20
20

1.97
1.05

±3.14
±2.25

0.84
-1.05

±3.02
±1.99

N/A
N/A

RAYW3 19
19

0.42
0.43

±0.48
±0.52

0.34
0.08

±0.33
±0.51

N/A
N/A

DARW3

GRDM5

18
18
24
24

2.00
2.24
1.81
1.76

±2.84
±3.21
±2.91
±2.99

-1.47
-1.95
-0.74
-1.37

±2.43
±2.55
±2.82
±2.66

N/A
N/A
N/A
N/A

The t-test was again used for samples where QPF > 0 as depicted in Table 
4. From equation (7), the hypothesis that the two data sets came from the same 
population would be rejected for values of t. As before, the resulting t values 
showed that the two data sets were indeed from separate populations, and are 
listed below.
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Basin ID -fc(l - ct/2) (n - 1) t

LNEM5 -2.009 -2.70
RAYW3 -2.003 -2.43
DARW3 -1.999 -2.55
GRDM5 -2.006 -2.75
JDNM5 -2.007 -3.33
NEWW3 -2.005 -3.33

We decided to make further use of the "Student’s" t-test as follows:

Test Hypothesis, H: QERR < FERR

where

FERR = Mean Forecast error without QPF 
QERR = Mean Forecast error with QPF

This would require a one-tailed test assuming normal populations and « = 0.05. 
H would be rejected for:

t ^ t (1 - a) (m ♦ n2 - 2)

(10)

where

nx = number of QERRs 
n2 = number of FERRs

The value for t would be computed using

t - (si - s 2) / (s2/rn + s2/n 2) (ID

where

j = the arithmetic mean of QPF error 
2 = the arithmetic mean of non-QPF error

s2 - ( (iij- 1) s2 ♦ (n2- 1) S22) / (n1+ n2- 2) (12)

s = the standard deviation of the stage forecast with QPF
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and

s = the standard deviation of the stage forecast without QPF

For all forecasts and for cases where QPF > 0, by basin, the statistical 
"Student's" t-test of the null hypothesis that the mean forecast error was signif­
icantly less for forecasts with QPF, was not rejected for JDNM5, NEWW3, 
DARW3, GRDM5 and RAYW3, but was rejected for LNEM5.

The test was not conducted for cases where all QPF and non-QPF 
forecasts were different since there was less than 30 cases to consider in all but 
one basin (the suggested minimum (30) acceptable sample for the t-test 
(Pan of sky and Brier 1965)). The calculated t values follow:

For all cases

Basin ID fc(l - a) (n., . n, - 2) t

LNEM5 1.651 2.24
RAYW3 1.651 0.75
DARW3 1.651 0.35
GRDM5 1.651 0.60
JDNM5 1.651 0.25
NEWW3 1.651 0.33

where QPF > 0

Basin ID fc(l - a) (njy 2) t

LNEM5 1.661 2.24
RAYW3 1.660 1.29
DARW3 1.659 0.47
GRDM5 1.661 0.58
JDNM5 1.661 0.32
NEWW3 1.660 0.40

7. EFFECT OF QPF ON INDIVIDUAL FORECASTS

Next to consider was the effect on the individual forecasts. What were 
some of the best and worst cases involving river forecasts with and without 
QPF? Did QPF add significant lead time? Figures 8-13 show some examples of 
forecasts from individual NWS RFS model runs for each forecast point, taken 
through their respective response times. The QPF that was forecast and the 
MAP that occurred is shown in the lower right-hand comer of the individual
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graphs, and the flood stage for the forecast point. All forecasts had an initial 
time at the first time step in the graph. No 1800 UTC observed data was 
available. Generally, the "a" figures show a positive effect of QPF, and the "b" 
figures a negative effect.

Figure 8a shows an opposite situation, where the observed stage is about 
9 feet higher than the non-QPF forecast that was disseminated, but only 4 feet 
higher than the forecast that included QPF. The QPF forecast would not have 
prompted a flood warning, but would have given a 24-hour advanced notice of a 
significant rise in the river.

Figure 8b depicts the worst of all cases where a QPF of 3.34 inches 
resulted in over forecasting by nearly 11 feet. With a flood stage of 12 feet, this 
would have resulted in a false warning. This one case was a major contributor 
to the statistics and explains the problem with over forecasting precipitation.

In all the "a" figures, it can be seen that where QPF had a positive result 
(i.e., where the forecast was more accurate than that without QPF), the observed 
stage was still higher. This reemphasizes the tendency to under forecast.

Figure 10b shows an interesting case where the QPF and non-QPF 
forecasts were quite similar, but the observed stages were one-to-three feet 
lower. This may be attributed to the rainfall pattern over the basin not being 
uniform as the river forecasting models assume, or another problem such as 
erroneous rainfall data incorporated into the model that morning. Figure 12b is 
a similar example.

Figure lib is another interesting case. QPF had the effect of over 
forecasting by half of a foot while the non-QPF forecast under forecast by nearly 
the same amount.
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8. COMPARISON OF 1992 AND 1993 RISK REDUCTION EXERCISES

The final item we addressed was to compare results of the 1993 risk 
reduction with that of 1992 (Braatz 1992). As mentioned in Section 2, the two 
exercises were somewhat different as follows:

In 1992, QPF was only produced if the expected 12 hour amount
was ^ 0.50 inch, as opposed to daily forecasts in 1993.

Also, the 1992 study used all forecast points in Wisconsin, whereas
the 1993 study dealt with three points in Minnesota and three
points in Wisconsin.

Even with these differences, some results could be compared. They are depicted 
as forecast summaries in Tables 6-9.

Tables 6 and 7 show results for all forecasts for each project. It should be 
reiterated here that the data base used to produce Table 7 was much larger 
than that for Table 6. Table 7 shows the verification results in 1993 were not 
as good as those in 1992 (83% versus 96% for non-QPF forecasts and 84% versus 
90% for QPF forecasts). This was most likely because the 1993 exercise was 
during a much wetter period.

Tables 8 and 9 show results for forecasts near or above flood stage. In 
this area, QPF forecasts did not fair well in 1992 with only 41% being verified, 
whereas in 1993, 82% were verified. For non-QPF forecasts, 89% were verified 
in 1992 compared to 80% in 1993. Again the changes are likely due to the 
wetter 1993 season, and increased experience of the meteorologists producing the 
QPF.

9. CONCLUSIONS

A. The two data sets (river forecasts with QPF and river forecasts 
without QPF) were shown to be statistically unique.

B. QPFs of a half inch or more, verify with measurable rainfall most of 
the time (41 out of 47 here or 87%).

C. QPFs of a half inch or more verify with MAP of a half inch or more, 
half of the time.

D. Both river forecasts with and without QPF tend to under forecast 
(showed a negative bias).

34



TABLE 6
1992 RISK REDUCTION FORECAST SUMMARY - ALL CASES

Number of

Total
Number of
QPF Fcsts

Non-QPF
Fcsts

Month Fcsts1 Verified2 Verified

April
May
June

120
60
30

101
56
27

113
59
30

July
August
September
October

104
28

129
27

91
28

120
24

100
28

124
25

November 19 19 19
TOTAL 519 4663 4984

1. Fcsts = Forecasts throughout document
2. Verified meaning + or - 1 Foot
3. 90% of stage forecasts with QPF verified
4. 96% of stage forecasts without QPF verified

TABLE 7
1993 RISK REDUCTION FORECAST SUMMARY - ALL CASES

Number of Number of Number of
Number of QPF Fcsts Non-QPF Non-QPF

Month QPF Fcsts Verified1 Fcsts Verified

June 81 54 81 50
July
August
September
October

186
186
180
184

157
151
154
171

186
186
180
184

157
151
152
171

TOTAL 817 6872 817 6813

1. Verified Meaning Within + or - 1 Foot
2. 84% of stage forecasts with QPF verified
3. 83% of stage forecasts without QPF verified
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TABLE 8
1992 RISK REDUCTION FORECAST SUMMARY 

(all forecasts near or above flood stage)

Number of 
Number of Number of Non QPF Number of
QPF Fcsts
Near or

QPF Fcsts
Above FS

Fcsts
Near or

Non QPF
Fcsts Above

Month Above FS1 Verified2 Above FS FS Verified

April
May
June

18
0
1

7
-
0

7
0
0

6
"

—
July
August
September
October

0
0
3
0

--
—
2
-

0
0
2
0

-
--

2
—

November 0 — 0 -
TOTAL 22 93 9 84

1. FS = Flood Stage throughout document
2. Verified Meaning Within + or - 1 Foot
3. 41% of stage forecasts with QPF verified
4. 89% of stage forecasts without QPF verified

TABLE 9
1993 RISK REDUCTION FORECAST SUMMARY

(all forecasts near or above flood stage)

Number of 
Number of Number of Non-QPF Number of
QPF Fcsts
Near or

QPF Fcsts
Above FS

Fcsts
Near or

Non-QPF
Fcsts Above

Month Above FS Verified1 Above FS Verified
June 25 17 25 15
July
August
September
October

51
31

9
0

45
25

8

46
31
9
0

42
24

8

TOTAL 116 952 111 893

1. Verified Meaning Within + or - 1 Foot
2. 82% of stage forecasts with QPF verified
3. 80% of stage forecasts without QPF verified
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E. The sum of the absolute errors showed a 3% greater total error in 
the river forecasts with QPF as compared to the forecasts without 
QPF. This implies too much fluctuation of the QPF-type forecasts.

F. There was a noted decrease in error of the QPF forecasts compared 
to the non-QPF forecasts, in the 3-5 day range.

G. The mean error was generally less for those river forecasts with 
QPF showing that those forecasts fluctuate closer to the actual 
observation than the non-QPF forecasts.

H. The river forecasts with QPF verified within one foot of the 
observed stage and flood stage, better than the non-QPF forecasts in 
1993 but not in 1992. This is probably because the 1993 exercise 
occurred over a much wetter season than in 1992, and perhaps also 
to the increased forecaster experience and daily routine.

10. SUMMARY

The total effect of QPF on the river forecasts resulted in a slightly larger 
error, overall (higher total absolute error), as shown in Figure 6b. This was only 
a small difference, however (3%), and should improve as forecasters' experience 
continues. With that improvement, combined with the forecasts fluctuating 
closer to the eventual observed value (item six above), the river forecast should 
improve by utilizing QPF.

As was shown in some examples of Section 7, there is a problem with both 
over forecasting precipitation, and not forecasting it at all. The extreme event of 
over forecasting by nearly 11 feet, as shown in Figure 8b, could result in 
unnecessary preparedness actions which not only take tune and effort, but could 
also be costly. On the other hand, the forecast with a good QPF could save lives 
and money, by providing earlier warnings.

The meteorologists who produced the QPF were generally conservative in 
their efforts as can be seen by the predominance of under forecasted river 
stages. For forecasters just beginning to do QPF, this is probably the tack to 
take to prevent too many false alarms, until more experience and confidence is 
gained. At least the forecast that uses QPF will most times show an upward 
trend that will alert the users earlier than the non-QPF forecast. It will be 
important however, to inform the users when QPF is part of the forecast, due to 
the change from stair-stepping to fluctuating river forecasts.

Using QPF in river forecasting will be increasing in the National Weather 
Service (NWS) over the next several years because of the NWS move toward
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modernization (Office of Hydrology 1991) and because of findings and 
recommendations of the National Oceanic and Atmospheric Administration 
Natural Disaster Survey Report of the Great Flood of 1993. In particular, 
Recommendation 6.4 states, "The NWS should support research, development, 
and operational testing to incorporate current QPF into river forecasting 
procedures".

The NWS modernization will be accompanied by new technologies such as 
Doppler radar providing rainfall estimates and improved satellite information 
that will give the forecaster a better view of hydrometeorological phenomena on 
a smaller scale. An understanding of these phenomena with a knowledge of the 
local area and climatology, will be a key in identifying areas of heavy 
precipitation to the finer resolution needed by river forecasting models. Local 
studies regarding forecasting quantitative precipitation will be another important 
enhancement, as will the future implementations of local mesoscale models.

This study has shown that adding QPF to the river forecast was generally 
not a detriment, due to the conservative nature of the meteorologist. The 
advanced notice of rising river conditions as depicted in Figure 8a shows the 
benefit of QPF. The question now does not seem to be "What harm did QPF do 
to the river forecast?", but "How can we continue to improve the expertise 
needed to produce QPF that will benefit the river forecast?"
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